The present invention relates to nuclear physics, neutron generation, neutron interactions with matter, scintillation properties of III-V solid-state compounds, and radioactivity. More particularly, the present invention relates to use of gallium nitride (GaN) for detection of ionizing radiation.
In physics parlance the term “scintillation” generally refers to production of light by an object when it absorbs ionizing radiation. A “scintillator” is a material that is characterized by scintillation. A scintillator “scintillates” (e.g., luminesces) when it is excited by ionizing radiation; that is, a scintillator material re-emits absorbed energy in the form of light.
Various types of scintillators have been known for detecting ionizing radiation. For instance, successful attempts have been reported using cerium-doped cesium lithium yttrium hexa-chloride (CLYC) for radiation detection. However, the dynamic ranges of the CLYC detectors are limited and complicated due to the capture cross-section behavior of the 35C1.
Some scintillators are disclosed in the literature that contain a high content of hydrogen atoms. Scintillators of this kind include liquid scintillators, scintillators dissolved in a hydrogenic solvent, and scintillators incorporated in a polymerized hydrocarbon. Coating of polymeric material has been performed onto the front face of a scintillator (typically, an inorganic one), and onto self-contained organic crystals (i.e. anthracene, stilbene). Drawbacks of such approaches involving high hydrogen atom content are relatively low radiative efficiency as well as self-absorption of emitted light.
According to exemplary practice of the present invention, an n-Type Gallium Nitride (GaN) scintillator is used as a fast-neutron detector. As exemplarily embodied, an inventive device includes an n-type GaN based neutron detector utilizing scintillation properties of GaN coupled with appropriate optical sensing electronics and signal processing hardware.
An exemplary embodiment of the present invention performs as a solid-state, compact, fast neutron spectrometer. An exemplary inventive apparatus is capable of detecting fast neutrons and providing spectroscopic information on the neutron source, while being insensitive to other radiations (e.g., gamma). Furthermore, an exemplary inventive apparatus is capable of being used in a multitude of environments, ranging from controlled laboratory environments to external, challenging physical environments.
With the largest band gap energy of all commercial semiconductors, GaN has found wide application in the making of optoelectronic devices. It has also been used for photodetection such as solar blind imaging as well as ultraviolet and even X-ray detection. People in the physics, astronomy, and nuclear science and engineering communities have traditionally used semiconductors for nuclear particle detection, but their attention may be beginning to turn toward other materials.
The present inventors appreciate several advantages of GaN over silicon (Si), amorphous silicon (a-Si:H), silicon carbide (SiC), amorphous SiC (a-SiC), and gallium arsenide (GaAs), particularly with respect to the radiation hardness of GaN. The present inventors infer the possible usefulness of GaN for alpha detection. It is believed by the present inventors that when properly doped or coated with neutron sensitive materials, GaN can be turned into a neutron detection device. However, the use of the scintillation signals produced from fast neutron scattering on the relatively light mass, 14N nuclide has not previously been explored.
N-type GaN has been demonstrated to be useful for detection under limited circumstances, i.e., in a detector for thermal neutrons when the n-type GaN is connected to a covering layer that contains the nuclide 6Li. The lithium-6 nucleus will interact with slow neutrons to a large degree, with the production of alpha particles having energies in the vicinity of 4.3 MeV. When those energetic alpha particles interact with the GaN material, it will cause either scintillation that can be recorded using a photomultiplier tube (PMT), or a voltage if the GaN is configured to act as a diode. Prior to the present invention, it was believed that GaN was not sensitive to fast neutrons and would not produce a significant amount of scintillation based on the possible neutron interactions that either or both of Ga nuclei and N nuclei could undergo.
However, in contradistinction to conventional wisdom, the present inventors have demonstrated that the recoil Ga and N ions are sufficiently energetic that the light output from the crystal can be used to identify the energy of incident neutrons and give spectroscopic information related to the source of fast neutrons. That has been demonstrated experimentally by the present inventors by irradiating a n-type GaN wafer attached to a PMT and measuring the response of the GaN crystal to incident fast neutrons of varying energies which were produced using a 3 MV tandem accelerator located at the U.S. Navy's NSWCCD West Bethesda site. The present inventors' investigation of n-type GaN as a semiconductor scintillator for use in a radiation detection system has involved, inter alia, mapping of response functions of an n-type GaN detector crystal over a range of photon and neutron energies, and measurement of light generation in the n-type GaN detector crystal due to proton, alpha, and nitrogen projectiles.
Exemplary inventive practice implements n-type GaN as a gamma-insensitive fast-neutron detector, based on properties of n-type GaN including those relating to direct band-gap, light propagation, and response to ionizing radiation. The present inventors have demonstrated for the first time that fast recoil Ga and N ions can be produced via neutron elastic scattering, and that fast neutron spectrums related to the energies and intensities of various neutron beams can be obtained for energy and flux determinations and in characterizing fast neutron sources.
The present invention may be efficaciously practiced in many applications, such as nuclear physics studies, monitoring of nuclear reactors and materials, and radiation health physics. Medical areas, personnel, and treatment may be inventively monitored for neutron radiation. Under some conditions of medical therapy, inventive practice may detect fast neutrons that are emitted as by-products of beams incident upon patients and surroundings.
Incorporated herein by reference is a one-page abstract submitted by the present inventors, as follows: Noel A. Guardala, Johnathan D. Wensman, and Veerendra K. Mathur, “The Development of a n-type GaN Fast Neutron Spectrometer that is also ‘Gamma-Blind’,” Bulletin of the American Physical Society, 2016 Annual Meeting of the APS Mid-Atlantic Section, Volume 61, Number 16, Saturday-Sunday, 15-16 Oct. 2016, Newark, Del. (abstract submitted 12 Oct. 2016).
Also incorporated herein by reference is a one-page abstract submitted by the present inventors and others, as follows: Johnathan D. Wensman, Noel A. Guardala, Veerendra K. Mathur, et al., “Use of GaN as a Scintillating Ionizing Radiation Detector,” Bulletin of the American Physical Society, 2017 Fall Meeting of the APS Division of Nuclear Physics, Wednesday-Saturday, 25-28 Oct. 2017, Pittsburgh, Pa. (abstract submitted 27 Jun. 2017).
The present invention will now be described, by way of example, with reference to the accompanying drawings, wherein:
Referring now to
As shown in
During exemplary operation of inventive apparatus, incident neutrons undergo elastic scattering with nitrogen ions (N-ions) in the GaN crystal 100. The scattered N-ions then produce a scintillation signal, which is observed and measured by the PMT 200 and the processing electronics 300.
According to an inventive prototype, GaN wafer 100 was a 250-micron thick n-type GaN wafer with a diameter of 1 inch, obtained from and manufactured by KYMA Technologies, Inc., 8829 Midway West Road, Raleigh, N.C. 27617. Photomultiplier 200 was a Hamamatsu R329-02 PMT, manufactured by Hamamatsu Photonics K.K. Data acquisition system 300 was a standard PC-based data acquisition system, including a computer 301. Data acquisition system 300 may also include a multichannel analyzer 302 or other electronic component for analyzing signals (e.g., counting pulses) received from PMT 200, wherein computer 301 processes data received from multichannel analyzer 302.
The present inventors believe that, in a mixed neutron-gamma field, an exemplary inventive neutron detector can detect neutrons without interference from gammas. Further, the present inventors believe that the degree of “gamma blindness” of an inventive apparatus may be associated with the thickness of the n-type GaN wafer. According to many exemplary inventive embodiments, an inventively implemented n-type GaN wafer is so thin that a gamma peak will not “show up” or appreciably manifest in a spectrum. According to exemplary inventive practice, the n-type GaN wafer is characterized by a thickness of less than or equal to approximately 600 microns. According to frequent inventive practice, the thickness of the n-type GaN wafer is in the range of greater than zero microns and less than or equal to approximately 300 microns. The terms “micron” and “micrometer” and the symbol “μm” are used interchangeably herein.
A fast neutron spectrum representative of inventive practice is shown in
Another representative spectrum produced by the present invention's exemplary GaN detector 12 is shown in
In another inventive experiment conducted at the Navy tandem accelerator, a tungsten cover with a thickness of 0.96 cm for the GaN spectrometer was placed for an irradiation using the same neutron producing conditions as
Supplementary data was collected through inventive practice at zero degrees relative to the neutron emission axis of a Thermo, Inc.@ D-D neutron generator at a Navy facility. Neutrons emitted on the zero-degree axis have a maximum energy of 2.2 MeV, with a spectrum produced by the GaN system during irradiation shown in
A spectrum was also collected through inventive practice at a Navy facility using a broad spectrum americium-beryllium (AmBe) fast neutron source 45, which emits approximately 1.44×105 neutrons per second, for 7,165 seconds. The spectrum is shown in
In addition, at a Navy facility the inventive GaN detector was irradiated with a Thermo, Inc.@ D-T fast neutron generator, which has a maximum fast neutron energy of approximately 14.7 MeV. During irradiation, poly shielding was placed between the generator and detector assembly to reduce the incident flux of neutrons, thereby reducing dead-time in the detector. A representative spectrum is shown in
An exemplary neutron detection system in accordance with the present invention affords a number of advantages, including the following: First, an exemplary inventive detector is insensitive to gamma rays and thermal neutrons. Second, an exemplary inventive detector is compact and easily handled in all counting situations, either in the laboratory or in field/on-site operations, including inside a nuclear power plant or Navy vessel. Third, an exemplary inventive detector is relatively inexpensive and can implement commercial-off-the-shelf-based (COTS-based) components in its entirety. Fourth, the relevant fast-neutron data is acquired in real time without any extensive data analysis. Extensive data analysis is not required according to exemplary inventive practice because the inventive system is insensitive to other radiations. In contrast to exemplary inventive practice, extensive data analysis is required for conventional practice because the conventional system is not insensitive to other radiations, thus requiring a pulse shape discrimination timing system. Fifth, the obtaining of data through exemplary inventive practice is easily compatible with all or nearly all PC-based data acquisition systems.
Scintillators are potentially valuable for implementation in methodologies for area monitoring of nuclear objects and facilities. The present inventors have considered alternative methodologies—for instance, methodologies that are based on liquid, plastic, organic compounds and non-III-V solid-state scintillators. Generally, these alternative approaches considered by the present inventors are very expensive and do not lend themselves to implementation as COTS-based systems such as may be used by DOD or other government agencies, either as a research tool or as a field-deployable instrumental system. Some of the alternative methods considered by the present inventors may involve the use of costly and complex materials.
The present invention, which is disclosed herein, is not to be limited by the embodiments described or illustrated herein, which are given by way of example and not of limitation. Other embodiments of the present invention will be apparent to those skilled in the art from a consideration of the instant disclosure, or from practice of the present invention. Various omissions, modifications, and changes to the principles disclosed herein may be made by one skilled in the art without departing from the true scope and spirit of the present invention, which is indicated by the following claims.
This application claims the benefit of U.S. provisional application No. 62/570,327, filed 10 Oct. 2017, hereby incorporated herein by reference, entitled “N-Type Gallium Nitride Scintillation for Fast-Neutron Detection,” joint inventors Noel A. Guardala, Veerendra K. Mathur, and Johnathan D. Wensman.
The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without payment of any royalties thereon or therefor.
Number | Name | Date | Kind |
---|---|---|---|
5087815 | Schultz et al. | Feb 1992 | A |
5940460 | Seidel | Aug 1999 | A |
5969359 | Ruddy | Oct 1999 | A |
7053375 | Ando | May 2006 | B2 |
7727874 | Hanser et al. | Jun 2010 | B2 |
8648314 | Popov | Feb 2014 | B1 |
8853637 | Marcus | Oct 2014 | B2 |
8860161 | Dowben et al. | Oct 2014 | B2 |
9671507 | Bensaoula | Jun 2017 | B2 |
9864077 | Sellinger et al. | Jan 2018 | B2 |
20020067789 | Wallace | Jun 2002 | A1 |
20030062486 | Shimizu | Apr 2003 | A1 |
20030134493 | Cho | Jul 2003 | A1 |
20040256566 | Gardner | Dec 2004 | A1 |
20050258372 | McGregor | Nov 2005 | A1 |
20060255282 | Nikolic | Nov 2006 | A1 |
20090302231 | McGregor | Dec 2009 | A1 |
20100223010 | Nikitin | Sep 2010 | A1 |
20100304204 | Routkevitch | Dec 2010 | A1 |
20110095193 | Orava | Apr 2011 | A1 |
20110095194 | Orava | Apr 2011 | A1 |
20110233420 | Feller | Sep 2011 | A1 |
20110266448 | Burgett | Nov 2011 | A1 |
20120051378 | Kar | Mar 2012 | A1 |
20130344636 | Bellinger | Dec 2013 | A1 |
20150053863 | Cao | Feb 2015 | A1 |
20150115164 | Feller | Apr 2015 | A1 |
20170139060 | Dahal | May 2017 | A1 |
20180024256 | Gendotti | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
2015148544 | Oct 2015 | WO |
Entry |
---|
Andrew G. Melton, “GaN-Based Neutron Scintillators with a LiF Conversion Layer”, Feb. 13, 2012, MRS Proceedings, vol. 1396 (Year: 2012). |
Jinghui Wang, “Review of using gallium nitride for ionizing radiation detection”, Sep. 3, 2015, Applied Physics Reviews 2,031102, p. 1-12. (Year: 2015). |
Johnathan Wensman, “Neutron spectroscopy using III-IV semiconductor scintillators”, May 22, 2015, CBRNE sensing XVI, 945502, p. 1-7 (Year: 2015). |
U.S. Appl. No. 62/570,327, filed Oct. 10, 2017, entitled “N-Type Gallium Nitride Scintillation for Fast-Neutron Detection,” inventors Noel A. Guardala, Veerendra K. Mathur, and Johnathan D. Wensman, Navy Case No. 104,902. |
Johnathan D. Wensman, Noel A. Guardala, Veerendra K. Mathur, John F. Currie, “Neutron Spectroscopy Using III-V Semiconductor Scintillators,” SPIE Defense, Security, and Sensing (DSS) 2015, SPIE Defense and Security Symposium (Apr. 20-14, 2015), Baltimore, Maryland, Proc. SPIE 9455, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVI, 945502 (May 22, 2015). |
Johnathan Wensman, “The Use of Gallium Nitride as a Scintillator in a Fast Neutron Spectrometer,” A Dissertation submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment for the degree of Doctor of Philosophy in Physics, dated Apr. 12, 2019. |
U.S. Appl. No. 16/503,095, filed Jul. 3, 2019, entitled “Luminescence-Based Method for Precise Delivery of Ion Beam Therapy,” inventors Ross S. Fontenot et al., Navy Case No. 105,643. |
Andrew Melton, Eric Burgett, Muhammad Jamil, Tahir Zaidi, Nolan Hertel, Ian Ferguson, “GaN as a Neutron Detection Material,” Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon), Mar. 18-21, 2010, Concord, NC, pp. 402-403. |
Andrew G. Melton et al., “Comparison of Neutron Conversion Layers for GaN-based Scintillators,” Phys. Status Solidi C 9, No. 3-4, published online Dec. 9, 2011, Wiley Online Library. |
Praneeth Kandlakunta, “Gamma Rays Rejection in a Gadolinium based Semiconductor Neutron Detector,” Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University, 2014. |
Jinghui Wang et al., “Review of Using Gallium Nitride for Ionizing Radiation Detection,” Applied Physics Reviews 2, 031102 (2015). |
Lei R. Cao et al., “Gadolinium-Based GaN for Neutron Detection with Gamma Discrimination,” technical report, prepared by the Ohio State University, Defense Threat Reduction Agency, DTRA-TR-16-55, Jun. 2016. |
Number | Date | Country | |
---|---|---|---|
62570327 | Oct 2017 | US |