N-Aryl pyrazole(thio)carboxamides

Abstract
The present invention relates to novel (thio)carboxamides, their process of preparation, their use as fungicide active agents, particularly in the form of fungicide compositions, and methods for the control of phytopathogenic fungi, notably of plants, using these compounds or compositions.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to novel (thio)carboxamides, their process of preparation, their use as fungicide active agents, particularly in the form of fungicide compositions, and methods for the control of phytopathogenic fungi, notably of plants, using these compounds or compositions.


2. Description of Related Art


In international patent applications WO2007-068373 certain fungicidal (thio)carboxamide derivatives are generically embraced in a broad disclosure of numerous compounds of the following formula:




embedded image



wherein A represents a substituted phenyl or (5 or 6)-membered heterocyclic group that can represent various rings among which a pyrazole ring, M represents monosubstituted phenyl, thiophene, pyridine, pyrimidine, pyridazine, or thiazol ring, Q and Z represents numerous organic residues. However, there is no explicite disclosure or suggestion to select in these documents of any such derivative wherein A represent a 1-methyl-3-(difluoro or dichloro)methyl-5-(chloro or fluoro)-4-pyrazolyl group.


It is always of high-interest in the field of agrochemicals to use pesticidal compounds more active than the compounds already known by the man ordinary skilled in the art whereby reduced amounts of compound can be used whilst retaining equivalent efficacy.


Furthermore, the provision of new pesticidal compounds with a higher efficacy strongly reduces the risk of appearance of resistant strains in the fungi to be treated.


We have now found a new family of compounds which show enhanced fungicidal activity over the general known family of such compounds.


SUMMARY

Thus this invention now provides novel (thio)carboxamides of the formula (I)




embedded image



in which

  • T represents O (oxygen) or S (sulfur),
  • X1 and X2 which can be the same or different, represent a halogen atom;
  • R1 represents a substituted or non-substituted C1-C8-alkyl; a C1-C8-halogenoalkyl having 1 to 5 halogen atoms; a non-substituted or substituted C3-C7-cycloalkyl; wherein, when substituted, C3-C7-cycloalkyl is substituted by up to 10 atoms or groups that can be the same or different and that can be selected in the list consisting of halogen atoms, cyano, C1-C8-alkyl, C1-C8-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, C1-C8-alkoxy, C1-C8-alkoxycarbonyl, C1-C8-halogenoalkoxycarbonyl comprising up to 9 halogen atoms that can be the same or different, C1-C8-alkylaminocarbonyl and di-C1-C8-alkylaminocarbonyl;
  • M represents a phenyl, or thiophene ring
  • R2 represents fluorine, chlorine, methyl, ethyl, methyl isopropyl, methylsulfanyl or trifluoromethyl,
  • n represents 0, 1, 2, 3 or 4
  • Q represents a direct bond, C1-C4-alkylene, C2-C4-alkenylene, O, S, SO, SO2, C═O, CF2 or NR3,
  • R3 represents hydrogen, C1-C8-alkyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylsulfanyl-C1-C4-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C1-C6-halogenoalkyl, C2-C6-halogenoalkenyl, C2-C6-halogenoalkynyl or C3-C6-cycloalkyl,
  • Z represents Z1, Z2, Z3, Z4 or Z5,
  • Z1 represents a phenyl which is optionally mono- to pentasubstituted by identical or different substituents W1,
  • Z2 represents pyridinyl which is optionally mono- to trisubstituted by identical or different substituents W2,
  • Z3 represents C3-C7-cycloalkyl or C4-C10-bicycloalkyl, each of which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkyl and/or —(CR4R5)mSiR6R7R8,
  • Z4 represents unsubstituted C1-C20-alkyl or represents C1-C20-alkyl which is mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylsullfanyl, alkylsulfinyl, alkylsulfonyl, alkoxy, alkylamino, dialkylamino, halogenoalkylsulfanyl, halogenoalkylsulfinyl, halogenoalkylsulfonyl, halogenoalkoxy, halogenoalkylamino, di(halogenoalkyl)amino, —SiR6R7R8 and C3-C6-cycloalkyl, where the cycloalkyl moiety for its part may optionally be mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C1-C4-alkyl,
  • Z5 represents C2-C20-alkenyl or C2-C20-alkynyl, each of which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylsullfanyl, alkylsulfinyl, alkylsulfonyl, alkoxy, alkylamino, dialkylamino, halogenoalkylsullfanyl, halogenoalkylsulfinyl, halogenoalkylsulfonyl, halogenoalkoxy, halogenoalkylamino, di(halogenoalkyl)amino, —SiR6R7R8 and C3-C6-cycloalkyl, where the cycloalkyl moiety for its part may optionally be mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C1-C4-alkyl,
  • R4 represents hydrogen or C1-C4-alkyl,
  • R5 represents hydrogen or C1-C4-alkyl,
  • m represents 0, 1, 2 or 3,
  • R6 and R7 independently of one another represent hydrogen, C1-C8-alkyl, C1-C8-alkoxy, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylsulfanyl-C1-C4-alkyl or C1-C6-halogenoalkyl,
  • R8 represents hydrogen, C1-C8-alkyl, C1-C8-alkoxy, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylsulfanyl-C1-C4-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C1-C6-halogenoalkyl, C2-C6-halogenoalkenyl, C2-C6-halogenoalkynyl, C3-C6-cycloalkyl, or represents in each case optionally substituted phenyl or phenylalkyl;
  • W1 represents halogen, cyano, nitro, amino, hydroxyl, formyl, carboxy, carbamoyl, thiocarbamoyl; or straight-chain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylsulfanylalkyl, dialkoxyalkyl, alkylsulfanyl, alkylsulfinyl or alkylsulfonyl having in each case 1 to 8 carbon atoms; or
    • straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms; or
    • straight-chain or branched halogenoalkyl, halogenoalkoxy, halogenoalkylsulfanyl, halogenoalkylsulfinyl or halogenoalkylsulfonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms; or
    • straight-chain or branched halogenoalkenyl or halogenoalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms; or
    • straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, or dialkylaminocarbonyloxy having 1 to 6 carbon atoms in the respective hydrocarbon chains, or
    • alkenylcarbonyl or alkynylcarbonyl, having 2 to 6 carbon atoms in the respective hydrocarbon chains; or cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms; or
    • doubly attached alkylene having 3 or 4 carbon atoms, oxyalkylene having 2 or 3 carbon atoms or dioxyalkylene having 1 or 2 carbon atoms, each of which radicals is optionally mono- to tetrasubstituted by identical or different substituents from the group consisting of fluorine, chlorine, oxo, methyl, trifluoromethyl and ethyl;
    • or the groupings —(CR4R5)mSiR6R7R8 or —C(Q2)=N-Q3, in which
  • Q2 represents hydrogen, hydroxyl or alkyl having 1 to 4 carbon atoms, halogenoalkyl having 1 to 4 carbon atoms and 1 to 9 fluorine, chlorine and/or bromine atoms or cycloalkyl having 1 to 6 carbon atoms and
  • Q3 represents hydroxyl, amino, methylamino, phenyl, benzyl or represents in each case optionally cyano-, hydroxyl-, alkoxy-, alkylsulfanyl-, alkylamino-, dialkylamino- or phenyl-substituted alkyl or alkoxy having 1 to 4 carbon atoms, or represents alkenyloxy or alkynyloxy having in each case 2 to 4 carbon atoms,
    • and also phenyl, phenoxy, phenylsulfanyl, benzoyl, benzoylethenyl, cinnamoyl, heterocyclyl or phenylalkyl, phenylalkyloxy, phenylalkylsulfanyl or heterocyclylalkyl having in each case 1 to 3 carbon atoms in the respective alkyl moieties, each of which radicals is optionally mono- to trisubstituted in the ring moiety by halogen and/or straight-chain or branched alkyl or alkoxy having 1 to 4 carbon atoms;
  • W2 represents hydrogen, halogen, cyano, nitro, C1-C6-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, C1-C4-alkoxy, C1-C4-alkylsulfanyl, C1-C4-alkylsulfinyl, C1-C4-alkylsulfonyl, C3-C6-cycloalkyl; represents C1-C4-halogenoalkyl, C1-C4-halogenoalkoxy, C1-C4-halogenoalkylsulfanyl, C1-C4-halogenoalkylsulfinyl, C1-C4-halogenoalkylsulfonyl having in each case 1 to 5 halogen atoms; represents —SO2NR10R11, —C(═Y)R12, —Si(R13)3, C2-C4-alkenylene-Si(R13)3, C2-C4-alkynylene-Si(R13)3, —NR15R16, CH2—NR15R16, in which
  • Y represents O (oxygen) or S (sulfur),
  • R10 represents hydrogen, C1-C4-alkyl or —C(═YR12,
  • R11 represents hydrogen, C1-C4-alkyl or —C(═Y)R12, or
  • R10 and R11 together with the nitrogen atom to which they are attached form a saturated heterocycle which has 5 to 8 ring atoms and is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C1-C4-alkyl, where the heterocycle may contain 1 or 2 further non-adjacent heteroatoms from the group consisting of oxygen, sulfur and NR14,
  • R12 represents hydrogen, C1-C4-alkyl, C1-C4-alkoxy or —NR15R16,
  • R13 represents hydrogen, C1-C8-alkyl, C1-C8-alkoxy, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylsulfanyl-C1-C4-alkyl or C1-C6-halogenoalkyl, where the three radicals R13 may in each case be identical or different,
  • R14 represents hydrogen or C1-C6-alkyl,
  • R15 represents hydrogen or C1-C4-alkyl,
  • R16 represents hydrogen or C1-C4-alkyl, or
  • R15 and R16 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C1-C4-alkyl, where the heterocycle may contain 1 or 2 further non-adjacent heteroatoms from the group consisting of oxygen, sulfur and NR14,
  • where, unless indicated otherwise, a group or a substituent which is substituted according to the invention is substituted by one or more group selected in the list consisting of halogen; nitro, cyano, C1-C12-alkyl; C1-C6-haloalkyl having 1 to 9 identical or different halogen atoms; C1-C6-alkoxy; C1-C6-haloalkoxy having 1 to 9 identical or different halogen atoms; C1-C6-alkylsulfanyl; C1-C6-haloalkylsulfanyl having 1 to 9 identical or different halogen atoms; C1-C6-alkylsulfonyl; C1-C6-haloalkylsulfonyl having 1 to 9 identical or different halogen atoms; C2-C12-alkenyl; C2-C12-alkynyl; C3-C7-cycloalkyl; phenyl; tri(C1-C8)alkylsilyl; tri(C1-C8)alkylsilyl-C1-C8-alkyl;







DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

Finally, it has been found that the novel (thio)carboxamides of the formula (I) have very good microbicidal properties and can be used for controlling unwanted microorganisms both in crop protection and in the protection of materials.


If appropriate, the compounds according to the invention can be present as mixtures of different possible isomeric forms, in particular of stereoisomers, such as, for example, E and Z, threo and erythro, and also optical isomers, and, if appropriate, also of tautomers. What is claimed are both the E and the Z isomers, and also the threo and erythro, and the optical isomers, any mixtures of these isomers, and the possible tautomeric forms.


The formula (I) provides a general definition of the (thio)carboxamides according to the invention. Preferred radical definitions of the formula mentioned above and below are given below. These definitions apply to the end products of the formula (I) and likewise all intermediates.

  • T preferably represents O (oxygen).
  • T also preferably represents S (sulfur).
  • X1 preferably represents fluorine or chlorine.
  • X1 particularly preferably represents fluorine.
  • X2 preferably represents fluorine or chlorine.
  • X2 particularly preferably represents fluorine.
  • R1 preferably represents a substituted or non-substituted C1-C8-alkyl, a C1-C8-halogenoalkyl having 1 to 5 halogen atoms or a non-substituted C3-C7-cycloalkyl.
  • R1 particularly preferably represents a substituted or non-substituted C1-C6-alkyl, a C1-C6-halogenoalkyl or a non-substituted C3-C7-cycloalkyl.
  • R1 more particularly preferably represents methyl, or cyclopropyl.
  • M preferably represents one of the cycles below:




embedded image


  • where the bond marked * is linked to the amide and the bond marked # is linked to the radical Q-Z and n is 0 or 1.

  • M particularly preferably represents M-1.

  • M furthermore particularly preferably represents the heterocycle M-3.

  • .n preferably represents 0 or 1

  • R2 preferably represents fluorine.

  • Q preferably represents a direct bond.

  • Q furthermore preferably represents O (oxygen).

  • R3 preferably represents hydrogen, C1-C6-alkyl, C1-C3-alkoxy-C1-C3-alkyl, C1-C3-alkylsulfanyl-C1-C3-alkyl or C3-C6-cycloalkyl.

  • Z preferably represents Z1.

  • Z1 preferably represents phenyl which is optionally mono- to pentasubstituted by identical or different substituents, where the substituents are in each case selected from the list W1.

  • Z1 particularly preferably represents monosubstituted phenyl, where the substituents are selected from the list W1.

  • Z1 also particularly preferably represents phenyl which is disubstituted by identical or different substituents, where the substituents are selected from the list W1.

  • Z1 also particularly preferably represents phenyl which is trisubstituted by identical or different substituents, where the substituents are selected from the list W1.

  • W1 preferably represents fluorine, chlorine, bromine, methyl, ethyl, n- or i-propyl, n-, s- or t-butyl, methoxy, ethoxy, n- or i-propoxy, trifluoromethyl, trifluoroethyl, difluoromethoxy, trifluoromethoxy, difluorochloromethoxy, trifluoroethoxy, in each case doubly attached difluoromethylenedioxy or tetrafluoroethylenedioxy,
    • or the groupings —CH2Si(CH3)3, —Si(CH3)3 or —C(Q2)=N-Q3, in which

  • Q2 represents hydrogen, methyl, ethyl or trifluoromethyl and

  • Q3 represents hydroxyl, methoxy, ethoxy, propoxy or isopropoxy.

  • Z furthermore, preferably represents Z2.

  • Z2 preferably represents 2-pyridinyl, 3-pyridinyl or 4-pyridinyl, each of which is optionally mono- to trisubstituted by identical or different substituents, where the substituents are in each case selected from the list W2.

  • W2 preferably represents hydrogen, fluorine, chlorine, bromine, cyano, nitro, methyl, ethyl, n- or isopropyl, n-, iso-, sec- or tert-butyl, allyl, propargyl, methoxy, ethoxy, n- or isopropoxy, n-, iso-, sec- or tert-butoxy, methylsulfanyl, ethysulfanyl, n- or isopropylsulfanyl, n-, iso-, sec- or tert-butylsulfanyl, methylsulfinyl, ethylsulfinyl, n- or isopropylsulfinyl, n-, iso-, sec- or tert-butylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or iso-propylsulfonyl, n-, iso-, sec- or tert-butylsulfonyl, cyclopropyl, cyclopentyl, cyclohexyl, trifluoromethyl, difluoromethyl, trichloromethyl, trifluoroethyl, trifluoromethoxy, difluoromethoxy, trichloromethoxy, difluoromethylsulfanyl, difluorochloromethylsulfanyl, trifluoromethylsulfanyl, trifluoromethylsulfinyl, trifluoromethylsulfonyl, —SO2NMe2, —C(═Y)R12, —Si(R13)3, —CH═CH—Si(R13)3, —CH2—CH═CH—Si(R13)3, —CH═CH—CH2—Si(R13)3, —C≡C—Si(R13)3, —CH2—C≡C—Si(R13)3, —C≡C—CH2—,
    • where Y represents O (oxygen) or S (sulfur),

  • Z furthermore, preferably represents Z3.

  • Z3 preferably represents C3-C7-cycloalkyl or C4-C10 bicycloalkyl having in each case 3 to 10 carbon atoms, each of which radicals is optionally mono- to tetrasubstituted by identical or different substituents from the group consisting of halogen, C1-C4-alkyl, —CH2Si(CH3)3 and —Si(CH3)3.

  • Z3 very particularly preferably represents chlorine- and methyl-substituted cyclopropyl.

  • Z furthermore, preferably represents Z4.

  • Z4 preferably represents unsubstituted C1-C20-alkyl or represents C1-C20-alkyl which is mono- or polysubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine, iodine, C1-C6-alkylsulfanyl, C1-C6-alkylsulfinyl, C1-C6-alkylsulfonyl, C1-C6-alkoxy, C1-C6-alkylamino, di(C1-C6-alkyl)amino, C1-C6-halogenoalkylsulfanyl, C1-C6-halogenoalkysulfinyl, C1-C6-halogenoalkylsulfonyl, C1-C6-halogenoalkoxy, C1-C6-halogenoalkylamino, di(C1-C6-halogenoalkyl)amino, —SiR6R7R8 and C3-C6-cycloalkyl, where the cycloalkyl moiety for its part may optionally be mono- or polysubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine, iodine, C1-C4-alkyl and C1-C4-halogenoalkyl.

  • Z4 particularly preferably represents unsubstituted C1-C20-alkyl.

  • Z4 also particularly preferably represents C1-C20-alkyl which is substituted by fluorine, chlorine, bromine, iodine, C1-C6-alkylsulfanyl, C1-C4-alkylsulfinyl, C1-C4-alkylsulfonyl, C1-C4-alkoxy, C1-C4-alkylamino, di(C1-C4-alkyl)amino, C1-C4-halogenoalkylsulfanyl, C1-C4-halogenoalkylsulfinyl, C1-C4-halogenoalkylsulfonyl, C1-C4-halogenoalkoxy, C1-C4-halogenoalkylamino, di(C1-C4-halogenoalkyl)amino having in each case 1 to 9 fluorine, chlorine and/or bromine atoms, —SiR6R7R8, cyclopropyl, dichlorocyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl;

  • Z4 very particularly preferably represents C1-C20-alkyl which is substituted by fluorine, chlorine, methylsulfanyl, ethylsulfanyl, n- or isopropylsulfanyl, n-, iso-, sec-, tert-butylsulfanyl, pentylsulfanyl, hexylsulfanyl, methylsulfonyl, ethylsulfonyl, n- or isopropylsulfonyl, n-, iso-, sec-, tert-butylsulfonyl, methoxy, ethoxy, n- or isopropoxy, n-, iso-, sec-, tert-butoxy, methylamino, ethylamino, n- or isopropylamino, n-, iso-, sec-, tert-butylamino, dimethylamino, diisopropylamino, trifluoromethylsulfanyl, trifluoromethoxy, —SiR6R7R8, cyclopropyl, dichlorocyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

  • Z furthermore, preferably represents Z5.

  • Z5 preferably represents C2-C20-alkenyl or C2-C20-alkynyl, each of which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine, iodine, C1-C6-alkylsulfanyl, C1-C6-alkylsulfinyl, C1-C6-alkylsulfonyl, C1-C6-alkoxy, C1-C6-alkylamino, di(C1-C6-alkyl)amino, C1-C6-halogenoalkylsulfanyl, C1-C6-halogenoalkysulfinyl, C1-C6-halogenoalkylsulfonyl, C1-C6-halogenoalkoxy, C1-C6-halogenoalkylamino, di(C1-C6-halogenoalkyl)amino, —SiR6R7R8 and C3-C6-cycloalkyl, where the cycloalkyl moiety for its part may optionally be mono- or polysubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine, iodine, C1-C4-alkyl and C1-C4-halogenoalkyl.

  • Z5 particularly preferably represents C2-C20-alkenyl or C2-C20-alkynyl, each of which is optionally substituted by fluorine, chlorine, bromine, iodine, C1-C6-alkylsulfanyl, C1-C4-alkylsulfinyl, C1-C4-alkylsulfonyl, C1-C4-alkoxy, C1-C4-alkylamino, di(C1-C4-alkyl)amino, C1-C4-halogenoalkylsulfanyl, C1-C4-halogenoalkylsulfinyl, C1-C4-halogenoalkylsulfonyl, C1-C4-halogenoalkoxy, halogenoalkylamino, di(C1-C4-halogenoalkyl)amino having in each case 1 to 9 fluorine, chlorine and/or bromine atoms, —SiR6R7R8, cyclopropyl, dichlorocyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl;

  • Z5 very particularly preferably represents C2-C20-alkenyl or C2-C20-alkynyl each of which is optionally substituted by fluorine, chlorine, bromine, iodine, cyclopropyl, dichlorocyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl;

  • m preferably represents 0, 1 or 2.

  • R4 preferably represents hydrogen or methyl.

  • R4 particularly preferably represents hydrogen.

  • R5 preferably represents hydrogen or methyl.

  • R5 particularly preferably represents hydrogen.

  • R6 and R7 independently of one another preferably represent C1-C6-alkyl, C1-C6-alkoxy, C1-C3-alkoxy-C1-C3-alkyl or C1-C3-alkylsulfanyl-C1-C3-alkyl.

  • R6 and R7 independently of one another particularly preferably represent methyl, ethyl, methoxy, ethoxy, methoxymethyl, ethoxymethyl, methoxyethyl, ethoxyethyl, methylsulfanylmethyl, ethylsulfanylmethyl, methylsulfanylethyl or ethylsulfanylethyl.

  • R6 and R7 especially preferably each represent methyl.

  • R8 preferably represents C1-C6-alkyl, C1-C6-alkoxy, C1-C3-alkoxy-C1-C3-alkyl, C1-C3-alkylsulfanyl-C1-C3-alkyl, C3-C6-cycloalkyl, phenyl or benzyl.

  • R8 most preferably represents methyl.



Preference is given to those compounds of the formula (I) in which all radicals each have the meanings mentioned above as being preferred.


Particular preference is given to those compounds of the formula (I) in which all radicals each have the meanings mentioned above as being particularly preferred.


Preferred, and in each case to be understood as a sub-group of the compounds of the formula (I) mentioned above, are the following groups of novel carboxamides:


Group 1: Carboxamides of the formula (I-a)




embedded image



in which X2, R2, n, Q and Z are as defined above.


Group 2: Carboxamides of the formula (I-b)




embedded image



in which X2, R2, n, Q and Z are as defined above.


Group 3: Carboxamides of the formula (I-c)




embedded image



in which X2, R2, n, Q and Z are as defined above


Group 4: Carboxamides of the formula (I-d)




embedded image



in which X2, R2, n, Q and Z are as defined above.


The definition C1-C20-alkyl comprises the largest range defined here for an alkyl radical. Specifically, this definition comprises the meanings methyl, ethyl, n-, isopropyl, n-, iso-, sec-, tert-butyl, and also in each case all isomeric pentyls, hexyls, heptyls, octyls, nonyls, decyls, undecyls, dodecyls, tridecyls, tetradecyls, pentadecyls, hexadecyls, heptadecyls, octadecyls, nonadecyls and eicosyls. A preferred range is C2-C12-alkyl, such as ethyl and straight-chain or branched propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and dodecyl, particularly straight-chain or branched C3-C10-alkyl, such as propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,2-dimethylpropyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethylbutyl, 2-ethylbutyl, 1-ethyl-3-methylpropyl, n-heptyl, 1-methylhexyl, 1-ethylpentyl, 2-ethylpentyl, 1-propylbutyl, octyl, 1-methylheptyl, 2-methylheptyl, 1-ethylhexyl, 2-ethylhexyl, 1-propylpentyl, 2-propylpentyl, nonyl, 1-methyloctyl, 2-methyloctyl, 1-ethylheptyl, 2-ethylheptyl, 1-propylhexyl, 2-propylhexyl, decyl, 1-methylnonyl, 2-methylnonyl, 1-ethyloctyl, 2-ethyloctyl, 1-propylheptyl and 2-propylheptyl, in particular propyl, 1-methylethyl, butyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylethyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, pentyl, 1-methylbutyl, 1-ethylpropyl, hexyl, 3-methylpentyl, heptyl, 1-methylhexyl, 1-ethyl-3-methylbutyl, 1-methylheptyl, 1,2-dimethylhexyl, 1,3-dimethyloctyl, 4-methyloctyl, 1,2,2,3-tetramethylbutyl, 1,3,3-trimethylbutyl, 1,2,3-trimethylbutyl, 1,3-dimethylpentyl, 1,3-dimethylhexyl, 5-methyl-3-hexyl, 2-methyl-4-heptyl, 2,6-dimethyl-4-heptyl and 1-methyl-2-cyclopropylethyl.


Halogen-substituted alkyl represents, for example, chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl, 3-chloro-1-methylbutyl, 2-chloro-1-methylbutyl, 1-chlorobutyl, 3,3-dichloro-1-methylbutyl, 3-chloro-1-methylbutyl, 1-methyl-3-trifluoromethylbutyl, 3-methyl-1-trifluoromethylbutyl.


The substituent —SiR6R7R8 preferably represents the following radicals: SiMe3, SiMe2Et, SiMe2CHMe2, SiMe2CH2CHMe2, SiMe2CH2CMe3, SiMe2OCHMe2, SiMe2OCH2CHMe2, SiMe2OMe, SiMe2CMe3, SiMe2CH2CH2Me.


The definition C2-C20-alkenyl comprises the largest range defined here for an alkenyl radical. Specifically, this definition comprises the meanings ethenyl, n-, isopropenyl, n-, iso-, sec-, tert-butenyl, and also in each case all isomeric pentenyls, hexenyls, heptenyls, octenyls, nonenyls, decenyls, undecenyls, dodecenyls, tridecenyls, tetradecenyls, pentadecenyls, hexadecenyls, heptadecenyls, octadecenyls, nonadecenyls and eicosenyls, 1-methyl-1-propenyl, 1-ethyl-1-butenyl, 2,4-dimethyl-1-pentenyl, 2,4-dimethyl-2-pentenyl.


The definition C2-C20-alkynyl comprises the largest range defined here for an alkynyl radical. Specifically, this definition comprises the meanings ethynyl, n-, isopropynyl, n-, iso-, sec-, tert-butynyl, and also in each case all isomeric pentynyls, hexynyls, heptynyls, octynyls, nonynyls, decynyls, undecynyls, dodecynyls, tridecynyls, tetradecynyls, pentadecynyls, hexadecynyls, heptadecynyls, octadecynyls, nonadecynyls and eicosynyls.


Optionally substituted radicals may be mono- or polysubstituted, where in the case of polysubstitution, the substituents may be identical or different. Thus, the definition dialkylamino also embraces an amino group which is substituted asymmetrically by alkyl, such as, for example, methylethylamino.


Halogen-substituted radicals, such as, for example, halogenoalkyl, are mono- or polyhalogenated. In the case of polyhalogenation, the halogen atoms may be identical or different. Here, halogen represents fluorine, chlorine, bromine and iodine, in particular fluorine, chlorine and bromine.


However, the general or preferred radical definitions or illustrations given above can also be combined with one another as desired, i.e. including combinations between the respective ranges and preferred ranges. They apply to the end products and, correspondingly, to precursors and intermediates.


Carboxamides of the formula (Ia) where T represents oxygen are obtained when carbonyl halides or acids of formula (II)




embedded image



in which

    • X1 and X2 are as defined above,
    • X3 represents halogen or hydroxy,


      are reacted with amines of formula (III)




embedded image



in which R1, R2, n, M, Q and Z are as defined above,


if appropriate in the presence of a coupling agent, if appropriate in the presence of an acid binder and if appropriate in the presence of a diluent following the general process (a):




embedded image


The formula (II) provides a general definition of the carbonyl halides or acids required as starting materials for carrying out the process (a) according to the invention. In this formula (II), X1 and X2 preferably, particularly preferably, very particularly preferably and especially preferably have those meanings which have already been mentioned in connection with the description of the compounds of the formula (I) according to the invention as being preferred, particularly preferred, etc., for this radical. X3 preferably represents fluorine, chlorine or hydroxyl, particularly preferably chlorine or hydroxyl.


Thiocarboxamides of the formula (I) where T represents sulfur are obtained when carboxamides of the formula (I) where T represents oxygen are reacted according to process (b):




embedded image



in the presence of a thionating agent and if appropriate in the presence of a catalytic or stoechiometric or more, quantity of a base.


The carbonyl halides or acids of the formula (II) can be prepared according to the process (c) illustrated according to the following reaction scheme:




embedded image



wherein X1 is as herein-defined;


5-chloro-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carbaldehyde is known from WO-2004/014138 (reference example 35).


The amines of the formula (III) are known (e.g. WO-2007/068373).


Suitable diluents for carrying out the process (a) according to the invention are all inert organic solvents. These preferably include aliphatic, alicyclic or aromatic hydrocarbons, such as, for example, petroleum ether, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene, xylene or decaline; halogenated hydrocarbons, such as, for example, chlorobenzene, dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, dichloroethane or trichloroethane; ethers, such as diethyl ether, diisopropyl ether, methyl t-butyl ether, methyl t-amyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, 1,2-diethoxyethane or anisol; ketones, such as acetone, butanone, methyl isobutyl ketone or cyclohexanone; nitriles, such as acetonitrile, propionitrile, n- or i-butyronitrile or benzonitrile; amides, such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylformanilide, N-methylpyrrolidone or hexamethylphosphoric triamide; their mixtures with water or pure water.


The process (a) according to the invention is, if appropriate, carried out in the presence of a suitable acid acceptor when X3 represents halogen. Suitable acid acceptors are all customary inorganic or organic bases. These preferably include alkaline earth metal or alkali metal hydrides, hydroxides, amides, alkoholates, acetates, carbonates or bicarbonates, such as, for example, sodium hydride, sodium amide, lithium diisopropylamide, sodium methoxide, sodium ethoxide, potassium tert-butoxide, sodium hydroxide, potassium hydroxide, sodium acetate, sodium carbonate, potassium carbonate, potassium bicarbonate, sodium bicarbonate or ammonium carbonate, and also tertiary amines, such as trimethylamine, triethylamine, tributylamine, N,N-dimethylaniline, N,N-dimethyl-benzylamine, pyridine, N-methylpiperidine, N-methylmorpholine, N,N-dimethylaminopyridine, diazabicyclooctane (DABCO), diaza-bicyclononene (DBN) or diazabicycloundecene (DBU).


The process (a) according to the invention is, if appropriate, carried out in the presence of a suitable coupling agent when X3 represents hydroxy. Suitable coupling agents are all customary carbonyl activators. These preferably include N-[3-(dimethylamino)propyl]-N′-ethyl-carbodiimide-hydrochloride, N,N′-di-sec-butylcarbodiimide, N,N′-dicyclohexylcarbodiimide, N,N′-diisopropylcarbodiimide, 1-(3-(dimethylamino)propyl)-3-ethylcarbodiimide methiodide, 2-bromo-3-ethyl-4-methylthiazolium tetrafluoroborate, N,N-bis[2-oxo-3-oxazolidinyl]phosphorodiamidic chloride, chlorotri-pyrrolidinophosphonium hexafluorophosphate, bromtripyrrolidinophosphonium hexafluorophosphate, O-(1H-benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate, O-(1H-benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate, O-(1H-benzotriazol-1-yl)-N,N,N′,N′-bis(tetramethylene)uronium hexafluorophosphate, 0-(1H-benzotriazol-1-yl)-N,N,N′,N′-bis-(tetramethylene)uronium tetrafluoroborate, N,N,N′,N′-bis(tetramethylene)chlorouronium tetrafluoroborate, O-(7-azabenzotriazol-1-yl)-N,N,N,N-tetramethyluronium hexafluorophosphate and 1-hydroxybenzo-triazole. These reagents can be employed separately, but also in combination.


When carrying out the process (a) according to the invention, the reaction temperatures can be varied within a relatively wide range. In general, the process is carried out at temperatures of from 0° C. to 150° C., preferably at temperatures of from 20° C. to 110° C.


For carrying out the process (a) according to the invention for preparing the compounds of the formula (I) when T represents oxygen, in general from 0.2 to 5 mol, preferably from 0.5 to 2 mol, of amine of the formula (III) are employed per mole of the carbonyl halide or acid of the formula (II). Work-up is carried out by customary methods.


For carrying out the process (b) according to the invention for preparing the compounds of the formula (I) when T represents sulfur, starting amide derivatives of formula (I) when T represents oxygen can be prepared according to process (a).


Suitable thionating agents for carrying out process (c) according to the invention can be sulfur (S), sulfhydric acid (H2S), sodium sulfide (Na2S), sodium hydrosulfide (NaHS), boron trisulfide (B2S3), bis(diethylaluminium)sulfide ((AlEt2)2S), ammonium sulfide ((NH4)2S), phosphorous pentasulfide (P2S5), Lawesson's reagent (2,4-bis(4-methoxyphenyl)-1,2,3,4-dithiadiphosphetane 2,4-disulfide) or a polymer-supported thionating reagent such as described in Journal of the Chemical Society, Perkin 1 (2001), 358.


Step 1 of process (c) is performed in the presence of an oxidant, and if appropriate in the presence of a solvent.


Steps 2 and 5 of process (c) are performed in the presence of acid halide, and if appropriate in the presence of a solvent.


Step 3 of process (c) is performed in the presence of a fluorinating agent, and if appropriate in the presence of a solvent.


Step 4 of process (c) is performed in the presence of an acid or a base and if appropriate in the presence of a solvent.


Suitable oxidants for carrying out step 1 of process (c) according to the invention are in each case all inorganic and organic oxidant which are customary for such reactions. Preference is given to using benzyltriethylammonium permanganate, bromine, chlorine, m-chloroperbenzoic acid, chromic acid, chromium (VI) oxide, hydrogen peroxide, hydrogen peroxide-boron trifluoride, hydrogen peroxide-urea, 2-hydroxyperoxyhexafluoro-2-propanol; Iodine, oxygen-platinum catalyst, perbenzoic acid, peroxyacetyl nitrate, potassium permanganate, potassium ruthenate, pyridinium dichromate, ruthenium (VIII) oxide, silver (I) oxide, silver (II) oxide, silver nitrite, sodium chlorite, sodium hypochlorite, or 2,2,6,6-tetramethylpiperidin-1-oxyl.


Suitable acid halides for carrying out steps 2 and 5 of process (c) according to the invention are in each case all organic or inorganic acid halides which are customary for such reactions. Preference is given to using notably phosgene, phosphorous trichloride, phosphorous pentachloride, phosphorous trichloride oxide, thionyl chloride, or carbon tetrachloride-triphenylphosphine.


Suitable fluorinating agent for carrying out step 3 of process (c) according to the invention is in each case all fluorinating agents which are customary for such reactions. Preference is given to using cesium fluoride, potassium fluoride, potassium fluoride-calcium difluoride, or tetrabutylammonium fluoride.


When carrying out steps 1 to 5 of process (c) according to the invention, the reaction temperatures can independently be varied within a relatively wide range. Generally, processes according to the invention are carried out at temperatures between 0° C. and 160° C., preferably between 10° C. and 120° C. A way to control the temperature for the processes according to the invention is to use the micro-waves technology.


Steps 1 to 5 of process (c) according to the invention are generally independently carried out under atmospheric pressure. However, in each case, it is also possible to operate under elevated or reduced pressure.


When carrying out step 1 of process (c) according to the invention, generally one mole or other an excess of the oxidant is employed per mole of aldehyde of formula (IV). It is also possible to employ the reaction components in other ratios.


When carrying out carrying out steps 2 and 5 of process (c) to the invention, generally one mole or other an excess of the acid halides is employed per mole of acid of formula (IIIa) or (IIId). It is also possible to employ the reaction components in other ratios.


When carrying out steps 3 of process (c) according to the invention generally one mole or other an excess of fluorinating agent is employed per mole of acid chloride (IIIb). It is also possible to employ the reaction components in other ratios.


When carrying out steps 4 of process (c) according to the invention generally one mole or other an excess of acid or base is employed per mole of acid fluoride (IIIc). It is also possible to employ the reaction components in other ratios.


The processes (a), (b) and (c) according to the invention are generally carried out under atmospheric pressure. However, it is also possible to operate under elevated or reduced pressure—in general between 0.1 bar and 10 bar.


The compounds according to the invention exhibit a potent microbicidal activity and can be employed in plant protection and in the protection of materials for controlling undesirable microorganisms such as fungi and bacteria.


Fungicides can be employed in plant protection for controlling Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes.


Bactericides can be employed in plant protection for combating Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae and Streptomycetaceae.


Examples which may be mentioned, but not by limitation, are some pathogens of fungal and bacterial diseases which come under the abovementioned general terms are:


diseases caused by powdery mildew pathogens, such as, for example



Blumeria species such as, for example, Blumeria graminis;



Podosphaera species such as, for example, Podosphaera leucotricha;



Sphaerotheca species such as, for example, Sphaerotheca fuliginea;



Uncinula species such as, for example, Uncinula necator;


diseases caused by rust pathogens such as, for example,



Gymnosporangium species such as, for example, Gymnosporangium sabinae



Hemileia species such as, for example, Hemileia vastatrix;



Phakopsora species such as, for example, Phakopsora pachyrhizi and Phakopsora meibomiae;



Puccinia species such as, for example, Puccinia recondita or Puccina graminis;



Uromyces species such as, for example, Uromyces appendiculatus;


diseases caused by pathogens from the Oomycetene group such as, for example,



Bremia species such as, for example, Bremia lactucae;



Peronospora species such as, for example, Peronospora pisi or P. brassicae;



Phytophthora species such as, for example, Phytophthora infestans;



Plasmopara species such as, for example, Plasmopara viticola;



Pseudoperonospora species such as, for example, Pseudoperonospora humuli or Pseudoperonospora cubensis;



Pythium species such as, for example, Pythium ultimum;


leaf spot diseases and leaf wilts caused by, for example,



Alternaria species such as, for example, Alternaria solani;



Cercospora species such as, for example, Cercospora beticola;



Cladosporum species such as, for example, Cladosporium cucumerinum;



Cochliobolus species such as, for example, Cochliobolus sativus


(conidial form: Drechslera, syn: Helminthosporium);



Colletotrichum species such as, for example, Colletotrichum lindemuthanium;



Cycloconium species such as, for example, Cycloconium oleaginum;



Diaporthe species such as, for example, Diaporthe citri;



Elsinoe species such as, for example, Elsinoe fawcettii;



Gloeosporium species such as, for example, Gloeosporium laeticolor;



Glomerella species such as, for example, Glomerella cingulata;



Guignardia species such as, for example, Guignardia bidwelli;



Leptosphaeria species such as, for example, Leptosphaeria maculans;



Magnaporthe species such as, for example, Magnaporthe grisea;



Mycosphaerella species such as, for example, Mycosphaerella graminicola and Mycosphaerella fijiensis;



Phaeosphaeria species such as, for example, Phaeosphaeria nodorum;



Pyrenophora species such as, for example, Pyrenophora teres;



Ramularia species such as, for example, Ramularia collo-cygni;



Rhynchosporium species such as, for example, Rhynchosporium secalis;



Septoria species such as, for example, Septoria apii;



Typhula species such as, for example, Typhula incarnata;



Venturia species such as, for example, Venturia inaequalis;


root and stem diseases caused by, for example,



Corticium species such as, for example, Corticium graminearum;



Fusarium species such as, for example, Fusarium oxysporum;



Gaeumannomyces species such as, for example, Gaeumannomyces graminis;



Rhizoctonia species such as, for example, Rhizoctonia solani;



Tapesia species such as, for example, Tapesia acuformis or Tapesia yallundae;



Thielaviopsis species such as, for example, Thielaviopsis basicola;


ear and panicle diseases (including maize cobs), caused by, for example,



Alternaria species such as, for example, Alternaria spp.;



Aspergillus species such as, for example, Aspergillus flavus;



Cladosporium species such as, for example, Cladosporium cladosporioides;



Claviceps species such as, for example, Claviceps purpurea;



Fusarium species such as, for example, Fusarium culmorum;



Gibberella species such as, for example, Gibberella zeae;



Monographella species such as, for example, Monographella nivalis;


diseases caused by smuts such as, for example,



Sphacelotheca species such as, for example, Sphacelotheca reiliana;



Tilletia species such as, for example, Tilletia caries;



Urocystis species such as, for example, Urocystis occulta;



Ustilago species such as, for example, Ustilago nuda;


fruit rots caused by, for example,



Aspergillus species such as, for example, Aspergillus flavus;



Botrytis species such as, for example, Botrytis cinerea;



Penicillium species such as, for example, Penicillium expansum and Penicillium purpurogenum;



Sclerotinia species such as, for example, Sclerotinia sclerotiorum;



Verticilium species such as, for example, Verticilium alboatrum;


seed- and soil-borne rot and wilts, and seedling diseases, caused by, for example,



Fusarium species such as, for example, Fusarium culmorum;



Phytophthora species such as, for example, Phytophthora cactorum;



Pythium species such as, for example, Pythium ultimum;



Rhizoctonia species such as, for example, Rhizoctonia solani;



Sclerotium species such as, for example, Sclerotium rolfsii;


cancers, galls and witches' broom disease, caused by, for example,



Nectria species such as, for example, Nectria galligena;


wilts caused by, for example,



Monilinia species such as, for example, Monilinia laxa;


deformations of leaves, flowers and fruits, caused by, for example,



Taphrina species such as, for example, Taphrina deformans;


degenerative diseases of woody species, caused by, for example,



Esca species such as, for example, Phaeomoniella clamydospora and Phaeoacremonium aleophilum and Fomitiporia mediterranea;


diseases of flowers and seeds, caused by, for example,



Botrytis species such as, for example, Botrytis cinerea;


diseases of the plant tubers, caused by, for example,



Rhizoctonia species such as, for example, Rhizoctonia solani;



Helminthosporium species such as, for example, Helminthosporium solani;


diseases caused by bacterial pathogens such as, for example,



Xanthomonas species such as, for example, Xanthomonas campestris pv. oryzae;



Pseudomonas species such as, for example, Pseudomonas syringae pv. lachrymans;



Erwinia species such as, for example, Erwinia amylovora.


The following diseases of soybeans can preferably be controlled:


Fungal diseases on leaves, stems, pods and seeds caused by, for example,



alternaria leaf spot (Alternaria spec. atrans tenuissima), anthracnose (Colletotrichum gloeosporoides dematium var. truncatum), brown spot (Septoria glycines), cercospora leaf spot and blight (Cercospora kikuchii), choanephora leaf blight (Choanephora infundibulifera trispora (syn.)), dactuliophora leaf spot (Dactuliophora glycines), downy mildew (Peronospora manshurica), drechslera blight (Drechslera glycini), frogeye leaf spot (Cercospora sojina), leptosphaerulina leaf spot (Leptosphaerulina trifolii), phyllostica leaf spot (Phyllosticta sojaecola), pod and stem blight (Phomopsis sojae), powdery mildew (Microsphaera diffusa), pyrenochaeta leaf spot (Pyrenochaeta glycines), rhizoctonia aerial, foliage, and web blight (Rhizoctonia solani), rust (Phakopsora pachyrhizi), scab (Sphaceloma glycines), stemphylium leaf blight (Stemphylium botryosum), target spot (Corynespora cassiicola);


fungal diseases on roots and the stem base caused by, for example,


black root rot (Calonectria crotalariae), charcoal rot (Macrophomina phaseolina), fusarium blight or wilt, root rot, and pod and collar rot (Fusarium oxysporum, Fusarium orthoceras, Fusarium semitectum, Fusarium equiseti), mycoleptodiscus root rot (Mycoleptodiscus terrestris), neocosmospora (Neocosmospora vasinfecta), pod and stem blight (Diaporthe phaseolorum), stem canker (Diaporthe phaseolorum var. caulivora), phytophthora rot (Phytophthora megasperma), brown stem rot (Phialophora gregata), pythium rot (Pythium aphanidermatum, Pythium irregulare, Pythium debaryanum, Pythium myriotylum, Pythium ultimum), rhizoctonia root rot, stem decay, and damping-off (Rhizoctonia solani), sclerotinia stem decay (Sclerotinia sclerotiorum), sclerotinia southern blight (Sclerotinia rolfsii), thielaviopsis root rot (Thielaviopsis basicola).


The active compounds according to the invention also have a potent strengthening effect in plants. They are therefore suitable for mobilizing the plants' defenses against attack by undesired microorganisms.


Plant-strengthening (resistance-inducing) substances are understood as meaning, in the present context, those substances which are capable of stimulating the defense system of plants in such a way that, when subsequently inoculated with undesired microorganisms, the treated plants display a substantial degree of resistance to these microorganisms.


In the present case, undesired microorganisms are understood as meaning phytopathogenic fungi, bacteria and viruses. Thus, the substances according to the invention can be employed for protecting plants against attack by the abovementioned pathogens within a certain period of time after the treatment. The period of time within which their protection is effected is generally extended from 1 to 28 days, preferably from 1 to 14 days, particularly preferably from 1 to 7 days, after the plants have been treated with the active compounds.


The fact that the active compounds, at the concentrations required for the controlling of plant diseases, are well tolerated by plants permits the treatment of aerial plant parts, of vegetative propagation material and seed, and of the soil.


In this context, the active compounds according to the invention can be employed particularly successfully for controlling cereal diseases such as, for example, against Puccinia species and of diseases in viticulture, fruit production and vegetable production such as, for example against Botrytis, Venturia or Alternaria species.


The active compounds according to the invention are also suitable for increasing the yield. Moreover, they display a low degree of toxicity and are well tolerated by plants.


If appropriate, the active compounds according to the invention can also be used in certain concentrations and application rates as herbicides, for influencing plant growth and for controlling animal pests. If appropriate, they can also be employed as intermediates and precursors for the synthesis of further active compounds.


All plants and plant parts can be treated in accordance with the invention. Plants are understood as meaning, in the present context, all plants and plant populations, such as desired and undesired wild plants or crop plants (including naturally occurring crop plants). Crop plants may be plants which can be obtained by conventional breeding and optimization methods or else by biotechnological and genetic engineering methods or by combinations of these methods, including the transgenic plants and including the plant varieties capable or not capable of being protected by Plant Breeders' rights. Plant parts are understood as meaning all aerial and subterranean parts and organs of the plants, such as shoot, leaf, flower and root, examples which may be mentioned being leaves, needles, stalks, stems, flowers, fruiting bodies, fruits and seeds, and also roots, tubers and rhizomes. The plant parts also include harvested material and vegetative and generative propagation material, for example cuttings, tubers, rhizomes, slips and seeds.


The treatment according to the invention with the active compounds, of the plants and plant parts, is carried out directly or by acting on their environment, habitat, or store by the customary treatment methods, for example by immersion, spraying, vaporizing, fogging, broadcasting, painting on and, in the case of propagation material, in particular in the case of seeds, furthermore by coating with one or more coats.


In the protection of materials, the substances according to the invention can be employed for protecting industrial materials against attack and destruction by undesired microorganisms.


In the present context, industrial materials are understood as meaning non-live materials which have been made for use in technology. For example, industrial materials which are to be protected by active compounds according to the invention from microbial modification or destruction can be glues, sizes, paper and board, textiles, leather, timber, paints and plastic articles, cooling lubricants and other materials which are capable of being attacked or destroyed by microorganisms. Parts of production plants, for example cooling-water circuits, which can be adversely affected by the multiplication of microorganisms may also be mentioned within the materials to be protected. Industrial materials which may be mentioned with preference for the purposes of the present invention are glues, sizes, paper and board, leather, timber, paints, cooling lubricants and heat-transfer fluids, especially preferably wood.


Microorganisms which are capable of bringing about a degradation or modification of the industrial materials and which may be mentioned are, for example, bacteria, fungi, yeasts, algae and slime organisms. The active compounds according to the invention are preferably active against fungi, in particular moulds, wood-discolouring and wood-destroying fungi (Basidiomycetes) and against slime organisms and algae.


Examples which may be mentioned are microorganisms of the following genera:



Alternaria such as Alternaria tenuis,



Aspergillus such as Aspergillus niger,



Chaetomium such as Chaetomium globosum,



Coniophora such as Coniophora puetana,



Lentinus such as Lentinus tigrinus,



Penicillium such as Penicillium glaucum,



Polyporus such as Polyporus versicolor,



Aureobasidium such as Aureobasidium pullulans,



Sclerophoma such as Sclerophoma pityophila,



Trichoderma such as Trichoderma viride,



Escherichia such as Escherichia coli,



Pseudomonas such as Pseudomonas aeruginosa,



Staphylococcus such as Staphylococcus aureus.


Depending on their respective physical and/or chemical properties, the active compounds can be converted to the customary formulations, such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols, very fine capsules in polymeric substances and in coating compositions for seed, and also ULV cold- and warm-fogging formulations.


These formulations are produced in a known manner, for example by mixing the active compounds with extenders, that is, liquid solvents, pressurized liquefied gases and/or solid carriers, optionally with the use of surface-active agents, that is emulsifers and/or dispersants, and/or foam formers. If the extender used is water, it is also possible to employ for example organic solvents as cosolvents. Suitable liquid solvents are essentially: aromatics, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example mineral oil fractions, alcohols, such as butanol or glycol as well as their ethers and esters, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethylformamide and dimethyl sulfoxide, and also water. Liquefied gaseous extenders or carriers are those liquids which are gaseous at ambient temperature and at atmospheric pressure, for example aerosol propellants such as halogenated hydrocarbons and also butane, propane, nitrogen and carbon dioxide. As solid carriers there are suitable: for example ground natural minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as finely divided silica, alumina and silicates. As solid carriers for granules there are suitable: for example crushed and fractionated natural rocks such as calcite, pumice, marble, sepiolite and dolomite, and also synthetic granules of inorganic and organic meals, and granules of organic material such as sawdust, coconut shells, maize cobs and tobacco stalks. As emulsifiers and/or foam formers there are suitable: for example non-ionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkylsulfonates, alkylsulfates, arylsulfonates and protein hydrolysates. As dispersants there are suitable: for example lignin-sulfite waste liquors and methylcellulose.


Tackifiers such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, as well as natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids, can be used in the formulations. Other possible additives are mineral and vegetable oils.


It is possible to use colourants such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Blue, and organic dyestuffs, such as alizarin dyestuffs, azo dyestuffs and metal phthalocyanine dyestuffs, and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.


The formulations in general contain between 0.1 and 95% by weight of active compound, preferably between 0.5 and 90%.


The active compounds according to the invention, as such or in their formulations, can also be used as a mixture with known fungicides, bactericides, acaricides, nematicides, or insecticides, for example, to improve the activity spectrum or prevent the development of resistance.


Examples of suitable fungicide mixing partners can be selected in the following lists:


(1) Inhibitors of the ergosterol biosynthesis, for example (1.1) aldimorph (1704-28-5), (1.2) azaconazole (60207-31-0), (1.3) bitertanol (55179-31-2), (1.4) bromuconazole (116255-48-2), (1.5) cyproconazole (113096-99-4), (1.6) diclobutrazole (75736-33-3), (1.7) difenoconazole (119446-68-3), (1.8) diniconazole (83657-24-3), (1.9) diniconazole-M (83657-18-5), (1.10) dodemorph (1593-77-7), (1.11) dodemorph acetate (31717-87-0), (1.12) epoxiconazole (106325-08-0), (1.13) etaconazole (60207-93-4), (1.14) fenarimol (60168-88-9), (1.15) fenbuconazole (114369-43-6), (1.16) fenhexamid (126833-17-8), (1.17) fenpropidin (67306-00-7), (1.18) fenpropimorph (67306-03-0), (1.19) fluquinconazole (136426-54-5), (1.20) flurprimidol (56425-91-3), (1.21) flusilazole (85509-19-9), (1.22) flutriafol (76674-21-0), (1.23) furconazole (112839-33-5), (1.24) furconazole-cis (112839-32-4), (1.25) hexaconazole (79983-71-4), (1.26) imazalil (60534-80-7), (1.27) imazalil sulfate (58594-72-2), (1.28) imibenconazole (86598-92-7), (1.29) ipconazole (125225-28-7), (1.30) metconazole (125116-23-6), (1.31) myclobutanil (88671-89-0), (1.32) naftifine (65472-88-0), (1.33) nuarimol (63284-71-9), (1.34) oxpoconazole (174212-12-5), (1.35) paclobutrazol (76738-62-0), (1.36) pefurazoate (101903-30-4), (1.37) penconazole (66246-88-6), (1.38) piperalin (3478-94-2), (1.39) prochloraz (67747-09-5), (1.40) propiconazole (60207-90-1), (1.41) prothioconazole (178928-70-6), (1.42) pyributicarb (88678-67-5), (1.43) pyrifenox (88283-41-4), (1.44) quinconazole (103970-75-8), (1.45) simeconazole (149508-90-7), (1.46) spiroxamine (118134-30-8), (1.47) tebuconazole (107534-96-3), (1.48) terbinafine (91161-71-6), (1.49) tetraconazole (112281-77-3), (1.50) triadimefon (43121-43-3), (1.51) triadimenol (89482-17-7), (1.52) tridemorph (81412-43-3), (1.53) triflumizole (68694-11-1), (1.54) triforine (26644-46-2), (1.55) triticonazole (131983-72-7), (1.56) uniconazole (83657-22-1), (1.57) uniconazole-p (83657-17-4), (1.58) viniconazole (77174-66-4), (1.59) voriconazole (137234-62-9), (1.60) 1-(4-chlorophenyl)-2-(1H-1,2,4-triazol-1-yl)cycloheptanol (129586-32-9), (1.61) methyl 1-(2,2-dimethyl-2,3-dihydro-1H-inden-1-yl)-1H-imidazole-5-carboxylate (110323-95-0), (1.62) N′-{5-(difluoromethyl)-2-methyl-4-[3-(trimethylsilyl)propoxy]phenyl}-N-ethyl-N-methylimidoformamide, (1.63) N-ethyl-N-methyl-N′-{2-methyl-5-(trifluoromethyl)-4-[3-(trimethylsilyl)propoxy]phenyl}imidoformamide and (1.64) O-[1-(4-methoxyphenoxy)-3,3-dimethylbutan-2-yl]1H-imidazole-1-carbothioate (111226-71-2).


(2) inhibitors of the respiratory chain at complex I or II, for example (2.1) bixafen (581809-46-3), (2.2) boscalid (188425-85-6), (2.3) carboxin (5234-68-4), (2.4) diflumetorim (130339-07-0), (2.5) fenfuram (24691-80-3), (2.6) fluopyram (658066-35-4), (2.7) flutolanil (66332-96-5), (2.8) fluxapyroxad (907204-31-3), (2.9) furametpyr (123572-88-3), (2.10) furmecyclox (60568-05-0), (2.11) isopyrazam (mixture of syn-epimeric racemate 1RS,4SR,9RS and anti-epimeric racemate 1RS,4SR,9SR) (881685-58-1), (2.12) isopyrazam (anti-epimeric racemate 1RS,4SR,9SR), (2.13) isopyrazam (anti-epimeric enantiomer 1R,4S,9S), (2.14) isopyrazam (anti-epimeric enantiomer 1S,4R,9R), (2.15) isopyrazam (syn epimeric racemate 1RS,4SR,9RS), (2.16) isopyrazam (syn-epimeric enantiomer 1R,4S,9R), (2.17) isopyrazam (syn-epimeric enantiomer 1S,4R,9S), (2.18) mepronil (55814-41-0), (2.19) oxycarboxin (5259-88-1), (2.20) penflufen (494793-67-8), (2.21) penthiopyrad (183675-82-3), (2.22) sedaxane (874967-67-6), (2.23) thifluzamide (130000-40-7), (2.24) 1-methyl-N-[2-(1,1,2,2-tetrafluoroethoxy)phenyl]-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide, (2.25) 3-(difluoromethyl)-1-methyl-N-[2-(1,1,2,2-tetrafluoroethoxy)phenyl]-1H-pyrazole-4-carboxamide, (2.26) 3-(difluoromethyl)-N-[4-fluoro-2-(1,1,2,3,3,3-hexafluoropropoxy)phenyl]-1-methyl-1H-pyrazole-4-carboxamide, (2.27) N-[1-(2,4-dichlorophenyl)-1-methoxypropan-2-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide (1092400-95-7) (WO 2008148570), (2.28) 5,8-difluoro-N-[2-(2-fluoro-4-{[4-(trifluoromethyl)pyridin-2-yl]oxy}phenyl)ethyl]quinazolin-4-amine (1210070-84-0) (WO2010025451), (2.29) N-[9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, (2.30) N-[(1S,4R)-9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide and (2.31) N-[(1R,4S)-9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide.


(3) inhibitors of the respiratory chain at complex III, for example (3.1) ametoctradin (865318-97-4), (3.2) amisulbrom (348635-87-0), (3.3) azoxystrobin (131860-33-8), (3.4) cyazofamid (120116-88-3), (3.5) coumethoxystrobin (850881-30-0), (3.6) coumoxystrobin (850881-70-8), (3.7) dimoxystrobin (141600-52-4), (3.8) enestroburin (238410-11-2) (WO 2004/058723), (3.9) famoxadone (131807-57-3) (WO 2004/058723), (3.10) fenamidone (161326-34-7) (WO 2004/058723), (3.11) fenoxystrobin (918162-02-4), (3.12) fluoxastrobin (361377-29-9) (WO 2004/058723), (3.13) kresoxim-methyl (143390-89-0) (WO 2004/058723), (3.14) metominostrobin (133408-50-1) (WO 2004/058723), (3.15) orysastrobin (189892-69-1) (WO 2004/058723), (3.16) picoxystrobin (117428-22-5) (WO 2004/058723), (3.17) pyraclostrobin (175013-18-0) (WO 2004/058723), (3.18) pyrametostrobin (915410-70-7) (WO 2004/058723), (3.19) pyraoxystrobin (862588-11-2) (WO 2004/058723), (3.20) pyribencarb (799247-52-2) (WO 2004/058723), (3.21) triclopyricarb (902760-40-1), (3.22) trifloxystrobin (141517-21-7) (WO 2004/058723), (3.23) (2E)-2-(2-{[6-(3-chloro-2-methylphenoxy)-5-fluoropyrimidin-4-yl]oxy}phenyl)-2-(methoxyimino)-N-methylethanamide (WO 2004/058723), (3.24) (2E)-2-(methoxyimino)-N-methyl-2-(2-{[({(1E)-1-[3-(trifluoromethyl)phenyl]ethylidene}amino)oxy]methyl}phenyl)ethanamide (WO 2004/058723), (3.25) (2E)-2-(methoxyimino)-N-methyl-2-{2-[(E)-({1-[3-(trifluoromethyl)phenyl]ethoxy}imino)methyl]phenyl}ethanamide (158169-73-4), (3.26) (2E)-2-{2-[({[(1E)-1-(3-{[(E)-1-fluoro-2-phenylethenyl]oxy}phenyl)ethylidene]amino}oxy)methyl]phenyl}-2-(methoxyimino)-N-methylethanamide (326896-28-0), (3.27) (2E)-2-{2-[({[(2E,3E)-4-(2,6-dichlorophenyl)but-3-en-2-ylidene]amino}oxy)methyl]phenyl}-2-(methoxyimino)-N-methylethanamide, (3.28) 2-chloro-N-(1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)pyridine-3-carboxamide (119899-14-8), (3.29) 5-methoxy-2-methyl-4-(2-{[({(1E)-1-[3-(trifluoromethyl)phenyl]ethylidene}amino)oxy]methyl}phenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one, (3.30) methyl (2E)-2-{2-[({cyclopropyl[(4-methoxyphenyl)imino]methyl}sulfanyl)methyl]phenyl}-3-methoxyprop-2-enoate (149601-03-6), (3.31) N-(3-ethyl-3,5,5-trimethylcyclohexyl)-3-(formylamino)-2-hydroxybenzamide (226551-21-9), (3.32) 2-{2-[(2,5-dimethylphenoxy)methyl]phenyl}-2-methoxy-N-methylacetamide (173662-97-0) and (3.33) (2R)-2-{2-[(2,5-dimethylphenoxy)methyl]phenyl}-2-methoxy-N-methylacetamide (394657-24-0).


(4) Inhibitors of the mitosis and cell division, for example (4.1) benomyl (17804-35-2), (4.2) carbendazim (10605-21-7), (4.3) chlorfenazole (3574-96-7), (4.4) diethofencarb (87130-20-9), (4.5) ethaboxam (162650-77-3), (4.6) fluopicolide (239110-15-7), (4.7) fuberidazole (3878-19-1), (4.8) pencycuron (66063-05-6), (4.9) thiabendazole (148-79-8), (4.10) thiophanate-methyl (23564-05-8), (4.11) thiophanate (23564-06-9), (4.12) zoxamide (156052-68-5), (4.13) 5-chloro-7-(4-methylpiperidin-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine (214706-53-3) and (4.14) 3-chloro-5-(6-chloropyridin-3-yl)-6-methyl-4-(2,4,6-trifluorophenyl)pyridazine (1002756-87-7).


(5) Compounds capable to have a multisite action, like for example (5.1) bordeaux mixture (8011-63-0), (5.2) captafol (2425-06-1), (5.3) captan (133-06-2) (WO 02/12172), (5.4) chlorothalonil (1897-45-6), (5.5) copper hydroxide (20427-59-2), (5.6) copper naphthenate (1338-02-9), (5.7) copper oxide (1317-39-1), (5.8) copper oxychloride (1332-40-7), (5.9) copper (2+) sulfate (7758-98-7), (5.10) dichlofluanid (1085-98-9), (5.11) dithianon (3347-22-6), (5.12) dodine (2439-10-3), (5.13) dodine free base, (5.14) ferbam (14484-64-1), (5.15) fluorofolpet (719-96-0), (5.16) folpet (133-07-3), (5.17) guazatine (108173-90-6), (5.18) guazatine acetate, (5.19) iminoctadine (13516-27-3), (5.20) iminoctadine albesilate (169202-06-6), (5.21) iminoctadine triacetate (57520-17-9), (5.22) mancopper (53988-93-5), (5.23) mancozeb (8018-01-7), (5.24) maneb (12427-38-2), (5.25) metiram (9006-42-2), (5.26) metiram zinc (9006-42-2), (5.27) oxine-copper (10380-28-6), (5.28) propamidine (104-32-5), (5.29) propineb (12071-83-9), (5.30) sulfur and sulfur preparations including calcium polysulfide (7704-34-9), (5.31) thiram (137-26-8), (5.32) tolylfluanid (731-27-1), (5.33) zineb (12122-67-7) and (5.34) ziram (137-30-4).


(6) Compounds capable to induce a host defence, for example (6.1) acibenzolar-5-methyl (135158-54-2), (6.2) isotianil (224049-04-1), (6.3) probenazole (27605-76-1) and (6.4) tiadinil (223580-51-6).


(7) Inhibitors of the amino acid and/or protein biosynthesis, for example (7.1) andoprim (23951-85-1), (7.2) blasticidin-S (2079-00-7), (7.3) cyprodinil (121552-61-2), (7.4) kasugamycin (6980-18-3), (7.5) kasugamycin hydrochloride hydrate (19408-46-9), (7.6) mepanipyrim (110235-47-7), (7.7) pyrimethanil (53112-28-0) and (7.8) 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-1-yl)quinoline (861647-32-7) (WO2005070917).


(8) Inhibitors of the ATP production, for example (8.1) fentin acetate (900-95-8), (8.2) fentin chloride (639-58-7), (8.3) fentin hydroxide (76-87-9) and (8.4) silthiofam (175217-20-6).


(9) Inhibitors of the cell wall synthesis, for example (9.1) benthiavalicarb (177406-68-7), (9.2) dimethomorph (110488-70-5), (9.3) flumorph (211867-47-9), (9.4) iprovalicarb (140923-17-7), (9.5) mandipropamid (374726-62-2), (9.6) polyoxins (11113-80-7), (9.7) polyoxorim (22976-86-9), (9.8) validamycin A (37248-47-8) and (9.9) valifenalate (283159-94-4; 283159-90-0).


(10) Inhibitors of the lipid and membrane synthesis, for example (10.1) biphenyl (92-52-4), (10.2) chloroneb (2675-77-6), (10.3) dicloran (99-30-9), (10.4) edifenphos (17109-49-8), (10.5) etridiazole (2593-15-9), (10.6) iodocarb (55406-53-6), (10.7) iprobenfos (26087-47-8), (10.8) isoprothiolane (50512-35-1), (10.9) propamocarb (25606-41-1), (10.10) propamocarb hydrochloride (25606-41-1), (10.11) prothiocarb (19622-08-3), (10.12) pyrazophos (13457-18-6), (10.13) quintozene (82-68-8), (10.14) tecnazene (117-18-0) and (10.15) tolclofos-methyl (57018-04-9).


(11) Inhibitors of the melanine biosynthesis, for example (11.1) carpropamid (104030-54-8), (11.2) diclocymet (139920-32-4), (11.3) fenoxanil (115852-48-7), (11.4) phthalide (27355-22-2), (11.5) pyroquilon (57369-32-1), (11.6) tricyclazole (41814-78-2) and (11.7) 2,2,2-trifluoroethyl {3-methyl-1-[(4-methylbenzoyl)amino]butan-2-yl}carbamate (851524-22-6) (WO2005042474).


(12) Inhibitors of the nucleic acid synthesis, for example (12.1) benalaxyl (71626-11-4), (12.2) benalaxyl-M (kiralaxyl) (98243-83-5), (12.3) bupirimate (41483-43-6), (12.4) clozylacon (67932-85-8), (12.5) dimethirimol (5221-53-4), (12.6) ethirimol (23947-60-6), (12.7) furalaxyl (57646-30-7), (12.8) hymexazol (10004-44-1), (12.9) metalaxyl (57837-19-1), (12.10) metalaxyl-M (mefenoxam) (70630-17-0), (12.11) ofurace (58810-48-3), (12.12) oxadixyl (77732-09-3) and (12.13) oxolinic acid (14698-29-4).


(13) Inhibitors of the signal transduction, for example (13.1) chlozolinate (84332-86-5), (13.2) fenpiclonil (74738-17-3), (13.3) fludioxonil (131341-86-1), (13.4) iprodione (36734-19-7), (13.5) procymidone (32809-16-8), (13.6) quinoxyfen (124495-18-7) and (13.7) vinclozolin (50471-44-8).


(14) Compounds capable to act as an uncoupler, for example (14.1) binapacryl (485-31-4), (14.2) dinocap (131-72-6), (14.3) ferimzone (89269-64-7), (14.4) fluazinam (79622-59-6) and (14.5) meptyldinocap (131-72-6).


(15) Further compounds, for example (15.1) benthiazole (21564-17-0), (15.2) bethoxazin (163269-30-5), (15.3) capsimycin (70694-08-5), (15.4) carvone (99-49-0), (15.5) chinomethionat (2439-01-2), (15.6) pyriofenone (chlazafenone) (688046-61-9), (15.7) cufraneb (11096-18-7), (15.8) cyflufenamid (180409-60-3), (15.9) cymoxanil (57966-95-7), (15.10) cyprosulfamide (221667-31-8), (15.11) dazomet (533-74-4), (15.12) debacarb (62732-91-6), (15.13) dichlorophen (97-23-4), (15.14) diclomezine (62865-36-5), (15.15) difenzoquat (49866-87-7), (15.16) difenzoquat methylsulfate (43222-48-6), (15.17) diphenylamine (122-39-4), (15.18) ecomate, (15.19) fenpyrazamine (473798-59-3), (15.20) flumetover (154025-04-4), (15.21) fluoroimide (41205-21-4), (15.22) flusulfamide (106917-52-6), (15.23) flutianil (304900-25-2), (15.24) fosetyl-aluminium (39148-24-8), (15.25) fosetyl-calcium, (15.26) fosetyl-sodium (39148-16-8), (15.27) hexachlorobenzene (118-74-1), (15.28) irumamycin (81604-73-1), (15.29) methasulfocarb (66952-49-6), (15.30) methyl isothiocyanate (556-61-6), (15.31) metrafenone (220899-03-6), (15.32) mildiomycin (67527-71-3), (15.33) natamycin (7681-93-8), (15.34) nickel dimethyldithiocarbamate (15521-65-0), (15.35) nitrothal-isopropyl (10552-74-6), (15.36) octhilinone (26530-20-1), (15.37) oxamocarb (917242-12-7), (15.38) oxyfenthiin (34407-87-9), (15.39) pentachlorophenol and salts (87-86-5), (15.40) phenothrin, (15.41) phosphorous acid and its salts (13598-36-2), (15.42) propamocarb-fosetylate, (15.43) propanosine-sodium (88498-02-6), (15.44) proquinazid (189278-12-4), (15.45) pyrimorph (868390-90-3), (15.45e) (2E)-3-(4-tert-butylphenyl)-3-(2-chloropyridin-4-yl)-1-(morpholin-4-yl)prop-2-en-1-one (1231776-28-5), (15.45z) (2Z)-3-(4-tert-butylphenyl)-3-(2-chloropyridin-4-yl)-1-(morpholin-4-yl)prop-2-en-1-one (1231776-29-6), (15.46) pyrrolnitrine (1018-71-9) (EP-A 1 559 320), (15.47) tebufloquin (376645-78-2), (15.48) tecloftalam (76280-91-6), (15.49) tolnifanide (304911-98-6), (15.50) triazoxide (72459-58-6), (15.51) trichlamide (70193-21-4), (15.52) zarilamid (84527-51-5), (15.53) (3S,6S,7R,8R)-8-benzyl-3-[({3-[(isobutyryloxy)methoxy]-4-methoxypyridin-2-yl}carbonyl)amino]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl 2-methylpropanoate (517875-34-2) (WO2003035617), (15.54) 1-(4-{4-[(5R)-5-(2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl}piperidin-1-yl)-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanone (1003319-79-6) (WO 2008013622), (15.55) 1-(4-{4-[(5S)-5-(2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl}piperidin-1-yl)-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanone (1003319-80-9) (WO 2008013622), (15.56) 1-(4-{4-[5-(2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl}piperidin-1-yl)-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanone (1003318-67-9) (WO 2008013622), (15.57) 1-(4-methoxyphenoxy)-3,3-dimethylbutan-2-yl 1H-imidazole-1-carboxylate (111227-17-9), (15.58) 2,3,5,6-tetrachloro-4-(methylsulfonyl)pyridine (13108-52-6), (15.59) 2,3-dibutyl-6-chlorothieno[2,3-d]pyrimidin-4(3H)-one (221451-58-7), (15.60) 2,6-dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c′]dipyrrole-1,3,5,7(2H,6H)-tetrone, (15.61) 2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]-1-(4-{4-[(5R)-5-phenyl-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl}piperidin-1-yl)ethanone (1003316-53-7) (WO 2008013622), (15.62) 2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]-1-(4-{4-[(5S)-5-phenyl-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl}piperidin-1-yl)ethanone (1003316-54-8) (WO 2008013622), (15.63) 2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]-1-{4-[4-(5-phenyl-4,5-dihydro-1,2-oxazol-3-yl)-1,3-thiazol-2-yl]piperidin-1-yl}ethanone (1003316-51-5) (WO 2008013622), (15.64) 2-butoxy-6-iodo-3-propyl-4H-chromen-4-one, (15.65) 2-chloro-5-[2-chloro-1-(2,6-difluoro-4-methoxyphenyl)-4-methyl-1H-imidazol-5-yl]pyridine, (15.66) 2-phenylphenol and salts (90-43-7), (15.67) 3-(4,4,5-trifluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline (861647-85-0) (WO2005070917), (15.68) 3,4,5-trichloropyridine-2,6-dicarbonitrile (17824-85-0), (15.69) 3-[5-(4-chlorophenyl)-2,3-dimethyl-1,2-oxazolidin-3-yl]pyridine, (15.70) 3-chloro-5-(4-chlorophenyl)-4-(2,6-difluorophenyl)-6-methylpyridazine, (15.71) 4-(4-chlorophenyl)-5-(2,6-difluorophenyl)-3,6-dimethylpyridazine, (15.72) 5-amino-1,3,4-thiadiazole-2-thiol, (15.73) 5-chloro-N′-phenyl-N′-(prop-2-yn-1-yl)thiophene-2-sulfonohydrazide (134-31-6), (15.74) 5-fluoro-2-[(4-fluorobenzyl)oxy]pyrimidin-4-amine (1174376-11-4) (WO2009094442), (15.75) 5-fluoro-2-[(4-methylbenzyl)oxy]pyrimidin-4-amine (1174376-25-0) (WO2009094442), (15.76) 5-methyl-6-octyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine, (15.77) ethyl (2Z)-3-amino-2-cyano-3-phenylprop-2-enoate, (15.78) N′-(4-{[3-(4-chlorobenzyl)-1,2,4-thiadiazol-5-yl]oxy}-2,5-dimethylphenyl)-N-ethyl-N-methylimidoformamide, (15.79) N-(4-chlorobenzyl)-3-[3-methoxy-4-(prop-2-yn-1-yloxy)phenyl]propanamide, (15.80) N-[(4-chlorophenyl)(cyano)methyl]-3-[3-methoxy-4-(prop-2-yn-1-yloxy)phenyl]propanamide, (15.81) N-[(5-bromo-3-chloropyridin-2-yl)methyl]-2,4-dichloropyridine-3-carboxamide, (15.82) N-[1-(5-bromo-3-chloropyridin-2-yl)ethyl]-2,4-dichloropyridine-3-carboxamide, (15.83) N-[1-(5-bromo-3-chloropyridin-2-yl)ethyl]-2-fluoro-4-iodopyridine-3-carboxamide, (15.84) N-{(E)-[(cyclopropylmethoxy)imino][6-(difluoromethoxy)-2,3-difluorophenyl]methyl}-2-phenylacetamide (221201-92-9), (15.85) N-{(Z)-[(cyclopropylmethoxy)imino][6-(difluoromethoxy)-2,3-difluorophenyl]methyl}-2-phenylacetamide (221201-92-9), (15.86) N′-{4-[(3-tert-butyl-4-cyano-1,2-thiazol-5-yl)oxy]-2-chloro-5-methylphenyl}-N-ethyl-N-methylimidoformamide, (15.87) N-methyl-2-(1-{[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1,3-thiazole-4-carboxamide (922514-49-6) (WO 2007014290), (15.88) N-methyl-2-(1-{[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-N-[(1R)-1,2,3,4-tetrahydronaphthalen-1-yl]-1,3-thiazole-4-carboxamide (922514-07-6) (WO 2007014290), (15.89) N-methyl-2-(1-{[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-N-[(1S)-1,2,3,4-tetrahydronaphthalen-1-yl]-1,3-thiazole-4-carboxamide (922514-48-5) (WO 2007014290), (15.90) pentyl {6-[({[(1-methyl-1H-tetrazol-5-yl)(phenyl)methylidene]amino}oxy)methyl]pyridin-2-yl}carbamate, (15.91) phenazine-1-carboxylic acid, (15.92) quinolin-8-ol (134-31-6), (15.93) quinolin-8-ol sulfate (2:1) (134-31-6) and (15.94) tert-butyl {6-[({[(1-methyl-1H-tetrazol-5-yl)(phenyl)methylene]amino}oxy)methyl]pyridin-2-yl}carbamate.


(16) Further compounds, for example (16.1) 1-methyl-3-(trifluoromethyl)-N-[2′-(trifluoromethyl)biphenyl-2-yl]-1H-pyrazole-4-carboxamide, (16.2) N-(4′-chlorobiphenyl-2-yl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, (16.3) N-(2′,4′-dichlorobiphenyl-2-yl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, (16.4) 3-(difluoromethyl)-1-methyl-N-[4′-(trifluoromethyl)biphenyl-2-yl]-1H-pyrazole-4-carboxamide, (16.5) N-(2′,5-difluorobiphenyl-2-yl)-1-methyl-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide, (16.6) 3-(difluoromethyl)-1-methyl-N-[4′-(prop-1-yn-1-yl)biphenyl-2-yl]-1H-pyrazole-4-carboxamide (known from WO 2004/058723), (16.7) 5-fluoro-1,3-dimethyl-N-[4′-(prop-1-yn-1-yl)biphenyl-2-yl]-1H-pyrazole-4-carboxamide (known from WO 2004/058723), (16.8) 2-chloro-N-[4′-(prop-1-yn-1-yl)biphenyl-2-yl]pyridine-3-carboxamide (known from WO 2004/058723), (16.9) 3-(difluoromethyl)-N-[4′-(3,3-dimethylbut-1-yn-1-yl)biphenyl-2-yl]-1-methyl-1H-pyrazole-4-carboxamide (known from WO 2004/058723), (16.10) N-[4′-(3,3-dimethylbut-1-yn-1-yl)biphenyl-2-yl]-5-fluoro-1,3-dimethyl-1H-pyrazole-4-carboxamide (known from WO 2004/058723), (16.11) 3-(difluoromethyl)-N-(4′-ethynylbiphenyl-2-yl)-1-methyl-1H-pyrazole-4-carboxamide (known from WO 2004/058723), (16.12) N-(4′-ethynylbiphenyl-2-yl)-5-fluoro-1,3-dimethyl-1H-pyrazole-4-carboxamide (known from WO 2004/058723), (16.13) 2-chloro-N-(4′-ethynylbiphenyl-2-yl)pyridine-3-carboxamide (known from WO 2004/058723), (16.14) 2-chloro-N-[4′-(3,3-dimethylbut-1-yn-1-yl)biphenyl-2-yl]pyridine-3-carboxamide (known from WO 2004/058723), (16.15) 4-(difluoromethyl)-2-methyl-N-[4′-(trifluoromethyl)biphenyl-2-yl]-1,3-thiazole-5-carboxamide (known from WO 2004/058723), (16.16) 5-fluoro-N-[4′-(3-hydroxy-3-methylbut-1-yn-1-yl)biphenyl-2-yl]-1,3-dimethyl-1H-pyrazole-4-carboxamide (known from WO 2004/058723), (16.17) 2-chloro-N-[4′-(3-hydroxy-3-methylbut-1-yn-1-yl)biphenyl-2-yl]pyridine-3-carboxamide (known from WO 2004/058723), (16.18) 3-(difluoromethyl)-N-[4′-(3-methoxy-3-methylbut-1-yn-1-yl)biphenyl-2-yl]-1-methyl-1H-pyrazole-4-carboxamide (known from WO 2004/058723), (16.19) 5-fluoro-N-[4′-(3-methoxy-3-methylbut-1-yn-1-yl)biphenyl-2-yl]-1,3-dimethyl-1H-pyrazole-4-carboxamide (known from WO 2004/058723), (16.20) 2-chloro-N-[4′-(3-methoxy-3-methylbut-1-yn-1-yl)biphenyl-2-yl]pyridine-3-carboxamide (known from WO 2004/058723), (16.21) (5-bromo-2-methoxy-4-methylpyridin-3-yl)(2,3,4-trimethoxy-6-methylphenyl)methanone (known from EP-A 1 559 320), (16.22) N-[2-(4-{[3-(4-chlorophenyl)prop-2-yn-1-yl]oxy}-3-methoxyphenyl)ethyl]-N2-(methylsulfonyl)valinamide (220706-93-4), (16.23) 4-oxo-4-[(2-phenylethyl)amino]butanoic acid and (16.24) but-3-yn-1-yl {6-[({[(Z)-(1-methyl-1H-tetrazol-5-yl)(phenyl)methylene]amino}oxy)methyl]pyridin-2-yl}carbamate.


All named mixing partners of the classes (1) to (16) can, if their functional groups enable this, optionally form salts with suitable bases or acids.


Bactericides:


Bronopol, dichlorophen, nitrapyrin, nickel dimethyl dithiocarbamate, kasugamycin, octhilinone, furan-carboxylic acid, oxytetracyclin, probenazole, streptomycin, tecloftalam, copper sulfate and other copper preparations.


Insecticides/Acaricides/Nematicides:


(1) Acetylcholinesterase (AChE) inhibitors, for example


carbamates, e.g. Alanycarb, Aldicarb, Bendiocarb, Benfuracarb, Butocarboxim, Butoxycarboxim, Carbaryl, Carbofuran, Carbosulfan, Ethiofencarb, Fenobucarb, Formetanate, Furathiocarb, Isoprocarb, Methiocarb, Methomyl, Metolcarb, Oxamyl, Pirimicarb, Propoxur, Thiodicarb, Thiofanox, Triazamate, Trimethacarb, XMC, and Xylylcarb; or


organophosphates, e.g. Acephate, Azamethiphos, Azinphos-ethyl, Azinphos-methyl, Cadusafos, Chlorethoxyfos, Chlorfenvinphos, Chlormephos, Chlorpyrifos, Chlorpyrifos-methyl, Coumaphos, Cyanophos, Demeton-S-methyl, Diazinon, Dichlorvos/DDVP, Dicrotophos, Dimethoate, Dimethylvinphos, Disulfoton, EPN, Ethion, Ethoprophos, Famphur, Fenamiphos, Fenitrothion, Fenthion, Fosthiazate, Heptenophos, Imicyafos, Isofenphos, Isopropyl O-(methoxyaminothio-phosphoryl)salicylate, Isoxathion, Malathion, Mecarbam, Methamidophos, Methidathion, Mevinphos, Monocrotophos, Naled, Omethoate, Oxydemeton-methyl, Parathion, Parathion-methyl, Phenthoate, Phorate, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimiphos-methyl, Profenofos, Propetamphos, Prothiofos, Pyraclofos, Pyridaphenthion, Quinalphos, Sulfotep, Tebupirimfos, Temephos, Terbufos, Tetrachlorvinphos, Thiometon, Triazophos, Trichlorfon, and Vamidothion.


(2) GABA-gated chloride channel antagonists, for example


cyclodiene organochlorines, e.g. Chlordane and Endosulfan; or


phenylpyrazoles (fiproles), e.g. Ethiprole and Fipronil.


(3) Sodium channel modulators/voltage-dependent sodium channel blockers, for example


pyrethroids, e.g. Acrinathrin, Allethrin, d-cis-trans Allethrin, d-trans Allethrin, Bifenthrin, Bioallethrin, Bioallethrin S-cyclopentenyl isomer, Bioresmethrin, Cycloprothrin, Cyfluthrin, beta-Cyfluthrin, Cyhalothrin, lambda-Cyhalothrin, gamma-Cyhalothrin, Cypermethrin, alpha-Cypermethrin, beta-Cypermethrin, theta-Cypermethrin, zeta-Cypermethrin, Cyphenothrin [(1R)-trans isomers], Deltamethrin, Empenthrin [(EZ)-(1R) isomers), Esfenvalerate, Etofenprox, Fenpropathrin, Fenvalerate, Flucythrinate, Flumethrin, tau-Fluvalinate, Halfenprox, Imiprothrin, Kadethrin, Permethrin, Phenothrin [(1R)-trans isomer), Prallethrin, Pyrethrine (pyrethrum), Resmethrin, Silafluofen, Tefluthrin, Tetramethrin, Tetramethrin [(1R) isomers)], Tralomethrin, and Transfluthrin; or


DDT; or Methoxychlor.


(4) Nicotinic acetylcholine receptor (nAChR) agonists, for example


neonicotinoids, e.g. Acetamiprid, Clothianidin, Dinotefuran, Imidacloprid, Nitenpyram, Thiacloprid, and Thiamethoxam; or


Nicotine.


(5) Nicotinic acetylcholine receptor (nAChR) allosteric activators, for example


spinosyns, e.g. Spinetoram and Spinosad.


(6) Chloride channel activators, for example


avermectins/milbemycins, e.g. Abamectin, Emamectin benzoate, Lepimectin, and Milbemectin.


(7) Juvenile hormone mimics, for example


juvenile hormon analogues, e.g. Hydroprene, Kinoprene, and Methoprene; or


Fenoxycarb; or Pyriproxyfen.


(8) Miscellaneous non-specific (multi-site) inhibitors, for example


alkyl halides, e.g. Methyl bromide and other alkyl halides; or


Chloropicrin; or Sulfuryl fluoride; or Borax; or Tartar emetic.


(9) Selective homopteran feeding blockers, e.g. Pymetrozine; or Flonicamid.


(10) Mite growth inhibitors, e.g. Clofentezine, Hexythiazox, and Diflovidazin; or


Etoxazole.


(11) Microbial disruptors of insect midgut membranes, e.g. Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis, and BT crop proteins: Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34/35Ab1.


(12) Inhibitors of mitochondrial ATP synthase, for example Diafenthiuron; or


organotin miticides, e.g. Azocyclotin, Cyhexatin, and Fenbutatin oxide; or


Propargite; or Tetradifon.


(13) Uncouplers of oxidative phoshorylation via disruption of the proton gradient, for example Chlorfenapyr, DNOC, and Sulfluramid.


(14) Nicotinic acetylcholine receptor (nAChR) channel blockers, for example Bensultap, Cartap hydrochloride, Thiocyclam, and Thiosultap-sodium.


(15) Inhibitors of chitin biosynthesis, type 0, for example Bistrifluoron, Chlorfluazuron, Diflubenzuron, Flucycloxuron, Flufenoxuron, Hexaflumuron, Lufenuron, Novaluron, Noviflumuron, Teflubenzuron, and Triflumuron.


(16) Inhibitors of chitin biosynthesis, type 1, for example Buprofezin.


(17) Moulting disruptors, for example Cyromazine.


(18) Ecdysone receptor agonists, for example Chromafenozide, Halofenozide, Methoxyfenozide, and Tebufenozide.


(19) Octopamine receptor agonists, for example Amitraz.


(20) Mitochondrial complex III electron transport inhibitors, for example Hydramethylnon; or Acequinocyl; or Fluacrypyrim.


(21) Mitochondrial complex I electron transport inhibitors, for example


METI acaricides, e.g. Fenazaquin, Fenpyroximate, Pyrimidifen, Pyridaben, Tebufenpyrad, and Tolfenpyrad; or


Rotenone (Derris).


(22) Voltage-dependent sodium channel blockers, e.g. Indoxacarb; or Metaflumizone.


(23) Inhibitors of acetyl CoA carboxylase, for example


tetronic and tetramic acid derivatives, e.g. Spirodiclofen, Spiromesifen, and Spirotetramat.


(24) Mitochondrial complex IV electron transport inhibitors, for example


phosphines, e.g. Aluminium phosphide, Calcium phosphide, Phosphine, and Zinc phosphide; or Cyanide.


(25) Mitochondrial complex II electron transport inhibitors, for example Cyenopyrafen.


(28) Ryanodine receptor modulators, for example


diamides, e.g. Chlorantraniliprole and Flubendiamide.


Further active ingredients with unknown or uncertain mode of action, for example Amidoflumet, Azadirachtin, Benclothiaz, Benzoximate, Bifenazate, Bromopropylate, Chinomethionat, Cryolite, Cyantraniliprole (Cyazypyr), Cyflumetofen, Dicofol, Diflovidazin, Fluensulfone, Flufenerim, Flufiprole, Fluopyram, Fufenozide, Imidaclothiz, Iprodione, Meperfluthrin, Pyridalyl, Pyrifluquinazon, Tetramethylfluthrin, and iodomethane; furthermore products based on Bacillus firmus (including but not limited to strain CNCM 1-1582, such as, for example, VOTiVO™, BioNem) or one of the following known active compounds: 3-bromo-N-{2-bromo-4-chloro-6-[(1-cyclopropylethyl)carbamoyl]phenyl}-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (known from WO2005/077934), 4-{[(6-bromopyridin-3-yl)methyl](2-fluoroethyl)amino}furan-2(5H)-one (known from WO2007/115644), 4-{[(6-fluoropyridin-3-yl)methyl](2,2-difluoroethyl)amino}furan-2(5H)-one (known from WO2007/115644), 4-{[(2-chloro-1,3-thiazol-5-yl)methyl](2-fluoroethyl)amino}furan-2(5H)-one (known from WO2007/115644), 4-{[(6-chlorpyridin-3-yl)methyl](2-fluoroethyl)amino}furan-2(5H)-one (known from WO2007/115644), Flupyradifurone, 4-{[(6-chlor-5-fluoropyridin-3-yl)methyl](methyl)amino}furan-2(5H)-one (known from WO2007/115643), 4-{[(5,6-dichloropyridin-3-yl)methyl](2-fluoroethyl)amino}furan-2(5H)-one (known from WO2007/115646), 4-{[(6-chloro-5-fluoropyridin-3-yl)methyl](cyclopropyl)amino}furan-2(5H)-one (known from WO2007/115643), 4-{[(6-chloropyridin-3-yl)methyl](cyclopropyl)amino}furan-2(5H)-one (known from EP-A-0 539 588), 4-{[(6-chlorpyridin-3-yl)methyl](methyl)amino}furan-2(5H)-one (known from EP-A-0 539 588), {[1-(6-chloropyridin-3-yl)ethyl](methyl)oxido-λ4-sulfanylidene}cyanamide (known from WO2007/149134) and its diastereomers {[(1R)-1-(6-chloropyridin-3-yl)ethyl]methyl)oxido-λ4-sulfanylidene}cyanamide (A) and {[(1S)-1-(6-chloropyridin-3-yl)ethyl]methyl)oxido-λ4-sulfanylidene}cyanamide (B) (also known from WO2007/149134) as well as Sulfoxaflor and its diastereomers [(R)-methyl(oxido){(1R)-1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-λ4-sulfanylidene]cyanamide (A1) and [(S)-methyl(oxido){(1S)-1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-λ4-sulfanylidene]cyanamide (A2), referred to as group of diastereomers A (known from WO2010/074747, WO2010/074751), [(R)-methyl(oxido){(1S)-1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-λ4-sulfanylidene]cyanamide (B1) and [(S)-methyl(oxido){(1R)-1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-λ4-sulfanylidene]cyanamide (B2), referred to as group of diastereomers B (also known from WO2010/074747, WO2010/074751), and 11-(4-chloro-2,6-dimethylphenyl)-12-hydroxy-1,4-dioxa-9-azadispiro[4.2.4.2]tetradec-11-en-10-one (known from WO2006/089633), 3-(4′-fluoro-2,4-dimethylbiphenyl-3-yl)-4-hydroxy-8-oxa-1-azaspiro[4.5]dec-3-en-2-one (known from WO2008/067911), 1-{2-fluoro-4-methyl-5-[(2,2,2-trifluorethyl)sulfinyl]phenyl}-3-(trifluoromethyl)-1H-1,2,4-triazol-5-amine (known from WO2006/043635), [(3S,4aR,12R,12aS,12bS)-3-[(cyclopropylcarbonyl)oxy]-6,12-dihydroxy-4,12b-dimethyl-11-oxo-9-(pyridin-3-yl)-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-2H,11H-benzo[f]pyrano[4,3-b]chromen-4-yl]methyl cyclopropanecarboxylate (known from WO2008/066153), 2-cyano-3-(difluoromethoxy)-N,N-dimethylbenzenesulfonamide (known from WO2006/056433), 2-cyano-3-(difluoromethoxy)-N-methylbenzenesulfonamide (known from WO2006/100288), 2-cyano-3-(difluoromethoxy)-N-ethylbenzenesulfonamide (known from WO2005/035486), 4-(difluoromethoxy)-N-ethyl-N-methyl-1,2-benzothiazol-3-amine 1,1-dioxide (known from WO2007/057407), N-[1-(2,3-dimethylphenyl)-2-(3,5-dimethylphenyl)ethyl]-4,5-dihydro-1,3-thiazol-2-amine (known from WO2008/104503), {1-[(2E)-3-(4-chlorophenyl)prop-2-en-1-yl]-5-fluorospiro[indole-3,4′-piperidin]-1(2H)-yl}(2-chloropyridin-4-yl)methanone (known from WO2003/106457), 3-(2,5-dimethylphenyl)-4-hydroxy-8-methoxy-1,8-diazaspiro[4.5]dec-3-en-2-one (known from WO2009/049851), 3-(2,5-dimethylphenyl)-8-methoxy-2-oxo-1,8-diazaspiro[4.5]dec-3-en-4-ylethyl carbonate (known from WO2009/049851), 4-(but-2-yn-1-yloxy)-6-(3,5-dimethylpiperidin-1-yl)-5-fluoropyrimidine (known from WO2004/099160), (2,2,3,3,4,4,5,5-octafluoropentyl)(3,3,3-trifluoropropyl)malononitrile (known from WO2005/063094), (2,2,3,3,4,4,5,5-octafluoropentyl)(3,3,4,4,4-pentafluorobutyl)malononitrile (known from WO2005/063094), 8-[2-(cyclopropylmethoxy)-4-(trifluoromethyl)phenoxy]-3-[6-(trifluoromethyl)pyridazin-3-yl]-3-azabicyclo[3.2.1]octane (known from WO2007/040280), Flometoquin, PF1364 (CAS-Reg.No. 1204776-60-2) (known from JP2010/018586), 5-[5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4,5-dihydro-1,2-oxazol-3-yl]-2-(1H-1,2,4-triazol-1-yl)benzonitrile (known from WO2007/075459), 5-[5-(2-chloropyridin-4-yl)-5-(trifluoromethyl)-4,5-dihydro-1,2-oxazol-3-yl]-2-(1H-1,2,4-triazol-1-yl)benzonitrile (known from WO2007/075459), 4-[5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4,5-dihydro-1,2-oxazol-3-yl]-2-methyl-N-{2-oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl}benzamide (known from WO2005/085216), 4-{[(6-chloropyridin-3-yl)methyl](cyclopropyl)amino}-1,3-oxazol-2(5H)-one, 4-{[(6-chloropyridin-3-yl)methyl](2,2-difluoroethyl)amino}-1,3-oxazol-2(5H)-one, 4-{[(6-chloropyridin-3-yl)methyl](ethyl)amino}-1,3-oxazol-2(5H)-one, 4-{[(6-chloropyridin-3-yl)methyl](methyl)amino}-1,3-oxazol-2(5H)-one (all known from WO2010/005692), NNI-0711 (known from WO2002/096882), 1-acetyl-N-[4-(1,1,1,3,3,3-hexafluoro-2-methoxypropan-2-yl)-3-isobutylphenyl]-N-isobutyryl-3,5-dimethyl-1H-pyrazole-4-carboxamide (known from WO2002/096882), methyl 2-[2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)-5-chloro-3-methylbenzoyl]-2-methylhydrazinecarboxylate (known from WO2005/085216), methyl 2-[2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)-5-cyano-3-methylbenzoyl]-2-ethylhydrazinecarboxylate (known from WO2005/085216), methyl 2-[2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)-5-cyano-3-methylbenzoyl]-2-methylhydrazinecarboxylate (known from WO2005/085216), methyl 2-[3,5-dibromo-2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)benzoyl]-1,2-diethylhydrazinecarboxylate (known from WO2005/085216), methyl 2-[3,5-dibromo-2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)benzoyl]-2-ethylhydrazinecarboxylate (known from WO2005/085216), (5RS,7RS;5RS,7SR)-1-(6-chloro-3-pyridylmethyl)-1,2,3,5,6,7-hexahydro-7-methyl-8-nitro-5-propoxyimidazo[1,2-a]pyridine (known from WO2007/101369), 2-{6-[2-(5-fluoropyridin-3-yl)-1,3-thiazol-5-yl]pyridin-2-yl}pyrimidine (known from WO2010/006713), 2-{6-[2-(pyridin-3-yl)-1,3-thiazol-5-yl]pyridin-2-yl}pyrimidine (known from WO2010/006713), 1-(3-chloropyridin-2-yl)-N-[4-cyano-2-methyl-6-(methylcarbamoyl)phenyl]-3-{[5-(trifluoromethyl)-1H-tetrazol-1-yl]methyl}-1H-pyrazole-5-carboxamide (known from WO2010/069502), 1-(3-chloropyridin-2-yl)-N-[4-cyano-2-methyl-6-(methylcarbamoyl)phenyl]-3-{[5-(trifluoromethyl)-2H-tetrazol-2-yl]methyl}-1H-pyrazole-5-carboxamide (known from WO2010/069502), N-[2-(tert-butylcarbamoyl)-4-cyano-6-methylphenyl]-1-(3-chloropyridin-2-yl)-3-{[5-(trifluoromethyl)-1H-tetrazol-1-yl]methyl}-1H-pyrazole-5-carboxamide (known from WO2010/069502), N-[2-(tert-butylcarbamoyl)-4-cyano-6-methylphenyl]-1-(3-chloropyridin-2-yl)-3-{[5-(trifluoromethyl)-2H-tetrazol-2-yl]methyl}-1H-pyrazole-5-carboxamide (known from WO2010/069502), (1E)-N-[(6-chloropyridin-3-yl)methyl]-N′-cyano-N-(2,2-difluoroethyl)ethanimidamide (known from WO2008/009360), N-[2-(5-amino-1,3,4-thiadiazol-2-yl)-4-chloro-6-methylphenyl]-3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (known from CN102057925), and methyl 2-[3,5-dibromo-2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)benzoyl]-2-ethyl-1-methylhydrazinecarboxylate (known from WO2011/049233).


A mixture with other known active compounds such as herbicides, or with fertilizers and growth regulators, safeners or semiochemicals is also possible.


In addition, the compounds of the formula (I) according to the invention also have very good antimycotic activity. They have a very broad antimycotic spectrum of action, in particular against dermatophytes and budding fungi, moulds and diphasic fungi (for example against Candida species such as Candida albicans, Candida glabrata) and Epidermophyton floccosum, Aspergillus species such as Aspergillus niger and Aspergillus fumigatus, Trichophyton species such as Trichophyton mentagrophytes, Microsporon species such as Microsporon canis and audouinii. The enumeration of these fungi is no restriction whatsoever of the mycotic spectrum which can be controlled and is provided by illustration only.


The active compounds can be employed as such, in the form of their formulations or the use forms prepared therefrom, such as ready-to-use solutions, suspensions, wettable powders, pastes, soluble powders, dusts and granules. They are applied in the customary manner, for example by pouring, spraying, atomizing, broadcasting, dusting, foaming, painting on and the like. It is furthermore possible to apply the active compounds by the ultra-low-volume method, or to inject the active compound preparation or the active compound itself into the soil. The seed of the plants can also be treated.


When employing the active compounds according to the invention as fungicides, the application rates can be varied within a substantial range, depending on the type of application. In the treatment of plant parts, the application rates of active compound are generally between 0.1 and 10 000 g/ha, preferably between 10 and 1000 g/ha. For the treatment of seed, the application rates of active compound are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 10 g per kilogram of seed. For treating the soil, the application rates of active compound are generally between 0.1 and 10 000 g/ha, preferably between 1 and 5000 g/ha.


According to the invention all plants and plant parts can be treated. By plants is meant all plants and plant populations such as desirable and undesirable wild plants, cultivars and plant varieties (whether or not protectable by plant variety or plant breeder's rights). Cultivars and plant varieties can be plants obtained by conventional propagation and breeding methods which can be assisted or supplemented by one or more biotechnological methods such as by use of double haploids, protoplast fusion, random and directed mutagenesis, molecular or genetic markers or by bioengineering and genetic engineering methods. By plant parts is meant all above ground and below ground parts and organs of plants such as shoot, leaf, blossom and root, whereby for example leaves, needles, stems, branches, blossoms, fruiting bodies, fruits and seed as well as roots, corms and rhizomes are listed. Crops and vegetative and generative propagating material, for example cuttings, corms, rhizomes, runners and seeds also belong to plant parts.


Among the plants that can be protected by the method according to the invention, mention may be made of major field crops like corn, soybean, cotton, Brassica oilseeds such as Brassica napus (e.g. canola), Brassica rapa, B. juncea (e.g. mustard) and Brassica carinata, rice, wheat, sugarbeet, sugarcane, oats, rye, barley, millet, triticale, flax, vine and various fruits and vegetables of various botanical taxa such as Rosaceae sp. (for instance pip fruit such as apples and pears, but also stone fruit such as apricots, cherries, almonds and peaches, berry fruits such as strawberries), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actimidaceae sp., Lauraceae sp., Musaceae sp. (for instance banana trees and plantings), Rubiaceae sp. (for instance coffee), Theaceae sp., Sterculiceae sp., Rutaceae sp. (for instance lemons, oranges and grapefruit); Solanaceae sp. (for instance tomatoes, potatoes, peppers, eggplant), Liliaceae sp., Compositiae sp. (for instance lettuce, artichoke and chicory—including root chicory, endive or common chicory), Umbelliferae sp. (for instance carrot, parsley, celery and celeriac), Cucurbitaceae sp. (for instance cucumber—including pickling cucumber, squash, watermelon, gourds and melons), Affiaceae sp. (for instance onions and leek), Cruciferae sp. (for instance white cabbage, red cabbage, broccoli, cauliflower, brussel sprouts, pak choi, kohlrabi, radish, horseradish, cress, Chinese cabbage), Leguminosae sp. (for instance peanuts, peas and beans beans—such as climbing beans and broad beans), Chenopodiaceae sp. (for instance mangold, spinach beet, spinach, beetroots), Malvaceae (for instance okra), Asparagaceae (for instance asparagus); horticultural and forest crops; ornamental plants; as well as genetically modified homologues of these crops.


The method of treatment according to the invention can be used in the treatment of genetically modified organisms (GMOs), e.g. plants or seeds. Genetically modified plants (or transgenic plants) are plants of which a heterologous gene has been stably integrated into genome. The expression “heterologous gene” essentially means a gene which is provided or assembled outside the plant and when introduced in the nuclear, chloroplastic or mitochondrial genome gives the transformed plant new or improved agronomic or other properties by expressing a protein or polypeptide of interest or by downregulating or silencing other gene(s) which are present in the plant (using for example, antisense technology, cosuppression technology or RNA interference—RNAi-technology). A heterologous gene that is located in the genome is also called a transgene. A transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event.


Depending on the plant species or plant cultivars, their location and growth conditions (soils, climate, vegetation period, diet), the treatment according to the invention may also result in superadditive (“synergistic”) effects. Thus, for example, reduced application rates and/or a widening of the activity spectrum and/or an increase in the activity of the active compounds and compositions which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated maturation, higher harvest yields, bigger fruits, larger plant height, greener leaf color, earlier flowering, higher quality and/or a higher nutritional value of the harvested products, higher sugar concentration within the fruits, better storage stability and/or processability of the harvested products are possible, which exceed the effects which were actually to be expected.


At certain application rates, the active compound combinations according to the invention may also have a strengthening effect in plants. Accordingly, they are also suitable for mobilizing the defense system of the plant against attack by unwanted microorganisms. This may, if appropriate, be one of the reasons of the enhanced activity of the combinations according to the invention, for example against fungi. Plant-strengthening (resistance-inducing) substances are to be understood as meaning, in the present context, those substances or combinations of substances which are capable of stimulating the defense system of plants in such a way that, when subsequently inoculated with unwanted microorganisms, the treated plants display a substantial degree of resistance to these microorganisms. In the present case, unwanted microorganisms are to be understood as meaning phytopathogenic fungi, bacteria and viruses. Thus, the substances according to the invention can be employed for protecting plants against attack by the abovementioned pathogens within a certain period of time after the treatment. The period of time within which protection is effected generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active compounds.


Plants and plant cultivars which are preferably to be treated according to the invention include all plants which have genetic material which impart particularly advantageous, useful traits to these plants (whether obtained by breeding and/or biotechnological means).


Plants and plant cultivars which are also preferably to be treated according to the invention are resistant against one or more biotic stresses, i.e. said plants show a better defense against animal and microbial pests, such as against nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and/or viroids.


Examples of nematode resistant plants are described in e.g. U.S. patent application Ser. Nos. 11/765,491, 11/765,494, 10/926,819, 10/782,020, 12/032,479, 10/783,417, 10/782,096, 11/657,964, 12/192,904, 11/396,808, 12/166,253, 12/166,239, 12/166,124, 12/166,209, 11/762,886, 12/364,335, 11/763,947, 12/252,453, 12/209,354, 12/491,396 or 12/497,221.


Plants and plant cultivars which may also be treated according to the invention are those plants which are resistant to one or more abiotic stresses. Abiotic stress conditions may include, for example, drought, cold temperature exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased mineral exposure, ozone exposure, high light exposure, limited availability of nitrogen nutrients, limited availability of phosphorus nutrients, shade avoidance.


Plants and plant cultivars which may also be treated according to the invention, are those plants characterized by enhanced yield characteristics. Increased yield in said plants can be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation. Yield can furthermore be affected by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance. Further yield traits include seed composition, such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability.


Examples of plants with the above-mentioned traits are non-exhaustively listed in Table A.


Plants that may be treated according to the invention are hybrid plants that already express the characteristic of heterosis or hybrid vigor which results in generally higher yield, vigor, health and resistance towards biotic and abiotic stresses). Such plants are typically made by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent). Hybrid seed is typically harvested from the male sterile plants and sold to growers. Male sterile plants can sometimes (e.g. in corn) be produced by detasseling, i.e. the mechanical removal of the male reproductive organs (or males flowers) but, more typically, male sterility is the result of genetic determinants in the plant genome. In that case, and especially when seed is the desired product to be harvested from the hybrid plants it is typically useful to ensure that male fertility in the hybrid plants is fully restored. This can be accomplished by ensuring that the male parents have appropriate fertility restorer genes which are capable of restoring the male fertility in hybrid plants that contain the genetic determinants responsible for male-sterility. Genetic determinants for male sterility may be located in the cytoplasm. Examples of cytoplasmic male sterility (CMS) were for instance described in Brassica species (WO 92/05251, WO 95/09910, WO 98/27806, WO 05/002324, WO 06/021972 and U.S. Pat. No. 6,229,072). However, genetic determinants for male sterility can also be located in the nuclear genome. Male sterile plants can also be obtained by plant biotechnology methods such as genetic engineering. A particularly useful means of obtaining male-sterile plants is described in WO 89/10396 in which, for example, a ribonuclease such as barnase is selectively expressed in the tapetum cells in the stamens. Fertility can then be restored by expression in the tapetum cells of a ribonuclease inhibitor such as barstar (e.g. WO 91/02069).


Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may be treated according to the invention are herbicide-tolerant plants, i.e. plants made tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation, or by selection of plants containing a mutation imparting such herbicide tolerance.


Herbicide-resistant plants are for example glyphosate-tolerant plants, i.e. plants made tolerant to the herbicide glyphosate or salts thereof. Plants can be made tolerant to glyphosate through different means. For example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., 1983, Science 221, 370-371), the CP4 gene of the bacterium Agrobacterium sp. (Barry et al., 1992, Curr. Topics Plant Physiol. 7, 139-145), the genes encoding a Petunia EPSPS (Shah et al., 1986, Science 233, 478-481), a Tomato EPSPS (Gasser et al., 1988, J. Biol. Chem. 263, 4280-4289), or an Eleusine EPSPS (WO 01/66704). It can also be a mutated EPSPS as described in for example EP 0837944, WO 00/66746, WO 00/66747 or WO02/26995. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate oxido-reductase enzyme as described in U.S. Pat. Nos. 5,776,760 and 5,463,175. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate acetyl transferase enzyme as described in for example WO 02/36782, WO 03/092360, WO 05/012515 and WO 07/024,782. Glyphosate-tolerant plants can also be obtained by selecting plants containing naturally-occurring mutations of the above-mentioned genes, as described in for example WO 01/024615 or WO 03/013226. Plants expressing EPSPS genes that confer glyphosate tolerance are described in e.g. U.S. patent application Ser. Nos. 11/517,991, 10/739,610, 12/139,408, 12/352,532, 11/312,866, 11/315,678, 12/421,292, 11/400,598, 11/651,752, 11/681,285, 11/605,824, 12/468,205, 11/760,570, 11/762,526, 11/769,327, 11/769,255, 11/943,801 or 12/362,774. Plants comprising other genes that confer glyphosate tolerance, such as decarboxylase genes, are described in e.g. U.S. patent application Ser. Nos. 11/588,811, 11/185,342, 12/364,724, 11/185,560 or 12/423,926.


Other herbicide resistant plants are for example plants that are made tolerant to herbicides inhibiting the enzyme glutamine synthase, such as bialaphos, phosphinothricin or glufosinate. Such plants can be obtained by expressing an enzyme detoxifying the herbicide or a mutant glutamine synthase enzyme that is resistant to inhibition, e.g. described in U.S. patent application Ser. No. 11/760,602. One such efficient detoxifying enzyme is an enzyme encoding a phosphinothricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinothricin acetyltransferase are for example described in U.S. Pat. Nos. 5,561,236; 5,648,477; 5,646,024; 5,273,894; 5,637,489; 5,276,268; 5,739,082; 5,908,810 and 7,112,665.


Further herbicide-tolerant plants are also plants that are made tolerant to the herbicides inhibiting the enzyme hydroxyphenylpyruvatedioxygenase (HPPD). Hydroxyphenylpyruvatedioxygenases are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is transformed into homogentisate. Plants tolerant to HPPD-inhibitors can be transformed with a gene encoding a naturally-occurring resistant HPPD enzyme, or a gene encoding a mutated or chimeric HPPD enzyme as described in WO 96/38567, WO 99/24585, WO 99/24586, WO 2009/144079, WO 2002/046387, or U.S. Pat. No. 6,768,044. Tolerance to HPPD-inhibitors can also be obtained by transforming plants with genes encoding certain enzymes enabling the formation of homogentisate despite the inhibition of the native HPPD enzyme by the HPPD-inhibitor. Such plants and genes are described in WO 99/34008 and WO 02/36787. Tolerance of plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding an enzyme having prephenate deshydrogenase (PDH) activity in addition to a gene encoding an HPPD-tolerant enzyme, as described in WO 2004/024928. Further, plants can be made more tolerant to HPPD-inhibitor herbicides by adding into their genome a gene encoding an enzyme capable of metabolizing or degrading HPPD inhibitors, such as the CYP450 enzymes shown in WO 2007/103567 and WO 2008/150473.


Still further herbicide resistant plants are plants that are made tolerant to acetolactate synthase (ALS) inhibitors. Known ALS-inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pryimidinyoxy(thio)benzoates, and/or sulfonylaminocarbonyltriazolinone herbicides. Different mutations in the ALS enzyme (also known as acetohydroxyacid synthase, AHAS) are known to confer tolerance to different herbicides and groups of herbicides, as described for example in Tranel and Wright (2002, Weed Science 50:700-712), but also, in U.S. Pat. Nos. 5,605,011, 5,378,824, 5,141,870, and 5,013,659. The production of sulfonylurea-tolerant plants and imidazolinone-tolerant plants is described in U.S. Pat. Nos. 5,605,011; 5,013,659; 5,141,870; 5,767,361; 5,731,180; 5,304,732; 4,761,373; 5,331,107; 5,928,937; and 5,378,824; and international publication WO 96/33270. Other imidazolinone-tolerant plants are also described in for example WO 2004/040012, WO 2004/106529, WO 2005/020673, WO 2005/093093, WO 2006/007373, WO 2006/015376, WO 2006/024351, and WO 2006/060634. Further sulfonylurea- and imidazolinone-tolerant plants are also described in for example WO 07/024,782 and U.S. Patent Application No. 61/288,958.


Other plants tolerant to imidazolinone and/or sulfonylurea can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or mutation breeding as described for example for soybeans in U.S. Pat. No. 5,084,082, for rice in WO 97/41218, for sugar beet in U.S. Pat. No. 5,773,702 and WO 99/057965, for lettuce in U.S. Pat. No. 5,198,599, or for sunflower in WO 01/065922.


Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are insect-resistant transgenic plants, i.e. plants made resistant to attack by certain target insects. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such insect resistance.


An “insect-resistant transgenic plant”, as used herein, includes any plant containing at least one transgene comprising a coding sequence encoding:

    • 1) an insecticidal crystal protein from Bacillus thuringiensis or an insecticidal portion thereof, such as the insecticidal crystal proteins listed by Crickmore et al. (1998, Microbiology and Molecular Biology Reviews, 62: 807-813), updated by Crickmore et al. (2005) at the Bacillus thuringiensis toxin nomenclature, online at: http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), or insecticidal portions thereof, e.g., proteins of the Cry protein classes Cry1Ab, Cry1Ac, Cry1B, Cry1C, Cry1D, Cry1F, Cry2Ab, Cry3Aa, or Cry3Bb or insecticidal portions thereof (e.g. EP 1999141 and WO 2007/107302), or such proteins encoded by synthetic genes as e.g. described in and U.S. patent application Ser. No. 12/249,016; or
    • 2) a crystal protein from Bacillus thuringiensis or a portion thereof which is insecticidal in the presence of a second other crystal protein from Bacillus thuringiensis or a portion thereof, such as the binary toxin made up of the Cry34 and Cry35 crystal proteins (Moellenbeck et al. 2001, Nat. Biotechnol. 19: 668-72; Schnepf et al. 2006, Applied Environm. Microbiol. 71, 1765-1774) or the binary toxin made up of the Cry1A or Cry1F proteins and the Cry2Aa or Cry2Ab or Cry2Ae proteins (U.S. patent application Ser. No. 12/214,022 and EP 08010791.5); or
    • 3) a hybrid insecticidal protein comprising parts of different insecticidal crystal proteins from Bacillus thuringiensis, such as a hybrid of the proteins of 1) above or a hybrid of the proteins of 2) above, e.g., the Cry1A.105 protein produced by corn event MON89034 (WO 2007/027777); or
    • 4) a protein of any one of 1) to 3) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation, such as the Cry3Bb1 protein in corn events MON863 or MON88017, or the Cry3A protein in corn event MIR604; or
    • 5) an insecticidal secreted protein from Bacillus thuringiensis or Bacillus cereus, or an insecticidal portion thereof, such as the vegetative insecticidal (VIP) proteins listed at: http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/vip.html, e.g., proteins from the VIP3Aa protein class; or
    • 6) a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a second secreted protein from Bacillus thuringiensis or B. cereus, such as the binary toxin made up of the VIP1A and VIP2A proteins (WO 94/21795); or
    • 7) a hybrid insecticidal protein comprising parts from different secreted proteins from Bacillus thuringiensis or Bacillus cereus, such as a hybrid of the proteins in 1) above or a hybrid of the proteins in 2) above; or
    • 8) a protein of any one of 5) to 7) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation (while still encoding an insecticidal protein), such as the VIP3Aa protein in cotton event COT102; or
    • 9) a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a crystal protein from Bacillus thuringiensis, such as the binary toxin made up of VIP3 and Cry1A or Cry1F (U.S. Patent Appl. No. 61/126,083 and 61/195,019), or the binary toxin made up of the VIP3 protein and the Cry2Aa or Cry2Ab or Cry2Ae proteins (U.S. patent application Ser. No. 12/214,022 and EP 08010791.5).
    • 10) a protein of 9) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation (while still encoding an insecticidal protein)


Of course, an insect-resistant transgenic plant, as used herein, also includes any plant comprising a combination of genes encoding the proteins of any one of the above classes 1 to 10. In one embodiment, an insect-resistant plant contains more than one transgene encoding a protein of any one of the above classes 1 to 10, to expand the range of target insect species affected when using different proteins directed at different target insect species, or to delay insect resistance development to the plants by using different proteins insecticidal to the same target insect species but having a different mode of action, such as binding to different receptor binding sites in the insect.


An “insect-resistant transgenic plant”, as used herein, further includes any plant containing at least one transgene comprising a sequence producing upon expression a double-stranded RNA which upon ingestion by a plant insect pest inhibits the growth of this insect pest, as described e.g. in WO 2007/080126, WO 2006/129204, WO 2007/074405, WO 2007/080127 and WO 2007/035650.


Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are tolerant to abiotic stresses. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such stress resistance. Particularly useful stress tolerance plants include:

    • 1) plants which contain a transgene capable of reducing the expression and/or the activity of poly(ADP-ribose) polymerase (PARP) gene in the plant cells or plants as described in WO 00/04173, WO/2006/045633, EP 04077984.5, or EP 06009836.5.
    • 2) plants which contain a stress tolerance enhancing transgene capable of reducing the expression and/or the activity of the PARG encoding genes of the plants or plants cells, as described e.g. in WO 2004/090140.
    • 3) plants which contain a stress tolerance enhancing transgene coding for a plant-functional enzyme of the nicotineamide adenine dinucleotide salvage synthesis pathway including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyl transferase, nicotinamide adenine dinucleotide synthetase or nicotine amide phosphorybosyltransferase as described e.g. in EP 04077624.7, WO 2006/133827, PCT/EP07/002,433, EP 1999263, or WO 2007/107326.


Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention show altered quantity, quality and/or storage-stability of the harvested product and/or altered properties of specific ingredients of the harvested product such as:

    • 1) transgenic plants which synthesize a modified starch, which in its physical-chemical characteristics, in particular the amylose content or the amylose/amylopectin ratio, the degree of branching, the average chain length, the side chain distribution, the viscosity behaviour, the gelling strength, the starch grain size and/or the starch grain morphology, is changed in comparison with the synthesised starch in wild type plant cells or plants, so that this is better suited for special applications. Said transgenic plants synthesizing a modified starch are disclosed, for example, in EP 0571427, WO 95/04826, EP 0719338, WO 96/15248, WO 96/19581, WO 96/27674, WO 97/11188, WO 97/26362, WO 97/32985, WO 97/42328, WO 97/44472, WO 97/45545, WO 98/27212, WO 98/40503, WO99/58688, WO 99/58690, WO 99/58654, WO 00/08184, WO 00/08185, WO 00/08175, WO 00/28052, WO 00/77229, WO 01/12782, WO 01/12826, WO 02/101059, WO 03/071860, WO 2004/056999, WO 2005/030942, WO 2005/030941, WO 2005/095632, WO 2005/095617, WO 2005/095619, WO 2005/095618, WO 2005/123927, WO 2006/018319, WO 2006/103107, WO 2006/108702, WO 2007/009823, WO 00/22140, WO 2006/063862, WO 2006/072603, WO 02/034923, EP 06090134.5, EP 06090228.5, EP 06090227.7, EP 07090007.1, EP 07090009.7, WO 01/14569, WO 02/79410, WO 03/33540, WO 2004/078983, WO 01/19975, WO 95/26407, WO 96/34968, WO 98/20145, WO 99/12950, WO 99/66050, WO 99/53072, U.S. Pat. No. 6,734,341, WO 00/11192, WO 98/22604, WO 98/32326, WO 01/98509, WO 01/98509, WO 2005/002359, U.S. Pat. No. 5,824,790, U.S. Pat. No. 6,013,861, WO 94/04693, WO 94/09144, WO 94/11520, WO 95/35026, WO 97/20936
    • 2) transgenic plants which synthesize non starch carbohydrate polymers or which synthesize non starch carbohydrate polymers with altered properties in comparison to wild type plants without genetic modification. Examples are plants producing polyfructose, especially of the inulin and levan-type, as disclosed in EP 0663956, WO 96/01904, WO 96/21023, WO 98/39460, and WO 99/24593, plants producing alpha-1,4-glucans as disclosed in WO 95/31553, US 2002031826, U.S. Pat. No. 6,284,479, U.S. Pat. No. 5,712,107, WO 97/47806, WO 97/47807, WO 97/47808 and WO 00/14249, plants producing alpha-1,6 branched alpha-1,4-glucans, as disclosed in WO 00/73422, plants producing alternan, as disclosed in e.g. WO 00/47727, WO 00/73422, EP 06077301.7, U.S. Pat. No. 5,908,975 and EP 0728213,
    • 3) transgenic plants which produce hyaluronan, as for example disclosed in WO 2006/032538, WO 2007/039314, WO 2007/039315, WO 2007/039316, JP 2006304779, and WO 2005/012529.
    • 4) transgenic plants or hybrid plants, such as onions with characteristics such as ‘high soluble solids content’, ‘low pungency’ (LP) and/or ‘long storage’ (LS), as described in U.S. patent application Ser. No. 12/020,360 and 61/054,026.


Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as cotton plants, with altered fiber characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered fiber characteristics and include:

    • a) Plants, such as cotton plants, containing an altered form of cellulose synthase genes as described in WO 98/00549
    • b) Plants, such as cotton plants, containing an altered form of rsw2 or rsw3 homologous nucleic acids as described in WO 2004/053219
    • c) Plants, such as cotton plants, with increased expression of sucrose phosphate synthase as described in WO 01/17333
    • d) Plants, such as cotton plants, with increased expression of sucrose synthase as described in WO 02/45485
    • e) Plants, such as cotton plants, wherein the timing of the plasmodesmatal gating at the basis of the fiber cell is altered, e.g. through downregulation of fiber-selective β-1,3-glucanase as described in WO 2005/017157, or as described in EP 08075514.3 or U.S. Patent Appl. No. 61/128,938
    • f) Plants, such as cotton plants, having fibers with altered reactivity, e.g. through the expression of N-acetylglucosaminetransferase gene including nodC and chitin synthase genes as described in WO 2006/136351


Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered oil profile characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered oil profile characteristics and include:

    • a) Plants, such as oilseed rape plants, producing oil having a high oleic acid content as described e.g. in U.S. Pat. No. 5,969,169, U.S. Pat. No. 5,840,946 or U.S. Pat. No. 6,323,392 or U.S. Pat. No. 6,063,947
    • b) Plants such as oilseed rape plants, producing oil having a low linolenic acid content as described in U.S. Pat. No. 6,270,828, U.S. Pat. No. 6,169,190, or U.S. Pat. No. 5,965,755
    • c) Plant such as oilseed rape plants, producing oil having a low level of saturated fatty acids as described e.g. in U.S. Pat. No. 5,434,283 or U.S. patent application Ser. No. 12/668,303


Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered seed shattering characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered seed shattering characteristics and include plants such as oilseed rape plants with delayed or reduced seed shattering as described in U.S. Patent Appl. No. 61/135,230 WO09/068,313 and WO10/006,732.


Particularly useful transgenic plants which may be treated according to the invention are plants containing transformation events, or combination of transformation events, that are the subject of petitions for nonregulated status, in the United States of America, to the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) whether such petitions are granted or are still pending. At any time this information is readily available from APHIS (4700 River Road Riverdale, Md. 20737, USA), for instance on its internet site (URL http://www.aphis.usda.gov/brs/not_reg.html). On the filing date of this application the petitions for nonregulated status that were pending with APHIS or granted by APHIS were those listed in table B which contains the following information:

    • Petition: the identification number of the petition. Technical descriptions of the transformation events can be found in the individual petition documents which are obtainable from APHIS, for example on the APHIS website, by reference to this petition number. These descriptions are herein incorporated by reference.
    • Extension of Petition: reference to a previous petition for which an extension is requested.
    • Institution: the name of the entity submitting the petition.
    • Regulated article: the plant species concerned.
    • Transgenic phenotype: the trait conferred to the plants by the transformation event.
    • Transformation event or line: the name of the event or events (sometimes also designated as lines or lines) for which nonregulated status is requested.
    • APHIS documents: various documents published by APHIS in relation to the Petition and which can be requested with APHIS.


Additional particularly useful plants containing single transformation events or combinations of transformation events are listed for example in the databases from various national or regional regulatory agencies (see for example http://gmoinfo.jrc.it/gmp_browse.aspx and http://www.agbios.com/dbase.php).


Further particularly transgenic plants include plants containing a transgene in an agronomically neutral or beneficial position as described in any of the patent publications listed in Table C.










TABLE A





Trait
Reference

















Water use efficiency
WO 2000/073475



Nitrogen use efficiency
WO 1995/009911
WO 2007/076115



WO 1997/030163
WO 2005/103270



WO 2007/092704
WO 2002/002776


Improved photosynthesis
WO 2008/056915
WO 2004/101751


Nematode resistance
WO 1995/020669
WO 2003/033651



WO 2001/051627
WO 1999/060141



WO 2008/139334
WO 1998/012335



WO 2008/095972
WO 1996/030517



WO 2006/085966
WO 1993/018170


Reduced pod dehiscence
WO 2006/009649
WO 1997/013865



WO 2004/113542
WO 1996/030529



WO 1999/015680
WO 1994/023043



WO 1999/000502


Aphid resistance
WO 2006/125065
WO 2008/067043



WO 1997/046080
WO 2004/072109


Sclerotinia resistance
WO 2006/135717
WO 2005/000007



WO 2006/055851
WO 2002/099385



WO 2005/090578
WO 2002/061043


Botrytis resistance
WO 2006/046861
WO 2002/085105


Bremia resistance
US 20070022496
WO 2004/049786



WO 2000/063432


Erwinia resistance
WO 2004/049786


Closterovirus resistance
WO 2007/073167
WO 2002/022836



WO 2007/053015


Stress tolerance (including
WO 2010/019838
WO2008/002480


drought tolerance)
WO 2009/049110
WO2005/033318


Tobamovirus resistance
WO 2006/038794
















TABLE B







Petitions of Nonregulated Status Granted or Pending by APHIS as of Mar. 31, 2010








Applicant Documents














Extension of







Petition

Regulated
Transgenic
Transformation


Petition
Number ***
Institution
Article
Phenotype
Event or Line










Petitions for Nonregulated Status Pending












10-070-01p

Virginia Tech
Peanut
Sclerotinia blight
N70, P39, and






resistant
W171


09-349-01p

Dow
Soybean
Herbicide Tolerant
DAS-68416-4




AgroSciences


09-328-01p

Bayer Crop
Soybean
Herbicide Tolerant
FG72




Science


09-233-01p

Dow
Corn
Herbicide Tolerant
DAS-40278-9


09-201-01p

Monsanto
Soybean

MON-877Ø5-6


09-183-01p

Monsanto
Soybean

MON-87769


09-082-01p

Monsanto
Soybean
Lepidopteran resistant
MON 87701


09-063-01p

Stine Seed
Corn
Glyphosate tolerant
HCEM485


09-055-01p

Monsanto
Corn
Drought Tolerant
MON 87460


09-015-01p

BASF Plant
Soybean
Herbicide Tolerant
BPS-CV127-9




Science, LLC


Soybean


08-366-01p

ArborGen
Eucalyptus
Freeze Tolerant,
ARB-FTE1-08






Fertility Altered


08-340-01p

Bayer
Cotton
Glufosinate Tolerant,
T304-40XGHB119






Insect Resistant


08-338-01p

Pioneer
Corn
Male Sterile, Fertility
DP-32138-1






Restored, Visual






Marker


08-315-01p

Florigene
Rose
Altered Flower Color
IFD-524Ø1-4 and







IFD-529Ø1-9


07-253-01p

Syngenta
Corn
Lepidopteran resistant
MIR-162 Maize


07-108-01p

Syngenta
Cotton
Lepidopteran Resistant
COT67B


06-354-01p

Pioneer
Soybean
High Oleic Acid
DP-3Ø5423-1


05-280-01p

Syngenta
Corn
Thermostable alpha-
3272






amylase


04-110-01p

Monsanto &
Alfalfa
Glyphosate Tolerant
J101, J163




Forage Genetics


03-104-01p

Monsanto &
Creeping
Glyphosate Tolerant
ASR368




Scotts
bentgrass







Petitions for Nonregulated Status Granted












07-152-01p

Pioneer
Corn
glyphosate &
DP-098140-6






Imidazolinone tolerant


04-337-01p

University of
Papaya
Papaya Ringspot Virus
X17-2




Florida

Resistant


06-332-01p

Bayer
Cotton
Glyphosate tolerant
GHB614




CropScience


06-298-01p

Monsanto
Corn
European Corn Borer
MON 89034






resistant


06-271-01p

Pioneer
Soybean
Glyphosate &
356043






acetolactate synthase
(DP-356Ø43-5)






tolerant


06-234-01p
98-329-01p
Bayer
Rice
Phosphinothricin
LLRICE601




CropScience

tolerant


06-178-01p

Monsanto
Soybean
Glyphosate tolerant
MON 89788


04-362-01p

Syngenta
Corn
Corn Rootworm
MIR604






Protected


04-264-01p

ARS
Plum
Plum Pox Virus
C5






Resistant


04-229-01p

Monsanto
Corn
High Lysine
LY038


04-125-01p

Monsanto
Corn
Corn Rootworm
88017






Resistant


04-086-01p

Monsanto
Cotton
Glyphosate Tolerant
MON 88913


03-353-01p

Dow
Corn
Corn Rootworm
59122






Resistant


03-323-01p

Monsanto
Sugar
Glyphosate Tolerant
H7-1





Beet


03-181-01p
00-136-01p
Dow
Corn
Lepidopteran Resistant
TC-6275






& Phosphinothricin






tolerant


03-155-01p

Syngenta
Cotton
Lepidopteran Resistant
COT 102


03-036-01p

Mycogen/Dow
Cotton
Lepidopteran Resistant
281-24-236


03-036-02p

Mycogen/Dow
Cotton
Lepidopteran Resistant
3006-210-23


02-042-01p

Aventis
Cotton
Phosphinothericin
LLCotton25






tolerant


01-324-01p
98-216-01p
Monsanto
Rapeseed
Glyphosate tolerant
RT200


01-206-01p
98-278-01p
Aventis
Rapeseed
Phosphinothricin
MS1 & RF1/RF2






tolerant & pollination






control


01-206-02p
97-205-01p
Aventis
Rapeseed
Phosphinothricin
Topas 19/2






tolerant


01-137-01p

Monsanto
Corn
Corn Rootworm
MON 863






Resistant


01-121-01p

Vector
Tobacco
Reduced nicotine
Vector 21-41


00-342-01p

Monsanto
Cotton
Lepidopteran resistant
Cotton Event







15985


00-136-01p

Mycogen c/o
Corn
Lepidopteran resistant
Line 1507




Dow & Pioneer

phosphinothricin






tolerant


00-011-01p
97-099-01p
Monsanto
Corn
Glyphosate tolerant
NK603


99-173-01p
97-204-01p
Monsanto
Potato
PLRV & CPB resistant
RBMT22-82


98-349-01p
95-228-01p
AgrEvo
Corn
Phosphinothricin
MS6






tolerant and Male






sterile


98-335-01p

U. of
Flax
Tolerant to soil
CDC Triffid




Saskatchewan

residues of sulfonyl






urea herbicide


98-329-01p

AgrEvo
Rice
Phosphinothricin
LLRICE06,






tolerant
LLRICE62


98-278-01p

AgrEvo
Rapeseed
Phosphinothricin
MS8 & RF3






tolerant & Pollination






control


98-238-01p

AgrEvo
Soybean
Phosphinothricin
GU262






tolerant


98-216-01p

Monsanto
Rapeseed
Glyphosate tolerant
RT73


98-173-01p

Novartis Seeds &
Beet
Glyphosate tolerant
GTSB77




Monsanto


98-014-01p
96-068-01p
AgrEvo
Soybean
Phosphinothricin
A5547-127






tolerant


97-342-01p

Pioneer
Corn
Male sterile &
676, 678, 680






Phosphinothricin






tolerant


97-339-01p

Monsanto
Potato
CPB & PVY resistant
RBMT15-101,







SEMT15-02,







SEMT15-15


97-336-01p

AgrEvo
Beet
Phosphinothricin
T-120-7






tolerant


97-287-01p

Monsanto
Tomato
Lepidopteran resistant
5345


97-265-01p

AgrEvo
Corn
Phosphinothricin
CBH-351






tolerant & Lep.






resistant


97-205-01p

AgrEvo
Rapeseed
Phosphinothricin
T45






tolerant


97-204-01p

Monsanto
Potato
CPB & PLRV resistant
RBMT21-129 &







RBMT21-350


97-148-01p

Bejo

Cichorium

Male sterile
RM3-3, RM3-4,






intybus


RM3-6


97-099-01p

Monsanto
Corn
Glyphosate tolerant
GA21


97-013-01p

Calgene
Cotton
Bromoxynil tolerant &
Events 31807 &






Lepidopteran resistant
31808


97-008-01p

Du Pont
Soybean
Oil profile altered
G94-1, G94-19, G-







168


96-317-01p

Monsanto
Corn
Glyphosate tolerant &
MON802






ECB resistant


96-291-01p

DeKalb
Corn
European Corn Borer
DBT418






resistant


96-248-01p
92-196-01p
Calgene
Tomato
Fruit ripening altered
1 additional







FLAVRSAVR line


96-068-01p

AgrEvo
Soybean
Phosphinothricin
W62, W98, A2704-






tolerant
12, A2704-21,







A5547-35


96-051-01p

Cornell U
Papaya
PRSV resistant
55-1, 63-1


96-017-01p
95-093-01p
Monsanto
Corn
European Corn Borer
MON809 &






resistant
MON810


95-352-01p

Asgrow
Squash
CMV, ZYMV, WMV2
CZW-3






resistant


95-338-01p

Monsanto
Potato
CPB resistant
SBT02-5 & -7,







ATBT04-6







&-27, -30, -31, -36


95-324-01p

Agritope
Tomato
Fruit ripening altered
35 1 N


95-256-01p

Du Pont
Cotton
Sulfonylurea tolerant
19-51a


95-228-01p

Plant Genetic
Corn
Male sterile
MS3




Systems


95-195-01p

Northrup King
Corn
European Corn Borer
Bt11






resistant


95-179-01p
92-196-01p
Calgene
Tomato
Fruit ripening altered
2 additional







FLAVRSAVR lines


95-145-01p

DeKalb
Corn
Phosphinothricin
B16






tolerant


95-093-01p

Monsanto
Corn
Lepidopteran resistant
MON 80100


95-053-01p

Monsanto
Tomato
Fruit ripening altered
8338


95-045-01p

Monsanto
Cotton
Glyphosate tolerant
1445, 1698


95-030-01p
92-196-01p
Calgene
Tomato
Fruit ripening altered
20 additional







FLAVRSAVR lines


94-357-01p

AgrEvo
Corn
Phosphinothricin
T14, T25






tolerant


94-319-01p

Ciba Seeds
Corn
Lepidopteran resistant
Event 176


94-308-01p

Monsanto
Cotton
Lepidopteran resistant
531, 757, 1076


94-290-01p

Zeneca &
Tomato
Fruit polygalacturonase
B, Da, F




Petoseed

level decreased


94-257-01p

Monsanto
Potato
Coleopteran resistant
BT6, BT10, BT12,







BT16, BT17, BT18,







BT23


94-230-01p
92-196-01p
Calgene
Tomato
Fruit ripening altered
9 additional







FLAVRSAVR lines


94-228-01p

DNA Plant Tech
Tomato
Fruit ripening altered
1345-4


94-227-01p
92-196-01p
Calgene
Tomato
Fruit ripening altered
Line N73 1436-111


94-090-01p

Calgene
Rapeseed
Oil profile altered
pCGN3828-







212/86- 18 & 23


93-258-01p

Monsanto
Soybean
Glyphosate tolerant
40-3-2


93-196-01p

Calgene
Cotton
Bromoxynil tolerant
BXN


92-204-01p

Upjohn
Squash
WMV2 & ZYMV
ZW-20






resistant


92-196-01p

Calgene
Tomato
Fruit ripening altered
FLAVR SAVR





NOTE:


To obtain the most up-to-date list of Crops No Longer Regulated, please look at the Current Status of Petitions. This list is automatically updated and reflects all petitions received to date by APHIS, including petitions pending, withdrawn, or approved.


Abbreviations:


CMV—cucumber mosaic virus; CPB—colorado potato beetle; PLRV—potato leafroll virus; PRSV—papaya ringspot virus; PVY—potato virus Y; WMV2—watermelon mosaic virus 2 ZYMV—zucchini yellow mosaic virus


*** Extension of Petition Number: Under 7CFR 340.6(e) a person may request that APHIS extend a determination of non-regulated status to other organisms based on their similarity of the previously deregulated article. This column lists the previously granted petition of that degregulated article.


**** Preliminary EA: The Environmental Assessment initially available for Public comment prior to finalization.
















TABLE C





Plant species
Event
Trait
Patent reference







Corn
PV-ZMGT32 (NK603)
Glyphosate tolerance
US 2007-056056


Corn
MIR604
Insect resistance (Cry3a055)
EP 1 737 290


Corn
LY038
High lysine content
U.S. Pat. No. 7,157,281


Corn
3272
Self processing corn (alpha-
US 2006-230473




amylase)


Corn
PV-ZMIR13
Insect resistance (Cry3Bb)
US 2006-095986



(MON863)


Corn
DAS-59122-7
Insect resistance
US 2006-070139




(Cry34Ab1/Cry35Ab1)


Corn
TC1507
Insect resistance (Cry1F)
U.S. Pat. No. 7,435,807


Corn
MON810
Insect resistance (Cry1Ab)
US 2004-180373


Corn
VIP1034
Insect resistance
WO 03/052073


Corn
B16
Glufosinate resistance
US 2003-126634


Corn
GA21
Glyphosate resistance
U.S. Pat. No. 6,040,497


Corn
GG25
Glyphosate resistance
U.S. Pat. No. 6,040,497


Corn
GJ11
Glyphosate resistance
U.S. Pat. No. 6,040,497


Corn
FI117
Glyphosate resistance
U.S. Pat. No. 6,040,497


Corn
GAT-ZM1
Glufosinate tolerance
WO 01/51654


Corn
MON87460
Drought tolerance
WO 2009/111263


Corn
DP-098140-6
Glyphosate tolerance/ALS
WO 2008/112019




inhibitor tolerance


Wheat
Event 1
Fusarium resistance
CA 2561992




(trichothecene 3-O-




acetyltransferase)


Sugar beet
T227-1
Glyphosate tolerance
US 2004-117870


Sugar beet
H7-1
Glyphosate tolerance
WO 2004-074492


Soybean
MON89788
Glyphosate tolerance
US 2006-282915


Soybean
A2704-12
Glufosinate tolerance
WO 2006/108674


Soybean
A5547-35
Glufosinate tolerance
WO 2006/108675


Soybean
DP-305423-1
High oleic acid/ALS inhibitor
WO 2008/054747




tolerance


Rice
GAT-OS2
Glufosinate tolerance
WO 01/83818


Rice
GAT-OS3
Glufosinate tolerance
US 2008-289060


Rice
PE-7
Insect resistance (Cry1Ac)
WO 2008/114282


Oilseed rape
MS-B2
Male sterility
WO 01/31042


Oilseed rape
MS-BN1/RF-BN1
Male sterility/restoration
WO 01/41558


Oilseed rape
RT73
Glyphosate resistance
WO 02/36831


Cotton
CE43-67B
Insect resistance (Cry1Ab)
WO 2006/128573


Cotton
CE46-02A
Insect resistance (Cry1Ab)
WO 2006/128572


Cotton
CE44-69D
Insect resistance (Cry1Ab)
WO 2006/128571


Cotton
1143-14A
Insect resistance (Cry1Ab)
WO 2006/128569


Cotton
1143-51B
Insect resistance (Cry1Ab)
WO 2006/128570


Cotton
T342-142
Insect resistance (Cry1Ab)
WO 2006/128568


Cotton
event3006-210-23
Insect resistance (Cry1Ac)
WO 2005/103266


Cotton
PV-GHGT07 (1445)
Glyphosate tolerance
US 2004-148666


Cotton
MON88913
Glyphosate tolerance
WO 2004/072235


Cotton
EE-GH3
Glyphosate tolerance
WO 2007/017186


Cotton
T304-40
Insect-resistance (Cry1Ab)
WO2008/122406


Cotton
Cot202
Insect resistance (VIP3)
US 2007-067868


Cotton
LLcotton25
Glufosinate resistance
WO 2007/017186


Cotton
EE-GH5
Insect resistance (Cry1Ab)
WO 2008/122406


Cotton
event 281-24-236
Insect resistance (Cry1F)
WO 2005/103266


Cotton
Cot102
Insect resistance (Vip3A)
US 2006-130175


Cotton
MON 15985
Insect resistance (Cry1A/Cry2Ab)
US 2004-250317


Bent Grass
Asr-368
Glyphosate tolerance
US 2006-162007


Brinjal
EE-1
Insect resistance (Cry1Ac)
WO 2007/091277









The plants listed can be treated according to the invention in a particularly advantageous manner with the compounds of the general formula (I) or the active compound mixtures according to the invention. The preferred ranges stated above for the active compounds or mixtures also apply to the treatment of these plants. Particular emphasis is given to the treatment of plants with the compounds or mixtures specifically mentioned in the present text.


The invention further relates to a fungicide composition comprising, as an active ingredient, an effective amount of a compound of formula (I) according to the invention and an agriculturally acceptable support, carrier or filler.


The invention further relates to a method for controlling phytopathogenic fungi of crops, characterized in that an agronomically effective and substantially non-phytotoxic quantity of a compound according to the invention or a composition according to the invention is applied to the soil where plants grow or are capable of growing, to the leaves and/or the fruit of plants or to the seeds of plants.


The invention further relates to a method for controlling unwanted microorganisms, characterized in that (thio)carboxamides of the formula (I) according to the invention are applied to the microorganisms and/or their habitat.


The invention further relates to a process for preparing compositions for controlling unwanted microorganisms, characterized in that carboxamides of the formula (I) according to the invention are mixed with extenders and/or surfactants.


The invention further relates to the use of (thio)carboxamides of the formula (I) according to the invention for treating seed.


The invention further relates to the use of (thio)carboxamides of the formula (I) according to the invention for treating transgenic plants.


The preparation and the use of the active compounds (thio)carboxamides of the formula (I) according to the invention and the intermediates is illustrated by the examples below.


Procedure for Synthesizing Amides of the Formula (I) According to the Invention from Compounds of the Formula (II) and Compounds of the Formula (III) According to Process (a):


4 mL of a 0.15 molar solution (0.60 mmol) of an amine according to formula III as described above are initially charged in a 13 mL Chemspeed™ reaction tube in dichloromethane, followed by 0.72 mmol of triethylamine. At a rate of 1 mL/min, 2 mL of a 0.30 molar solution of the acyl chloride (IIb) or (IIe) (0.60 mmol) are added, and the mixture is stirred at room temperature overnight. 1 mL of water is then added, and the mixture is applied to a cartridge with basic alumina (weight 2 g) and eluted with dichloromethane. The solvent is removed and the reaction mixture is analyzed by LCMS and NMR. Impure products are purified further by preparative LCMS.


Procedure for Synthesizing the Carboxylic Acid Derivatives of the Formula (II) According to the Invention According to Process (c):


5-Chloro-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid (Example IIb)



embedded image


In a 500 mL round-bottom flask, 6.0 g (31 mmol) of 5-chloro-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carbaldehyde were taken up in 30 mL of toluene. A solution of 2.4 g (62 mmol) of sodium hydroxide in 6 mL of water was added to the reaction mixture, followed by 103 mL of a 30% strength solution of hydrogen peroxide in water. During the addition, the temperature was kept below 37° C. The reaction mixture was then stirred at 50° C. for 7 h. After cooling, the organic phase was extracted with 100 mL of water. The aqueous phase was acidified to pH 2 using dilute hydrochloric acid. The white precipitate formed was filtered off, washed twice with 20 mL of water and dried. This gave 3.2 g of 5-chloro-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid as a white solid.



1H NMR (400 MHz, DMSO-d6) δ ppm: 3.78 (s, 3H); 7.12 (t, 1H, JHF=53.60 Hz); 13.19 (s, 1H);


IR (KBr): 1688 cm−1 (C═O); 2200-3200 cm−1 broad;


5-Chloro-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carbonyl chloride (Example IIc)



embedded image


3.2 g of 5-chloro-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid and 44.3 mL of thionyl chloride were heated under reflux for 5 h. After cooling, the reaction mixture was concentrated under reduced pressure, giving 3.5 g of 5-chloro-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carbonyl chloride as a yellow oil.



1H NMR (400 MHz, CHCl3-d6) δ ppm: 3.97 (s, 3H); 7.00 (t, J=52.01 Hz, 1H);


IR (TQ): 1759 and 1725 cm−1 (C═O);


3-(Difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carbonyl fluoride (Example IId)



embedded image


At 100° C., a solution of 5.0 g (22 mmol) of 5-chloro-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carbonyl chloride in 15 mL of toluene was added to a dried solution of 4.0 g (70 mmol) of potassium fluoride in 21 mL of tetrahydrothiophene-1,1-dioxide. The reaction mixture was then stirred at 190-200° C. for 22 h. Removal of the solvent under reduced pressure gave 8 g of a solution (25% molar) of 3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carbonyl fluoride in tetrahydrothiophene-1,1-dioxide.



1H NMR (250 MHz, CHCl3-d6) δ ppm: 3.87 (s, 3H); 6.79 (t, J=53.75 Hz, 1H);



19F NMR (250 MHz, CHCl3-d6) δ ppm: 45.37 (s, COF); −117.5 (d, J=28.2 Hz); −131.6 (m);


5-Fluoro-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid (Example IIe)



embedded image


67.5 g of a solution (10% molar) of 3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carbonyl fluoride in tetrahydrothiophene-1,1-dioxide were added dropwise to 400 mL of an aqueous 1N NaOH solution. During the addition, the temperature was kept below 20. After 2 h of stirring at room temperature, the mixture was carefully acidified to pH 2 using concentrated hydrochloric acid. The white precipitate formed was filtered off, washed with water and dried. This gave 6 g of 5-fluoro-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid as a white solid.



1H NMR (400 MHz, DMSO-d6) δ ppm: 3.90 (s, 3H); 7.22 (t, 1H, JHF=53.55 Hz); 13.33 (s, 1H);


5-Fluoro-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carbonyl chloride (Example IIf)



embedded image


9.1 g of 5-fluoro-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid and 75.5 mL of thionyl chloride were heated under reflux for 1.5 h. After cooling, the reaction mixture was concentrated under reduced pressure, giving 10 g of 5-fluoro-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carbonyl chloride as a yellow oil.


GC-MS (M+.)=212; fragments: (M+.-Cl)=177 and (M+.-F)=193;


General Procedure for Synthesizing Thioamides of the Formula (I) According to the Invention from Amides of the Formula (I) According to Process (c):


In a 13 mLChemspeed™ vial is weighed 0.27 mmol of phosphorous pentasulfide (P2S5). 3 mL of a 0.18 molar solution of the amide (I) (0.54 mmol) in dioxane is added and the mixture is heated at reflux for two hours. The temperature is then cooled to 80° C. and 2.5 mL of water are added. The mixture is heated at 80° C. for one more hour. 2 mL of water are then added and the reaction mixture is extracted twice by 4 mL of dichloromethane. The organic phase is deposited on a basic alumina cartridge (2 g) and eluted twice by 8 mL of dichloromethane. The solvents are removed and the crude thioamide derivative is analyzed by LCMS and NMR. Insufficiently pure compounds are further purified by preparative LCMS.


The following examples of compounds according to formula (I) are listed in Table 1 below:




embedded image



where n is equal to 0 and M has the following meaning:




embedded image



where the bond marked by * is attached to the amide while the bond marked # is attached to Q-Z;
















TABLE 1












Mass









(M +


Ex.
X2
T
R1
M
Q-Z
logP
H)







 1
Cl
O
methyl
M-1
3,3-dimethylbutyl
4.15



 2
Cl
O
methyl
M-3
3,3-dimethylbutyl
4.16
390


 3
Cl
O
methyl
M-3
2-ethylbutyl
4.16
390
















 4
F
O
ethyl


embedded image


2.32
342





 5
Cl
O
ethyl


embedded image


2.40
358

















 6
F
O
methyl
M-3
phenyl
2.90
366


 7
F
O
methyl
M-1
2-methyphenyl
3.19
374


 8
Cl
O
methyl
M-1
2-methyphenyl
3.41
390


 9
F
O
methyl
M-1
3,5-dimethylphenyl
3.67
388


10
Cl
O
methyl
M-1
3,5-dimethylphenyl
3.85
404


11
F
O
methyl
M-1
3,5-difluorophenyl
3.15
396


12
Cl
O
methyl
M-1
3,5-difluorophenyl
3.33
412


13
F
O
methyl
M-1
3-isopropylphenyl
4.01
402


14
Cl
O
methyl
M-1
3-isopropylphenyl
4.19
418


15
F
O
methyl
M-1
4-isopropylphenyl
4.01
402


16
Cl
O
methyl
M-1
4-isopropylphenyl
4.21
418


17
F
O
methyl
M-1
3-chloro-4-fluorophenyl
3.37
412


18
Cl
O
methyl
M-1
3-chloro-4-fluorophenyl
3.58
428


19
F
O
methyl
M-1
4-tert-butylphenyl
4.29
416


20
Cl
O
methyl
M-1
4-tert-butylphenyl
4.49
432


21
F
O
methyl
M-1
3-isopropoxyphenyl
3.60
418


22
Cl
O
methyl
M-1
3-isopropoxyphenyl
3.76
434


23
F
O
methyl
M-1
4-isopropoxyphenyl
3.60
418


24
Cl
O
methyl
M-1
4-isopropoxyphenyl
3.78
434


25
F
O
methyl
M-1
2,3-dichlorophenyl
3.48
428


26
Cl
O
methyl
M-1
2,3-dichlorophenyl
3.73
444


27
F
O
methyl
M-1
2,4-dichlorophenyl
3.67
428


28
Cl
O
methyl
M-1
2,4-dichlorophenyl
3.92
444


29
F
O
methyl
M-1
3,5-dichlorophenyl
3.83
428


30
Cl
O
methyl
M-1
3,5-dichlorophenyl
4.06
444


31
F
O
methyl
M-1
4-(trifluoromethyl)phenyl
3.51
428


32
Cl
O
methyl
M-1
4-(trifluoromethyl)phenyl
3.69
444


33
F
O
methyl
M-1
4-[(1E)-N-methoxy
3.48
431







ethanimidoyl]phenyl




34
Cl
O
methyl
M-1
4-[(1E)-N-methoxy
3.67
447







ethanimidoyl]phenyl




35
F
O
methyl
M-1
3-(trimethylsilyl)phenyl
4.61
432


36
Cl
O
methyl
M-1
3-(trimethylsilyl)phenyl
4.76
448


37
F
O
methyl
M-1
4-(trimethylsilyl)phenyl
4.63
432


38
Cl
O
methyl
M-1
4-(trimethylsilyl)phenyl
4.81
448


39
Cl
O
methyl
M-1
4-isobutoxyphenyl
4.44
448


40
F
O
methyl
M-1
4-isobutoxyphenyl
4.26
432


41
F
O
methyl
M-1
3-(trifluoromethoxy) phenyl
3.67
444


42
Cl
O
methyl
M-1
3-(trifluoromethoxy) phenyl
3.83
460


43
F
O
methyl
M-1
4-(trifluoromethoxy) phenyl
3.67
444


44
Cl
O
methyl
M-1
4-(trifluoromethoxy) phenyl
3.85
460


45
F
O
methyl
M-1
4-[(E)-(isopropoxyimino)
4.06
445







methyl]phenyl




46
Cl
O
methyl
M-1
4-[(E)-(isopropoxyimino)
4.24
461







methyl]phenyl




47
F
O
methyl
M-1
4-[(1E)-N-tert-butoxy
4.91
473







ethanimidoyl]phenyl




48
Cl
O
methyl
M-1
4-[(1E)-N-tert-butoxy
5.08
489







ethanimidoyl]phenyl




49
F
O
methyl
M-2
2-methyphenyl
3.46
374


50
Cl
O
methyl
M-2
2-methyphenyl
3.59
390


51
F
O
methyl
M-2
3,5-dimethylphenyl
3.96
388


52
Cl
O
methyl
M-2
3,5-dimethylphenyl
4.09
404


53
F
O
methyl
M-2
3,5-difluorophenyl
3.39
396


54
Cl
O
methyl
M-2
3,5-difluorophenyl
3.53
412


55
F
O
methyl
M-2
3-isopropylphenyl
4.24
402


56
Cl
O
methyl
M-2
3-isopropylphenyl
4.36
418


57
F
O
methyl
M-2
4-isopropylphenyl
4.31
402


58
Cl
O
methyl
M-2
4-isopropylphenyl
4.44
418


59
F
O
methyl
M-2
3-chloro-4-fluorophenyl
3.69
412


60
Cl
O
methyl
M-2
3-chloro-4-fluorophenyl
3.80
428


61
F
O
methyl
M-2
4-tert-butylphenyl
4.61
416


62
Cl
O
methyl
M-2
4-tert-butylphenyl
4.73
432


63
F
O
methyl
M-2
3-isopropoxyphenyl
3.85
418


64
Cl
O
methyl
M-2
3-isopropoxyphenyl
3.96
434


65
F
O
methyl
M-2
4-isopropoxyphenyl
3.85
418


66
Cl
O
methyl
M-2
4-isopropoxyphenyl
3.96
434


67
F
O
methyl
M-2
2,3-dichlorophenyl
3.78
428


68
Cl
O
methyl
M-2
2,3-dichlorophenyl
3.94
444


69
F
O
methyl
M-2
2,4-dichlorophenyl
3.99
428


70
Cl
O
methyl
M-2
2,4-dichlorophenyl
4.16
444


71
F
O
methyl
M-2
3,5-dichlorophenyl
4.24
428


72
Cl
O
methyl
M-2
3,5-dichlorophenyl
4.39
444


73
F
O
methyl
M-2
4-(trifluoromethyl)phenyl
3.80
428


74
Cl
O
methyl
M-2
4-(trifluoromethyl)phenyl
3.92
444


75
F
O
methyl
M-2
4-[(1E)-N-methoxy
3.76
431







ethanimidoyl]phenyl




76
Cl
O
methyl
M-2
4-[(1E)-N-methoxy
3.89
447







ethanimidoyl]phenyl




77
F
O
methyl
M-2
3-(trimethylsilyl)phenyl
4.81
432


78
Cl
O
methyl
M-2
3-(trimethylsilyl)phenyl
4.93
448


79
F
O
methyl
M-2
4-(trimethylsilyl)phenyl
4.93
432


80
Cl
O
methyl
M-2
4-(trimethylsilyl)phenyl
5.03
448


81
F
O
methyl
M-2
4-isobutoxyphenyl
4.51
432


82
Cl
O
methyl
M-2
4-isobutoxyphenyl
4.63
448


83
F
O
methyl
M-2
3-(trifluoromethoxy) phenyl
3.89
444


84
Cl
O
methyl
M-2
3-(trifluoromethoxy) phenyl
4.01
460


85
F
O
methyl
M-2
4-(trifluoromethoxy) phenyl
3.94
444


86
Cl
O
methyl
M-2
4-(trifluoromethoxy) phenyl
4.06
460


87
F
O
methyl
M-2
4-[(E)-(isopropoxyimino)
4.31
445







methyl]phenyl




88
Cl
O
methyl
M-2
4-[(E)-(isopropoxyimino)
4.46
461







methyl]phenyl




89
Cl
O
methyl
M-2
4-[(1E)-N-tert-butoxy
5.25
489







ethanimidoyl]phenyl




90
F
O
methyl
M-2
4-[(1E)-N-tert-butoxy
5.17
473







ethanimidoyl]phenyl




91
F
S
methyl
M-3
phenyl
3.62
382









In table 1, unless otherwise specified, M+H (Apcl+) means the molecular ion peak plus 1 a.m.u. (atomic mass unit) as observed in mass spectroscopy via positive atmospheric pressure chemical ionisation. In table 1, the logP values were determined in accordance with EEC Directive 79/831 Annex V.A8 by HPLC (High Performance Liquid Chromatography) on a reversed-phase column (C 18), using the method described below:


Temperature: 40° C.; Mobile phases: 0.1% aqueous formic acid and acetonitrile; linear gradient from 10% acetonitrile to 90% acetonitrile.


Calibration was carried out using unbranched alkan-2-ones (comprising 3 to 16 carbon atoms) with known logP values (determination of the logP values by the retention times using linear interpolation between two successive alkanones). lambda-max-values were determined using UV-spectra from 200 nm to 400 nm and the peak values of the chromatographic signals.


USE EXAMPLES
Example A

Sphaerotheca Test (Cucumber)/Preventive

Solvent: 49 parts by weight of N,N-dimethylformamide


Emulsifier: 1 part by weight of alkylarylpolyglycolether


To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.


To test for preventive activity, young plants are sprayed with the preparation of active compound at the stated rate of application. One day after this treatment, the plants are inoculated with an aqueous spore suspension of Sphaerotheca fuliginea. Then the plants are placed in a greenhouse at approximately 23° C. and a relative atmospheric humidity of approximately 70%.


The test is evaluated 7 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease is observed.


In this test the following compounds according to the invention showed high efficacy of 90% or even higher at a concentration of 500 ppm of active ingredient:


Example Number: 1 (95%); 7 (93%).


Under the same conditions, high (at least 90%) protection is observed at a dose of 500 ppm of active ingredient with compound 7, whereas poor (less than 20%) protection is observed with the compound of example 102 disclosed in patent application WO-2007/006806 as in table A.













TABLE A







Example
dose (ppm)
Efficacy









7 from this invention
500
93



102 from WO-2007/006806
500
20










Example 102 disclosed in international patent WO-2007/006806 corresponds to 3-(difluoromethyl)-5-fluoro-1-methyl-N-(2′-methylbiphenyl-2-yl)-1H-pyrazole-4-carboxamide


These results show that the compounds according to the invention have a better biological activity than the structurally closest compounds disclosed in WO-2007/006806.


Example B

Alternaria Test (Tomato)/Preventive

Solvent: 49 parts by weight of N,N-dimethylformamide


Emulsifier: 1 part by weight of alkylarylpolyglycolether


To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.


To test for preventive activity, young plants are sprayed with the preparation of active compound at the stated rate of application. One day after this treatment, the plants are inoculated with an aqueous spore suspension of Alternaria solani. The plants remain for one day in an incubation cabinet at approximately 22° C. and a relative atmospheric humidity of 100%. Then the plants are placed in an incubation cabinet at approximately 20° C. and a relative atmospheric humidity of 96%.


The test is evaluated 7 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control while an efficacy of 100% means that no disease is observed.


In this test the following compounds according to the invention showed high efficacy of 90% or even higher at a concentration of 500 ppm of active ingredient:


Example Number: 1 (90%); 7 (100%).


Example C

Pyrenophora Test (Barley)/Preventive

Solvent: 49 parts by weight of N,N-dimethylformamide


Emulsifier: 1 part by weight of alkylarylpolyglycolether


To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.


To test for preventive activity, young plants are sprayed with the preparation of active compound at the stated rate of application. One day after this treatment, the plants are inoculated with an aqueous spore suspension of Pyrenophora teres. The plants remain for 48 hours in an incubation cabinet at 22° C. and a relative atmospheric humidity of 100%. Then the plants are placed in a greenhouse at a temperature of approximately 20° C. and a relative atmospheric humidity of approximately 80%.


The test is evaluated 7-9 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control while an efficacy of 100% means that no disease is observed.


In this test the following compounds according to the invention showed high efficacy of 90% or even higher at a concentration of 500 ppm of active ingredient:


Example Number: 1 (95%); 7 (100%); 8 (95%)


Example D

Puccinia Test (Wheat)/Preventive

Solvent: 49 parts by weight of N,N-dimethylformamide


Emulsifier: 1 part by weight of alkylarylpolyglycolether


To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.


To test for preventive activity, young plants are sprayed with the preparation of active compound at the stated rate of application. One day after this treatment, the plants are inoculated with an aqueous spore suspension of Puccinia recondita. The plants remain for 48 hours in an incubation cabinet at 22° C. and a relative atmospheric humidity of 100%. Then the plants are placed in a greenhouse at a temperature of approximately 20° C. and a relative atmospheric humidity of approximately 80%.


The test is evaluated 7-9 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control while an efficacy of 100% means that no disease is observed.


In this test the following compound according to the invention showed total efficacy at a concentration of 500 ppm of active ingredient:


Example Number: 1 (100%).


Example E

Uromyces Test (Beans)/Preventive

Solvent: 24.5 parts by weight of acetone

    • 24.5 parts by weight of N,N-dimethylacetamide


Emulsifier: 1 part by weight of alkylaryl polyglycol ether


To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.


To test for preventive activity, young plants are sprayed with the preparation of active compound at the stated rate of application. After the spray coating has dried on, the plants are inoculated with an aqueous spore suspension of the causal agent of bean rust (Uromyces appendiculatus) and then remain for 1 day in an incubation cabinet at approximately 20° C. and a relative atmospheric humidity of 100%.


The plants are then placed in a greenhouse at approximately 21° C. and a relative atmospheric humidity of approximately 90%.


The test is evaluated 10 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease is observed.


In this test the following compound according to the invention showed high efficacy of 90% or even higher at a concentration of 100 ppm of active ingredient:


Example Number: 1 (96%).


Example F

Phakopsora Test (Soybeans)/Preventive

Solvent: 24.5 parts by weight of acetone

    • 24.5 parts by weight of N,N-dimethylacetamide


Emulsifier: 1 part by weight of alkylaryl polyglycol ether


To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.


To test for preventive activity, young plants are sprayed with the preparation of active compound at the stated rate of application. After the spray coating has dried on, the plants are inoculated with an aqueous spore suspension of the casual agent of soybean rust. (Phakopsora pachyrhizi) and stay for 1 day without light on an incubation cabinet at approximately 23° C. and a relative atmospheric humidity of 95%. The plants remain in the incubation cabinet at approximately 23° C. and a relative atmospheric humidity of approximately 80% and a day/night interval of 12 hours.


The test is evaluated 7 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease is observed.


In this test the following compound according to the invention showed high efficacy of 90% or even higher at a concentration of 100 ppm of active ingredient.


Example Number: 1(98%).

Claims
  • 1. A (thio)carboxamide derivative of formula (I)
  • 2. A compound according to claim 1, wherein X1 and X2 independently from each other represents fluorine or chlorine.
  • 3. A compound according to claim 1, wherein R1 represents a substituted or non-substituted C1-C8-alkyl, a C1-C8-halogenoalkyl having 1 to 5 halogen atoms or a non-substituted C3-C7-cycloalkyl.
  • 4. A compound according to claim 3, wherein R1 represents methyl or cyclopropyl.
  • 5. A compound according to claim 1, wherein M represents one of the cycles below:
  • 6. A compound according to claim 5, wherein M represents M-1 or M-3.
  • 7. A compound according to claim 1, wherein n is 0 or 1 andR2 represents fluorine.
  • 8. A compound according to claim 1, wherein Q represents a direct bond or O (oxygen).
  • 9. A compound according to claim 1, wherein O represents NR3 and R3 represents hydrogen, C1-C6-alkyl, C1-C3-alkoxy-C1-C3-alkyl, C1-C3-alkylsulfanyl-C1-C3-alkyl or C3-C6-cycloalkyl.
  • 10. A compound according to claim 1, wherein Z represents Z1 which is mono- to pentasubstituted by identical or different substituents W1, wherein W1 represents fluorine, chlorine, bromine, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, methoxy, ethoxy, n- or i-propoxy, trifluoromethyl, trifluoroethyl, difluoromethoxy, trifluoromethoxy, difluorochloromethoxy, trifluoroethoxy, in each case doubly attached difluoromethylenedioxy or tetrafluoroethylenedioxy, or the groupings —CH2Si(CH3)3, —Si(CH3)3 or —C(Q2)═N-Q3, in whichQ2 represents hydrogen, methyl, ethyl or trifluoromethyl andQ3 represents hydroxyl, methoxy, ethoxy, propoxy or isopropoxy.
  • 11. A compound according to claim 1, wherein Z represents Z2, wherein Z2 represents 2-pyridinyl, 3-pyridinyl or 4-pyridinyl, each of which is optionally mono- to trisubstituted by W2, andW2 represents hydrogen, fluorine, chlorine, bromine, cyano, nitro, methyl, ethyl, n- or isopropyl, n-, iso-, sec- or tert-butyl, allyl, propargyl, methoxy, ethoxy, n- or isopropoxy, n-, iso-, sec- or tert-butoxy, methylsulfanyl, ethysulfanyl, n- or isopropylsulfanyl, n-, iso-, sec- or tert-butylsulfanyl, methylsulfinyl, ethylsulfinyl, n- or isopropylsulfinyl, n-, iso-, sec- or tert-butylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or iso-propylsulfonyl, n-, iso-, sec- or tert-butylsulfonyl, cyclopropyl, cyclopentyl, cyclohexyl, trifluoromethyl, difluoromethyl, trichloromethyl, trifluoroethyl, trifluoromethoxy, difluoromethoxy, trichloromethoxy, difluoromethylsulfanyl, difluorochloromethylsulfanyl, trifluoromethylsulfanyl, trifluoromethylsulfinyl, trifluoromethylsulfonyl, —SO2NMe2, —C(═Y)R12, —Si(R13)3, —CH═CH—Si(R13)3, —CH2—CH═CH—Si(R13)3, —CH═CH—CH2—Si(R13)3, —C≡C—Si(R13)3, —CH2—C≡C—Si(R13)3, or —C≡C—CH2—,in which Y represents O (oxygen) or S (sulfur).
  • 12. A compound according to claim 1, wherein Z represents Z3, and Z3 represents C3-C7-cycloalkyl or C4-C10 bicycloalkyl having in each case 3 to 10 carbon atoms, each of which radicals is optionally mono- to tetrasubstituted by identical or different substituents from the group consisting of halogen, C1-C4-alkyl, —CH2Si(CH3)3 and —Si(CH3)3.
  • 13. A compound according to claim 12, wherein Z3 represents chlorine- and methyl-substituted cyclopropyl.
  • 14. A compound according to claim 1, wherein Z represents Z4 and Z4 represents unsubstituted C1-C20-alkyl or C1-C20-alkyl which is substituted by fluorine, chlorine, methylsulfanyl, ethylsulfanyl, n- or isopropylsulfanyl, n-, iso-, sec-, tert-butylsulfanyl, pentylsulfanyl, hexylsulfanyl, methylsulfonyl, ethylsulfonyl, n- or isopropylsulfonyl, n-, iso-, sec-, tert-butylsulfonyl, methoxy, ethoxy, n- or isopropoxy, n-, iso-, sec-, tert-butoxy, methylamino, ethylamino, n- or isopropylamino, n-, iso-, sec-, tert-butylamino, dimethylamino, diisopropylamino, trifluoromethylsulfanyl, trifluoromethoxy, —SiR6R7R8, cyclopropyl, dichlorocyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • 15. A compound according to claim 1, wherein Z represents Z5 and Z5 represents C2-C20-alkenyl or C2-C20-alkynyl, each of which is optionally substituted by fluorine, chlorine, bromine, iodine, C1-C6-alkylsulfanyl, C1-C4-alkylsulfinyl, C1-C4-alkylsulfonyl, C1-C4-alkoxy, C1-C4-alkylamino, di(C1-C4-alkyl)amino, C1-C4-halogenoalkylsulfanyl, C1-C4-halogenoalkylsulfinyl, C1-C4-halogenoalkylsulfonyl, C1-C4-halogenoalkoxy, C1-C4-halogenoalkylamino, di(C1-C4-halogenoalkyl)amino having in each case 1 to 9 fluorine, chlorine and/or bromine atoms, —SiR6R7R8, cyclopropyl, dichlorocyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • 16. A fungicide composition comprising, as an active ingredient, an effective amount of a compound according to claim 1, and an agriculturally acceptable support, carrier and/or filler.
  • 17. A method for controlling phytopathogenic fungi of crops, comprising applying an agronomically effective and substantially non-phytotoxic quantity of a compound according to claim 1, to soil where a plant grows and/or is capable of growing, to leaves and/or fruit of plants and/or to seeds of a plant.
  • 18. A method for controlling phytopathogenic fungi of crops, comprising applying a fungicide composition according to claim 16 to soil where a plant grows and/or is capable of growing, to leaves and/or fruit of a plant and/or to seeds of a plant.
  • 19. A compound according to claim 1, wherein T is oxygen.
  • 20. A compound according to claim 5, wherein M is M-1, M-2, or M-3, T is oxygen, n is zero, and R1 is methyl or ethyl.
Priority Claims (4)
Number Date Country Kind
10191269 Nov 2010 EP regional
10356031 Nov 2010 EP regional
10191761 Nov 2010 EP regional
11356008 Jun 2011 EP regional
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a §371 National Stage Application of PCT/EP2011/070036, filed Nov. 14, 2011, which claims priority to European Application No. 10191269.9; filed Nov. 15, 2010; European Application No. 10356031.4, filed Nov. 15, 2010; European Application No. 10191761.5, filed Nov. 18, 2010; U.S. Provisional Application No. 61/441,028, filed Feb. 9, 2011; and European Application No. 11356008.0, filed Jun. 9, 2011.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2011/070036 11/14/2011 WO 00 5/10/2013
Publishing Document Publishing Date Country Kind
WO2012/065944 5/24/2012 WO A
US Referenced Citations (175)
Number Name Date Kind
1794306 Liberge Feb 1931 A
4761373 Anderson et al. Aug 1988 A
5013659 Bedbrook et al. May 1991 A
5084082 Sebastian et al. Jan 1992 A
5141870 Bedbrook et al. Aug 1992 A
5198599 Thill et al. Mar 1993 A
5273894 Strauch et al. Dec 1993 A
5276268 Strauch et al. Jan 1994 A
5304732 Anderson Apr 1994 A
5331107 Anderson et al. Jul 1994 A
5378824 Bedbrook et al. Jan 1995 A
5434175 Babin et al. Jul 1995 A
5434283 Wong et al. Jul 1995 A
5561236 Leemans et al. Oct 1996 A
5605011 Bedbrook et al. Feb 1997 A
5637489 Strauch et al. Jun 1997 A
5646024 Leemans et al. Jul 1997 A
5648477 Leemans et al. Jul 1997 A
5712107 Nichols et al. Jan 1998 A
5731180 Dietrich et al. Mar 1998 A
5739082 Donn et al. Apr 1998 A
5767361 Dietrich et al. Jun 1998 A
5773702 Penner et al. Jun 1998 A
5776760 Barry et al. Jul 1998 A
5824790 Keeling et al. Oct 1998 A
5840946 Wong et al. Nov 1998 A
5908810 Donn et al. Jun 1999 A
5908975 Caimi et al. Jun 1999 A
5928937 Kakefuda et al. Jul 1999 A
5965755 Sernyk et al. Oct 1999 A
5969169 Fan et al. Oct 1999 A
6013861 Bird et al. Jan 2000 A
6040497 Spencer et al. Mar 2000 A
6063947 DeBonte et al. May 2000 A
6169190 Lanuza et al. Jan 2001 B1
6229072 Burns et al. May 2001 B1
6270828 DeBonte et al. Aug 2001 B1
6284479 Nichols et al. Sep 2001 B1
6323392 Charne et al. Nov 2001 B1
6566587 Lebrun et al. May 2003 B1
6570066 Willmitzer et al. May 2003 B1
6734341 Singletary et al. May 2004 B2
6768044 Boudec et al. Jul 2004 B1
7112665 Leemans et al. Sep 2006 B1
7157281 Dizigan et al. Jan 2007 B2
7435807 Barbour et al. Oct 2008 B1
7504561 Hammer et al. Mar 2009 B2
7659376 Hammer et al. Feb 2010 B2
7692068 Carozzi et al. Apr 2010 B2
7718850 Vancanneyt et al. May 2010 B2
7803925 Carozzi et al. Sep 2010 B2
7811598 Carozzi et al. Oct 2010 B2
7820708 Dunkel et al. Oct 2010 B2
7842853 Uwer et al. Nov 2010 B2
7932283 Schwarz et al. Apr 2011 B2
7960616 Heinrichs et al. Jun 2011 B2
8097775 Hammer et al. Jan 2012 B2
8113101 McCants, Jr. Feb 2012 B1
8147856 Carozzi et al. Apr 2012 B2
8173590 Carozzi et al. May 2012 B2
8226966 Desbordes et al. Jul 2012 B2
8309332 Peters et al. Nov 2012 B2
8314292 Carozzi et al. Nov 2012 B2
8334431 Sampson et al. Dec 2012 B2
8450562 De Block et al. May 2013 B2
8461421 Sampson et al. Jun 2013 B2
20020031826 Nichols et al. Mar 2002 A1
20030126634 Spencer et al. Jul 2003 A1
20040107461 Commuri et al. Jun 2004 A1
20040117870 Weyens Jun 2004 A1
20040148666 Rangwala et al. Jul 2004 A1
20040177399 Hammer et al. Sep 2004 A1
20040180373 Levine Sep 2004 A1
20040197916 Carozzi et al. Oct 2004 A1
20040210964 Carozzi et al. Oct 2004 A1
20040216186 Carozzi et al. Oct 2004 A1
20040250317 Huber et al. Dec 2004 A1
20050049410 Carozzi et al. Mar 2005 A1
20050208506 Zhao et al. Sep 2005 A1
20050257283 Matringe et al. Nov 2005 A1
20060010514 Birk et al. Jan 2006 A1
20060021094 Hammer et al. Jan 2006 A1
20060070139 Bing et al. Mar 2006 A1
20060095986 Cavato May 2006 A1
20060115545 Frohberg et al. Jun 2006 A1
20060130175 Ellis et al. Jun 2006 A1
20060150269 Hammer et al. Jul 2006 A1
20060150270 Hammer et al. Jul 2006 A1
20060150278 Frohberg et al. Jul 2006 A1
20060162007 Guo et al. Jul 2006 A1
20060230473 Johnson et al. Oct 2006 A1
20060242732 Carozzi et al. Oct 2006 A1
20060253921 Carozzi et al. Nov 2006 A1
20060253929 Frohberg Nov 2006 A1
20060282915 Malven et al. Dec 2006 A1
20070011777 Frohberg Jan 2007 A1
20070022496 Moor et al. Jan 2007 A1
20070056056 Behr et al. Mar 2007 A1
20070067868 Negrotto et al. Mar 2007 A1
20070071782 Deyn et al. Mar 2007 A1
20070136840 Peters et al. Jun 2007 A1
20070163003 Frohberg et al. Jul 2007 A1
20070169218 Carr et al. Jul 2007 A1
20070238646 Carozzi et al. Oct 2007 A1
20070289031 Koziel et al. Dec 2007 A1
20070289035 Vande Berg et al. Dec 2007 A1
20070294787 Carozzi et al. Dec 2007 A1
20070295251 Heinrichs Dec 2007 A1
20070300326 Peters et al. Dec 2007 A1
20080063678 Von Deyn et al. Mar 2008 A1
20080250533 Frohberg Oct 2008 A1
20080251225 Landschuetze et al. Oct 2008 A1
20080276336 Frohberg et al. Nov 2008 A1
20080289060 De Beuckeleer et al. Nov 2008 A1
20090013431 Van et al. Jan 2009 A1
20090018016 Duck et al. Jan 2009 A1
20090029860 Moffatt et al. Jan 2009 A1
20090036377 Carozzi et al. Feb 2009 A1
20090064372 Kok-Jacon et al. Mar 2009 A1
20090069317 Pohlman et al. Mar 2009 A1
20090099081 Carozzi et al. Apr 2009 A1
20090100543 Carozzi et al. Apr 2009 A1
20090105469 Soyka et al. Apr 2009 A1
20090123561 Gewehr et al. May 2009 A1
20090124498 Von Deyn May 2009 A1
20090126044 Carozzi et al. May 2009 A1
20090144852 Tomso et al. Jun 2009 A1
20090151016 Frohberg et al. Jun 2009 A1
20090151018 Hammer et al. Jun 2009 A1
20090151021 Bots et al. Jun 2009 A1
20090176844 Dunkel et al. Jul 2009 A1
20090193545 Watson Jul 2009 A1
20090199311 Frohberg et al. Aug 2009 A1
20090203075 Hammer et al. Aug 2009 A1
20090241219 Hammer et al. Sep 2009 A1
20090247551 Jeschke et al. Oct 2009 A1
20090270605 Soyka et al. Oct 2009 A1
20090300798 Kok-Jacon et al. Dec 2009 A1
20090313717 Hernandez et al. Dec 2009 A1
20090317535 Frohberg et al. Dec 2009 A1
20100034953 Frohberg et al. Feb 2010 A1
20100048646 Jeschke et al. Feb 2010 A1
20100056469 Langewald et al. Mar 2010 A1
20100235951 Van Rie et al. Sep 2010 A1
20100240705 Jeschke et al. Sep 2010 A1
20100256195 Fischer et al. Oct 2010 A1
20100292461 Hoehne et al. Nov 2010 A1
20100316786 Frohberg et al. Dec 2010 A1
20100317058 Frohberg et al. Dec 2010 A1
20100319081 Watson Dec 2010 A1
20110030106 Laga et al. Feb 2011 A1
20110039706 Busch et al. Feb 2011 A1
20110047646 Manzanero Feb 2011 A1
20110076345 Avila Mar 2011 A1
20110093970 Arioli et al. Apr 2011 A1
20110145944 Laga et al. Jun 2011 A1
20110190493 Bretschneider et al. Aug 2011 A1
20110212949 Bretschneider et al. Sep 2011 A1
20110236950 Schouten et al. Sep 2011 A1
20110262995 Peters et al. Oct 2011 A1
20110263488 Carozzi et al. Oct 2011 A1
20110269195 Frohberg et al. Nov 2011 A1
20110306499 Bretschneider et al. Dec 2011 A1
20120023603 Laga et al. Jan 2012 A1
20120117693 De Beuckeleer May 2012 A1
20120172224 Livore et al. Jul 2012 A1
20130059300 Trolinder et al. Mar 2013 A1
20130065761 Metzlaff et al. Mar 2013 A1
20130117894 Frohberg et al. May 2013 A1
20130123506 Jeschke et al. May 2013 A1
20130283482 De Block, et al. Oct 2013 A1
20130312138 Frohberg et al. Nov 2013 A1
20130312141 De Block et al. Nov 2013 A1
20130316348 Trolinder et al. Nov 2013 A1
20140026262 De Beuckeleer Jan 2014 A1
Foreign Referenced Citations (279)
Number Date Country
2561992 Mar 2007 CA
102057925 May 2011 CN
0539588 May 1993 EP
0633956 Jan 1995 EP
0719338 Jul 1996 EP
0728213 Aug 1996 EP
0571427 Aug 2003 EP
1559320 Mar 2005 EP
0837944 Mar 2006 EP
20060773017 Jun 2006 EP
1999141 Jan 2011 EP
1999263 Apr 2013 EP
2006304779 Nov 2006 JP
2010018586 Jan 2010 JP
8910396 Nov 1989 WO
9102069 Feb 1991 WO
9205251 Apr 1992 WO
93180170 Sep 1993 WO
9404693 Mar 1994 WO
9409144 Apr 1994 WO
9411520 May 1994 WO
9421795 Sep 1994 WO
9423043 Oct 1994 WO
9601904 Jan 1995 WO
9504826 Feb 1995 WO
9509910 Apr 1995 WO
9509911 Apr 1995 WO
9520669 Aug 1995 WO
9526407 Oct 1995 WO
9531553 Nov 1995 WO
9535026 Dec 1995 WO
9615248 May 1996 WO
9619581 Jun 1996 WO
9621023 Jul 1996 WO
9627674 Sep 1996 WO
9630517 Oct 1996 WO
9630529 Oct 1996 WO
9633270 Oct 1996 WO
9634968 Nov 1996 WO
9638567 Dec 1996 WO
9711188 Mar 1997 WO
9713865 Apr 1997 WO
9720936 Jun 1997 WO
9726362 Jun 1997 WO
9730163 Aug 1997 WO
9732985 Sep 1997 WO
9741218 Nov 1997 WO
9742328 Nov 1997 WO
9744472 Nov 1997 WO
9745545 Dec 1997 WO
9746080 Dec 1997 WO
9747806 Dec 1997 WO
9747807 Dec 1997 WO
9747808 Dec 1997 WO
9800549 Jan 1998 WO
9812335 Mar 1998 WO
9820145 May 1998 WO
9822604 May 1998 WO
9827212 Jun 1998 WO
9827806 Jul 1998 WO
9832326 Jul 1998 WO
9839460 Sep 1998 WO
9840503 Sep 1998 WO
9900502 Jan 1999 WO
9912950 Mar 1999 WO
9924585 May 1999 WO
9924586 May 1999 WO
9924593 May 1999 WO
9934008 Jul 1999 WO
9953072 Oct 1999 WO
9957965 Nov 1999 WO
9958654 Nov 1999 WO
9958688 Nov 1999 WO
9958690 Nov 1999 WO
9960141 Nov 1999 WO
9966050 Dec 1999 WO
0004173 Jan 2000 WO
0008175 Feb 2000 WO
0008184 Feb 2000 WO
0008185 Feb 2000 WO
0011192 Mar 2000 WO
0014249 Mar 2000 WO
0022140 Apr 2000 WO
0047727 Apr 2000 WO
0028052 May 2000 WO
0063432 Oct 2000 WO
0066746 Nov 2000 WO
0066747 Nov 2000 WO
0073422 Dec 2000 WO
0073475 Dec 2000 WO
0077229 Dec 2000 WO
0112782 Feb 2001 WO
0112826 Feb 2001 WO
0114569 Mar 2001 WO
0117333 Mar 2001 WO
0119975 Mar 2001 WO
0124615 Apr 2001 WO
0131042 May 2001 WO
0141558 Jun 2001 WO
0151627 Jul 2001 WO
0151654 Jul 2001 WO
0165922 Sep 2001 WO
0166704 Sep 2001 WO
0183818 Nov 2001 WO
0198509 Dec 2001 WO
0202776 Jan 2002 WO
0212172 Feb 2002 WO
0222836 Mar 2002 WO
0226995 Apr 2002 WO
0234923 May 2002 WO
0236782 May 2002 WO
0236787 May 2002 WO
0236831 May 2002 WO
0245485 Jun 2002 WO
0246387 Jun 2002 WO
02059086 Aug 2002 WO
02061043 Aug 2002 WO
02059086 Aug 2002 WO
02079410 Oct 2002 WO
02085105 Oct 2002 WO
02099385 Dec 2002 WO
02101059 Dec 2002 WO
02096882 Dec 2002 WO
03013226 Feb 2003 WO
03033540 Apr 2003 WO
03033651 Apr 2003 WO
03035617 May 2003 WO
03052073 Jun 2003 WO
03071860 Sep 2003 WO
03092360 Nov 2003 WO
03106457 Dec 2003 WO
2004014138 Feb 2004 WO
2004024928 Mar 2004 WO
2004040012 May 2004 WO
2004049786 Jun 2004 WO
2004053219 Jun 2004 WO
2004056999 Jul 2004 WO
2004058723 Jul 2004 WO
2004056179 Jul 2004 WO
2004072109 Aug 2004 WO
2004072235 Aug 2004 WO
2004074492 Sep 2004 WO
2004078983 Sep 2004 WO
2004090140 Oct 2004 WO
2004099160 Nov 2004 WO
2004101751 Nov 2004 WO
2004106529 Dec 2004 WO
2004113542 Dec 2004 WO
2005000007 Jan 2005 WO
2005002324 Jan 2005 WO
2005002359 Jan 2005 WO
2005003362 Jan 2005 WO
2005012515 Feb 2005 WO
2005012529 Feb 2005 WO
2005017157 Feb 2005 WO
2005020673 Mar 2005 WO
2005021585 Mar 2005 WO
2005030941 Apr 2005 WO
2005030942 Apr 2005 WO
2005033318 Apr 2005 WO
2005035486 Apr 2005 WO
2005042474 May 2005 WO
2005063094 Jul 2005 WO
2005077934 Aug 2005 WO
2005070917 Aug 2005 WO
2005085216 Sep 2005 WO
2005090578 Sep 2005 WO
2005093093 Oct 2005 WO
2005095617 Oct 2005 WO
2005095618 Oct 2005 WO
2005095619 Oct 2005 WO
2005095632 Oct 2005 WO
2005103266 Nov 2005 WO
2005103270 Nov 2005 WO
2005103301 Nov 2005 WO
2005123927 Dec 2005 WO
2006007373 Jan 2006 WO
2006009649 Jan 2006 WO
2006015376 Feb 2006 WO
2006018319 Feb 2006 WO
2006021972 Mar 2006 WO
2006024351 Mar 2006 WO
2006032538 Mar 2006 WO
2006038794 Apr 2006 WO
2006043635 Apr 2006 WO
2006045633 May 2006 WO
2006046861 May 2006 WO
2006055851 May 2006 WO
2006056433 Jun 2006 WO
2006060634 Jun 2006 WO
2006063862 Jun 2006 WO
2006072603 Jul 2006 WO
2006085966 Aug 2006 WO
2006089633 Aug 2006 WO
2006100288 Sep 2006 WO
2006103107 Oct 2006 WO
2006108674 Oct 2006 WO
2006108675 Oct 2006 WO
2006108702 Oct 2006 WO
2006125065 Nov 2006 WO
2006128568 Dec 2006 WO
2006128569 Dec 2006 WO
2006128570 Dec 2006 WO
2006128571 Dec 2006 WO
2006128572 Dec 2006 WO
2006128573 Dec 2006 WO
2006129204 Dec 2006 WO
2006133827 Dec 2006 WO
2006135717 Dec 2006 WO
2006136351 Dec 2006 WO
WO 2006131230 Dec 2006 WO
2007006806 Jan 2007 WO
2007009823 Jan 2007 WO
2007006806 Jan 2007 WO
2007014290 Feb 2007 WO
2007017186 Feb 2007 WO
2007024782 Mar 2007 WO
2007027777 Mar 2007 WO
2007035650 Mar 2007 WO
2007039314 Apr 2007 WO
2007039315 Apr 2007 WO
2007039316 Apr 2007 WO
2007040280 Apr 2007 WO
2007053015 May 2007 WO
2007057407 May 2007 WO
2007068373 Jun 2007 WO
2007073167 Jun 2007 WO
2007068373 Jun 2007 WO
2007074405 Jul 2007 WO
2007075459 Jul 2007 WO
2007076115 Jul 2007 WO
2007080126 Jul 2007 WO
2007080127 Jul 2007 WO
2007091277 Aug 2007 WO
2007092704 Aug 2007 WO
2007101369 Sep 2007 WO
2007103567 Sep 2007 WO
2007107302 Sep 2007 WO
2007107326 Sep 2007 WO
2007107326 Sep 2007 WO
2007115643 Oct 2007 WO
2007115644 Oct 2007 WO
2007115646 Oct 2007 WO
2007113327 Oct 2007 WO
2007149134 Dec 2007 WO
2008002480 Jan 2008 WO
2008009360 Jan 2008 WO
2008013622 Jan 2008 WO
2008054747 May 2008 WO
2008056915 May 2008 WO
2008066153 Jun 2008 WO
2008067043 Jun 2008 WO
2008067911 Jun 2008 WO
2008095972 Aug 2008 WO
2008104503 Sep 2008 WO
2008112019 Sep 2008 WO
2008114282 Sep 2008 WO
2008122406 Oct 2008 WO
2008139334 Nov 2008 WO
2008148570 Dec 2008 WO
2008150473 Dec 2008 WO
2009007091 Jan 2009 WO
2009016221 Feb 2009 WO
2009049110 Apr 2009 WO
2009049851 Apr 2009 WO
2009068313 Jun 2009 WO
2009094442 Jul 2009 WO
2009111263 Sep 2009 WO
2009144079 Dec 2009 WO
2009143995 Dec 2009 WO
2010005692 Jan 2010 WO
2010006713 Jan 2010 WO
2010006732 Jan 2010 WO
2010019838 Feb 2010 WO
2010025451 Mar 2010 WO
2010049233 May 2010 WO
2010069502 Jun 2010 WO
2010074747 Jul 2010 WO
2010074751 Jul 2010 WO
Non-Patent Literature Citations (15)
Entry
Patani et al. (Chem. Rev. 1996, 3147-3176).
Schnepf et al. “Characterization of CRY34/CRY35 Binary Insecticidal Proteins From Diverse Bacillus Thuringiensis Strain Collections”, Applied and Environmental Microbiology, Apr. 2005, vol. 71, No. 4, p. 1765-1774.
Barry et al. “Inhibitors of Amino Acid Biosynthesis: Strategies for Imparting Glyphosate Tolerance to Crop Plants”, “Current Topics in Plant Physiology”, (1992) vol. 7, p. 139-145.
Gasser et al. “Structure, Expression, and Evolution of the 5-Enolpyruvylshikimate-3-Phosphate Synthase Genes of Petunia and Tomato”, The Journal of Bio. Chem., vol. 263, No. 9, Mar. 1988, pp. 4280-4289.
Ley et al. “A Polymer-Supported Thionating Reagent”, J. Chem. Soc., Perkin Trans., vol. 1 (2001), pp. 358-361.
Moellenbeck et al. “Insecticidal Proteins From Bacillus Thuringiensis Protect Corn From Corn Rootworms”, Nature Biotechnology, vol. 19, Jul. 2001, pp. 668.
“An Altered Aroa Gene Product Confers Resistance to the Herbicide Glyphosate”, Science, vol. 221, Jul. 22, 1983, pp. 370-371.
Shah et al. “Engineering Herbicide Tolerance in Transgenic Plants”, Science, vol. 233, Jul. 25, 1986, pp. 478-481.
Tranel et al. “Resistance of Weeds to ALS-Inhibiting Herbicides:What Have We Learned?”, Weed Science, vol. 50 (2002), pp. 700-712.
E-Mail From Stefan Hillebrand Dated Jul. 7, 2013, http://gmoinfo.jrc.ec.europa.eu.
E-Mail From Joerg Greul, http://www.aphis.usda/gov/biotechnology/brs—main.shtml.
“Biotechnology Regulatory Services”, USDA, http://www.aphis.usda.gov/biotechnology/brs—main.shtml.
“The VIP Nomenclature”, http://www.lifesci.sussex.ac.uk/home/neil—crickmore/bt/vip.html, VIP Proteins, Jul. 23, 2013.
Europen Search Report of EP 10 35 6031 Dated Mar. 1, 2011.
International Search Report for PCT/EP2011/070036 Mailed Feb. 1, 2012.
Related Publications (1)
Number Date Country
20130237500 A1 Sep 2013 US
Provisional Applications (1)
Number Date Country
61441028 Feb 2011 US