This application is the National Stage of PCT/AT2019/060426 filed on Dec. 9, 2019 which claims priority under 35 U.S.C. ยง 119 of Austrian Application No. A 51114/2018 filed on Dec. 13, 2018, the disclosure of which is incorporated by reference. The international application under PCT article 21 (2) was not published in English.
The invention relates to a rotor bearing for bearing a rotor hub on a nacelle housing of a nacelle for a wind turbine.
A variety of rotor bearings are known from the prior art. A rotor bearing is known from AT509625B1, for example. In these known rotor bearings, the problem occurs that, in case of a tilting of the inner ring element relative to the outer ring element, which tilting occurs because of a tilting torque acting on the rotor bearing, a local overstraining of the sliding bearing elements occurs. This can lead to an increase in wear and/or consequently to a decreased lifespan of the sliding bearing elements.
The object of the present invention was to overcome the disadvantages of the prior art and to provide a rotor bearing having an increased lifespan.
This object is achieved by means of a device and a method according to the claims.
According to the invention, a rotor bearing for bearing a rotor hub on a nacelle housing of a nacelle for a wind turbine is provided. The rotor bearing has at least one inner ring element and at least one outer ring element, wherein at least one sliding bearing element is arranged between the inner ring element and the outer ring element, which sliding bearing element is fastened to the inner ring element or to the outer ring element. On the sliding bearing element, a sliding surface is formed, which cooperates with a counterface, which is coupled with that ring element, to which the sliding bearing element is not fastened. The counterface is designed to be resilient.
The rotor bearing according to the invention has the advantage that the counterface can adapt to the sliding surface of the sliding bearing element. By this, it can be achieved that the sliding surface of the sliding bearing element rests on the counterface over its entire surface, whereby a local overstraining of the sliding bearing element can be avoided. In particular, the lifespan of the sliding bearing element can be increased by this. The counterface being designed to be resilient means in particular that the counterface can flexibly adapt to the sliding surface of the sliding bearing element. In particular, it may be provided that the resilience of the counterface exceeds the material-induced slight elastic resilience of conventional arrangements, as described in AT509625B1, wherein in particular tapered, springy cross-sections or corresponding hinged connections are provided for achieving the resilience.
Moreover, it may be useful if the counterface is coupled with a spring element, which is fastened to that ring element, to which the sliding bearing element is not fastened. By coupling the counterface to the spring element, it can be achieved that the resilience of the counterface is ensured by elastic material deformations in the spring element. In such an embodiment variant, no separate hinged connections are necessary.
Furthermore, it may be provided that a section of that ring element, on which the counterface is formed, has a resilient region. In this regard, it may be provided that the counterface is formed directly on the ring element, wherein the flexibility of the counterface can be achieved by means of the resilient region. For example, it may be provided that the counterface is formed on a wing-like element of the ring element, wherein the wing-like element is elastically coupled, in the region of a connection with a main body, with the main body. The wing-like element may also be referred to as flank.
In addition to this, it may be provided that both the inner ring element and the outer ring element are designed to be V-shaped, and a first sliding bearing element and a second sliding bearing element are formed to be axially spaced apart from each other, which sliding bearing elements are arranged between the ring elements, wherein on that ring element, on which the counterface is arranged, a first flank and a second flank is formed, wherein on each of the two flanks, one of the counterfaces is formed, wherein the flanks are each designed to be elastically resilient.
A design according to which it may be provided that the counterface is resiliently coupled with the ring element by means of a joint is also advantageous. Particularly by this measure, the flexibility of the counterface can be increased. For example, it may be provided that the counterface is formed on a thin metal strip, wherein on the opposite side of the counterface of the metal strip, the metal strip is coupled with the ring element in a hinged manner According to an advancement, it is possible that the counterface is arranged on a flexible structure, so that the counterface is designed to be resilient in itself. This constitutes an alternative variant to that embodiment in which the counterface is designed to be resilient in its entirety.
Furthermore, it may be useful if the flexible structure comprises a layer which has a layer thickness of between 0.1 mm and 15 mm, in particular between 1 mm and 10 mm, preferably between 2 mm and 4 mm, wherein the counterface is formed on the layer, wherein a support cushion is formed under the layer. By this measure, a flexible structure of the counterface can be achieved, by which flexible structure an excessive strain on the sliding bearing can be prevented.
In addition to this, it may be provided that the support cushion comprises a viscous material. Particularly a support cushion formed in such a manner can absorb and/or distribute the occurring pressure forces well, so that the counterface can adapt to the sliding surface, and a uniform surface pressure on the counterface and/or on the sliding surface can be achieved.
Moreover, it may be provided that the first flank and/or the second flank are designed to be segmented across the circumference and that they each have multiple flank segments.
Moreover, it may be provided that the spring element is designed to be segmented across the circumference and that it has multiple spring element segments.
According to the invention, a nacelle for a wind turbine is provided. The nacelle comprises:
Moreover, a wind turbine having a nacelle is provided according to the invention. The nacelle comprises:
In addition to a nacelle housing, a nacelle within the meaning of this document also comprises a rotor hub and a rotor bearing for bearing the rotor hub.
The inner ring element and/or the outer ring element can each be formed as independent components, which may be coupled with the rotor hub or rotor shaft and/or with the nacelle housing. In the alternative to this, it is also conceivable that the inner ring element is formed as an integral element of the rotor hub and/or the rotor shaft. In the alternative to this, it is also conceivable that the outer ring element is formed as an integral element of the rotor hub and/or the rotor shaft. In the alternative to this, it is also conceivable that the inner ring element is formed as an integral element of the nacelle housing. In the alternative to this, it is also conceivable that the outer ring element is formed as an integral element of the nacelle housing.
For the purpose of better understanding of the invention, it will be elucidated in more detail by means of the figures below.
These show in a respectively very simplified schematic representation:
First of all, it is to be noted that in the different embodiments described, equal parts are provided with equal reference numbers and/or equal component designations, where the disclosures contained in the entire description may be analogously transferred to equal parts with equal reference numbers and/or equal component designations. Moreover, the specifications of location, such as at the top, at the bottom, at the side, chosen in the description refer to the directly described and depicted figure and in case of a change of position, these specifications of location are to be analogously transferred to the new position.
Moreover, a rotor 5 is formed, which has a rotor hub 6 with rotor blades 7 arranged thereon. The rotor hub 6 is considered part of the nacelle 2. The rotor hub 6 is received so as to be rotatable on the nacelle housing 4 by means of a rotor bearing 8.
The rotor bearing 8, which serves for bearing the rotor hub 6 on the nacelle housing 4 of the nacelle 2, is configured for absorbing a radial force 9, an axial force 10 and a tilting torque 11. The axial force 10 is caused by the force of the wind. The radial force 9 is caused by the weight force of the rotor 5 and is effective at the center of gravity of the rotor 5. As the center of gravity of the rotor 5 is outside the rotor bearing 8, the tilting torque 11 is generated in the rotor bearing 8 by the radial force 9. The tilting torque 11 may also be caused by an uneven load of the rotor blades 7.
The rotor bearing 8 according to the invention can have a diameter of 0.5 m to 5 m, for example. Of course, it is also conceivable that the rotor bearing 8 is smaller or larger.
As can be seen from
In a further exemplary embodiment that is not depicted, it may of course also be provided that the inner ring element 12 is received directly on the rotor hub 6.
In yet another exemplary embodiment that is not depicted, it may of course also be provided that the inner ring element 12 is fastened to the nacelle housing 4, and that the rotor hub 6 is coupled with the outer ring element 13.
As can be seen from
As can be seen from
In an embodiment variant that is not depicted, it may also be provided that the sliding bearing element 14, 15 is formed between the two ring elements 12, 13 as a radial bearing and/or as an axial bearing.
As can also be seen from
In an exemplary embodiment that is not depicted, it is of course also conceivable that the inner ring element 12 does not form a groove as shown in the exemplary embodiment of
In particular, it may be provided that the sliding bearing elements 14, 15 are arranged about a rotor axis 20.
Moreover, it may be provided that the sliding bearing element 14, 15 comprises multiple sliding bearing pads 21 which are arranged so as to be distributed across the circumference. The individual sliding bearing pads 21 can be coupled with and/or fastened on the inner ring element 12 by means of the fastening means 18. In particular, it may be provided that the individual sliding bearing pads 21 are independently releasable from the inner ring element 12 by means of the fastening means 18. Thereby, the individual sliding bearing pads 21 can be removed from their operating position and/or be replaced individually and independently of each other.
As can further be seen from
Moreover, it may be provided that a wall thickness 25 of the flanks 23, 24 is selected to be so small that the flanks 23, 24 are designed to be elastically resilient.
As can be seen from
As can be seen from
As can be seen from
As can be seen from
As can be seen from
As an alternative thereto, it may also be provided that the layer 32 is formed by another type of material, which is applied to the support cushion 34. For example, it may be provided that the layer 32 is designed in the form of an anti-friction varnish, which is applied to the support cushion 34. In this regard, it may be provided in particular that the material of the layer 32 is designed to be deformable.
In the exemplary embodiments from
The exemplary embodiments show possible embodiment variants, and it should be noted in this respect that the invention is not restricted to these particular illustrated embodiment variants of it, but that rather also various combinations of the individual embodiment variants are possible and that this possibility of variation owing to the teaching for technical action provided by the present invention lies within the ability of the person skilled in the art in this technical field.
The scope of protection is determined by the claims. However, the description and the drawings are to be adduced for construing the claims. Individual features or feature combinations from the different exemplary embodiments shown and described may represent independent inventive solutions. The object underlying the independent inventive solutions may be gathered from the description.
All indications regarding ranges of values in the present description are to be understood such that these also comprise random and all partial ranges from it, for example, the indication 1 to 10 is to be understood such that it comprises all partial ranges based on the lower limit 1 and the upper limit 10, i.e. all partial ranges start with a lower limit of 1 or larger and end with an upper limit of 10 or less, for example 1 through 1.7, or 3.2 through 8.1, or 5.5 through 10.
Finally, as a matter of form, it should be noted that for ease of understanding of the structure, elements are partially not depicted to scale and/or are enlarged and/or are reduced in size.
Number | Date | Country | Kind |
---|---|---|---|
A 51114/2018 | Dec 2018 | AT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AT2019/060426 | 12/9/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/118334 | 6/18/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3203260 | Pierry et al. | Aug 1965 | A |
6637942 | Dourlens et al. | Oct 2003 | B2 |
6866423 | Faltus et al. | Mar 2005 | B2 |
7794151 | Neumann | Sep 2010 | B2 |
7832980 | Demtroder et al. | Nov 2010 | B2 |
8545186 | Loeschner et al. | Oct 2013 | B2 |
8591371 | Dinter et al. | Nov 2013 | B2 |
8840521 | Kari et al. | Sep 2014 | B2 |
8974120 | Pedersen et al. | Mar 2015 | B2 |
9057365 | Han et al. | Jun 2015 | B2 |
9206787 | Winkelmann | Dec 2015 | B2 |
9279413 | Ebbesen et al. | Mar 2016 | B2 |
9297454 | Barthel et al. | Mar 2016 | B2 |
9435376 | Gaertner et al. | Sep 2016 | B2 |
9458880 | Kari et al. | Oct 2016 | B2 |
9657716 | Vervoorn et al. | May 2017 | B2 |
9677606 | Pischel | Jun 2017 | B2 |
9683602 | Hager et al. | Jun 2017 | B2 |
9784245 | Hager et al. | Oct 2017 | B2 |
9845826 | Sutton et al. | Dec 2017 | B2 |
9869349 | Rittmann et al. | Jan 2018 | B2 |
9995283 | Stiesdal | Jun 2018 | B2 |
10072704 | Sato | Sep 2018 | B2 |
10288164 | Hoelzl | May 2019 | B2 |
10436249 | Hoelzl | Oct 2019 | B2 |
10502259 | Meyer | Dec 2019 | B2 |
10598214 | Hoelzl | Mar 2020 | B2 |
10612586 | Frydendal | Apr 2020 | B2 |
10724624 | Tulokas | Jul 2020 | B2 |
11009077 | Hofmann et al. | May 2021 | B2 |
11280320 | Claramunt Estecha et al. | Mar 2022 | B2 |
11384728 | Elmose | Jul 2022 | B2 |
20020114549 | Hokkirigawa et al. | Aug 2002 | A1 |
20030063821 | Dourlens et al. | Apr 2003 | A1 |
20100111459 | Yasuda | May 2010 | A1 |
20110254281 | Noda | Oct 2011 | A1 |
20130071246 | Kari et al. | Mar 2013 | A1 |
20140161614 | Vervoorn et al. | Jun 2014 | A1 |
20140193262 | Pedersen et al. | Jul 2014 | A1 |
20140193264 | Pedersen et al. | Jul 2014 | A1 |
20140377063 | Guerenbourg | Dec 2014 | A1 |
20150017000 | Sato et al. | Jan 2015 | A1 |
20150159693 | Corts | Jun 2015 | A1 |
20150369284 | Hager et al. | Dec 2015 | A1 |
20160076522 | Rohden | Mar 2016 | A1 |
20200158090 | Hager et al. | May 2020 | A1 |
20200173425 | Schroeder | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
509 625 | Oct 2011 | AT |
516029 | Feb 2016 | AT |
519288 | May 2018 | AT |
15975 | Oct 2018 | AT |
650057 | Mar 1992 | AU |
2008331343 | Feb 2010 | AU |
101438068 | May 2009 | CN |
101965455 | Feb 2011 | CN |
102009663 | Apr 2011 | CN |
202082374 | Dec 2011 | CN |
102345676 | Feb 2012 | CN |
102418833 | Apr 2012 | CN |
102713276 | Oct 2012 | CN |
103557124 | Feb 2014 | CN |
103765005 | Apr 2014 | CN |
104234949 | Dec 2014 | CN |
104819209 | Aug 2015 | CN |
104956101 | Sep 2015 | CN |
204627877 | Sep 2015 | CN |
106062391 | Oct 2016 | CN |
106164509 | Nov 2016 | CN |
106884972 | Jun 2017 | CN |
108167442 | Jun 2018 | CN |
108884863 | Nov 2018 | CN |
37 02 008 | Aug 1988 | DE |
3726751 | Feb 1989 | DE |
10064261 | Jul 2002 | DE |
10 2005 001 344 | Jul 2006 | DE |
10 2005 018 836 | Dec 2006 | DE |
60219261 | Jan 2008 | DE |
10 2011 119 471 | May 2013 | DE |
10 2012 212 792 | Jan 2014 | DE |
10 2013 211 710 | Oct 2014 | DE |
10 2014 205 637 | Oct 2015 | DE |
10 2015 201 356 | Jul 2016 | DE |
11 2013 003 034 | Aug 2017 | DE |
1 564 406 | Aug 2005 | EP |
2 003 334 | Dec 2008 | EP |
2 136 093 | Dec 2009 | EP |
2290269 | Mar 2011 | EP |
2 383 480 | Oct 2012 | EP |
2 568 163 | Mar 2013 | EP |
2 597 307 | May 2013 | EP |
2 600 037 | Jun 2013 | EP |
2 657 519 | Oct 2013 | EP |
2 679 492 | Jan 2014 | EP |
2 711 568 | Mar 2014 | EP |
2816226 | Dec 2014 | EP |
2 863 076 | Apr 2015 | EP |
2 955 413 | Dec 2015 | EP |
3 012 479 | Apr 2016 | EP |
3 040 553 | Jul 2016 | EP |
3 139 034 | Mar 2017 | EP |
3 173 642 | May 2017 | EP |
3 252 306 | Jun 2017 | EP |
3 279 471 | Feb 2018 | EP |
3 343 071 | Jul 2018 | EP |
3 396 187 | Oct 2018 | EP |
2 201 200 | Aug 1990 | GB |
S59-54812 | Mar 1984 | JP |
H04-203566 | Jul 1992 | JP |
H07-3248 | Jan 1995 | JP |
H07-293556 | Nov 1995 | JP |
H11-303857 | Nov 1999 | JP |
2002-195261 | Jul 2002 | JP |
2003176822 | Jun 2003 | JP |
2003194071 | Jul 2003 | JP |
2006-118552 | May 2006 | JP |
2010-101263 | May 2010 | JP |
2010151207 | Jul 2010 | JP |
2015-001279 | Jan 2015 | JP |
2017-048849 | Mar 2017 | JP |
2014-0143620 | Dec 2014 | KR |
2007071239 | Jun 2007 | WO |
2011127509 | Oct 2011 | WO |
2011127510 | Oct 2011 | WO |
2013191163 | Dec 2013 | WO |
2014005587 | Jan 2014 | WO |
2014117196 | Aug 2014 | WO |
2014173808 | Oct 2014 | WO |
2018071941 | Apr 2018 | WO |
Entry |
---|
International Search Report in PCT/AT2019/060420, dated Mar. 5, 2020. |
International Search Report in PCT/AT2019/060424, dated Apr. 3, 2020. |
International Search Report in PCT/AT2019/060425, dated Apr. 14, 2020. |
International Search Report in PCT/AT2019/060421, dated Apr. 3, 2020. |
International Search Report in PCT/AT2019/060426, dated Apr. 7, 2020. |
International Search Report in PCT/AT2019/060419, dated Mar. 26, 2020. |
Li Yunlong, Discussion on Localization of Composite Material Sliding Bearing in Hydropower Projects, Hongshui River, vol. 35, Issue 2, 4 pages, with English Abstract at the end of the document, Apr. 2016. |
Number | Date | Country | |
---|---|---|---|
20210396216 A1 | Dec 2021 | US |