The present disclosure relates to gas turbine engines, and more particularly to a nacelle therefor.
In a subsonic aircraft having an externally mounted engine, for example, a turbofan engine mounted by a pylon, aerodynamic drag due to freestream airflow over the nacelle of the engine may cost approximately 4% of the total engine thrust output.
One conventional technique to reduce fan nacelle drag is to provide a relatively thick nacelle inlet so that airflow will flow around and not separate from the outer or inner surface of the fan nacelle. Since many turbofan engines provide a fan of significant diameter, a fan nacelle therefor will necessarily be of a significant diameter. This may substantially increase fan nacelle size and weight so that any reduction in the fan nacelle thickness and length in front of the fan section competes against the desire to maintain attached flow.
A fan nacelle for a gas turbine engine according to an exemplary aspect of the present disclosure includes a leading edge region that defines a flow path between an intake region in a nacelle outer surface and an exhaust region in a nacelle inner nacelle surface.
A nacelle assembly for a gas turbine engine according to an exemplary aspect of the present disclosure includes a core nacelle defined about an engine centerline axis and a fan nacelle defined about the engine centerline axis and mounted at least partially around the core nacelle to define a fan bypass flow path. The fan nacelle includes a leading edge region that defines a flow path between an exhaust region in a nacelle outer surface and an intake region in a nacelle inner nacelle surface.
A method to locally modify a flow around a leading edge region of a nacelle to move a stagnation region of a captured streamline forward and weaken a shock strength according to an exemplary aspect of the present disclosure includes communicating a portion of a captured streamline through a flow path between an intake region in a nacelle outer surface and an exhaust region in a nacelle inner surface during a predefined off-design condition.
Various features will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiment. The drawings that accompany the detailed description can be briefly described as follows:
The turbofan engine 10 generally includes a core engine within a core nacelle 12 that houses a low spool 14 and high spool 24. The low spool 14 includes a low pressure compressor 16 and low pressure turbine 18. The low spool 14 also drives a fan section 20 through a geared architecture 22. The high spool 24 includes a high pressure compressor 26 and high pressure turbine 28. A combustor 30 is arranged between the high pressure compressor 26 and high pressure turbine 28. The low and high spools 14, 24 rotate about an engine axis of rotation A.
Airflow enters a fan nacelle 34, which at least partially surrounds the core nacelle 12. A portion of airflow, referred to as core airflow, communicates into the core nacelle 12. Core airflow compressed by the low pressure compressor 16 and the high pressure compressor 26 is mixed with the fuel in the combustor 30 and expanded over the high pressure turbine 28 and low pressure turbine 18. The turbines 28, 18 are coupled for rotation with, respective, spools 24, 14 to rotationally drive the compressors 26, 16 and through the geared architecture 22, the fan section 20 in response to the expansion. A core engine exhaust exits the core nacelle 12 through a core nozzle 32 defined between the core nacelle 12 and a tail cone 35.
The core nacelle 12 is supported within the fan nacelle 34 by circumferentially spaced structures often referred to as Fan Exit Guide Vanes (FEGVs) 36 to define an annular bypass flow path between the core nacelle 12 and the fan nacelle 34. The engine 10 generates a high bypass flow communicated through the generally annular bypass flow path then discharged through a fan nozzle 38 which defines a nozzle exit area between the fan nacelle 34 and the core nacelle 12. The engine 10 in the disclosed embodiment is a high-bypass geared architecture aircraft engine. In one disclosed embodiment, the engine 10 bypass ratio is greater than ten (10:1) and the turbofan diameter is significantly larger than that of the low pressure compressor 16. The gear train 22 may be an epicycle gear train such as a planetary gear system or other gear system with a gear reduction ratio of greater than 2.5:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present application is applicable to other gas turbine engines including direct drive turbofans.
Referring to
When a nacelle operates at high angles of attack, for example, during a high-power climb, a flow field which impacts the keel of the nacelle (RELATED ART;
According to one non-limiting embodiment, a flow path 42 is defined between an outer nacelle surface 44 and an inner nacelle surface 46 to locally modify the flow around the leading edge region 40 during a predefined off-design condition such as the noted high angle of attack condition to move the stagnation region of the captured streamline S forward and thereby weaken the strength of the shock W. It should be understood that the predefined off-design conditions may be determined to facilitate, for example, a smaller hilite-to-throat ratio for a given nacelle design and thereby provide a relatively smaller, lighter and lower drag nacelle.
The flow path 42 through the leading edge region 40 is defined between an intake region 48 in the outer nacelle surface 44 and an exhaust region 50 in the inner nacelle surface 46. In one non-limiting embodiment, the intake region 48 is axially defined between points A and B in the outer nacelle surface 44 and the exhaust region 50 is axially defined between points E and F. The intake region 48 and the exhaust region 50 are defined along a circumferential distance that corresponds with an area at which the captured streamline may be generated at a predefined angle of attack. The predefined angle of attack may result in a captured streamline that may be geometrically defined within a circumferential area along the nacelle keel 34K within which the peak Mach number of the captured streamline is above about 1.2 to 1.3 Mach. In one example, this area may be defined between 160 and 200 degrees with 180 degrees defined as Bottom Dead Center (BDC) of the fan nacelle 34 (
In one non-limiting embodiment, point B is located at the aftmost portion of the captured streamline S and point A is the middle of the captured streamline S at the off-design condition such as a predefined high angle of attack. Points E, F are arranged generally downstream relative to the points A, B to direct the flow through the flow path 42 in a downstream direction into the fan section 20. It should be understood that the desired off-design such as the predetermined high-angle of attack flow condition may be utilized to facilitate the location of the intake region 48 and the exhaust region 50.
The intake region 48 and the exhaust region 50 may include a porous structure 52 such as a micro-pore or slot like structure (
A tertiary region 54 located within or axially forward of the throat region 34T within the inner nacelle surface 46 may be axially defined between points C and D for a circumferential distance around the inner nacelle surface 46 forward of the exhaust region 50 for a circumferential distance defined by the area at which the shock W is generated at a predefined angle of attack. The tertiary region 54 is located to axially span the shock W such that suction occurs downstream of the shock W and blowing occurs upstream of the shock W though the tertiary region 54 as represented by the arrow Z so as to weaken the strength of the shock W. The tertiary region 54 may include a porous structure such as a micro-pore or slot like structure. It should be understood that the tertiary region 54 may be optionally provided.
The forward position of the captured streamline stagnation region improves the off-design performance of the fan nacelle 34 and the strength of the shock W is reduced by the tertiary region 54. The porous structure 52 within the intake region 48, exhaust region 50 and tertiary region 54 permit through flow at the designed high angle of attack off-design conditions with minimal impact to pressure recovery at on-design conditions such as level flight cruise conditions.
The percent open area, for example 10%, of the porous structure 52 may be optimized to minimize losses at conditions where the flow field is not at the high angles of attack such as the on-design cruise condition yet generates enough flow at the off-design conditions to facilitate a smaller hilite-to-throat ratio for a given nacelle design and thereby provide a relatively smaller, lighter and lower drag nacelle.
It should be understood that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be understood that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit herefrom.
Although particular step sequences are shown, described, and claimed, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present invention.
The foregoing description is exemplary rather than defined by the limitations within. Various non-limiting embodiments are disclosed herein, however, one of ordinary skill in the art would recognize that various modifications and variations in light of the above teachings will fall within the scope of the appended claims. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced other than as specifically described. For that reason the appended claims should be studied to determine true scope and content.
Number | Name | Date | Kind |
---|---|---|---|
2401584 | Rhines | Jun 1946 | A |
2589945 | Leduc | Mar 1952 | A |
2659552 | Stalker | Nov 1953 | A |
2853852 | Bodine, Jr. | Sep 1958 | A |
2925231 | Pfaff, Jr. et al. | Feb 1960 | A |
2932945 | Brandt, Jr. | Apr 1960 | A |
3117751 | Rogers, et al. | Jan 1964 | A |
3128973 | Dannenberg | Apr 1964 | A |
3149804 | Litz, Jr. | Sep 1964 | A |
3314629 | Rethorst | Apr 1967 | A |
3317162 | Grant | May 1967 | A |
3371743 | Chanaud, et al. | Mar 1968 | A |
3421577 | Valyi | Jan 1969 | A |
3446223 | Hancock | May 1969 | A |
3481427 | Dobbs, et al. | Dec 1969 | A |
3516895 | Hartman | Jun 1970 | A |
3765623 | Donelson et al. | Oct 1973 | A |
3801048 | Riccius | Apr 1974 | A |
3820628 | Hanson | Jun 1974 | A |
3821999 | Guess et al. | Jul 1974 | A |
3917193 | Runnels, Jr. | Nov 1975 | A |
3933327 | Cook et al. | Jan 1976 | A |
3991849 | Green et al. | Nov 1976 | A |
4007891 | Sorensen et al. | Feb 1977 | A |
4154256 | Miller | May 1979 | A |
4209149 | Morris et al. | Jun 1980 | A |
4294329 | Rose et al. | Oct 1981 | A |
4365775 | Glancy | Dec 1982 | A |
4379191 | Beggs et al. | Apr 1983 | A |
4502651 | Junglaus et al. | Mar 1985 | A |
4508295 | Cattaneo et al. | Apr 1985 | A |
4522360 | Barnwell et al. | Jun 1985 | A |
4738416 | Birbragher | Apr 1988 | A |
4749150 | Rose et al. | Jun 1988 | A |
4757963 | Cole | Jul 1988 | A |
4759513 | Birbragher | Jul 1988 | A |
4863118 | Stallings, Jr. et al. | Sep 1989 | A |
4926963 | Snyder | May 1990 | A |
4993663 | Lahti et al. | Feb 1991 | A |
5011098 | McLaren et al. | Apr 1991 | A |
5025888 | Arcas et al. | Jun 1991 | A |
5041324 | Siegling et al. | Aug 1991 | A |
5058617 | Stockman et al. | Oct 1991 | A |
5136837 | Davison | Aug 1992 | A |
5141182 | Coffinberry | Aug 1992 | A |
5156362 | Leon | Oct 1992 | A |
5167387 | Hartwich | Dec 1992 | A |
5297765 | Hughes et al. | Mar 1994 | A |
5335885 | Bohning | Aug 1994 | A |
5366177 | DeCoux | Nov 1994 | A |
5415522 | Pla et al. | May 1995 | A |
5417391 | Savitsky et al. | May 1995 | A |
5423658 | Pla et al. | Jun 1995 | A |
5498127 | Kraft et al. | Mar 1996 | A |
5590849 | Pla | Jan 1997 | A |
5743488 | Rolston et al. | Apr 1998 | A |
5772156 | Parikh et al. | Jun 1998 | A |
5841079 | Parente | Nov 1998 | A |
5884873 | Breit | Mar 1999 | A |
5915403 | McConachie et al. | Jun 1999 | A |
5934611 | Tindell et al. | Aug 1999 | A |
6216982 | Pfennig et al. | Apr 2001 | B1 |
6371411 | Breer et al. | Apr 2002 | B1 |
6457676 | Breer et al. | Oct 2002 | B1 |
6688558 | Breer et al. | Feb 2004 | B2 |
6763651 | Shmilovich et al. | Jul 2004 | B2 |
6910327 | Sakurai et al. | Jun 2005 | B2 |
7152829 | Bertolotti | Dec 2006 | B2 |
7200999 | Bagnall et al. | Apr 2007 | B2 |
7331421 | Olsen et al. | Feb 2008 | B2 |
7520470 | Lucchesini et al. | Apr 2009 | B2 |
7735776 | Chanez et al. | Jun 2010 | B2 |
20050045774 | Hocking | Mar 2005 | A1 |
20050151026 | Meyer | Jul 2005 | A1 |
20080179448 | Layland et al. | Jul 2008 | A1 |
20080267762 | Jain et al. | Oct 2008 | A1 |
20090121083 | Jain | May 2009 | A1 |
20100181420 | Porte et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
1232476 | Jan 1967 | DE |
1280057 | Oct 1968 | DE |
19720069 | Oct 1997 | DE |
19617952 | Nov 1997 | DE |
934381 | May 1948 | FR |
2932106 | Dec 2009 | FR |
619722 | Mar 1949 | GB |
2187261 | Sep 1987 | GB |
Entry |
---|
Batchelor, G. K.. An Introduction to Fluid Dynamics. 1st ed. Cambridge: Cambridge University Press, 2000, p. 72. |
Wong, W.F., Application of Boundary Layer Blowing to Suppress Strong Shock Induced Separation in Supersonic INlets, AIAA-P-77-147, AIAA 15th Aerospace Sciences Meeting, Jan. 1977. |
Raghunathan, S., “Passive Control of Shock Boundary Layer Interaction,” Progress in Aerospace Science, vol. 25, No. 3, 1988, pp. 271-296. |
Jaiman, R.K, Loth, E., Dutton, J.C., “Simulations of Normal Shock-Wave/Boundary Layer Interaction Using Mesoflaps,” Journal of Propulsion and Power, vol. 20, No. 2, p. 344-352, 2004. |
Kim, S.D., Loth, E., Dutton, J.C., “Simulations of Mesoflap Control for Ramp-Generated Oblique Shock/Boundary Layers Interactions,” AIAA Journal, vol. 40, pp. 1152-1169, 2003. |
Number | Date | Country | |
---|---|---|---|
20120076635 A1 | Mar 2012 | US |