Organic semiconductors based on molecular and polymeric materials have become a major part of the electronics industry in the last 25 years as a complement to the shortcomings of inorganic semiconductors. Most notably, organic semiconductors offer, with respect to current inorganic-based technology, greater ease in substrate compatibility, device processability, flexibility, large area coverage, and reduced cost; as well as facile tuning of the frontier molecular orbital energies by molecular design. A key device used in the electronic industry is the field-effect transistor (FET) based on inorganic electrodes, insulators, and semiconductors. FETs based on organic semiconductors (OFET) may find niche applications in low-performance memory elements as well as integrated optoelectronic devices, such as pixel drive and switching elements in active-matrix organic light-emitting diode (LED) displays.
The thin-film transistor (TFT), in which a thin film of the organic semiconductor is deposited on top of a dielectric with an underlying gate (G) electrode, is the simplest and most common semiconductor device configuration. Charge-injecting drain-source (D-S) electrodes providing the contacts are defined either on top of the organic film (top-configuration) or on the surface of the FET substrate prior to the deposition of the semiconductor (bottom-configuration). The current between S and D electrodes is low when no voltage is applied between G and D electrodes, and the device is in the so called ‘off’ state. When a voltage is applied to the gate, charges can be induced into the semiconductor at the interface with the dielectric layer. As a result, the DS current increases due to the increased number of charge carriers, and this is called the ‘on’ state of a transistor. The key parameters in characterizing a FET are the field-effect mobility (μ) which quantifies the average charge carrier drift velocity per unit electric field and the on/off ratio (Ion:Ioff) defined as the D-S current ratio between the ‘on’ and ‘off’ states. For a high performance OFET, the field-effect mobility and on/off ratio should both be as high as possible.
Most of the OFETs operate in p-type accumulation mode, meaning that the semiconductor acts as a hole-transporting material. However, for the full development of the field of organic semiconductors, high-performing electron-transporting (n-type) materials are needed as well. For most practical applications, the mobility of the field-induced charges should, optimally, be >0.1-1 cm2/Vs. To achieve high performance, the organic semiconductors should also meet or approach certain criteria relating to both the injection and current-carrying phenomena, in particular: (i) HOMO/LUMO energies of individual molecules (perturbed by their placement in a crystalline solid) at levels where holes/electrons may be added at accessible applied voltages, (ii) a crystal structure of the material with sufficient overlap of the frontier orbitals (m stacking and edge-to-face contacts) for charge migration among neighboring molecules, (iii) a compound with minimal impurities as charge carrier traps, (iv) molecules (in particular the conjugated core axes) preferentially oriented with their long axes close to the FET substrate normal, as efficient charge transport occurs along the direction of intermolecular π-π stacking, and (v) uniform coverage of the crystalline semiconductor domains between source and drain contacts, preferably with a film having preferably with a film exhibiting a single crystal-like morphology.
Among n-type organic semiconductors used in OFETs, the class of arene core diimides is one of the most investigated. The first report on a diimide-based FET was on a series of naphthalene tetracarboxylic diimides, followed by reports of perylene tetracarboxylic diimides. Over the years, chemical modification and tailoring of the imide position has resulted in the production and testing of a library of diimide-based materials. However, such compounds have been found generally to be unstable in air and have solubility characteristics less than satisfactory for efficient device fabrication.
In light of the foregoing, it is an object of the present invention to provide n-type semiconductor compounds and/or devices and related methods for their use, thereby overcoming various deficiencies and shortcomings of the prior art, including those outlined above. It will be understood by those skilled in the art that one or more aspects of this invention can meet certain objectives, while one or more other aspects can meet certain other objectives. Each objective may not apply or apply equally, in all its respects, to every aspect of this invention. As such, the following objects can be viewed in the alternative with respect to any one aspect of this invention.
It is an object of this invention to provide one or more of the present polycyclic aromatic mono- and/or diimide compounds core-substituted with one or more electron-withdrawing moieties or groups, and/or the radical anions electrochemically generated therefrom.
It is another object of the present invention, in conjunction with the preceding, to provide such compounds with a range of available electron withdrawing N-substituted moieties, groups and/or substituents.
It is another object of this invention to incorporate any one or more of the present compounds into a range of device structures including but not limited to organic light-emitting diodes, field-effect transistors, and photovoltaic devices.
It is another object of the present invention to use compounds of the type described herein to enhance oxidative stability and/or lower reduction potential(s) of such compounds, as compared to un-substituted polycyclic compounds of the prior art.
Other objects, features, benefits and advantages of the present invention will be apparent from this summary and descriptions of various embodiments, and will be readily apparent to those skilled in the art having knowledge of n-type semiconductor materials, related device structures, and use thereof. Such objects, features, benefits and advantages will be apparent from the above as taken into conjunction with the accompanying examples, data, figures and all reasonable inferences to be drawn therefrom, alone or with consideration of the references incorporated herein.
This invention relates to mono- and diimide perylene and naphthalene compounds functionalized at core and imide positions with varying moieties for improved solubility and radical anion stability, while maintaining strong π-π interactions. The choice of moiety or functional group can vary as described herein but can take into consideration three factors: 1) electron-withdrawing capability, 2) capability of attachment to the π-conjugated core, and/or 3) potential for increased solubility of the compound for solution processing. Such compounds and related methods can be employed to enhance associated device (e.g., OFET) performance.
As described below, electronegative or electron-withdrawing functionalities, such as cyano substituents and fluorinated moieties, when substituted (e.g., N- or core substituted) on highly conjugated naphthalene or perylene structures are shown to improve electron injection-presumably, but without limitation, by facilitating formation of charge carriers in the form of radical anions. To illustrate such effects, a representative series of cyano-substituted perylene imides—with low reduction potentials, high solubility, and interesting optical characteristics—was synthesized. In particular, such core functionalized perylene diimide derivatives demonstrate large chemical/thermal stability and strong π-π intermolecular interactions. Accordingly, these compounds and others of the sort described herein can be used in the fabrication of OFETs and related device structures.
Without limitation as to any one device structure or end-use application, the present invention can relate to n-type semiconductor compounds of a formula selected from
wherein each of R1-R8, R11, and R12 can be independently selected from H, an electron-withdrawing substituent and a moiety comprising such a substituent. Electron-withdrawing substituents include but are not limited to nitro, cyano, quaternary amino, sulfo, carbonyl, substituted carbonyl and carboxy substituents. Associated moieties can be but are not limited to alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, polycyclic aryl and substituted polycyclic aryl moieties. Without limitation, such moieties and associated electron-withdrawing substituents can be selected from CnF2n+1, CnH2F2n−1 and C(O)R (e.g., R═H, alkyl, CnF2n+1 or CnH2F2n−1) groups—as would be understood by those skilled in the art and made aware of this invention. At least one of R1-R8, R11, and R12 is selected from one of such substituents and/or associated moieties. R9 and R10 are independently selected from H, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, polycyclic aryl and substituted polycyclic aryl moieties. Any such moiety can comprise one or more of the aforementioned electron-withdrawing substituents. For example, without limitation, certain substituted alkyl moieties can include CnH2n+1, CnF2n+1, CnH2F2n−1 and the like. Further, one or more methylene (—CH2—) or methene (—CH═) components of any such alkyl or aryl moiety can be substituted with a heteroatom (e.g., O or N) to provide the corresponding substituted moiety (e.g., ether, amine, polyether, polyamine and corresponding heteroaromatic moieties).
In certain other embodiments, at least one of R1, R4, R5, R8, R11, and R12 can be either an electron-withdrawing substituent or a moiety comprising such a substituent. In certain other embodiments, such electron-withdrawing substituents can be selected from fluorine and substituents having a Hammett σ+ value≧0.3. Without limitation, at least one of R1, R4, R5, R8, R11, and R12 can be a cyano substituent. In certain other embodiments, as discussed more fully below, such cyanated compounds can be di- or tetra-substituted, as shown in the following representative structures.
Regardless of core substitution, in certain embodiments, at least one of R9 and R10 can be selected, optionally, fluoro-substituted, regardless of any particular pattern or degree or core substitution.
Likewise, without regard to any particular end-use application, this invention can be directed to composites of the type incorporated into a range of device structures. Such a composite can comprise a suitable substrate; and a semiconductor component, with or without the presence of any additional functional layer, film or component therebetween. Such a semiconductor component can comprise a compound of a formula selected from
such compounds N- and core-substituted, as described above. In certain embodiments, such a composite can be incorporated into an OFET or another device structure. Regardless, core substitution can be used to enhance oxidative stability and/or to lower the reduction potential(s) of such a compound, as compared to unsubstituted perylene compounds of the prior art, and improve device performance.
In part, the present invention can also be directed to n-type semiconductor compounds of a formula selected from
wherein R1-R4, R11, and R12 are independently selected from H and a cyano substituent, such that the compound is dicyano-substituted. R9 and R10 can be independently selected from H and moieties of the type described above in conjunction with various representative perylene compounds, such moieties as can be further substituted with one or more electron-withdrawing substituents of the sort described herein. Such compounds can be used as illustrated below for enhanced oxidative stability and/or to lower the reduction potential of such compounds as compared to unsubstituted naphthalene.
With respect to compounds, composites and/or methods of this invention, the compounds can suitably comprise, consist of, or consist essentially of any one or more of the aforementioned substituents and/or moieties. Each such compound or moiety/substituent thereof is compositionally distinguishable, characteristically contrasted and can be practiced in conjunction with the present invention separate and apart from one another. Accordingly, it should also be understood that the inventive compounds, composites and/or methods, as illustrated herein, can be practiced or utilized in the absence of any one particular compound, moiety and/or substituent—such compound, moiety and/or substituent which may or may not be specifically disclosed or referenced, the absence of which may not be specifically disclosed or referenced.
Various features and benefits of this invention can be illustrated through the preparation and characterization of certain non-limiting n-type semiconductor compounds, such as the following mono-cyano (CN) di-cyano (CN2) and tri-cyano (CN3) mono-imide (MI) and diimide (DI) perylene compounds. Such compounds and their electrochemically-generated radical anions are shown to serve as stable, photochemical oxidants in a range of novel photonic and electronic films, materials and related device structures.
The immediate precursors to such cyanoperylenes are the corresponding bromo derivatives: N,N-dicyclohexyl-1,7-dibromoperylene-3,4:9,10-bis(dicarboximide), N-(2,5-tent-butylphenyl)-9-bromoperylene-3,4-dicarboximide, and N-(2,5-tert-butylphenyl)-1,6,9-tribromoperylene-3,4-dicarboximide, which are readily synthesized in high yields by direct bromination of the parent hydrocarbons. Classical cyanation procedures using CuCN in refluxing DMF failed to produce the desired cyano compounds. In all three cases this procedure resulted in significant yields of debrominated products. Recently, Zn(CN)2 or CuCN in the presence of a Pd(0) catalyst has been used to
aButyronitrile + 0.1 M Bu4NClO4.
bButyronitrile + 0.1 M Bu4NPF6. Electrochemical potentials vs SCE absorption spectroscopy, even when they are in the presence of other perylene derivatives.
convert bromoarenes into cyanoarenes in excellent yields. The Zn(CN)2 method was used to quantitatively convert all three bromoperylene derivatives to the corresponding cyano compounds, as described in the following examples.
The ground-state absorption and emission spectra of the neutral molecules in toluene are shown in
Cyclic voltammetry on the cyanated derivatives shows that the one-electron reduction potentials (E−1/2 and E2−1/2) of each molecule are more positive than those of the unsubstituted analogues (PMI: E−1/2=−0.96, E2−1/2=−1.55 V; PDI: E−1/2=−0.43 V, E2−1/2=−0.70 V, all vs SCE)13 (Table 1). CN2PDI and CN3PMI show exceptionally large positive shifts in redox potential. Spectroelectrochemical measurements yield the electronic absorption spectra of the radical anions of CNPMI, CN3—PMI, and CN2PDI and the dianion of CN2PDI.
The electronic absorption spectra of CNPMI•− and CN3PMI•− in butyronitrile (
Under the synthetic preparation described, CN2PDI (or, alternatively, designated PDI-CN2, below) appears to be an approximately 50/50 mixture of tCN2PDI and cCN2PDI as shown by NMR. (
To demonstrate the effectiveness of CN2PDI as a strong oxidant, the spectrum of this compound was monitored in the presence of an oxidizable species. For example, a 10−5 M solution of CN2PDI in dry DMF shows an absorption feature at 691 nm, indicating that about 15% of CN2PDI is converted to CN2PDI•− under ambient oxygenated conditions. Bubbling dry N2 through the solution for 15 min produces a dramatic increase in the intensity of the CN2PDI•− spectrum, indicating about 60% conversion to the radical anion. Since DMF typically contains a small amount of N,N-dimethylamine due to decomposition, it is possible that CN2PDI oxidizes the amine. The aminium radical cation decomposes rapidly, yielding a proton, which is the counterion for the stable CN2PDI•−. This same effect can be observed in toluene, which is not oxidized by CN2PDI, by adding a small amount of triethylamine to the toluene solution. While the first reduction potential of CN2PDI is very similar to the well-known oxidant, chloranil (E[A/A−]=0.02 V vs SCE), the radical anion and dianion of CN2PDI, unlike the reduced chloranil species, are excellent chromophores themselves and are not susceptible to decomposition through irreversible protonation reactions. Moreover, both CN2PDI and CN3PMI are significantly easier to reduce than C60 (E[A/A−]=−0.38 V vs SCE), which is a typical electron acceptor in organic materials.
The film-forming properties of CN2PDI were examined by X-ray diffraction, AFM, and SEM. (See,
A top-contact configuration was used to fabricate field effect transistor devices. The semiconductor mixture was vacuum-deposited on top of HMDS-treated Si/SiO2 substrates kept at the temperature (TD) of 25 and 90° C. The electrical measurements were performed under vacuum (˜10−4 Torr), N2(g), and in ambient atmosphere. The FET devices of this invention were fabricated as provided above and further described in U.S. Pat. No. 6,608,323, in particular Example 16 and
(IDS)sat=(WCi/2L)μ(VG−Vt)2 (1)
where L and W are the device channel length and width, respectively, Ci is the capacitance of the insulator (1×10−8 F/cm2 for 300 nm SiO2). The mobility (μ) and the threshold voltage (Vt) can be calculated from the slope and intercept, respectively, of the linear section of the plot of VG versus (Isd)1/2 (at Vsd=−100 V). From these data n-type mobilities approaching 0.1 cm2/Vs, current on/off ratio of 105, and Vt of ˜14 V were obtained in vacuum and N2 atmospheres. Upon operation in air, mobilities of 0.05 cm2/Vs were obtained. Optimization of film growth and materials purification will doubtless yield far higher mobilities.
The results with PDI-CN2-derived OFETs (see below) suggested synthesis of another representative PDI derivative with additional electron-withdrawing substituents and greater volatility, e.g., an N-fluoroalkylsubstituted diimide designated PDI-FCN2.
This compound was synthesized using modifications of literature core cyanation and N-fluoroalkylation procedures, and was characterized by heteronuclear NMR, mass spectrometry, optical absorption spectroscopy, photoluminescence, cyclic voltammetry, thermogravimetric analysis, and single-crystal x-ray diffraction. The electrochemical and optical data (Table 2) reveal further depression of the LUMO level vs. PDI/PDI-CN2, while TGA indicates quantitative sublimation.
As mentioned above, for both PDI materials, a 1.1 mixture of isomers (cyanated at the 1,7 or 1,6 positions) is indicated by NMR, however this characteristic is found to be inconsequential for spectroscopic, electronic structural, and solid state charge transport properties (verified by measurements on small quantities of the pure 1,7 isomer). Single crystals of PDI-FCN2 were grown by sublimation, and the crystal structure (
ameasured in THF (10−5/10−6 M)
bmeasured in 0.1 M TBAPF6 solution in THF vs. S.C.E.
For purpose of comparison, top-contact configuration OFETs were fabricated, as described below, with vapor-deposited PDI films (10−6 Torr, 0.2 Å/s growth), and mobilities determined in the saturation regime by standard procedures. [a) A. Facchetti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. J. Marks, R. H. Friend, Angew. Chem. Int. Ed. Engl. 2000, 39, 4547; b) A. Facchetti, M. Mushrush, H. E. Katz, T. J. Marks, Adv. Mater. 2003, 15, 33; c) A. Facchetti, M.-H. Yoon, C. L. Stern, H. E. Katz, T. J. Marks, Angew. Chem. Int. Ed. Engl. 2003, 42, 3900.] The microstructures and mobilities of the vapor-deposited films are found to be sensitive to substrate temperature during growth. Due to the remarkable air-stability of these materials, all data presented here were acquired under ambient atmosphere (
The microstructure of the vapor-deposited thin films was analyzed by XRD, AFM, and SEM, with XRD revealing d-spacings in highest-mobility devices of 17.9 Å and 20.3 Å for PDI-CN2 and PDI-FCN2, respectively. From a geometry-optimized, computed molecular length of 22.0 Å for PDI-CN2 (Hyperchem™ 5.02, Hypercube, Inc., 1115 NW 4th Street, Gainesville, Fla. 32601, USA) and a crystallographically determined length of 22.8 Å for PDI-FCN2, tilt angles relative to the substrate normal of 55° and 62°, respectively, are estimated. These results suggest favorable molecular orientations for source-to-drain electrode charge transport. AFM and SEM analysis of film morphology confirms polycrystalline topographies with ribbon-like grains (˜400-800 nm long, ˜100 nm wide). Such large-grained polycrystalline features should promote charge carrier mobility via efficient π-π intermolecular overlap and minimization of trap sites.
To investigate material versatility for applications, preliminary studies on bottom-contact OFETs and solution-cast films were performed. The bottom-contact devices display air-stable mobilities from 10−3 to 10−4 cm2V−1s−1. PDI-FCN2 transistors, like many fluorinated organic semiconductors, can be used with alkane thiol treatment of gold electrodes to better match surface energies at the metal/organic interface. Interestingly, PDI-CN2 devices function without the aid of thiolated electrodes, retaining the ability of PDI to function on unmodified substrates. Top-contact devices fabricated from drip-cast films are also air-stable and exhibit mobilities of 10−3 to 10−5 cm2V−1s−1. In contrast, solution casting of high-quality films of PDI derivatives not having core functionalization is difficult due to low solubility in common solvents.
One of the unique characteristics of such PDI systems is the presence of significant charge carrier densities at VG=0 V. Thus, OFET threshold voltages for these materials are at VG=−20 V to −30 V, with the absence of charge carriers then defining the ‘off’ state at −60 V, and classifying these devices as “always on” transistors. In some cases, the presence of charge carriers below VG=0 V can be reversed by exposure to an oxidant, and for our devices, I2 vapor increases the threshold voltage to >−5 V and decreases the ISD at VG=0 V by up to an order of magnitude.
Of particular note is the air-stability of operation for PDI-FCN2 and PDI-CN2-based OFETs. It is thought that ambient stability in n-type organic semiconductors benefits from electron-withdrawing fluorinated substituents, which electronically stabilize the charge carriers as well as promote close packing via fluorocarbon self-segregation. Judging from the present redox potentials, the charge carriers are not initially expected to be thermodynamically stable with respect to O2(g); however, the close-packed fluorine functionalities may help provide a kinetic barrier to oxidation. The strategic cyanation of PDI produces air-stable N-fluoroalkyl and N-alkyl materials, presumably reflecting carrier stabilization in the very low-lying LUMOs.
As shown above, this invention provides solution processable, polycyclic n-type organic semiconductors with high carrier mobility and air-stable OFET operation. Notable properties reflect a combination of electron withdrawing functionality at the core and/or imide positions. In particular, without limitation to any one theory or mode of operation, cyano substitution provides solubility for solution processing and stability of negatively charged polarons by lowering the LUMO to resist ambient oxidation. Likewise, electron-withdrawing N-functionalities are believed to aid polaron stability by further lowering the LUMO energies, but may also induce close molecular packing for increased intermolecular π-overlap and more efficient charge transport. With the rich chemistry for PDI functionalization available, various other derivatives—as would be known in the art by those aware of this invention—should prove informative in elucidating structure-function relationships in organic n-type electronics.
The following non-limiting examples and data illustrate various aspects and features relating to the compounds, devices and/or methods of the present invention, including the use of various mono- and diimide, N- and core-substituted perylene and/or naphthalene compounds as n-type semiconductors and/or in conjunction with field effect transistor devices. Such substituted compounds are available through the synthetic methodologies described herein. While the utility of this invention is illustrated through the use of several such compounds, it will be understood by those skilled in the art that comparable results are obtainable with various other compounds, substituents, and/or substitution patterns, via precursor compounds either commercially available or as described in the literature and substituted as provided herein or using known reagents and straightforward variations of such synthetic techniques, as would be understood by those skilled in the art made aware of this invention.
General Information for characterization of CN2PDI, CNPMI and CN3PMI. 1H nuclear magnetic resonance spectra were recorded on a Varian 400 MHz NMR spectrometer using TMS as an internal standard. Laser desorption mass spectra were obtained with a Perseptive BioSystems time-of-flight MALDI mass spectrometer using a 2-hydroxy-1-naphthoic acid or dithranol matrix.
Spectroscopy. Absorption measurements were made on a Shimadzu (UV-1601) spectrophotometer using 0.2 cm path length cuvettes. Fluorescence quantum yields were obtained by integrating the fluorescence emission bands from each compound and rhodamine 640 using corrected spectra obtained on a PTI photon-counting spectrofluorimeter with 1 cm path length cuvettes. The absorbance of each sample was <0.1 at the excitation wavelength.
Electrochemistry. Electrochemical measurements were performed using a CH Instruments Model 660A electrochemical workstation. The solvents were butyronitrile containing 0.1 M tetra-n-butylammonium perchlorate or hexafluorophosphate electrolyte. A 1.0 mm diameter platinum disk electrode, platinum wire counter electrode, and Ag/AgxO reference electrode were employed. The ferrocene/ferrocinium (Fc/Fc+, 0.52 vs. SCE) was used as an internal reference for all measurements.
Spectroelectrochemistry. Spectroelectrochemical measurements were performed in the homemade quartz cell illustrated in
N,N-bis(cyclohexyl)-1,7-dicyano-perylene-3,4:9,10-bis(dicarboximide) (CN2PDI). N,N-bis(cyclohexyl)-1,7-dibromo-perylene-3,4:9,10-bis(dicarboximide) (0.048 g, 0.07 mmol), zinc cyanide (0.065 g, 0.55 mmol), 1,1′-bis(diphenylphosphino)-ferrocene (0.005 g, 0.01 mmol) and tris(dibenzylideneacetone)-dipalladium(0) (0.010 g, 0.01 mmol) were combined in 4 ml p-dioxane and refluxed for 19 hours under a nitrogen atmosphere. The crude product was diluted with chloroform, filtered through Celite, and the solvent removed on a rotary evaporator. The crude product was chromatographed on a silica column using 98% DCM/2% acetone as the eluent to yield 0.041 g product CN2PDI (theory 0.041 g, quantit). 1H NMR (CDCl3): 9.692 (d, J=8.1 Hz, 2H), 8.934 (s, 2H), 8.888 (d, J=8.1 Hz, 2H), 5.025 (m, 2H), 2.533 (m, 4H), 1.931 (m, 4H), 1.755 (m, 6H), 1.504 (m, 4H), 1.329 (m, 2H). M.S.(EI): Calcd. for C38H28N4O4: 604.2105. Found: 604.2108.
N-(2,5-di-tert-butylphenyl)-9-cyano-1,6-bis(3,5-di-tert-butylphenoxy)-perylene-3,4-dicarboximide (CNPMI). N-(2,5-di-tert-butylphenyl)-9-bromo-1,6-bis(3,5-di-tert-butylphenoxy)-perylene-3,4-dicarboximide (0.100 g, 0.10 mmol), zinc cyanide (0.047 g, 0.40 mmol), 1,1′bis(diphenylphosphino)-ferrocene (0.009 g, 0.02 mmol) and tris(dibenzylideneacetone)-dipalladium(0) (0.003 g, 0.003 mmol) were combined in 10 ml p-dioxane in a 25 ml round-bottom flask and heated to reflux for 36 hours under a N2 atmosphere. Upon cooling to room temperature, the crude reaction mixture was diluted with chloroform, washed twice with water, and the solvent removed on a rotary evaporator. The crude product was flash chromatographed on a silica column using a 65% hexanes/35% chloroform mixture as the eluent to afford 0.094 g product (CNPMI) (theory 0.094 g, quantitative). 1H NMR (CDCl3): 9.525 (d, J=8.7 Hz, 1H), 9.422 (d, J=8.2 Hz, 1H), 8.342 (d, J=7.4 Hz, 1H), 8.281 (s, 2H), 8.021 (d, J=8.2 Hz, 1H), 7.844 (t, J=8.1 Hz, 1H), 7.516 (d, J=8.6 Hz, 1H), 7.394 (d, J=8.7 Hz, 1H), 7.305 (s, 2H), 7.020 (s, 4H), 6.952 (s, 1H), 1.2-1.4 (s, 72H). M.S.(E1): Calcd. for C65H70N2O4: 942.5330. Found: 942.5320.
N-(2,5-di-tert-butylphenyl)-1,6,9-tricyano-perylene-3,4-dicarboximide (CN3PMI). N-(2,5-di-tert-butylphenyl)-1,6,9-tribromo-perylene-3,4-dicarboximide (0.082 g, 0.11 mmol), zinc cyanide (0.156 g, 1.33 mmol), 1,1′bis(diphenylphosphino)-ferrocene (0.009 g, 0.02 mmol) and tris(dibenzylideneacetone)-dipalladium(0) (0.004 g, 0.004 mmol) were added to 5 ml p-dioxane and heated to reflux for 16 hours under a N2 atmosphere. The reaction mixture was diluted with methylene chloride, filtered through Celite, and the solvent removed on a rotary evaporator. The crude product was flash chromatographed on a silica column using methylene chloride as the eluent to give 0.062 g product CN3PMI (theory 0.064 g, 97%). 1H NMR (CDCl3): 9.603 (d, J=8.8 Hz, 1H), 9.532 (d, J=7.3 Hz, 1H), 9.048 (s, 2H), 8.638 (d, J=7.3 Hz, 1H), 8.248 (d, J=7.3 Hz, 1H), 8.096 (t, J=7.3 Hz, 1H), 7.608 (d, J=8.8 Hz, 1H), 7.495 (d, J=8.8 Hz, 1H), 6.967 (s, 1H), 1.328 (s, 9H), 1.283 (s, 9H). M.S.(E1): Calcd. for C39H28N4O2: 584.2207. Found: 584.2199.
Oxidation Experiment. A 10−5M solution of CN2PDI in dry DMF under ambient oxygen conditions was placed in a cuvette and the spectrum was recorded by a Shimadzu 1601 uv-vis spectrophotometer. The solid line in
This invention shows that proper combination of core and imide substituents in arene diimides affect molecular and solid-state properties affording materials with unique properties. The results illustrate the relationship between molecular functionality, substituent electronic effects, and air-stability of the corresponding FET devices. The methods of synthesis and separation can be used to improve device performance. This class of arene diimides and/or specific compounds thereof are extremely promising materials for novel applications in electronics, photonics, and opto-electronics.
Pertaining to examples 5-12, 1H NMR spectra were recorded on a Varian 400 MHz NMR spectrometer using TMS as an internal standard. Laser desorption mass spectra were obtained with a Perseptive BioSystems time-of-flight MALDI mass spectrometer using a dithranol matrix. Solvents and reagents were used as received. Flash and thin-layer chromatography was performed using Sorbent Technologies (Atlanta, Ga.) silica gel. All solvents were spectrophotometric grade. Toluene was purified by CuO and alumina columns (GlassContour).
Optical absorption measurements were made on a Shimadzu (UV-1601) spectrophotometer using 1.0 cm path length cuvettes. Fluorescence quantum yields were obtained by integrating the fluorescence emission bands from each compound and rhodamine 640 using corrected spectra obtained on a PTI photon-counting spectrofluorimeter with 1.0 cm path length cuvettes. The absorbance of each sample was <0.1 at the excitation wavelength.
Electrochemical measurements were performed using a CH Instruments Model 660A electrochemical workstation. The solvent was tetrahydrofuran containing 0.1 M tetra-n-butylammonium hexafluorophosphate electrolyte. A 1.0 mm diameter platinum disk electrode, platinum wire counter electrode, and Ag/AgxO reference electrode were employed. The ferrocene/ferrocinium (Fc/Fc+, 0.52 vs. SCE) was used as an internal reference for all measurements.
Synthesis of N,N′-bis(1H,1H-perfluorobutyl)-1,7-dibromo-perylene-3,4:9,10-bis(dicarboximide). The reagent 1,7-dibromoperylene-3,4:9,10-tetracarboxydianhydride was prepared according to the literature. See, Ahrens, et al., J. Am. Chem. Soc., 2004, 126, 8284-8236. The dibromo compound (0.920 g, 1.67 mmol) was combined with 20 mL 1-methyl-2-pyrrolidinone (NMP) and placed in a sonication bath for 20 min. Next, 2,2,3,3,4,4,4-heptafluorobutylamine (Fluorochemicals/SynQuest Labs) in 15 mL NMP was added, followed by addition of acetic acid (0.684 g, mmol). The reaction mixture was heated to 85-90° C. for 7 h under a N2 atmosphere. The contents were cooled to room temperature, poured into 200 mL methanol, and placed in a −10° C. freezer overnight. The red precipitate was recovered by filtration, dried under a N2 stream, and chromatographed on silica (chloroform) to afford (1) the bis(perfluoro) compound (1.196 g, 78%). 1H NMR (CDCl3): δ 9.359 (d, J=8.15 Hz, 2H), δ 8.822 (s, 2H), δ 8.615 (d, J=8.15 Hz, 2H), δ 5.009 (m, 4H). M.S.: 912.51 (calcd. 909.88).
Synthesis of N,N′-bis(1H, 1H-perfluorobutyl)-(1,7&1,6)-dicyano-perylene-3,4:9,10-bis(dicarboximide). N,N′-bis(1H,1H-perfluorobutyl)-1,7-dibromo-perylene-3,4:9,10-bis(dicarboximide) (1.196 g, 1.31 mmol), zinc cyanide (1.264 g, 10.8 mmol), 1,1′-bis(diphenylphosphino)ferrocene (0.119 g, 0.21 mmol), and tris(dibenzylideneacetone)-dipalladium(0) (0.041 g, 0.04 mmol) were combined in 20 mL p-dioxane and refluxed for 12 h under a N2 atmosphere. The reaction mixture was then diluted with chloroform, filtered through Celite, and the solvent removed on a rotary evaporator. The resulting crude product was chromatographed on silica using 98% DCM/2% acetone as the eluent to yield (2) the dicyano compound (0.845 g, 80%). The product was further purified by high vacuum gradient temperature sublimations. 1H NMR (CDCl3): δ 9.760 (d, J=6.20 Hz, 2H), δ 9.742 (d, J=6.22 Hz, 2H), δ 9.100 (s, 2H), δ 9.051 (s, 2H), δ 9.005 (d, J=8.19 Hz, 2H), δ 8.949 (d, J=8.17 Hz, 2H), δ 5.048 (m, 4H). M.S.: 804.42 (calcd. 804.05). Anal. Calcd. for C34H10F14N4O4: C, 50.76; H, 1.25; N, 6.96. Found: C, 50.76; H, 1.34; N, 6.91.
Vapor-deposited OFETs in the top-contact configuration were fabricated in the following manner. Films of PDI-FCN2 and PDI-CN2˜50 nm thick were vapor deposited (0.2 Ås−1, P˜10−6 Torr) onto a n+-doped Si (100) wafer with a 300 nm thermally grown SiO2 dielectric layer. Gold electrodes 40 nm thick were thermally evaporated onto the thin films through a shadow mask. Silicon substrates were treated with 1,1,1,3,3,3-hexamethyldisilazane vapor prior to film deposition. Substrate temperature during film deposition was varied with a cartridge heater.
Bottom contact devices were fabricated by evaporating 40 nm thick gold electrodes directly onto the HMDS treated silicon substrate followed by deposition of the organic film under the same conditions as above. Alkane thiol treatment of the gold electrodes was accomplished by submerging the substrate in a 10−3 M ethanol solution of octadecanethiol for 3 hours. The substrates were then rinsed with ethanol and dried prior to film deposition.
Solution-cast films were fabricated by drip-casting. First, the outer edge of the substrate was coated with Novec-ECC 1700 electronic coating to define an area for solution containment. The substrate was heated to 90° C., and ˜1 mL of a 10−3 M solution of the material was deposited. During the slow evaporation process, the substrates were protected from atmospheric currents by containment in a glass vessel. Films of PDI-FCN2 were cast from toluene, while films of PDI-CN2 were cast from chloroform. A device comprising PDI-FCN2 was operated in ambient for over 100 cycles with minimal change in device behavior (see,
TGA, SEM, AFM and XRD results for PDI-CN2 and PDI-FCN2 films are provided in
Synthesis of N,N′-bis(n-octyl)-(1,7&1,6)-dicyanoperylene-3,4:9,10-bis(dicarboximide), PDI-8CN2. N,N′-bis(n-octyl)-(1,7&1,6)-dibromoperylene-3,4:9,10-bis(dicarboximide) (1.318 g, 1.71 mmol) and copper (I) cyanide (1.550 g, 17.31 mmol) were combined in a 50 ml round bottom flask with 20 ml dry DMF. This mixture was placed in a sonication bath for 30 minutes then heated to 130° C. under a nitrogen atmosphere for 5 hours. The DMF was then removed under reduced pressure leaving a reddish/brown residue behind Soxhlet extraction with chloroform for 36 hours provided the title compound as a red powder in 69% yield, (0.777 g, 1.17 mmol). Mass spectrum (m/z) 663.10 (calc. 664.30) 1H NMR (CDCl3) Integrations reported are for the 1,7 isomer (˜90% pure) ([ ] indicates 1,6 or 1,7isomer): δ 9.700 (d, J=8.2 Hz, [1,7 (1,6 unresolvable)] 2H), 9.023 (s, [1,6]), 8.972 (s, [1,7], 2H), 8.924 (d, J=8.2 Hz, [1,7], 2H), 8.863 (d, J=8.2 Hz, [1,6]), 4.219 (m, 4H), 1.763 (m, 4H), 1.45-1.20 (m, 20H), 0.884 (t, J=6.7 Hz, 6H). (The dicarboximide was prepared according to Ulrike, et al., J. Mat. Chem. (2001), 11(7), 1789-1799.)
The electronic properties of PDI-8CN2 (N-octyl) are virtually indistinguishable from that of PDI-CN2 (N-cyclohexyl), with an absorption maximum at 530 nm, emission maximum at 547 nm, and first reduction potential of −0.1 vs. S.C.E. placing the HOMO at ˜6.6 eV and the LUMO at ˜4.3 eV vs. vacuum level. The reduced pressure (5 Torr) TGA of PDI-8CN2 reveals that the material evaporates with less than 10% decomposition at ˜325° C. Simultaneously acquired DTA data reveals a solid-liquid transition prior to evaporation at ˜300° C.
Films of PDI-8CN2 were deposited from the vapor phase onto analogous substrates as used in the studies on PDI-CN2 and PDI-FCN2. Gold electrodes in the top-contact configuration were also deposited in the same manner as before.
Transistors were characterized as before. At substrate temperatures during deposition of >90° C., mobilities as high as 0.2 cm2V−1s−1 are observed. The devices have threshold voltages of ˜−6 V and ION/IOFF ratios as high as 104. (See
With reference to Table 3, below, this example further illustrates perylene compounds, materials and/or films of the type available through this invention. Such compounds can comprise any moiety R9 and/or R10 in combination with at least one of the substituents and moieties for any one or more of R1-R10, R11, and R12. Such N- and core-substituted compounds are available through the synthetic techniques described herein or straight forward modifications thereof as would be understood by those skilled in the art. With reference to example 6, preparation of a desired imide is limited only by choice of amine reagent and the corresponding mono- or dianhydride starting material. For instance, R9 and/or R10 can be an alkyl (substituted or unsubstituted) or polyether moiety through use of the respective amino-terminated alkyl reagent or ethylene glycol oligomer. Likewise, various core substituents can be introduced by chemistry on commercially-available perylene anhydrides or bromo-substituted analogs thereof, using variations of aromatic acylation, alkylation and/or substitution reactions known in the art (e.g., Cu-catalyzed fluoroalkyl substitution reactions described in U.S. Pat. No. 6,585,914, the entirety of which is incorporated herein by reference). In an analogous manner, a comparable range of N- and core-substituted naphthalene compounds are available from the corresponding starting materials and reagents.
+N(R)3; (R = H, alkyl), CH2CF3,
This application is a divisional of U.S. patent application Ser. No. 11/043,814, filed on Jan. 26, 2005, which claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 60/539,133, filed on Jan. 26, 2004, the disclosure of each of which is incorporated by reference in its entirety.
This invention was made with government support under Grant Numbers N00014-02-1-0909 and N00014-02-1-0381 awarded by the Office of Naval Research, Grant Number MDA972-03-1-0023 awarded by DARPA, and Grant Number DMR-0076097 awarded by the National Science Foundation. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
2087133 | Vollmann | Jul 1937 | A |
4378302 | Aftergut et al. | Mar 1983 | A |
4611385 | Forrest et al. | Sep 1986 | A |
4846892 | Henning et al. | Jul 1989 | A |
5405962 | Muellen et al. | Apr 1995 | A |
5472494 | Hetzenegger et al. | Dec 1995 | A |
5539100 | Wasielewski et al. | Jul 1996 | A |
5677417 | Muellen et al. | Oct 1997 | A |
5808073 | Böhm et al. | Sep 1998 | A |
5908583 | Havinga et al. | Jun 1999 | A |
5986099 | Müllen et al. | Nov 1999 | A |
6063181 | Bohm et al. | May 2000 | A |
6084099 | Hackmann et al. | Jul 2000 | A |
6099636 | Henning et al. | Aug 2000 | A |
6124458 | Müellen et al. | Sep 2000 | A |
6143905 | Bohm et al. | Nov 2000 | A |
6165661 | Hsiao et al. | Dec 2000 | A |
6184378 | Bohm et al. | Feb 2001 | B1 |
6252245 | Katz et al. | Jun 2001 | B1 |
6287738 | Duff et al. | Sep 2001 | B1 |
6326494 | Bohm et al. | Dec 2001 | B1 |
6348595 | Hendi | Feb 2002 | B1 |
6486319 | Böhm et al. | Nov 2002 | B1 |
6533857 | Schmid et al. | Mar 2003 | B1 |
6551717 | Katz et al. | Apr 2003 | B2 |
6585914 | Marks et al. | Jul 2003 | B2 |
6608323 | Marks et al. | Aug 2003 | B2 |
6656651 | Bender et al. | Dec 2003 | B1 |
6727318 | Mathauer et al. | Apr 2004 | B1 |
6784301 | Hackmann et al. | Aug 2004 | B2 |
6806368 | Wurthner et al. | Oct 2004 | B2 |
6878825 | Krieger et al. | Apr 2005 | B2 |
6890377 | Böhm et al. | May 2005 | B2 |
6916928 | Becker et al. | Jul 2005 | B2 |
6986811 | Könemann et al. | Jan 2006 | B2 |
7083675 | Mizuguchi et al. | Aug 2006 | B2 |
7105046 | Mizuguchi et al. | Sep 2006 | B2 |
7105674 | Hackmann et al. | Sep 2006 | B2 |
7326956 | Shukla et al. | Feb 2008 | B2 |
7422777 | Shukla et al. | Sep 2008 | B2 |
20030181721 | Wurthner et al. | Sep 2003 | A1 |
20030219625 | Wolk et al. | Nov 2003 | A1 |
20040013959 | Bender et al. | Jan 2004 | A1 |
20040023061 | Kathirgamanathan et al. | Feb 2004 | A1 |
20050075453 | Mathauer et al. | Apr 2005 | A1 |
20050092982 | Mullen et al. | May 2005 | A1 |
20050106415 | Jarikov et al. | May 2005 | A1 |
20050131220 | Dung et al. | Jun 2005 | A1 |
20050171252 | Schambony et al. | Aug 2005 | A1 |
20050222416 | Bohm et al. | Oct 2005 | A1 |
20050238974 | Sekiya et al. | Oct 2005 | A1 |
20050251930 | Erk et al. | Nov 2005 | A1 |
20060058330 | Krieger et al. | Mar 2006 | A1 |
20060075585 | Krieger et al. | Apr 2006 | A1 |
20060131564 | Shukla et al. | Jun 2006 | A1 |
20060134823 | Shukla et al. | Jun 2006 | A1 |
20060141287 | Klubek et al. | Jun 2006 | A1 |
20060210898 | Jubran | Sep 2006 | A1 |
20060229385 | Boehm | Oct 2006 | A1 |
20060237712 | Shukla et al. | Oct 2006 | A1 |
20070026332 | Ferrar et al. | Feb 2007 | A1 |
20070096084 | Shukla et al. | May 2007 | A1 |
20070116895 | Shukla et al. | May 2007 | A1 |
20080021220 | Marks et al. | Jan 2008 | A1 |
20080135833 | Shukla et al. | Jun 2008 | A1 |
20080161569 | Dung et al. | Jul 2008 | A1 |
20080167435 | Marks et al. | Jul 2008 | A1 |
20080177073 | Facchetti et al. | Jul 2008 | A1 |
20080185555 | Facchetti et al. | Aug 2008 | A1 |
20080185577 | Facchetti et al. | Aug 2008 | A1 |
20080249309 | Facchetti et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
2951349 | Jul 1981 | DE |
3434059 | Mar 1985 | DE |
3620332 | Dec 1987 | DE |
3703131 | Aug 1988 | DE |
39 38 091 | May 1991 | DE |
4018830 | Dec 1991 | DE |
4338784 | May 1995 | DE |
4440242 | May 1996 | DE |
19501737 | Jul 1996 | DE |
19547210 | Jun 1997 | DE |
19622673 | Dec 1997 | DE |
19651712 | Jun 1998 | DE |
19709008 | Sep 1998 | DE |
10038672 | May 2002 | DE |
10148172 | Apr 2003 | DE |
0 031 065 | Oct 1983 | EP |
0 217 256 | Apr 1987 | EP |
0 422 535 | Apr 1991 | EP |
0 826 740 | Mar 1998 | EP |
0 861 878 | Sep 1998 | EP |
0 896 964 | Feb 1999 | EP |
0 990 951 | Apr 2000 | EP |
1 172 700 | Jan 2002 | EP |
1 671 674 | Jun 2006 | EP |
1 526 496 | May 1968 | FR |
2 237 922 | Feb 1975 | FR |
05-025174 | Feb 1993 | JP |
05-27459 | Feb 1993 | JP |
11-119455 | Apr 1999 | JP |
2002-302674 | Oct 2002 | JP |
2003-327587 | Nov 2003 | JP |
2004-093801 | Mar 2004 | JP |
2004-093802 | Mar 2004 | JP |
2004-152815 | May 2004 | JP |
2005-154409 | Jun 2005 | JP |
2005-189765 | Jul 2005 | JP |
2005-209887 | Aug 2005 | JP |
2006-028027 | Feb 2006 | JP |
9001480 | Feb 1990 | WO |
9622332 | Jul 1996 | WO |
9722607 | Jun 1997 | WO |
9722608 | Jun 1997 | WO |
9726301 | Jul 1997 | WO |
9832799 | Jul 1998 | WO |
9832802 | Jul 1998 | WO |
9849164 | Nov 1998 | WO |
0052099 | Sep 2000 | WO |
0069829 | Nov 2000 | WO |
0214414 | Feb 2002 | WO |
03091345 | Nov 2003 | WO |
03104232 | Dec 2003 | WO |
2004029028 | Apr 2004 | WO |
2005047265 | May 2005 | WO |
2005070894 | Aug 2005 | WO |
2005070895 | Aug 2005 | WO |
2005078023 | Aug 2005 | WO |
2005092901 | Oct 2005 | WO |
2006021307 | Mar 2006 | WO |
2006037539 | Apr 2006 | WO |
2006050860 | May 2006 | WO |
2006093965 | Sep 2006 | WO |
2006115714 | Nov 2006 | WO |
2007074137 | Jul 2007 | WO |
2007093643 | Aug 2007 | WO |
2008091670 | Jul 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20100204475 A1 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
60539133 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11043814 | Jan 2005 | US |
Child | 12648484 | US |