The present invention relates to pharmaceutical, cosmetic and dietetic compositions and functional foods, constituted by:
Also disclosed are new phosphobioflavonic complexes of NAPE or NAE plus PA and/or LPA, with one or more bioflavonoids.
N-Acyl-ethanolamines (NAEs) and N-acyl-phosphatidyl-ethanolamines (NAPEs) are known to be present in many foods of animal and vegetable origin (H. H. Schmid et al., 1990, Prog. Lipid Res., 29, 1-43), and are particularly abundant in foods such as soy, eggs and chocolate (K. D. Chapman et al., 1993, Arch. Biochem. Biophys, 301, 21-23; E. Di Tomaso et al., 1996, Nature, 382, 677-678).
The NAEs are formed in vivo by hydrolysis of a NAPE molecule that gives rise to a mixture of NAE and a molecule of phosphatidic acid (PA) which, in turn, can be hydrolysed to lysophosphatidic acid (LPA) in accordance with the following scheme 1.
GB 2051069 discloses the anti-lipemic and anti-atherosclerotic activity of N-Oleoyl-phosphatidylethanolamine (NOPE) and excludes any significant activity of other N-acyl-derivatives.
NAEs have also been known for some time for their interesting pharmacological properties: N-arachidonoyl-ethanolamine has been demonstrated in vitro to be a cannabinoid receptor agonist (L. Hanus, 1993, J. Med. Chem., 16, 3032-3034); N-palmitoyl-ethanolamine, when administered intraperitoneally to rats, possesses anti-inflammatory and anti-anaphylactic activity (L. Facci et al., 1995, Proc. Natl. Acad. Sci. USA, 92, 3376-3380); N-palmitoyl-ethanolamine and N-stearoyl-ethanolamine have proved useful in the pharmacological treatment of inflammatory disorders resulting from degranulation of the mast cells (EP-A-0550006); they also inhibit peroxidation of the mitochondrial membranes in vitro (N. M. Gulaya et al., 1998, Chem. Phys. Lipids, 97, 49-54); N-oleoyl-ethanolamine (NOE) has a significant anorexic effect in the rat, when administered by the intraperitoneal route (F. Rodriguez de Fonseca et al., 2001, Nature, 414, 209-212). Since it is well known that NAEs are easily hydrolised to free fatty acids and ethanolamine in the gastrointestinal tract, its activity by the oral route is not expected.
The present invention relates to pharmaceutical and dietetic compositions and functional foods, constituted by:
The structural formulas of NAE, PA and LPA are shown in scheme 2, wherein R1, R2 and R4 are acyl residues of long-chain fatty acids, in particular residues of palmitic, stearic, oleic, linoleic, conjugated linoleic, linolenic, gamma-linolenic, eicosapentaenoic and docosahexanoic acids, etc.
The phospholipid mixtures may be present in the compositions of the invention in the form of their complexes with bioflavonoids. Said complexes, hereinafter called “phosphobioflavonic complexes”, are a further object of the invention.
Complexes of phospholipids ouch as lecithins, phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine with a number of plant extracts have been disclosed (U.S. Pat. No. 4,963,527, U.S. Pat. No. 4,895,839, EP 283713). Said complexes are reported to increase the bioavailability of the plant extract. In the phosphobioflavonic complexes of the invention, NAPE or NAE plus PA and/or LPA provide an unexpected synergism for the considered applications and do not act merely as carriers of bioflavones.
Said complexes, constituted by aggregation of the phospholipid active components (NAPE and/or NAE plus PA and/or NAE plus LPA) with one or more types of bioflavonoids, can be obtained by suspending a dry phospholipid residue under strong stirring for a few minutes at a temperature preferably between 40° and 65° C. in a hydroalcoholic solution (alcohol preferably between 70 and 90%), buffered to an acid pH (pH preferably between 3 and 5), containing a fraction of one or more types of bioflavonoids, preferably in a percentage of between 0.5 and 15% by weight of the hydroalcoholic solution. When stirring is interrupted, ethanol is partially evaporated from the resulting emulsion under vacuum and then dehydrated by spray drying, to produce a dry granular residue of phosphobioflavonic complexes.
Examples of bioflavonoids which can be used to produce these phosphobioflavonic complexes include:
As mentioned, molecules of NAPE, NAE, PA and LPA are naturally present in the lipid fractions of many foodstuffs normally used in the human diet (soy lecithins, eggs, cocoa, meat, oily extracts of various seeds, etc.), and can easily be extracted and isolated to various degrees of purity in accordance with conventional methods. Alternatively, the NAPE and NAE molecules can be obtained by synthesis according to chemical processes which have been known for some time.
NAE can prepared from ethanolamine and the corresponding fatty acid, for example in accordance with the methods described in:
NAPE can prepared from phosphatidylethanolamine and the corresponding fatty acid chloride or anhydride, in accordance with the methods described in:
Another method for the preparation of NAPE by means of the enzyme phospholipase D, disclosed in U.S. Pat. No. 4,783,402, is illustrated in the scheme below:
wherein
R1, R2 and R4 represent the alkyl chain of saturated, mono- or polyunsaturated fatty acids with 12-22 C atoms;
R3 represents a residue of choline, ethanolamine, inositol, glycerol, serine.
The therapeutically effective doses of preparations based on NAPE and/or NAE plus PA and/or LPA vary:
The compositions of the invention may also contain other nutritional components which further implement the therapeutic properties and benefits of NAPE and/or the mixtures of NAE+PA and/or LPA. Examples of these components are:
The active components, stored as dehydrated granulates or powders, can be used as such or in the form of aqueous or oily solutions to make various galenical preparations such as gelatin capsules, tablets, dragées, sachets, effervescent and non-effervescent cachets, chewing gum, etc.
Said active components in the form of dehydrated granulates or powders can also be used to make various functional foods:
The pharmaceutical or dietetic compositions of the invention have proved surprisingly active in:
The preparations of the invention can therefore be used as adjuvants in the treatment of aging and many metabolic disorders connected with it (obesity and excess weight; diabetes; cerebro-degenerative disorders such as Alzheimer's disease, Parkinson's disease and senile dementia; stress, depression; tumours; menopausal syndromes; osteoporosis; prostate hypertrophy; skin aging; panniculopathy (cellulitis); and alopecia), possibly in combination with known drugs or diet supplements.
The invention therefore also concerns the use of phospholipid mixtures containing
The invention is illustrated in greater detail in the following examples.
The various compounds are dissolved and mixed in 10 volumes of chloroform:methanol (2:1, vol/vol). The solvent is evaporated under vacuum, and the resulting dry residue is re-suspended in an aqueous solution buffered to physiological pH to form an aqueous mixture of a phospholipid emulsion containing the active component (N-linoleoyl-phosphatidylethanolamine). The aqueous mixture can be frozen and dehydrated to obtain a dry residue of the phospholipid active component.
The various compounds are dissolved in chloroform-methanol and treated as described in example 1 to obtain an aqueous mixture of a phospholipid emulsion containing the active components (N-eicosapentaenoyl-ethanolamine and phosphatidic acid). The aqueous mixture can be frozen and dehydrated to obtain a dry phospholipid residue of the active components as described in example 1.
The various compounds are dissolved in chloroform-methanol and treated as described in example 1 to obtain an aqueous mixture of a phospholipid emulsion containing the active components (N-linolenoyl-ethanolamine and phosphatidic acid). The aqueous mixture can be frozen and dehydrated to obtain a dry phospholipid residue of the active components as described in example 1.
The various compounds are dissolved in chloroform-methanol and treated as described in example 1 to obtain an aqueous mixture of a phospholipid emulsion containing the active constituent (N-gamma-linolenoyl-phosphatidylethanolamine). The aqueous mixture can be frozen and dehydrated to obtain a dry phospholipid residue of the active constituent as described in example 1.
20 g of dry phospholipid residues is slowly dissolved in 200 g of oily solution under slow, continuous stirring. The phospholipids of the dry residues are restructured in the oily solutions to form an oil-dispersed micellar organisation containing the active components.
100 g of a dry phospholipid residue of N-docosahexanoyl-phosphatidylethanolamine, obtained as described in example 1, is re-suspended under strong stirring for 5 minutes at 45° C. in 900 ml of a hydroalcoholic solution (75% alcohol), buffered to pH 4.5, containing 5% by weight of green tea catechins. The resulting emulsion is then cooled to room temperature and dehydrated by spray drying to form a dry granular residue of phosphobioflavonic complexes of N-docosahexanoyl-phosphatidylethanolamine and green tea catechins.
50 g of N-linolenoyl-ethanolamine and 50 g of lysophosphatidic acid (CLPA) are slowly added under strong stirring at 60° C. and emulsified for 10 minutes in 900 ml of a hydroalcoholic solution (85% alcohol) buffered to pH 4.0, containing 10% by weight of a mixture of catechins, epicatechins and proanthocyanidins extracted from grape seeds. When stirring is arrested, the resulting emulsion is cooled to room temperature and dehydrated by spray drying to form a dry granular residue of phosphobioflavonic complexes of N-linolenoyl-ethanolamine and grape-seed bioflavonoids.
Pharmacological and/or Dietetic Tests
A series of experimental tests on rats and clinical tests on man have been carried out to study the pharmacological and/or dietetic characteristics of the composition of the invention.
In the experimental tests, the rats were given a high-calorie, high-triglyceride, high-cholesterol diet. The following parameters were evaluated after twenty days treatment:
80 Male rats weighing 150-200 g each were used. The animals were divided into 8 groups of 10 animals:
When the membrane fluidity of the ghost erythrocytes and plasma platelets is measured, TMA-DPH in accordance with the method described by Caimi F. et al., 1999, Thromb. Hoemost., 82 pp. 149, is used as the fluorescent probe.
Malonyldialdehyde is assayed in accordance with the procedure described by K. Yagi et al., 1982, in “Lipid Peroxides in Biology and Medicine”, Academic Press, New York, 99.324-340.
Hepatocellular O2 consumption, mitochondrial membrane potential and reduced glutathione content are assayed in accordance with the methods described by T. M. Hagen et al., 1999, FASEB J., 13, 99. 411.
The data set out in Tables I, II, III and IV demonstrate that administration of compositions containing the active components (NOPE; NOE+PA; NOE+LPA; NOPE+B.F.):
These effects, obtainable by oral administration of the formulations prepared in accordance with the invention (NOPE; NOE+PA; NOE+LPA; NOPE+B.F.), are always statistically significant. It is important to note that no statistically significant benefit can be obtained by administering equivalent oral doses of N-oleoyl-ethanolamines as such.
The data set out above demonstrate the surprising synergy of action observed between NAPE and/or NAE+PA and the various bioflavonoid molecules; the therapeutic results obtainable by administering the “phosphobioflavonic complexes” of NAPE (see data set out in Tables I, II, III and IV) and NAE plus PA and/or LPA are always far higher than the sum of the benefits obtainable with single separate administrations of equivalent doses of NAPE (or NAE) and bioflavonoids.
In all the diet treatment tests carried out on man, the effects obtainable by orally the formulations claimed by the invention (NAPE; NAE+PA; NAE+LPA; NAPE+B.F. and NAE plus PA and/or LPA+B.F.) always provided highly significant results and advantages, both in preventing biological signs of aging (improvement in mitochondrial activity, better membrane fluidity, improvement in plasma antioxidant defences, and limited weight increase) and improving the clinical parameters tested in relation to prevention of aging, and many of the metabolic disorders associated therewith. It is noteworthy that also in humans no significant benefit can be obtained by administering equivalent oral doses of N-oleoyl-ethanolamine as such.
This patent application is a continuation of U.S. application Ser. No. 10/504,124 filed Feb. 10, 2005, which is a 35 USC 371 National Phase of PCT/EP03/01233 filed Feb. 7, 2003.
Number | Name | Date | Kind |
---|---|---|---|
4254115 | Dawidson et al. | Mar 1981 | A |
4515778 | Kastell | May 1985 | A |
4963527 | Bombardelli et al. | Oct 1990 | A |
5043323 | Bombardelli et al. | Aug 1991 | A |
5741513 | Ghyczy et al. | Apr 1998 | A |
6162637 | Lesage-Meessen et al. | Dec 2000 | A |
6228339 | Ota et al. | May 2001 | B1 |
6294191 | Meers et al. | Sep 2001 | B1 |
6429202 | Bombardelli et al. | Aug 2002 | B1 |
6479054 | Fujikawa et al. | Nov 2002 | B1 |
6576660 | Liao et al. | Jun 2003 | B1 |
6857436 | Labib et al. | Feb 2005 | B2 |
7641924 | Mizumoto et al. | Jan 2010 | B2 |
8232418 | Bilbie et al. | Jul 2012 | B1 |
20010055627 | Guthrie et al. | Dec 2001 | A1 |
20030139477 | Liao et al. | Jul 2003 | A1 |
20050002988 | Mizumoto et al. | Jan 2005 | A1 |
20090143277 | Mizumoto et al. | Jun 2009 | A1 |
20100266595 | Kolumam et al. | Oct 2010 | A1 |
20110177159 | Wu | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
0060933 | Sep 1982 | EP |
0 604 806 | Jul 1994 | EP |
0604806 | Jul 1994 | EP |
0620000 | Oct 1994 | EP |
1424074 | Jun 2004 | EP |
2051069 | Apr 2009 | EP |
972927 | Feb 1951 | FR |
2 051 069 | Jan 1981 | GB |
2051069 | Jan 1981 | GB |
63198693 | Aug 1988 | JP |
10084880 | Apr 1998 | JP |
2000219880 | Aug 2000 | JP |
02080860 | Sep 2006 | WO |
Entry |
---|
Do Carmo in Acta Med Port. May-Jun, 1991; 4(3), pp. 123-126. |
Hansen et al., “Formation of N-Acyl-phosphatidylethanolamines and N-Acylethanolamines: Proposed role in neurotoxicity”, Biochemical Pharmacology, vol. 55, No. 6, Mar. 15, 1998, pp. 719-725, XP-002245165. |
De Fonseca et al., “An anorexic lipid mediator regulated by feeding”, Nature, vol. 414, No. 6860, 2001, pp. 209-212. |
do Carmo et al., in Acta Med. Port, vol. 4 (3), pp. 123-126, 1991 (Abstract). |
Nuovo, in American Family Physician, Mar. 15, 1999 (Abstract). |
Pan, et al., “Dietary Fats, Membrane Phospholipids and Obesity”, The Journal of Nutrition, 1994, pp. 1555-1565. |
Cooper, “Abnormalities of Cell-Membrane Fluidity in the Pathogenesis of Disease”, The New England Journal of Medicine, vol. 297, No. 7, Aug. 16, 1977, pp. 371-377. |
Owen, et al., “Decreased Erythrocyte Membrane Fluidity and Altered Lipid Composition in Human Liver Disease”, Journal of Lipid Research, vol. 23, 1982, pp. 124-132. |
Schapira, et al., “Mitochondrial Function in Neurodegeneration and Ageing”, Mutation Research, vol. 275, 1992, pp. 133-143. |
Caimi, “Erythrocyte, Platelet and Polymorphonuclear Leukocyte Membrane Dynamic Properties in Essential Hypertension”, Clinical Hemorheology and Microcirculation 17, 1997, pp. 199-208. |
Bowling, et al., “Age-Dependent Impairment of Mitochondrial Function in Primate Brain”, Journal of Neurochemistry, vol. 60, No. 5, 1993, pp. 1964-1967. |
Kuroda, et al., “Secondary Bioenergetic Failure After Transient Focal Ischaemia is Due to Mitochondrial Injury”, Acta Physiol. Scand., vol. 156, 1996, pp. 149-150. |
Blumberg, “Considerations of the Scientific Substantiation for Antioxidant Vitamins and Beta-Carotene in Disease Prevention”, The American Journal of Clinical Nutrition, 1995, pp. 1521-1526. |
Reaven, “Dietary and Pharmacologic Regimens to Reduce Lipid Peroxidation in Non-Insulin-Dependent Diabetes Mellitus”, The American Journal of Clinical Nutrition, 1995, pp. 1483-1489. |
Freeman, et al., “Biology of Disease—Free Radicals and Tissue Injury”, Laboratory Investigation, vol. 47, No. 5, 1982, pp. 412-426. |
Brook, et al., “Dietary Soya Lecithin Decreases Plasma Triglyceride Levels and Inhibits Collagen- and ADP-Induced Platelet Aggregation”, Biochemical Medicine and Metabolic Biology, 1986, vol. 35, pp. 31-39. |
Cestaro, et al., “Interaction of GMI Ganglioside Micelles With Miultilayer Vesicles”, Bulletin of Molecular Biology and Medicine, Sep. 1979, vol. 4, pp. 240-249. |
Hara, Y., “Green Tea: Health Benefits and Applications”, CRC Press, Taylor & Francis Group, LLC, Boca Raton, Florida, 2001, pp. 183-186. |
Cestaro, et al., “Bilayer Micelle Transition in Phosphatidylcholine-Sulfatide Mixtures”, Italian Journal of Biochemistry, vol. 33, No. 6, Nov.-Dec. 1984, pp. 381-391. |
“#1 All Kinds of Health & Nutritional Supplements”, Health.NetEzShop.com, 2000-2004, pp. 1-3. |
Huang,C., “Studies on Phosphatidylcholine Vesicles, Formation and Physical Characteristics”, Biochemistry, Jan. 1969, vol. 8, No. 1, pp. 344-351. |
Cestaro, et al., “Fusion of Sulfatide-Containing Vesicles of Phosphatidylcholine”, Eur. J. Biochem., 1983, vol. 133, pp. 229-233. |
Anderson, et al, “Entrapment of Human Leukocyte Interferon in the Aqueous Interstices of Liposomes”, Infection and Immunity, Mar. 1981, vol. 31, No. 3, pp. 1099-1103. |
Cervato, et al., “Interactions of Insulin With Sulfatide-Containing Vesicles of Phosphatidylcholine At Different PHS”, Chemistry and Physics of Lipids, vol. 43, 1987, pp. 135-146. |
Gillum, et al., “N-Acylphosphatidyletanolamine, A Gut-Derived Circulating Factor Induced by Fat Ingestion, Inhibits Food Intake”, Cell, vol. 135, Nov. 28, 2008, pp. 813-824. |
Schmid, et al., “N-Acylated Glycerophospolipids and Their Derivatives”, Prog. Lipid Res., vol. 29, pp. 1-43, 1990. |
Akoka, et al., “A Phosphorus Magnetic Resonance Spectroscopy and a Differential Scanning Calorimetry Study of the Physical Properties of N-Acylphosphatidylethanolamines in Aqueous Dispersions”, Chemistry and Physics of Lipids, 1988, vol. 46, pp. 43-50. |
Moss, et al., “Glossary of Class Names of Organic Compounds and Reactive Intermediates Based on Structure”, Pure & Appl. Chem., 1995, vol. 67, No. 8/9, pp. 1307-1310, 1327, 1347, 1357-1358, Enclosure 2, 1997, pp. 1-12. |
Moss, G.P., “Nomenclature of Lipids”, IUPAC-IUB Commission on Biochemical Nomenclature (CBN), http://www.chem.qmul.ac.uk/iupac/lipid/, 1976, pp. 1-2 and pp. 1-7. |
Falbe, et al., “Rompp Chemie Lexikon”, Georg Thieme Verlag, Stuttgart, Germany, 1992, pp. 156, with English translation of relevant portion. |
Falbe, et al., “Rompp Chemie Lexikon”, Georg Thieme Verlag, Stuttgart, Germany, 1992, pp. 3377, with English translation of relevant portion. |
Falbe, et al., “Rompp Chemie Lexikon”, Georg Thieme Verlag, Stuttgart, Germany, 1992, pp. 2189-2190, with English translation of relevant portion. |
“Functional Food—Too Good Is Too Much?”, http://www.gesundheit.de/ernaehrung/alternativemaehrung/functional-food-zuviel-gutes/index.html, Believed to be dated prior to Sep. 19, 2007, (With English translation) pp. 1-3. |
Cullis P.R. et al., “Lipid Polymorphism and the Functional Roles of Lipids in Biological Membranes”, Biochimica et Biophysica Acta, 559, 1979, pp. 399-420. |
Cestaro Benvenuto, “I Liposomi: metodi di preparazione e loro applicazioni terapeutiche”, Biochimica Clinica, 1990, vol. 14, No. 3, pp. 267-273 (Machine translation of Title, Introduction and final paragraph). |
Number | Date | Country | |
---|---|---|---|
20100179107 A1 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10504124 | US | |
Child | 11858059 | US |