The present disclosure is related to a light-curing nail lamp, having a light source designed to cure a light-curable nail coating product on a user's nails.
A nail coating may be classified into two categories: nail polish (e.g., lacquers, varnish or enamels), and artificial nails (e.g., gels or acrylics). Nail polish typically comprises various solid components, which are dissolved and/or suspended in non-reactive solvents.
Artificial nails are comprised of chemically reactive monomers, and/or oligomers, and photo initiators in combination with non-reactive polymers to create systems that are typically 100% solids and do not require non-reactive solvents. The photo initiators react with light to form radical photo initiators, which in turn, react with the ingredients listed above to form a nail coating. An artificial nail is known to exhibit improved durability and wear properties relative to conventional nail polish.
A problem existing with current nail lamps is a non-uniform curing of the user's nails. This is particularly true for the thumb nails of the user. The rail lamp disclosed herein solves the existing problem.
This application is directed to nail lamps with improved means of achieving uniform curing of artificial nails. These means include an angled surface e.g. wall which reflects light from the perimeter of the nail treatment space, towards the center of the nail treatment space. The angled surface may increase the amount of light impacting the thumb nail relative to other nails and the overall amount of light impacting all nails in a given lamp and at an overall power level. This application is also directed to use of reflectors that are associated with each light source and integrated with the overall lamp structure to increase the amount of light impacting all nails in a given lamp and at an overall power level.
The light-curing nail lamps of the present disclosure are intended to cure nail polish and, artificial nails. Ultraviolet radiation with a wavelength range of 365 to 425 nm is used to cure some artificial nails. Ultraviolet light sources with wavelengths as low as 100 nm can also be used. Visible light with wavelength of 425 nm or higher can also be used. The choice of wavelength or wavelengths to cure an artificial nail or nail polish will be depend on the photo initiators, the colors of the pigments and other aspects of the nail polish or artificial nail.
In an embodiment of this disclosure, a nail lamp will include one or more light sources, a housing, a nail treatment space located below the light source sized to allow insertion of at least one nail of a user, a vertical axis, a base plane and an angled surface located at the perimeter of the nail treatment space and oriented upward, towards the housing, and into the center of the nail treatment space.
In an embodiment of this disclosure, a first angled surface is located at one of the left boundary or the right boundary of the nail treatment space and a second angled surface is located at the other of the left boundary and the right boundary of the nail treatment space.
In an embodiment of this disclosure, the first angled surface is oriented at an angle of between 110 degrees and 160 degrees relative to the base plane.
In an embodiment of this disclosure, the first angled surface is oriented at an angle between 130 and 140 degrees relative to the base plane.
In an embodiment of this disclosure, the first angled surface is oriented at an angle between about 110 and 130 degrees relative to the base plane as measured in a plane parallel to the front of the lamp.
In an embodiment of this disclosure, the first angled surface is oriented at an angle between about 165 and 175 degrees relative to the base plane in a plane parallel to the side of the nail lamp.
In an embodiment of this disclosure, the angled surface is oriented at an angle of about 0 and 15 degrees relative to the side of the lamp.
In an embodiment of this disclosure, the angled surface extends around the left side, the right side and the rear of the nail treatment space.
In an embodiment of this disclosure, the nail lamp includes a platform surface located below the nail treatment space and a thumb marking (100) on the platform surface intended for placement of a thumb.
In an embodiment of this disclosure, the angled surface is less than 4 centimeters from the thumb placement.
In an embodiment of this disclosure, at least a portion of the angled surface is below the thumb marking.
In an embodiment of this disclosure, the angled surface is adjacent to the nail treatment platform surface.
In an embodiment of this disclosure, the nail lamp (1) includes two or more light sources (5), a housing (20); a nail treatment space (30) located below the housing, said nail treatment space sized to allow insertion of at least one nail of a user, a support surface above the nail treatment space and below the housing, and each light source is adjacent to a reflector the reflectors are integral with the support surface.
In an embodiment of this disclosure, the lamp accommodates an at least one user nail, and the at least one user nail may be found on the user's hand or foot.
The terms used in this specification generally have their ordinary meanings in the art, within the context of the disclosure, and in the specific context where each term is used. Certain terms are discussed below, or elsewhere in the specification, to provide additional guidance to the practitioner in describing the product designs, compounds, compositions, and methods of the disclosure and how to make and use them. Moreover, it will be appreciated that the same thing can be said in more than one way. Consequently, alternative language and synonyms may be used for any one or more of the terms discussed herein, nor is any special significance to be placed upon whether or not a term is elaborated or discussed herein. The use of examples anywhere in this specification, including examples of any terms discussed herein, is illustrative only, and in no way limits the scope and meaning of the disclosure or of any exemplified term. Likewise, the disclosure is not limited to the examples presented.
The housing 2 and the base define an open volume or compartment for receiving the nails and optionally the fingers, toes, hands and feet being treated i.e. a nail treatment space 30. At least one user nail on the hand or foot are inserted in the nail treatment space for treatment. The illustrated base 3, housing 2 and nail treatment space 30 may be sized to accommodate all five nails of a user's appendage. The base 3, housing 2 and the nail treatment space 30 may alternatively be sized to simultaneously accommodate a greater or fewer numbers of nails. For example, the platform and nail treatment space may be sized to simultaneously accommodate the user's four nails; sized to accommodate one nail at a time; or sized to simultaneously accommodate both of the user's hands or feet so as to accommodate all ten of the user's finger or toe nails (for example, the nail lamp discussed below). The nail treatment space is configured to accommodate one or more digits. The configuration of the lamp disclosed herein may have an accommodation for the thumb to ensure the thumb nail cures evenly with the rest of the nails on the hand when inserted on the base. The design of the lamp disclosed herein may also have an accommodation to ensure the outer edges of all nails also cure evenly with the rest of the nail surfaces.
As used herein, the first side 12 of the lamp 1 refers to the side a user's digits extend into during use (the opening shown in
Associated with the lamp are a vertical axis 40 with a positive direction defined by the distance between the nail treatment space 30 and the housing 2, a first horizontal axis 42, perpendicular to the vertical axis and with positive direction defined by the distance from the left size of the lamp to the right side of the lamp 15 and a second horizontal axis 44, perpendicular to the vertical axis 40 and the first horizontal axis 42. The second horizontal axis 44 may have a positive direction defined by the distance from the front to the rear of the lamp. The intersection of the first horizontal axis and the second horizontal axis define a base plane 50. In embodiments of the present disclosure, the base plane and the first and second horizontal axes may be parallel to a surface that the lamp is intended to rest on.
Note that the shapes of the nail treatment space 30 and the lamp within the scope of this disclosure are not limited by the above specification of sides. The shape of the lamp and the nail treatment space may be but is not limited to square, rectangular polygonal, oval, round or any other shape. The description of sides and boundaries may be applicable to all shapes without limit. For example, a round space may have first, second, left and right designed by four even or uneven sections of the perimeter. The shape of the nail treatment space may be configured to fit a human hand wherein the distance between the first side and the second side is greater near the centerline of the lamp and near the left side or right side of the lamp. Furthermore the dimensions of the nail treatment space in the vertical direction may be less than the dimensions between the first and second sides or the left and right sides.
The nail treatment space 30 will have upper and lower boundaries defined by surfaces. These surfaces may be referred to as a support surface 20 and a platform surface 10 and are discussed in more detail below. The lower boundary of the nail treatment space 30 may be defined by the surface that the lamp rests on.
As shown in
The light sources 5, 501 may be chosen to supply light in the UV light range or outside of the UV light range depending of the cure characteristics of the artificial nails being applied. An embodiment of the current disclosure may incorporate multiple wavelengths of UV radiation to optimize both surface and through the thickness curing of an artificial nail as disclosed in US20160370113A1 (incorporated by reference).
Embodiments of this disclosure may also include a controller which serves to supply power to the light sources. Depending on user input the controller may be programmed to apply power to all light sources only select light sources. Also the controller may control the amount of time light sources are turned on and whether radiation is supplied at all available wavelengths or if only select wavelengths of radiation are delivered. There variations are discussed in US20160370113A1 and incorporated by reference in this disclosure.
A controller circuit board and wiring may be placed between the housing 2 and the support surface 20.
An embodiment of the present disclosure may include a platform surface 10 and/or a support surface 20 as shown in
The platform surface and the support surface may also be separable from the base and the housing. The platform surface 10 may form the lower boundary of the nail treatment space 30 and may be configured for the users' digits and appendages to rest on. The support surface 20 may define the upper boundary of the nail treatment space 30. An embodiment of the disclosure may function with only a support surface and a light source. In this embodiment a user's appendages and nails may be placed in a nail treatment space below the surface. The support surface and optionally the housing may rest on a table or other suitable external surface.
An embodiment of the support surface is shown on
In an embodiment of this disclosure the support surface may have a reflective surface facing the nail treatment space. Furthermore, all surfaces bordering the nail treatment space can have a reflective surface to maximize the amount of light potentially reflecting off a surface and impacting a nail. The reflective property may be produced by any number of means known in the art. The support surface may be made of a polished or non-polished metal surface such as stainless steel, carbon steel or aluminum. The metal may be stamped or machined to the desired shape. The support surface may also be made of a polymer. A polymer with or white colorant or relatively light color polymer with or without added color fillers may be adequate. Alternatively the polymer surface may be made reflective by any number of means including adhesively attached reflective stickers or metallization. The support surface may also be made of a clear glass or a clear polymer such as Surlyn with a metallized back surface to produce a mirror like effect.
The housing may have a number of purposes including but not limited to lending structural support to the light sources, the controllers and other elements of the lamp, defining the nail treatment space, supporting the support surface, acting as a handle for portability and preventing UV light from exiting the nail treatment space. The housing of
The support surface embodiment of
In the embodiment of
The reflectors of
The optional platform surface 10 may be designed with the intention of the users appendages resting on the platform surface. The platform surface 10 of
In an embodiment of this disclosure the platform surface may have a reflective surface facing the nail treatment space. The reflective property may be produced by any number of means known in the art. The platform surface may be made of a polished or non-polished metal surface such as stainless steel, carbon steel or aluminum. The metal may be stamped or machined to the desired shape. The platform surface may also be made of a polymer. A polymer with or white colorant or relatively light color without filler may be adequate. Alternatively the polymer surface may be made reflective by any number of means including adhesively attached reflective stickers or metallization. The platform surface may also be made of a clear glass or a clear polymer such as Surlyn with a metallized back surface to produce a mirror like effect. Furthermore the platform surface may include a texture such as that shown in
The angled surface 90 is positioned at the perimeter of the outer boundary 31 of the nail treatment space 30. The angled surface 90 may be positioned at an opening of the lamp 1 defined by the nail treatment region 30 and may taper as it extends into the nail treatment region 30. This may result in a portion of the opening defined by the nail treatment region 30 having a width that is smaller than a width of an interior of the nail treatment region 30. According, the angled surface may comprise a cross-section that becomes smaller as the angled surface 90 extends into the interior of the nail treatment region 30. In the embodiment of
In the embodiment of
In the embodiment of
A purpose of the angled surface 90 or walls is to maximize the amount of light emitted from the light sources that will impinge on the target nail surface. Furthermore the angled surface may improve the uniformity of light impinging all nail surfaces 110, 116. This includes both the end surfaces of the nails and the thumb.
In an embodiment of this disclosure the angled surface 90 may be at the same vertical position as the thumb and any/or all fingers that are intended to be treated during use. Alternatively, any part or all of the entire angled surface 90 may be at a lower vertical position than the thumb and/or all fingers that are intended to be treated during use. In this way, light can be reflected upward towards the sideways facing thumb of
The use of the phrase angled surface in this disclosure refers to surfaces with a particular range of orientations relative to the nail treatment space 30. The angled surface 90 is oriented in the positive direction of the vertical axis and is oriented in a horizontal direction towards the nail treatment space 30. As depicted in
The embodiment of the angled surface in
The angled surface may be characterized by the angle between the angled surface and the base plane 50 that transverses the nail treatment nail treatment space 30. The angle of the angled surface 90 relative to the base plane 50 can be measured as depicted in
α=180−arc tan(Dv/Dh)
A range of α for the angled surface according to the current disclosure is between 100 and 170 degrees relative to the base plane. A more preferred range of α is between 120 and 150 degrees relative to the base plane. A most preferred range of α is between 130 and 140 degrees relative to the base plane.
In addition to the absolute angle of the angled surface relative to the base plane, the orientation of the angled surface is also important. The angle of the angled surface 90 relative to the base plane 50 can be measured on a plane perpendicular to the second horizontal axis. The same first point 120 may be chosen or a different point 120 may be chosen at the lower edge of the angled surface. The second point 125 is chosen to have the same coordinate along the first horizontal axis as the first point. The specific points used may be chosen at the discretion of one executing the measurement. If any pair of points chosen satisfies the requirements of a given claim, the requirements of the given claim are considered met. The distance from the first point 120 to the second point 125 is measured in the horizontal direction and recorded as Dh2. If the second point is further from the center of the platform than the first point, Dh2 has a positive value. If the second point is closer to the center of the platform surface than the first point, Dh2 has a negative value. The distance from the first point to the second point is also measured in the vertical direction, Dv2. The angle of the angled surface relative to the base plane in a plane perpendicular to the second horizontal axis is then equal to:
α2=180−arc tan(Dv2/Dh2)
The angle of the angled surface 90 relative to the base plane 50 can be measured on a plane perpendicular to the first horizontal axis. The same first point 120 may be chosen or a different point 120 may be chosen at the lower edge of the angled surface. The second point 125 is chosen to have the same coordinate along the second horizontal axis as the first point. The distance from the first point to the second point is measured in horizontal direction and recorded as Dh1. If the second point is further from the center of the platform, Dh1 has a positive value. If the second point is closer to the center of the platform surface than the first point, Dh1 has a negative value. The distance from the first point to the second point is also measured in the vertical direction, Dv1. The angle of the angled surface relative to the base plane in a plane perpendicular to the second horizontal axis is then equal to:
α1=180−arc tan(Dv1/Dh1)
As in
β=arc tan(tan(180−α1)tan(180−α2))
The above measurements and calculations of angles may be made by a range of reliable methods well known to those skilled in the art. A combination of an x-y tables, coordinate measuring systems, height gauges, simple protractors and non-contact systems such as those products by Mitutoyo Corp and Starrett Company may be used. Those skilled in the art may know of and use other reliable means.
The test fixture depicted in
The optical sensor was a model PD300-UV-ROHS sensor P/N 7Z02413 available from Ophir Co, of Jerusalem, Israel. The sensor was attached to a Nova handheld power meter Model 70260, available from ThermoOriel Instruments of Stratford, Conn.
Table 1 contains a summary of measured light intensity as a function of angle α.
A nail lamp was constructed with the platform surface of
The foregoing illustrated embodiments are provided to illustrate the structural and functional principles of the nail lamp of the present disclosure and are not intended to be limiting. To the contrary, the principles of the present disclosure are intended to encompass any and all changes, alterations and/or substitutions within the spirit and scope of the claims, drawings and specification. For example, any features of any of the nail lamp systems either in
This application is a continuation of International Patent Application No. PCT/US2019/036528, filed Jun. 11, 2019, entitled “NAIL LAMP,” which in turn claims priority U.S. Provisional Patent Application No. 62/683,067, filed Jun. 11, 2018; U.S. Provisional Patent Application No. 62/686,168, filed Jun. 18, 2018 and U.S. Provisional Patent Application No. 62/744,271, filed Oct. 11, 2018, each of which are incorporated by reference herein, in the entirety and for all purposes.
Number | Date | Country | |
---|---|---|---|
62683067 | Jun 2018 | US | |
62686168 | Jun 2018 | US | |
62744271 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2019/036528 | Jun 2019 | US |
Child | 17116605 | US |