Name recognition system

Information

  • Patent Grant
  • 9721563
  • Patent Number
    9,721,563
  • Date Filed
    Friday, June 8, 2012
    12 years ago
  • Date Issued
    Tuesday, August 1, 2017
    7 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Dorvil; Richemond
    • Le; Thuykhanh
    Agents
    • Morrison & Foerster LLP
Abstract
A speech recognition system uses, in one embodiment, an extended phonetic dictionary that is obtained by processing words in a user's set of databases, such as a user's contacts database, with a set of pronunciation guessers. The speech recognition system can use a conventional phonetic dictionary and the extended phonetic dictionary to recognize speech inputs that are user requests to use the contacts database, for example, to make a phone call, etc. The extended phonetic dictionary can be updated in response to changes in the contacts database, and the set of pronunciation guessers can include pronunciation guessers for a plurality of locales, each locale having its own pronunciation guesser.
Description
BACKGROUND OF THE INVENTION

Embodiments of the present invention relate to the field of speech recognition. Speech recognition systems have been deployed for many years on various types of deices including desktop and laptop computer systems as well as telephone systems, such as cellular telephones and/or smartphones which include cellular telephones. One use of speech recognition systems in telephones, such as smart phones, is the use of name dialing which allows a user to speak a name in a contacts database in order to cause the telephone to initiate a telephone call. Speech recognition systems can use phonetic dictionaries or lexicons in order to recognize spoken words. Some speech recognition systems, particularly those which are adapted to provide natural language recognition, use a large phonetic dictionary to model a large set of words. These systems can be used to recognize names in an address book or contacts database, but these systems often have difficulty with names due to the fact that the names are often not modeled in a phonetic dictionary or the names are in a different locale from the locale used in the phonetic dictionary.


SUMMARY OF THE DESCRIPTION

A speech recognition system can, in one embodiment of the invention, use an extended phonetic (dictionary that is obtained by processing words in a user's set of databases, such as a user's contacts database or calendar or media database, etc., with a set of one or more pronunciation guessers. The speech recognition system can use a conventional phonetic dictionary and the extended phonetic dictionary to recognize speech inputs such as a speech input in which a user requests to use the contacts database, for example, to make a telephone call, etc. The extended phonetic dictionary can be updated in response to changes in the contacts database, and the set of pronunciation guessers can include pronunciation guessers for a plurality of locales, each locale having its own pronunciation guesser. In one embodiment, the extended phonetic dictionary can be updated at runtime based on changes to the user's databases, such as changes to the contacts databases, etc.


In one embodiment of the invention, a data processing system can perform a method which includes storing a phonetic dictionary for speech recognition; obtaining words from a user's set of one or more databases; processing, using a set of one or more pronunciation guessers, the words from the user's set of one or more databases, the processing producing additional phonetic data derived from the words, the additional phonetic data forming an extended phonetic dictionary for the user; receiving a speech input; and processing the speech input by comparing phonemes detected in the speech input to the phonetic dictionary and to the extended phonetic dictionary to determine a set of one or more matches, from which a best match can be determined. Phonetic fuzzy matching can be used to determine the best match. In one embodiment, the user's set of one or more databases can include a contacts database, which can also be referred to as an address book, which includes names of people and telephone numbers and email addresses, etc. In one embodiment, the phonetic dictionary can be for a natural language speech recognition system, and the speech input from the user can be a request to call a telephone number or to send a text message to another user's device or to play a song or movie on the user's device. The user's set of one or more databases can also include one or more calendar databases, and databases for medias, such as songs or movies or pictures, etc. In one embodiment, the method can also include obtaining changes in the contacts database and processing, using the set of one or more pronunciation guessers, the changes to update the extended phonetic dictionary based on the changes; the obtaining of the changes can occur in response to the changes being made or can occur in response to a speech input which causes the system to determine whether or not such changes exist and to thereby then process those changes using the set of one or more pronunciation guessers. In one embodiment, the set of one or more pronunciation guessers include pronunciation guessers for a plurality of locales, each locale having its own pronunciation guesser. For example, if the user's device has been set for a USA English locale, then the pronunciation guessers can include, in one embodiment, pronunciation guessers for American English, Spanish, and potentially other languages which are commonly used in the United States of America (USA). If the user's device has been set for a locale in Europe, then the set of pronunciation guessers for a set of locales can include pronunciation guessers for English, French, German, and Italian. In one embodiment, the set of pronunciation guessers can include different types of pronunciation guessers for the same locale in order to provide a more robust selection of pronunciation guesses. In one embodiment, a locale can be considered to be a language or a dialect of a language.


In one embodiment, the method can also include determining automatically a set of languages or locales from the words in the user's set of one or more databases. Automatic language detection systems and modules currently exist which can analyze words in a document or database and determine, from that analysis, the languages used. An example of such an automatic language identification system is provided in published U.S. Application US2009/0307584. A subset of the set of pronunciation guessers can be selected based upon the languages identified by an automatic language identifier system, and this selected subset can then be used to process words in the user's databases, such as contacts databases, calendar databases, media databases, etc., in order to generate an extended phonetic dictionary based upon a selected subset of locales which are derived from the analysis performed by the automatic language identifier. In one embodiment, the processing of a speech input can use only that subset of pronunciation identifiers which are selected as a result of the analysis performed by the automatic language identifier.


In one embodiment, the method can be performed by a server that is coupled through a wireless network to the user's device which includes the contacts database and other databases in the user's set of databases. The wireless network can be a local WiFi network or a cellular telephone network or a combination of such wireless networks. The server can obtain the words in the user's databases through the wireless network and can receive the speech input from the user's device through the wireless network, via a network interface (at the server) which is coupled to the wireless network. The server can transmit the best match as the result of the speech recognition operation to the user's device through the wireless network in this embodiment.


In another embodiment, all of the operations in a method according to an embodiment of the present invention can be performed on the user's device without the use of a server. In yet another embodiment, the user's device and the server can split the processing between the two devices and perform various parts of the methods described herein on each of the two devices.


The embodiments described herein can be implemented as machine readable non-transitory storage media or as methods or as one or more data processing systems.


The above summary does not include an exhaustive list of all aspects of the present invention. It is contemplated that the invention includes all systems and methods that can be practiced from all suitable combinations of the various aspects summarized above, and also those disclosed in the Detailed Description below.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicate similar elements.



FIG. 1 shows an example of a system in which a server provides speech recognition services to a plurality of client devices according to one embodiment of the present invention.



FIG. 2 shows an example of an embodiment of the invention in which a client data processing system implements all aspects or a portion of the aspects of one or more embodiments described herein.



FIG. 3 provides an example of the use of two or more pronunciation guessers according to one embodiment of the present invention.



FIG. 4 provides an example of the use of two pronunciation guessers for two different locales according to another embodiment of the present invention.



FIG. 5 is a flowchart which illustrates a method according to one embodiment of the present invention.



FIG. 6 is a flowchart which illustrates another method according to an embodiment of the present invention.



FIG. 7 is a flowchart which illustrates a method according to an embodiment of the present invention.



FIG. 8 is a flowchart which shows a method according to one embodiment of the present invention.



FIG. 9 is a block diagram of a data processing system which can be used to implement one or more embodiments of the present invention.





DETAILED DESCRIPTION

Various embodiments and aspects of the inventions will be described with reference to details discussed below, and the accompanying drawings will illustrate the various embodiments. The following description and drawings are illustrative of the invention and are not to be construed as limiting the invention. Numerous specific details are described to provide a thorough understanding of various embodiments of the present invention. However, in certain instances, well-known or conventional details are not described in order to provide a concise discussion of embodiments of the present inventions.


Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in conjunction with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification do not necessarily all refer to the same embodiment. The processes depicted in the figures that follow are performed by processing logic that comprises hardware (e.g. circuitry, dedicated logic, etc.), software, or a combination of both. Although the processes are described below in terms of some sequential operations, it should be appreciated that some of the operations described may be performed in a different order. Moreover, some operations may be performed in parallel rather than sequentially.



FIG. 1 shows a client/server system in which a server system provides speech recognition services for one or more client devices, each of which can be a data processing system such as a smartphone or other cellular telephones. In the client/server system 101 shown in FIG. 1, at least two client devices 105 and 107 are shown coupled through one or more networks 109 to a server system 103. Server system 103 can be a general purpose computer system or a special purpose computer system or other types of data processing systems (such as the system shown in FIG. 9) which can be configured to provide speech recognition services; for example these systems can be configured by using software that programs the data processing system to perform the speech recognition services. This software can include a speech recognition engine 117 stored in a storage device 111. The speech recognition engine 117 can, in one embodiment, be a natural language speech recognition system that uses a conventional phonetic lexicon such as a phonetic dictionary as is known in the art. Storage device 111 also includes other components which can be used by the server system 103 and which will be described further below. In the system shown in FIG. 1, each of the clients, such as clients 105 and 107 can send a digitized speech input to the server system 103 which then processes the digitized speech input using the speech recognition system at the server system 103. Each of the clients, such as clients 105 and 107 can be a desktop computer system or a laptop computer system or a cellular telephone, or a smartphone, or other data processing systems or consumer electronic devices, including embedded electronic devices. These clients can include one or more databases for each of the clients. For example, client 105 can be a smartphone for a particular user that includes databases for that user such as a contacts or address book database and a calendar database, and media databases, and potentially other databases storing information for that particular user, which can be unique for that particular user relative to other users of other client systems.


In the example shown in FIG. 1, the client databases 113 can be stored on storage device, such as flash memory of client 105 and can be local storage only at client 105 system; in another embodiment, the client databases, such as client database 113 can be stored remotely on a server system which is accessible through a network. Similarly, client 107 includes client databases 115 which can be unique for the user of client system 107 and can include a contacts database and a calendar database and potentially other databases. Each of the client systems, such as client systems 105 and 107 can include a speech input hardware system such as one or more microphones designed to capture the user's speech input and then a system which processes and digitizes that speech input and then transmits that speech input through one or more networks 109 to the server system 103. In one embodiment, one or more of the client systems, such as client systems 105 or 107 or a server system such as server 103 may include a speech repair system, such as the system described in pending U.S. patent application Ser. No. 13/247,912, filed Sep. 28, 2011, and entitled “Speech Recognition Repair Using Contextual Information”, and this application is hereby incorporated herein by reference.


Each of the clients in system 101 can be configured to transmit data representing the content of each of the client databases so that the server system 103 can process the words in the databases according to the methods described herein using the pronunciation guessers to generate one or more extended phonetic dictionaries according to the embodiments described herein.


The one or more networks 109 can be one or more cellular telephone networks or one or more local area wireless networks, such as one or more WiFi networks or a combination of such networks and can include both wired and wireless portions. The one or more networks 109 serve to provide a data connection to transmit data, such as words in the client databases, such as names and telephone numbers in the contacts databases of the various users using the client devices, and the one or more networks 105 can also provide, in one embodiment, voice telephony services allowing users to talk over their cellular telephones as well as provide text messaging services and other services known in the art in connection with cellular telephones or smartphones.


Storage device 111 is coupled to server system 103 either as part of the server system 103 (e.g., a local hard drive of server system 103) or as a storage device on a network which is coupled to server system 103. Server system 103 can be a set of servers in a server farm and storage device 111 can be a set of storage devices in a Storage Area Network (SAN). Storage device 111 can be one or more hard drives containing software and data to provide the speech recognition services described in conjunction with the one or more embodiments herein. Speech recognition engine, as noted above, can be a conventional speech recognition system which uses a conventional phonetic dictionary. In addition, the present invention provides an extension to that phonetic dictionary through one or more extended phonetic dictionaries 119. In one embodiment, each user which is provided speech recognition services by server system 103 can have their own dedicated extended phonetic dictionary 119 which is produced according to one or more methods described herein. The server system 103 can also include one or more pronunciation guessers 121 which are used to process words in the client databases retrieved from (e.g., dynamically uploaded from) client devices. As shown in FIG. 1, storage device 111 can include an updated contacts database and/or other user information for each of the users of client devices, such as client devices 105 and 107. In one embodiment, each client device can upload the latest version of contact databases and other databases from each client device or can upload just the last set of changes that were made since the last upload of the client database or changes to the client database. In one embodiment, each client device can upload a contacts database, a calendar database, a media database, and potentially other databases containing unique user information, and these databases are stored as, for example, updated contact database 123 in the storage device 111. In one embodiment, storage device 111 can also include one or more optional language identifier systems, such as optional language identifier 125 which can be a software module that performs automatic language identification, such as the automatic language identification described in published U.S. Patent Application US2009/0307584 which application is hereby incorporated herein by reference. The optional language identifier can analyze the words in the client's databases to determine the languages or locales used in the those databases and to thereby select the subset of pronunciation guessers which are appropriate for those locales and which match those locales; further aspects with respect to automatic language identification are described further below.


While FIG. 1 shows an example of a client/server architecture in which a server performs at least a portion of the speech recognition services according to one embodiment, FIG. 2 represents an alternative embodiment in which a client device performs all those services without the need for a server system to perform speech recognition services. In this embodiment, a client data processing system such as the system 201 can have all the resources stored on a local storage device 201. These resources can include a speech recognition engine 203 which can be, in one embodiment, software and data designed to provide natural language speech recognition and can include a standard or conventional phonetic dictionary used in the process of providing natural language speech recognition. In addition, storage device 201 can include an extended phonetic dictionary 205 which is derived from one or more user databases 209, such as a contacts database or a calendar database or a media database or other databases specific to and unique to the user of the client system 201. The extended phonetic dictionary 205 can be derived by using one or more pronunciation guessers, such as pronunciation guessers 207 which process words in the one or more client databases 209 on the storage device 201. In one embodiment, the client databases can include a contacts or address book database or other data structures that include names, telephone numbers, addresses, email addresses, and other contact information and other pertinent information for one or more people or businesses for the user of the data processing system 201. In addition, other databases can include a calendar, database or a plurality of calendar databases, a media database, such as a song, movie, etc. database, and other user databases which may be the subject of speech input commands from the user of data processing system 201. Data storage 202 may also include an optional language identifier 211 which can be an automatic language identification module, such as the systems described in published U.S. Patent Application 2009/0307584.


It will be appreciated that the system shown in FIG. 1 or 2 can be employed with a variety of the different embodiments described herein, such as the embodiments described in conjunction with FIGS. 5, 6, 7, and 8 as well as other embodiments described herein. Moreover it will be appreciated that the processing operations in any one of the methods described herein may be split among a client and server architecture such that a client system can perform some of the operations while the server performs other of the operations in order to achieve a result of any one of the methods described herein.



FIGS. 3 and 4 show two examples of the use of a plurality of pronunciation guessers when words in a user's database, such as a contacts or address book database are being processed. In the example shown in FIG. 3, an input word “Devang” is used as an input to two or more pronunciation guessers. This input word 303 results in three different outputs from three different pronunciation guessers 305 and 307 and 309. In particular, outputs 306 and 308 and 310 result from the processing performed by three different pronunciation guessers, guessers 305 and 307 and 309 respectively, based upon the input. The three different pronunciation guessers can be pronunciation guessers that use different techniques in processing the inputs to derive an output. There are a plurality of known pronunciation guessers that can be used in various embodiments of the present invention. For example, one known pronunciation guesser uses a classification and regression tree to guess the pronunciation of words which in effect converts letters to sound rules. Another example of a known pronunciation guesser which can convert letters to sound rules is a pronunciation guesser which employs a maximum likelihood estimation technique. Yet another pronunciation guesser which can be used is a character language modeling pronunciation guesser which can also provide an output at a phoneme level based upon an input word. In the example shown in FIG. 3, each of the pronunciation guesser 305 and 307 and 309 may be for the same locale, such as an American English locale or a French locale or a European Spanish locale. In another embodiment, the example of FIG. 3 shows the use of pronunciation guessers for three different locales (for example, A=USA locale; B=Spanish locale; and C=French locale), and each of these pronunciation guessers can use the same technique (for example, maximum likelihood estimation) for their corresponding locale.



FIG. 4 shows another example which can be employed in various embodiments of the present invention in which an input word from a user's database, such as a contacts database, is processed using two different pronunciation guessers for two different locales. In this case, the same pronunciation guesser technique, such as a maximum likelihood estimation technique can be used for two different locales. This approach is advantageous when a user's device is likely to contain names or other words that are from different locales. For example, it is often the case in the United States that individual names in a user's contacts or address book can be Spanish names or Chinese names or certain other locales. In this case, it is advantageous that pronunciation guessers for different locales be employed to analyze the names and words in the user's databases in order to generate different outputs which can then be matched using known techniques, such as phonetic fuzzy matching techniques, in order to derive a best match from a set of possible matches, as will be explained further below. In this example shown in FIG. 4, an input word 403 is provided as an input to two pronunciation guessers for two different locales. For example, one locale can be for American English and another locale can be for American Spanish. Each guesser for each locale can then provide an output, such as the outputs 406 and 408 from the guessers 405 and 407 respectively as shown in FIG. 4 and these outputs can be mapped, as explained herein, to the target locale of the standard phonetic dictionary. These outputs can then be used as part of the extended phonetic dictionary for the user when speech recognition is performed. In one embodiment, these extended phonetic dictionaries can be embedded within a conventional or standard phonetic dictionary or can be maintained and processed separately from a standard or conventional phonetic dictionary. In either case, the use of the extended phonetic dictionary can improve the accuracy of speech recognition when the speech recognizer is attempting to recognize names in one or more locales in a user's set of databases, such as a contacts database. In one embodiment, a standard phonetic dictionary will be configured or designed to work in a particular locale which can be referred to as a target locale; for example, a user who lives in the USA and speaks American English would have a system that uses a standard phonetic dictionary that uses American English as the target locale. Further, pronunciation guessers for other locales that were used to create the extended phonetic dictionary may use a mapping from phonemes in the other locales to phonemes in the target locale, and this mapping can be done using an aligner or a set of manually setup rules that were prepared by a linguist who is familiar with the languages used in the target locale and one or more of the other locales. For example, if a Finnish pronunciation guesser is used to create outputs for the extended phonetic dictionary then a mapping from Finnish phonemes to phonemes in the target locale can be used to create the final output for the extended phonetic dictionary.



FIGS. 5 and 6 illustrate two exemplary methods for maintaining an extended phonetic dictionary even after the user makes one or more changes to the user's databases. For example, the methods shown in FIGS. 5 and 6 can maintain the extended phonetic dictionary while the user adds names to a contacts database or changes the names (for example when someone gets married) or deletes names from their contacts or address book. A method as in FIG. 5 can begin in operation 501 in which the data processing system obtains a user's one or more databases such as the user's contacts database and calendar database, and/or media database. These databases can be obtained by uploading the databases from the user's device through a network to a server, such as the server system 103 in the case of FIG. 1 or can be obtained by localing retrieving the databases from the user's data processing system as in the case of FIG. 2. It will be appreciated that the term “database” is meant to cover any data structure containing the user data such as contacts or address book data or calendar data or media data or other types of user data. These data structures can be a structured data structure in which data is entered into fields or can be an unstructured data structure as in, for example, a sequence or string of text. Then in operation 503, the data processing system can use at least one pronunciation guesser, such as a default guesser for the currently selected locale on the data processing system, to process words in databases to produce an extended phonetic dictionary for the user. FIG. 4 shows one such example in which a set of pronunciation guessers for different locales is used to process words in the user's databases. In the case of the architecture shown in FIG. 1, the server system 103 can perform operation 503 by processing words in the databases, after the databases have been retrieved through the uploading process. In the case of the architecture shown in FIG. 2, the client data processing system can perform operation 503 by using its local versions of one or more pronunciation guessers 207 to create a local extended phonetic dictionary 205 which is derived from the processing of the pronunciation guesser 207 on words in client database 209. After operation 503, the system can then store the extended phonetic dictionary for the user in operation 505; the storage of the extended phonetic dictionary can either be a local storage as in the case of the architecture shown in FIG. 2 or a remote storage, relative to the user's device, as in the case of the architecture shown in FIG. 1. After an initial or updated version of an extended phonetic dictionary has been stored, the system in operation 507 can determine whether or not the user's databases have changed. Operation 507 may be performed as a periodic or intermittent task (e.g. at every system start-up or wake from sleep) or may be performed in response to a notification from a daemon software component that a user's database has changed or can be performed in response to a speech input which can then determine whether or not the user's database has changed since the last time that the extended phonetic dictionary was updated. If no change has occurred then, the extended phonetic dictionary last created can be maintained in storage, but if a change has occurred in one of the user's databases, then operation 509 can be performed in which the extended phonetic dictionary is updated by performing operation 503 again and storing the result of the updated extended phonetic dictionary. Operation 509 can involve using at least one pronunciation guesser on the entire user's databases without regard the changes (if the prior extended phonetic dictionary is to be discarded) or can be performed on just the portions of the databases that have changed.



FIG. 6 shows an example of another method for creating and maintaining an extended phonetic dictionary for a user's one or more databases, such as contacts or calendars or media databases or a combination of such databases. In operation 601, a data processing system can obtain the user's one or more databases from either a local storage as in the case of the architecture shown in FIG. 2 or by receiving the databases when the client device uploads the one or more databases as in the architecture shown in FIG. 1. After the databases are obtained, operation 603 can optionally be performed in order to determine the locales that are used in the databases. This can be performed with the use of automatic language identifiers which are known in the art; see for example published U.S. Patent Application US2009/0307584. These automatic language identifiers can process the words in the user's one or more databases and determine the locales based on those words. The result of operation 603, if performed, can allow a system to select a subset of available pronunciation guessers based on the identified languages so that the system need only use that subset rather than all of the pronunciation guessers which are available to the system. For example, if the system has ten pronunciation guessers for ten different locales, and the language identifier determines that only three locales are used in the user's databases, then only those three pronunciation guessers can be used when processing the words in the user's database in order to create the extended phonetic dictionary. If operation 603 is not performed, then the system can use a default set of pronunciation guessers based upon a currently selected locale. For example, if the United States of America is the currently selected locale, then the default pronunciation guessers could be a pronunciation guesser for American English and American Spanish (i.e., Spanish spoken in the USA), and no other pronunciation guessers are used when processing the user's set of one or more databases to create the extended phonetic dictionary. In operation 605, the data processing system processes the words in the databases to produce the extended phonetic dictionary for the user, again using either a default set of pronunciation guessers or a selected subset of pronunciation guessers. It will be appreciated that in addition to using different pronunciation guessers for different locales, the system can also use different types of pronunciation guessers. As described herein there are at least three different types of pronunciation guessers which are currently available. After the words are processed in operation 605, the system can store the extended phonetic dictionary for the user in operation 607, and then operation 609, which resembles operation 507, can be performed. In response to determining in operation 609 that the user's database has changed, then, in operation 611, the extended phonetic dictionary is updated based upon those changes by either processing just the changes or by repeating the entire processing of the entire database and discarding the previously created extended phonetic dictionary.



FIGS. 7 and 8 provide examples of methods in which the extended phonetic dictionary is used in conjunction with speech recognition. In one embodiment, the speech recognition system used in both FIGS. 7 and 8 can be a natural language speech recognition system which uses a large and conventional phonetic dictionary as part of the speech recognition engine, such as speech recognition engine 117 in FIG. 1 or 203 in FIG. 2. The method shown in FIG. 7 can begin in operation 701 in which a data processing system receives a speech input from the user; for example the user can say (by speaking into a microphone of a client device) “call Devang” and the client system can receive and digitize the speech input using known techniques and then process the speech input using a speech recognition engine such as the speech recognition engine 117 or the speech recognition engine 203. In the case of the use of speech recognition 203, the speech input is received and processed at the client data processing system 201, whereas in the embodiment shown in FIG. 1, the speech input is received and digitized and then transmitted through network 109 to the server system 103 which then processes the digitized speech input, after having received it through a network interface at the server system 103. The speech recognition engine can then generate in operation 703 an initial set of recognized phonemes from the speech input received in operation 701. Then the system can in operation 705 use the standard phonetic dictionary and the extended phonetic dictionary (which can be embedded in the standard phonetic dictionary) for the user to determine possible matches. In one embodiment, the determining of possible matches can use a technique to obtain a priori knowledge about where, in a recognized sequence of phonemes, names are expected to be and to use the extended phonetic dictionary on at least the portion of phonemes where names are expected to be. For example, as explained in the “Speech Recognition Repair Using Contextual Information” application (Ser. No. 13/247,912, filed Sep. 28, 2011) referred to herein, contextual information can be used to predict the location of a name between two recognized words “call” and “mobile” when the user says “call Devang mobile”. In this case, the recognized words “call” and “mobile” can be used to determine that the phonemes between those recognized words are likely to be phonemes for a name; in other words, the system can use the context of the words “call” and “mobile” (as indicating a request to make a phone call to someone's mobile phone) to infer that the phonemes between those words are for a name and then use the extended phonetic dictionary, having multiple locales, on at least those phonemes. In operation 707, the system can then select the best match as a final recognized output; the selection of a best match can utilize phonetic fuzzy matching techniques which are known in the art. Then in operation 709 a client data processing system, such as client system 105 or 107 or 201 can optionally display the recognized output from operation 707 to the user to allow the user to confirm or to retry by speaking the input again or to cancel the operation requested by the user.



FIG. 8 shows another example of a method according to an embodiment of the invention in which speech is processed using an extended phonetic dictionary in combination with a standard phonetic dictionary. In operation 801, the speech input is received from the user; this input can be, for example, “call Devang at home”. The words “call” and “at” and “home” can be recognized by the standard phonetic dictionary and the word “Devang” can be recognized by the extended phonetic dictionary. Operation 801 can be similar to operation 701 in which the speech input can be received at a client device and then transmitted through a network to a server system or can be received at the client device and processed at the client device as in the architecture shown in FIG. 2. In response to operation 801, the system can then in operation 803 process any changes in the user's databases and update the extended phonetic dictionary based on those changes. In the embodiment shown in FIG. 8, it is assumed that the data processing system will be fast enough to perform operation 803 after having received the speech input. Then in operation 805 the system generates an initial set of recognized phonemes from the received speech input. In operation 807, these recognized phonemes are then processed using a standard phonetic dictionary and the updated extended phonetic dictionary for the user to determine possible matches. The best match can then be selected in operation 809 by using, for example, conventional phonetic fuzzy matching to derive the final output from the speech recognition system. As in the method shown in FIG. 7, the method of FIG. 8 can also include an optional operation in which the recognized output is displayed to the user to allow the user to confirm the operation requested in the speech input or to retry the speech input process again or to cancel operation.



FIG. 9 shows an example of data processing system 900 which may be used with one or more embodiments of the present invention. For example and in one embodiment, system 900 may be implemented as a portable data processing device such as a smartphone or tablet (e.g., iPad) device or a laptop or an entertainment system and client systems 105, 107, and 201 can be implemented as shown in FIG. 9. The data processing system 900 shown in FIG. 9 includes a processing system 911, which may be one or more microprocessors or which may be a system on a chip (integrated circuit) and the system also includes memory 901 for storing data and programs for execution by the processing system. The memory 901 can store, for example, the software components described in conjunction with FIG. 1 or 2 and memory 901 can be any known form of a machine readable non-transitory storage medium, such as semiconductor memory (e.g., flash; DRAM; SRAM; etc.) The system 900 also includes an audio input/output subsystem 905 which may include a microphone and a speaker for, for example, playing back music or providing telephone functionality through the speaker and microphone. The microphone can receive the speech input described herein and that input can be digitized and provided to a speech recognizer system as described herein.


A display controller and display device 909 can provide a visual user interface for the user; this interface may include a graphical user interface which is similar to that shown on a Macintosh computer when running OS X operating system software or iOS software on an iPhone or iPad. The system 900 also includes one or more wireless transceivers 903 to communicate with another data processing system. A wireless transceiver may be a WLAN transceiver (e.g. WiFi), an infrared transceiver, a Bluetooth transceiver, and/or a wireless cellular telephony transceiver. It will be appreciated that additional components, not shown, may also be part of the system 900 in certain embodiments, and in certain embodiments fewer components than shown in FIG. 9 may also be used in a data processing system. The system 900 further can include one or more communications ports 917 to communicate with another data processing system. The communications port may be a USB port, Firewire port, Bluetooth interface, a docking port, etc.


The data processing system 900 also includes one or more input devices 913 which are provided to allow a user to provide input to the system. These input devices may be a keypad or a keyboard or a touch panel or a multi-touch panel which is overlaid and integrated with a display device such as display device 909. The data processing system 900 can also include an optional input/output device which may be a connector for a dock. It will be appreciated that one or more buses, not shown, may be used to interconnect the various components as is well known in the art. The data processing system shown in FIG. 9 may be a handheld computer or a personal digital assistant (PDA), or a cellular telephone with PDA-like functionality, or a handheld computer which includes a cellular telephone, or a media player, such as an iPod, or a game or entertainment device, or devices which combine aspects or functions of these devices, such as a media player combined with a PDA and a cellular telephone in one device or an embedded device or other consumer electronic devices. In other embodiments, the data processing system 900 may be a network computer or an embedded processing device within another device, or other types of data processing systems which have fewer components or perhaps more components than that shown in FIG. 9.


Data processing system 900 can optionally include one or more hardware devices designed to digitize and store human speech received by the microphone in Audio I/O 905.


At least certain embodiments of the inventions may be part of a digital media player, such as a portable music and/or video media player, which may include a media processing system to present the media, a storage device to store the media and may further include a radio frequency (RF) transceiver (e.g., an RF transceiver for a cellular telephone) coupled with an antenna system and the media processing system. In certain embodiments, media stored on a remote storage device may be transmitted to the media player through the RF transceiver. The media may be, for example, one or more of music or other audio, still pictures, or motion pictures.


Examples of a portable media player are described in published U.S. Pat. No. 7,345,671 and U.S. published patent application number 2004/0224638, both of which are incorporated herein by reference.


In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will be evident that various modifications may be made thereto without departing from the broader spirit and scope of the invention as set forth in the following claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense.

Claims
  • 1. A machine readable non-transitory storage medium storing executable instructions which, when executed by a data processing system, cause the data processing system to perform a method comprising: storing a phonetic dictionary for speech recognition;obtaining words from a user's set of one or more databases;receiving a speech input from the user;responsive to the speech input, processing, using a plurality of pronunciation guessers, the words from the user's set of one or more databases, the processing producing additional phonetic data derived from the words, the additional phonetic data forming an extended phonetic dictionary unique to the user;processing the speech input by comparing phonemes detected in the speech input to the phonetic dictionary and to the extended phonetic dictionary to determine a set of one or more matches; anddetermining a best match from the set of one or more matches.
  • 2. The medium as in claim 1 wherein the user's set of one or more databases comprises a contacts database with names of people and telephone numbers, and wherein the phonetic dictionary is for natural language speech recognition and wherein the speech input is for calling a telephone number or sending a text message to another user's device.
  • 3. The medium as in claim 2, wherein the method further comprises: obtaining changes in the contacts database and processing, using the plurality of pronunciation guessers, the changes to update the extended phonetic dictionary based on the changes, wherein the obtaining of the changes occurs in response to the changes being made.
  • 4. The medium as in claim 3, wherein the plurality of pronunciation guessers comprise pronunciation guessers for a plurality of locales, each locale having its own pronunciation guesser.
  • 5. The medium as in claim 4, wherein the method further comprises: determining automatically a set of languages or locales from the words in the user's set of one or more databases;selecting a subset of the plurality of pronunciation guessers, the subset selected based upon the set of languages or locales that were automatically determined from the words in the user's set of one or more databases; andwherein the processing which produces the additional phonetic data uses only the subset of the plurality of pronunciation guessers when producing the additional phonetic data.
  • 6. The medium as in claim 4 wherein the method is performed by a server that is coupled through a wireless network to the user's device which includes the contacts database and wherein the server obtains the words in the contacts database from the user's device through the wireless network and wherein the server receives the speech input from the user's device through the wireless network and wherein the server transmits the best match to the user's device through the wireless network.
  • 7. The medium as in claim 6 wherein the server performs the method for a plurality of users, and each user in the plurality of users has a dedicated extended phonetic dictionary that is unique to each user.
  • 8. The medium as in claim 3, wherein the plurality of pronunciation guessers comprises different pronunciation guessers for the same locale.
  • 9. The medium as in claim 3 wherein the method is performed by the user's device which includes the contacts database.
  • 10. A machine implemented method comprising: storing a phonetic dictionary for speech recognition;obtaining words from a user's set of one or more databases;receiving a speech input from the user;responsive to the speech input, processing, using a plurality of pronunciation guessers, the words from the user's set of one or more databases, the processing producing additional phonetic data derived from the words, the additional phonetic data forming an extended phonetic dictionary unique to the user;processing the speech input by comparing phonemes detected in the speech input to the phonetic dictionary and to the extended phonetic dictionary to determine a set of one or more matches; anddetermining a best match from the set of one or more matches.
  • 11. The method as in claim 10 wherein the user's set of one or more databases comprises a contacts database with names of people and telephone numbers, and wherein the phonetic dictionary is for natural language speech recognition and wherein the speech input is for calling a telephone number or sending a text message to another user's device.
  • 12. The method as in claim 11, wherein the method further comprises: obtaining changes in the contacts database and processing, using the plurality of pronunciation guessers, the changes to update the extended phonetic dictionary based on the changes, wherein the obtaining of the changes occurs in response to the changes being made.
  • 13. The method as in claim 12, wherein the plurality of pronunciation guessers comprise pronunciation guessers for a plurality of locales, each locale having its own pronunciation guesser.
  • 14. The method as in claim 13, wherein the method further comprises: determining automatically a set of languages or locales from the words in the user's set of one or more databases;selecting a subset of the plurality of pronunciation guessers, the subset selected based upon the set of languages or locales that were automatically determined from the words in the user's set of one or more databases; andwherein the processing which produces the additional phonetic data uses only the subset of the plurality of pronunciation guessers when producing the additional phonetic data.
  • 15. The method as in claim 13 wherein the method is performed by a server that is coupled through a wireless network to the user's device which includes the contacts database and wherein the server obtains the words in the contacts database from the user's device through the wireless network and wherein the server receives the speech input from the user's device through the wireless network and wherein the server transmits the best match to the user's device through the wireless network.
  • 16. The method as in claim 12, wherein the plurality of pronunciation guessers comprises different pronunciation guessers for the same locale.
  • 17. The method as in claim 12 wherein the method is performed by the user's device which includes the contacts database.
  • 18. A data processing system comprising: an input device for receiving a speech input from a user;a set of one or more processors coupled to the input device; anda memory coupled to the set of one or more processors, the memory storing a phonetic dictionary for speech recognition and storing an extended phonetic dictionary unique to the user,wherein the extended phonetic dictionary is produced by: responsive to the speech input, processing, using the set of one or more processors, words in a user's set of one or more databases using a plurality of pronunciation guessers,wherein the set of one or more processors processes the speech input by comparing phonemes detected in the speech input to the phonetic dictionary and to the extended phonetic dictionary to determine a best match.
  • 19. The system as in claim 18 wherein the system is a server that is coupled through a wireless network to a user's device which stores the set of one or more databases which include a contacts database, and wherein the input device is a network interface that is coupled to the wireless network and wherein the server transmits the best match to the user's device through the wireless network, and wherein the speech input is for calling a telephone number in the contacts database or for sending a message to another user in the contacts database.
  • 20. The system as in claim 18 wherein the user's set of one or more databases includes a contacts database and changes in the contacts database are processed using the plurality of pronunciation guessers to update the extended phonetic dictionary based on the changes, and wherein the plurality of pronunciation guessers comprise pronunciation guessers for a plurality of locales, each locale having its own pronunciation guesser.
US Referenced Citations (684)
Number Name Date Kind
3704345 Coker et al. Nov 1972 A
3828132 Flanagan et al. Aug 1974 A
3979557 Schulman et al. Sep 1976 A
4278838 Antonov Jul 1981 A
4282405 Taguchi Aug 1981 A
4310721 Manley et al. Jan 1982 A
4348553 Baker et al. Sep 1982 A
4653021 Takagi Mar 1987 A
4688195 Thompson et al. Aug 1987 A
4692941 Jacks et al. Sep 1987 A
4718094 Bahl et al. Jan 1988 A
4724542 Williford Feb 1988 A
4726065 Froessl Feb 1988 A
4727354 Lindsay Feb 1988 A
4776016 Hansen Oct 1988 A
4783807 Marley Nov 1988 A
4811243 Racine Mar 1989 A
4819271 Bahl et al. Apr 1989 A
4827520 Zeinstra May 1989 A
4829576 Porter May 1989 A
4833712 Bahl et al. May 1989 A
4839853 Deerwester et al. Jun 1989 A
4852168 Sprague Jul 1989 A
4862504 Nomura Aug 1989 A
4878230 Murakami et al. Oct 1989 A
4903305 Gillick et al. Feb 1990 A
4905163 Garber et al. Feb 1990 A
4914586 Swinehart et al. Apr 1990 A
4914590 Loatman et al. Apr 1990 A
4944013 Gouvianakis et al. Jul 1990 A
4955047 Morganstein et al. Sep 1990 A
4965763 Zamora Oct 1990 A
4974191 Amirghodsi et al. Nov 1990 A
4977598 Doddington et al. Dec 1990 A
4992972 Brooks et al. Feb 1991 A
5010574 Wang Apr 1991 A
5020112 Chou May 1991 A
5021971 Lindsay Jun 1991 A
5022081 Hirose et al. Jun 1991 A
5027406 Roberts et al. Jun 1991 A
5031217 Nishimura Jul 1991 A
5032989 Tornetta Jul 1991 A
5040218 Vitale et al. Aug 1991 A
5047614 Bianco Sep 1991 A
5057915 Von Kohorn Oct 1991 A
5072452 Brown et al. Dec 1991 A
5091945 Kleijn Feb 1992 A
5127053 Koch Jun 1992 A
5127055 Larkey Jun 1992 A
5128672 Kaehler Jul 1992 A
5133011 McKiel, Jr. Jul 1992 A
5142584 Ozawa Aug 1992 A
5164900 Bernath Nov 1992 A
5165007 Bahl et al. Nov 1992 A
5175803 Yeh Dec 1992 A
5179652 Rozmanith et al. Jan 1993 A
5194950 Murakami et al. Mar 1993 A
5197005 Shwartz et al. Mar 1993 A
5199077 Wilcox et al. Mar 1993 A
5202952 Gillick et al. Apr 1993 A
5208862 Ozawa May 1993 A
5216747 Hardwick et al. Jun 1993 A
5220639 Lee Jun 1993 A
5220657 Bly et al. Jun 1993 A
5222146 Bahl et al. Jun 1993 A
5230036 Akamine et al. Jul 1993 A
5235680 Bijnagte Aug 1993 A
5267345 Brown et al. Nov 1993 A
5268990 Cohen et al. Dec 1993 A
5282265 Rohra Suda et al. Jan 1994 A
RE34562 Murakami et al. Mar 1994 E
5291286 Murakami et al. Mar 1994 A
5293448 Honda Mar 1994 A
5293452 Picone et al. Mar 1994 A
5297170 Eyuboglu et al. Mar 1994 A
5301109 Landauer et al. Apr 1994 A
5303406 Hansen et al. Apr 1994 A
5309359 Katz et al. May 1994 A
5317507 Gallant May 1994 A
5317647 Pagallo May 1994 A
5325297 Bird et al. Jun 1994 A
5325298 Gallant Jun 1994 A
5327498 Hamon Jul 1994 A
5333236 Bahl et al. Jul 1994 A
5333275 Wheatley et al. Jul 1994 A
5345536 Hoshimi et al. Sep 1994 A
5349645 Zhao Sep 1994 A
5353377 Kuroda et al. Oct 1994 A
5377301 Rosenberg et al. Dec 1994 A
5384892 Strong Jan 1995 A
5384893 Hutchins Jan 1995 A
5386494 White Jan 1995 A
5386556 Hedin et al. Jan 1995 A
5390279 Strong Feb 1995 A
5396625 Parkes Mar 1995 A
5400434 Pearson Mar 1995 A
5404295 Katz et al. Apr 1995 A
5412756 Bauman et al. May 1995 A
5412804 Krishna May 1995 A
5412806 Du et al. May 1995 A
5418951 Damashek May 1995 A
5424947 Nagao et al. Jun 1995 A
5434777 Luciw Jul 1995 A
5444823 Nguyen Aug 1995 A
5455888 Iyengar et al. Oct 1995 A
5469529 Bimbot et al. Nov 1995 A
5471611 McGregor Nov 1995 A
5475587 Anick et al. Dec 1995 A
5479488 Lennig et al. Dec 1995 A
5491772 Hardwick et al. Feb 1996 A
5493677 Balogh Feb 1996 A
5495604 Harding et al. Feb 1996 A
5502790 Yi Mar 1996 A
5502791 Nishimura et al. Mar 1996 A
5515475 Gupta et al. May 1996 A
5536902 Serra et al. Jul 1996 A
5537618 Boulton et al. Jul 1996 A
5574823 Hassanein et al. Nov 1996 A
5577241 Spencer Nov 1996 A
5578808 Taylor Nov 1996 A
5579436 Chou et al. Nov 1996 A
5581655 Cohen et al. Dec 1996 A
5584024 Shwartz Dec 1996 A
5596676 Swaminathan et al. Jan 1997 A
5596994 Bro Jan 1997 A
5608624 Luciw Mar 1997 A
5613036 Strong Mar 1997 A
5617507 Lee et al. Apr 1997 A
5619694 Shimazu Apr 1997 A
5621859 Schwartz et al. Apr 1997 A
5621903 Luciw et al. Apr 1997 A
5642464 Yue et al. Jun 1997 A
5642519 Martin Jun 1997 A
5644727 Atkins Jul 1997 A
5664055 Kroon Sep 1997 A
5675819 Schuetze Oct 1997 A
5682539 Conrad et al. Oct 1997 A
5687077 Gough, Jr. Nov 1997 A
5696962 Kupiec Dec 1997 A
5701400 Amado Dec 1997 A
5706442 Anderson et al. Jan 1998 A
5710886 Christensen et al. Jan 1998 A
5712957 Waibel et al. Jan 1998 A
5715468 Budzinski Feb 1998 A
5721827 Logan et al. Feb 1998 A
5727950 Cook et al. Mar 1998 A
5729694 Holzrichter et al. Mar 1998 A
5732390 Katayanagi et al. Mar 1998 A
5734791 Acero et al. Mar 1998 A
5737734 Schultz Apr 1998 A
5748974 Johnson May 1998 A
5749081 Whiteis May 1998 A
5759101 Von Kohorn Jun 1998 A
5790978 Olive et al. Aug 1998 A
5794050 Dahlgren et al. Aug 1998 A
5794182 Manduchi et al. Aug 1998 A
5794207 Walker et al. Aug 1998 A
5794237 Gore, Jr. Aug 1998 A
5799276 Komissarchik et al. Aug 1998 A
5822743 Gupta et al. Oct 1998 A
5825881 Colvin, Sr. Oct 1998 A
5826261 Spencer Oct 1998 A
5828999 Bellegarda et al. Oct 1998 A
5835893 Ushioda Nov 1998 A
5839106 Bellegarda Nov 1998 A
5845255 Mayaud Dec 1998 A
5857184 Lynch Jan 1999 A
5860063 Gorin et al. Jan 1999 A
5862223 Walker et al. Jan 1999 A
5864806 Mokbel et al. Jan 1999 A
5864844 James et al. Jan 1999 A
5867799 Lang et al. Feb 1999 A
5873056 Liddy et al. Feb 1999 A
5875437 Atkins Feb 1999 A
5884323 Hawkins et al. Mar 1999 A
5895464 Bhandari et al. Apr 1999 A
5895466 Goldberg et al. Apr 1999 A
5899972 Miyazawa et al. May 1999 A
5913193 Huang et al. Jun 1999 A
5915249 Spencer Jun 1999 A
5930769 Rose Jul 1999 A
5933822 Braden-Harder et al. Aug 1999 A
5936926 Yokouchi et al. Aug 1999 A
5940811 Norris Aug 1999 A
5941944 Messerly Aug 1999 A
5943670 Prager Aug 1999 A
5948040 DeLorme et al. Sep 1999 A
5956699 Wong et al. Sep 1999 A
5960422 Prasad Sep 1999 A
5963924 Williams et al. Oct 1999 A
5966126 Szabo Oct 1999 A
5970474 LeRoy et al. Oct 1999 A
5974146 Randle et al. Oct 1999 A
5982891 Ginter et al. Nov 1999 A
5987132 Rowney Nov 1999 A
5987140 Rowney et al. Nov 1999 A
5987404 Della Pietra et al. Nov 1999 A
5987440 O'Neil et al. Nov 1999 A
5999908 Abelow Dec 1999 A
6016471 Kuhn et al. Jan 2000 A
6023684 Pearson Feb 2000 A
6024288 Gottlich et al. Feb 2000 A
6026345 Shah et al. Feb 2000 A
6026375 Hall et al. Feb 2000 A
6026388 Liddy et al. Feb 2000 A
6026393 Gupta et al. Feb 2000 A
6029132 Kuhn et al. Feb 2000 A
6038533 Buchsbaum et al. Mar 2000 A
6052656 Suda et al. Apr 2000 A
6055514 Wren Apr 2000 A
6055531 Bennett et al. Apr 2000 A
6064960 Bellegarda et al. May 2000 A
6070139 Miyazawa et al. May 2000 A
6070147 Harms et al. May 2000 A
6076051 Messerly et al. Jun 2000 A
6076088 Paik et al. Jun 2000 A
6078914 Redfern Jun 2000 A
6081750 Hoffberg et al. Jun 2000 A
6081774 de Hita et al. Jun 2000 A
6088731 Kiraly et al. Jul 2000 A
6094649 Bowen et al. Jul 2000 A
6105865 Hardesty Aug 2000 A
6108627 Sabourin Aug 2000 A
6119101 Peckover Sep 2000 A
6122616 Henton Sep 2000 A
6125356 Brockman et al. Sep 2000 A
6144938 Surace et al. Nov 2000 A
6173261 Arai et al. Jan 2001 B1
6173279 Levin et al. Jan 2001 B1
6188999 Moody Feb 2001 B1
6195641 Loring et al. Feb 2001 B1
6205456 Nakao Mar 2001 B1
6208971 Bellegarda et al. Mar 2001 B1
6233559 Balakrishnan May 2001 B1
6233578 Machihara et al. May 2001 B1
6246981 Papineni et al. Jun 2001 B1
6260024 Shkedy Jul 2001 B1
6266637 Donovan et al. Jul 2001 B1
6272464 Kiraz Aug 2001 B1
6275824 O'Flaherty et al. Aug 2001 B1
6285786 Seni et al. Sep 2001 B1
6304844 Pan et al. Oct 2001 B1
6308149 Gaussier Oct 2001 B1
6311189 deVries et al. Oct 2001 B1
6317594 Gossman et al. Nov 2001 B1
6317707 Bangalore et al. Nov 2001 B1
6317831 King Nov 2001 B1
6321092 Fitch et al. Nov 2001 B1
6334103 Surace et al. Dec 2001 B1
6356854 Schubert et al. Mar 2002 B1
6356905 Gershman et al. Mar 2002 B1
6366883 Campbell et al. Apr 2002 B1
6366884 Bellegarda et al. Apr 2002 B1
6421672 McAllister et al. Jul 2002 B1
6434524 Weber Aug 2002 B1
6446076 Burkey et al. Sep 2002 B1
6449620 Draper et al. Sep 2002 B1
6453292 Ramaswamy et al. Sep 2002 B2
6460029 Fries et al. Oct 2002 B1
6466654 Cooper et al. Oct 2002 B1
6477488 Bellegarda Nov 2002 B1
6487534 Thelen et al. Nov 2002 B1
6499013 Weber Dec 2002 B1
6501937 Ho et al. Dec 2002 B1
6505158 Conkie Jan 2003 B1
6505175 Silverman et al. Jan 2003 B1
6505183 Loofbourrow et al. Jan 2003 B1
6510417 Quilici et al. Jan 2003 B1
6513063 Julia et al. Jan 2003 B1
6523061 Halverson et al. Feb 2003 B1
6523172 Martinez-Guerra et al. Feb 2003 B1
6526382 Yuschik Feb 2003 B1
6526395 Morris Feb 2003 B1
6532444 Weber Mar 2003 B1
6532446 King Mar 2003 B1
6546388 Edlund et al. Apr 2003 B1
6553344 Bellegarda et al. Apr 2003 B2
6556983 Altschuler et al. Apr 2003 B1
6584464 Warthen Jun 2003 B1
6598039 Livowsky Jul 2003 B1
6601026 Appelt et al. Jul 2003 B2
6601234 Bowman-Amuah Jul 2003 B1
6604059 Strubbe et al. Aug 2003 B2
6615172 Bennett et al. Sep 2003 B1
6615175 Gazdzinski Sep 2003 B1
6615220 Austin et al. Sep 2003 B1
6625583 Silverman et al. Sep 2003 B1
6631346 Karaorman et al. Oct 2003 B1
6633846 Bennett et al. Oct 2003 B1
6647260 Dusse et al. Nov 2003 B2
6650735 Burton et al. Nov 2003 B2
6654740 Tokuda et al. Nov 2003 B2
6665639 Mozer et al. Dec 2003 B2
6665640 Bennett et al. Dec 2003 B1
6665641 Coorman et al. Dec 2003 B1
6684187 Conkie Jan 2004 B1
6691064 Vroman Feb 2004 B2
6691111 Lazaridis et al. Feb 2004 B2
6691151 Cheyer et al. Feb 2004 B1
6697780 Beutnagel et al. Feb 2004 B1
6697824 Bowman-Amuah Feb 2004 B1
6701294 Ball et al. Mar 2004 B1
6711585 Copperman et al. Mar 2004 B1
6718324 Edlund et al. Apr 2004 B2
6721728 McGreevy Apr 2004 B2
6735632 Kiraly et al. May 2004 B1
6742021 Halverson et al. May 2004 B1
6757362 Cooper et al. Jun 2004 B1
6757718 Halverson et al. Jun 2004 B1
6766320 Wang et al. Jul 2004 B1
6778951 Contractor Aug 2004 B1
6778952 Bellegarda Aug 2004 B2
6778962 Kasai et al. Aug 2004 B1
6778970 Au Aug 2004 B2
6792082 Levine Sep 2004 B1
6807574 Partovi et al. Oct 2004 B1
6810379 Vermeulen et al. Oct 2004 B1
6813491 McKinney Nov 2004 B1
6829603 Wolf et al. Dec 2004 B1
6832194 Mozer et al. Dec 2004 B1
6842767 Partovi et al. Jan 2005 B1
6847966 Sommer et al. Jan 2005 B1
6847979 Allemang et al. Jan 2005 B2
6851115 Cheyer et al. Feb 2005 B1
6859931 Cheyer et al. Feb 2005 B1
6895380 Sepe, Jr. May 2005 B2
6895558 Loveland May 2005 B1
6901399 Corston et al. May 2005 B1
6912499 Sabourin et al. Jun 2005 B1
6924828 Hirsch Aug 2005 B1
6928614 Everhart Aug 2005 B1
6931384 Horvitz et al. Aug 2005 B1
6937975 Elworthy Aug 2005 B1
6937986 Denenberg et al. Aug 2005 B2
6964023 Maes et al. Nov 2005 B2
6980949 Ford Dec 2005 B2
6980955 Okutani et al. Dec 2005 B2
6985865 Packingham et al. Jan 2006 B1
6988071 Gazdzinski Jan 2006 B1
6996531 Korall et al. Feb 2006 B2
6999927 Mozer et al. Feb 2006 B2
7020685 Chen et al. Mar 2006 B1
7027974 Busch et al. Apr 2006 B1
7036128 Julia et al. Apr 2006 B1
7050977 Bennett May 2006 B1
7058569 Coorman et al. Jun 2006 B2
7062428 Hogenhout et al. Jun 2006 B2
7069560 Cheyer et al. Jun 2006 B1
7092887 Mozer et al. Aug 2006 B2
7092928 Elad et al. Aug 2006 B1
7093693 Gazdzinski Aug 2006 B1
7127046 Smith et al. Oct 2006 B1
7127403 Saylor et al. Oct 2006 B1
7136710 Hoffberg et al. Nov 2006 B1
7137126 Coffman et al. Nov 2006 B1
7139714 Bennett et al. Nov 2006 B2
7139722 Perrella et al. Nov 2006 B2
7152070 Musick et al. Dec 2006 B1
7177798 Hsu et al. Feb 2007 B2
7197460 Gupta et al. Mar 2007 B1
7200559 Wang Apr 2007 B2
7203646 Bennett Apr 2007 B2
7216073 Lavi et al. May 2007 B2
7216080 Tsiao et al. May 2007 B2
7225125 Bennett et al. May 2007 B2
7233790 Kjellberg et al. Jun 2007 B2
7233904 Luisi Jun 2007 B2
7266496 Wang et al. Sep 2007 B2
7277854 Bennett et al. Oct 2007 B2
7290039 Lisitsa et al. Oct 2007 B1
7299033 Kjellberg et al. Nov 2007 B2
7310600 Garner et al. Dec 2007 B1
7324947 Jordan et al. Jan 2008 B2
7349953 Lisitsa et al. Mar 2008 B2
7376556 Bennett May 2008 B2
7376645 Bernard May 2008 B2
7379874 Schmid et al. May 2008 B2
7386449 Sun et al. Jun 2008 B2
7389224 Elworthy Jun 2008 B1
7392185 Bennett Jun 2008 B2
7398209 Kennewick et al. Jul 2008 B2
7403938 Harrison et al. Jul 2008 B2
7409337 Potter et al. Aug 2008 B1
7415100 Cooper et al. Aug 2008 B2
7418392 Mozer et al. Aug 2008 B1
7426467 Nashida et al. Sep 2008 B2
7427024 Gazdzinski et al. Sep 2008 B1
7447635 Konopka et al. Nov 2008 B1
7454351 Jeschke et al. Nov 2008 B2
7467087 Gillick Dec 2008 B1
7475010 Chao Jan 2009 B2
7483894 Cao Jan 2009 B2
7487089 Mozer Feb 2009 B2
7496498 Chu et al. Feb 2009 B2
7496512 Zhao et al. Feb 2009 B2
7502738 Kennewick et al. Mar 2009 B2
7508373 Lin et al. Mar 2009 B2
7522927 Fitch et al. Apr 2009 B2
7523108 Cao Apr 2009 B2
7526466 Au Apr 2009 B2
7529671 Rockenbeck et al. May 2009 B2
7529676 Koyama May 2009 B2
7539656 Fratkina et al. May 2009 B2
7546382 Healey et al. Jun 2009 B2
7548895 Pulsipher Jun 2009 B2
7552055 Lecoeuche Jun 2009 B2
7555431 Bennett Jun 2009 B2
7558730 Davis et al. Jul 2009 B2
7571106 Cao et al. Aug 2009 B2
7599918 Shen et al. Oct 2009 B2
7620549 Di Cristo et al. Nov 2009 B2
7624007 Bennett Nov 2009 B2
7630900 Strom Dec 2009 B1
7634409 Kennewick et al. Dec 2009 B2
7636657 Ju et al. Dec 2009 B2
7640160 Di Cristo et al. Dec 2009 B2
7647225 Bennett et al. Jan 2010 B2
7657424 Bennett Feb 2010 B2
7672841 Bennett Mar 2010 B2
7676026 Baxter, Jr. Mar 2010 B1
7684985 Dominach et al. Mar 2010 B2
7693715 Hwang et al. Apr 2010 B2
7693720 Kennewick et al. Apr 2010 B2
7698131 Bennett Apr 2010 B2
7702500 Blaedow Apr 2010 B2
7702508 Bennett Apr 2010 B2
7707027 Balchandran et al. Apr 2010 B2
7707032 Wang et al. Apr 2010 B2
7707267 Lisitsa et al. Apr 2010 B2
7711565 Gazdzinski May 2010 B1
7711672 Au May 2010 B2
7716056 Weng et al. May 2010 B2
7720674 Kaiser et al. May 2010 B2
7720683 Vermeulen et al. May 2010 B1
7725307 Bennett May 2010 B2
7725318 Gavalda May 2010 B2
7725320 Bennett May 2010 B2
7725321 Bennett May 2010 B2
7729904 Bennett Jun 2010 B2
7729916 Coffman et al. Jun 2010 B2
7734461 Kwak et al. Jun 2010 B2
7747616 Yamada et al. Jun 2010 B2
7752152 Paek et al. Jul 2010 B2
7756868 Lee Jul 2010 B2
7774204 Mozer et al. Aug 2010 B2
7783486 Rosser et al. Aug 2010 B2
7801729 Mozer Sep 2010 B2
7809570 Kennewick et al. Oct 2010 B2
7809610 Cao Oct 2010 B2
7818176 Freeman et al. Oct 2010 B2
7822608 Cross, Jr. et al. Oct 2010 B2
7826945 Zhang et al. Nov 2010 B2
7831426 Bennett Nov 2010 B2
7840400 Lavi et al. Nov 2010 B2
7840447 Kleinrock et al. Nov 2010 B2
7853574 Kraenzel et al. Dec 2010 B2
7873519 Bennett Jan 2011 B2
7873654 Bernard Jan 2011 B2
7881936 Longé et al. Feb 2011 B2
7890652 Bull et al. Feb 2011 B2
7912702 Bennett Mar 2011 B2
7917367 Di Cristo et al. Mar 2011 B2
7917497 Harrison et al. Mar 2011 B2
7920678 Cooper et al. Apr 2011 B2
7925525 Chin Apr 2011 B2
7930168 Weng et al. Apr 2011 B2
7949529 Weider et al. May 2011 B2
7949534 Davis et al. May 2011 B2
7974844 Sumita Jul 2011 B2
7974972 Cao Jul 2011 B2
7983915 Knight et al. Jul 2011 B2
7983917 Kennewick et al. Jul 2011 B2
7983997 Allen et al. Jul 2011 B2
7986431 Emori et al. Jul 2011 B2
7987151 Schott et al. Jul 2011 B2
7996228 Miller et al. Aug 2011 B2
8000453 Cooper et al. Aug 2011 B2
8005679 Jordan et al. Aug 2011 B2
8015006 Kennewick et al. Sep 2011 B2
8024195 Mozer et al. Sep 2011 B2
8036901 Mozer Oct 2011 B2
8041570 Mirkovic et al. Oct 2011 B2
8041611 Kleinrock et al. Oct 2011 B2
8055708 Chitsaz et al. Nov 2011 B2
8065155 Gazdzinski Nov 2011 B1
8065156 Gazdzinski Nov 2011 B2
8069046 Kennewick et al. Nov 2011 B2
8073681 Baldwin et al. Dec 2011 B2
8078473 Gazdzinski Dec 2011 B1
8082153 Coffman et al. Dec 2011 B2
8095364 Longé et al. Jan 2012 B2
8099289 Mozer et al. Jan 2012 B2
8107401 John et al. Jan 2012 B2
8112275 Kennewick et al. Feb 2012 B2
8112280 Lu Feb 2012 B2
8117037 Gazdzinski Feb 2012 B2
8131557 Davis et al. Mar 2012 B2
8140335 Kennewick et al. Mar 2012 B2
8165886 Gagnon et al. Apr 2012 B1
8166019 Lee et al. Apr 2012 B1
8190359 Bourne May 2012 B2
8195467 Mozer et al. Jun 2012 B2
8204238 Mozer Jun 2012 B2
8205788 Gazdzinski et al. Jun 2012 B1
8219407 Roy et al. Jul 2012 B1
8275621 Alewine et al. Sep 2012 B2
8285546 Reich Oct 2012 B2
8285551 Gazdzinski Oct 2012 B2
8285553 Gazdzinski Oct 2012 B2
8290778 Gazdzinski Oct 2012 B2
8290781 Gazdzinski Oct 2012 B2
8296146 Gazdzinski Oct 2012 B2
8296153 Gazdzinski Oct 2012 B2
8301456 Gazdzinski Oct 2012 B2
8311834 Gazdzinski Nov 2012 B1
8370158 Gazdzinski Feb 2013 B2
8371503 Gazdzinski Feb 2013 B2
8374871 Ehsani et al. Feb 2013 B2
8447612 Gazdzinski May 2013 B2
8521513 Millett et al. Aug 2013 B2
8595004 Koshinaka Nov 2013 B2
8687777 Lavian Apr 2014 B1
20010047264 Roundtree Nov 2001 A1
20020032564 Ehsani et al. Mar 2002 A1
20020046025 Hain Apr 2002 A1
20020069063 Buchner et al. Jun 2002 A1
20020077817 Atal Jun 2002 A1
20020103641 Kuo et al. Aug 2002 A1
20020164000 Cohen et al. Nov 2002 A1
20020198714 Zhou Dec 2002 A1
20040049388 Roth Mar 2004 A1
20040135701 Yasuda et al. Jul 2004 A1
20040153306 Tanner Aug 2004 A1
20040210438 Gillick Oct 2004 A1
20040215449 Roy Oct 2004 A1
20040236778 Junqua et al. Nov 2004 A1
20050055403 Brittan Mar 2005 A1
20050071332 Ortega et al. Mar 2005 A1
20050080625 Bennett et al. Apr 2005 A1
20050091118 Fano Apr 2005 A1
20050102614 Brockett et al. May 2005 A1
20050108001 Aarskog May 2005 A1
20050114124 Liu et al. May 2005 A1
20050119897 Bennett et al. Jun 2005 A1
20050143972 Gopalakrishnan et al. Jun 2005 A1
20050159957 Roth Jul 2005 A1
20050165607 DiFabbrizio et al. Jul 2005 A1
20050182629 Coorman et al. Aug 2005 A1
20050196733 Budra et al. Sep 2005 A1
20050273337 Erell Dec 2005 A1
20050288936 Busayapongchai et al. Dec 2005 A1
20060018492 Chiu et al. Jan 2006 A1
20060074898 Gavalda et al. Apr 2006 A1
20060106592 Brockett et al. May 2006 A1
20060106594 Brockett et al. May 2006 A1
20060106595 Brockett et al. May 2006 A1
20060117002 Swen Jun 2006 A1
20060122834 Bennett Jun 2006 A1
20060143007 Koh et al. Jun 2006 A1
20060173683 Roth Aug 2006 A1
20070055529 Kanevsky et al. Mar 2007 A1
20070058832 Hug et al. Mar 2007 A1
20070088556 Andrew Apr 2007 A1
20070100790 Cheyer et al. May 2007 A1
20070106674 Agrawal et al. May 2007 A1
20070118377 Badino et al. May 2007 A1
20070135949 Snover et al. Jun 2007 A1
20070174188 Fish Jul 2007 A1
20070185917 Prahlad et al. Aug 2007 A1
20070198267 Jones Aug 2007 A1
20070282595 Tunning et al. Dec 2007 A1
20080015864 Ross et al. Jan 2008 A1
20080021708 Bennett et al. Jan 2008 A1
20080034032 Healey et al. Feb 2008 A1
20080052063 Bennett et al. Feb 2008 A1
20080120112 Jordan et al. May 2008 A1
20080129520 Lee Jun 2008 A1
20080140657 Azvine et al. Jun 2008 A1
20080154603 Oddo Jun 2008 A1
20080221903 Kanevsky et al. Sep 2008 A1
20080228496 Yu et al. Sep 2008 A1
20080247519 Abella et al. Oct 2008 A1
20080249770 Kim et al. Oct 2008 A1
20080270138 Knight et al. Oct 2008 A1
20080270344 Yurick Oct 2008 A1
20080273672 Didcock Nov 2008 A1
20080300878 Bennett Dec 2008 A1
20080319763 Di Fabbrizio et al. Dec 2008 A1
20090006100 Badger et al. Jan 2009 A1
20090006343 Platt et al. Jan 2009 A1
20090030800 Grois Jan 2009 A1
20090055179 Cho et al. Feb 2009 A1
20090058823 Kocienda Mar 2009 A1
20090076796 Daraselia Mar 2009 A1
20090077165 Rhodes et al. Mar 2009 A1
20090100049 Cao Apr 2009 A1
20090112677 Rhett Apr 2009 A1
20090150156 Kennewick et al. Jun 2009 A1
20090157401 Bennett Jun 2009 A1
20090164441 Cheyer Jun 2009 A1
20090171664 Kennewick et al. Jul 2009 A1
20090287583 Holmes Nov 2009 A1
20090290718 Kahn et al. Nov 2009 A1
20090299745 Kennewick et al. Dec 2009 A1
20090299849 Cao et al. Dec 2009 A1
20090305203 Okumura Dec 2009 A1
20090307162 Bui et al. Dec 2009 A1
20090307584 Davidson et al. Dec 2009 A1
20100005081 Bennett Jan 2010 A1
20100023320 Di Cristo et al. Jan 2010 A1
20100036660 Bennett Feb 2010 A1
20100042400 Block et al. Feb 2010 A1
20100088020 Sano et al. Apr 2010 A1
20100138215 Williams Jun 2010 A1
20100145700 Kennewick et al. Jun 2010 A1
20100179991 Lorch Jul 2010 A1
20100204986 Kennewick et al. Aug 2010 A1
20100217604 Baldwin et al. Aug 2010 A1
20100228540 Bennett Sep 2010 A1
20100235341 Bennett Sep 2010 A1
20100257160 Cao Oct 2010 A1
20100262599 Nitz Oct 2010 A1
20100277579 Cho et al. Nov 2010 A1
20100280983 Cho et al. Nov 2010 A1
20100286985 Kennewick et al. Nov 2010 A1
20100299142 Freeman et al. Nov 2010 A1
20100312547 van Os et al. Dec 2010 A1
20100318576 Kim Dec 2010 A1
20100332235 David Dec 2010 A1
20100332348 Cao Dec 2010 A1
20110047072 Ciurea Feb 2011 A1
20110054894 Phillips et al. Mar 2011 A1
20110060807 Martin et al. Mar 2011 A1
20110082688 Kim et al. Apr 2011 A1
20110093261 Angott Apr 2011 A1
20110112827 Kennewick et al. May 2011 A1
20110112921 Kennewick et al. May 2011 A1
20110119049 Ylonen May 2011 A1
20110119051 Li May 2011 A1
20110125540 Jang et al. May 2011 A1
20110130958 Stahl et al. Jun 2011 A1
20110131036 Di Cristo et al. Jun 2011 A1
20110131038 Oyaizu Jun 2011 A1
20110131045 Cristo et al. Jun 2011 A1
20110143811 Rodriguez Jun 2011 A1
20110144999 Jang et al. Jun 2011 A1
20110153329 Moorer Jun 2011 A1
20110161076 Davis et al. Jun 2011 A1
20110161309 Lung et al. Jun 2011 A1
20110175810 Markovic et al. Jul 2011 A1
20110184730 LeBeau et al. Jul 2011 A1
20110218855 Cao et al. Sep 2011 A1
20110231182 Weider et al. Sep 2011 A1
20110231188 Kennewick et al. Sep 2011 A1
20110264643 Cao Oct 2011 A1
20110279368 Klein et al. Nov 2011 A1
20110306426 Novak et al. Dec 2011 A1
20120002820 Leichter Jan 2012 A1
20120016678 Gruber et al. Jan 2012 A1
20120020490 Leichter Jan 2012 A1
20120022787 LeBeau et al. Jan 2012 A1
20120022857 Baldwin et al. Jan 2012 A1
20120022860 Lloyd et al. Jan 2012 A1
20120022868 LeBeau et al. Jan 2012 A1
20120022869 Lloyd et al. Jan 2012 A1
20120022870 Kristjansson et al. Jan 2012 A1
20120022874 Lloyd et al. Jan 2012 A1
20120022876 LeBeau et al. Jan 2012 A1
20120023088 Cheng et al. Jan 2012 A1
20120034904 LeBeau et al. Feb 2012 A1
20120035908 LeBeau et al. Feb 2012 A1
20120035924 Jitkoff et al. Feb 2012 A1
20120035931 LeBeau et al. Feb 2012 A1
20120035932 Jitkoff et al. Feb 2012 A1
20120042343 Laligand et al. Feb 2012 A1
20120137367 Dupont et al. May 2012 A1
20120173464 Tur et al. Jul 2012 A1
20120265528 Gruber et al. Oct 2012 A1
20120271676 Aravamudan et al. Oct 2012 A1
20120311583 Gruber et al. Dec 2012 A1
20130080177 Chen Mar 2013 A1
20130110518 Gruber et al. May 2013 A1
20130110520 Cheyer et al. May 2013 A1
20130231917 Naik Sep 2013 A1
Foreign Referenced Citations (49)
Number Date Country
681573 Apr 1993 CH
3837590 May 1990 DE
198 41 541 Dec 2007 DE
0138061 Sep 1984 EP
0138061 Apr 1985 EP
0218859 Apr 1987 EP
0262938 Apr 1988 EP
0293259 Nov 1988 EP
0299572 Jan 1989 EP
0313975 May 1989 EP
0314908 May 1989 EP
0327408 Aug 1989 EP
0389271 Sep 1990 EP
0411675 Feb 1991 EP
0559349 Sep 1993 EP
0559349 Sep 1993 EP
0570660 Nov 1993 EP
0863453 Sep 1998 EP
1245023 Oct 2002 EP
1291848 Mar 2003 EP
2 109 295 Oct 2009 EP
2293667 Apr 1996 GB
06 019965 Jan 1994 JP
2001 125896 May 2001 JP
2002 024212 Jan 2002 JP
2003 517158 May 2003 JP
2009 036999 Feb 2009 JP
10-2007-0057496 Jun 2007 KR
10-0776800 Nov 2007 KR
10-2008-001227 Feb 2008 KR
10-0810500 Mar 2008 KR
10 2008 109322 Dec 2008 KR
10 2009 086805 Aug 2009 KR
10-0920267 Oct 2009 KR
10-2010-0032792 Apr 2010 KR
10 2011 0113414 Oct 2011 KR
WO 9502221 Jan 1995 WO
WO 9726612 Jul 1997 WO
WO 9841956 Sep 1998 WO
WO 9901834 Jan 1999 WO
WO 9908238 Feb 1999 WO
WO 9956227 Nov 1999 WO
WO 0060435 Oct 2000 WO
WO 0060435 Oct 2000 WO
WO 02073603 Sep 2002 WO
WO 2006129967 Dec 2006 WO
WO 2008085742 Jul 2008 WO
WO 2008109835 Sep 2008 WO
WO 2011088053 Jul 2011 WO
Non-Patent Literature Citations (410)
Entry
Martin, D., et al., “The Open Agent Architecture: A Framework for building distributed software systems,” Jan.-Mar. 1999, Applied Artificial Intelligence: An International Journal, vol. 13, No. 1-2, http://adam.cheyer.com/papers/oaa.pdf, 38 pages.
Bussler, C., et al., “Web Service Execution Environment (WSMX),” Jun. 3, 2005, W3C Member Submission, http://www.w3.org/Submission/WSMX, 29 pages.
Cheyer, A., “About Adam Cheyer,” Sep. 17, 2012, http://www.adam.cheyer.com/about.html, 2 pages.
Cheyer, A., “A Perspective on AI & Agent Technologies for SCM,” VerticalNet, 2001 presentation, 22 pages.
Domingue, J., et al., “Web Service Modeling Ontology (WSMO)—An Ontology for Semantic Web Services,” Jun. 9-10, 2005, position paper at the W3C Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria, 6 pages.
Guzzoni, D., et al., “A Unified Platform for Building Intelligent Web Interaction Assistants,” Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Computer Society, 4 pages.
Roddy, D., et al., “Communication and Collaboration in a Landscape of B2B eMarketplaces,” VerticalNet Solutions, white paper, Jun. 15, 2000, 23 pages.
Acero, A., et al., “Environmental Robustness in Automatic Speech Recognition,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), Apr. 3-6, 1990, 4 pages.
Acero, A., et al., “Robust Speech Recognition by Normalization of The Acoustic Space,” International Conference on Acoustics, Speech, and Signal Processing, 1991, 4 pages.
Ahlbom, G., et al., “Modeling Spectral Speech Transitions Using Temporal Decomposition Techniques,” IEEE International Conference of Acoustics, Speech, and Signal Processing (ICASSP'87), Apr. 1987, vol. 12, 4 pages.
Aikawa, K., “Speech Recognition Using Time-Warping Neural Networks,” Proceedings of the 1991 IEEE Workshop on Neural Networks for Signal Processing, Sep. 30 to Oct. 1, 1991, 10 pages.
Anastasakos, A., et al., “Duration Modeling in Large Vocabulary Speech Recognition,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'95), May 9-12, 1995, 4 pages.
Anderson, R. H., “Syntax-Directed Recognition of Hand-Printed Two-Dimensional Mathematics,” In Proceedings of Symposium on Interactive Systems for Experimental Applied Mathematics: Proceedings of the Association for Computing Machinery Inc. Symposium, © 1967, 12 pages.
Ansari, R., et al., “Pitch Modification of Speech using a Low-Sensitivity Inverse Filter Approach,” IEEE Signal Processing Letters, vol. 5, No. 3, Mar. 1998, 3 pages.
Anthony, N. J., et al., “Supervised Adaption for Signature Verification System,” Jun. 1, 1978, IBM Technical Disclosure, 3 pages.
Apple Computer, “Guide Maker User's Guide,” © Apple Computer, Inc., Apr. 27, 1994, 8 pages.
Apple Computer, “Introduction to Apple Guide,” © Apple Computer, Inc., Apr. 28, 1994, 20 pages.
Asanović, K., et al., “Experimental Determination of Precision Requirements for Back-Propagation Training of Artificial Neural Networks,” In Proceedings of the 2nd International Conference of Microelectronics for Neural Networks, 1991, www.ICSI.BerkeleyEDU, 7 pages.
Atal, B. S., “Efficient Coding of LPC Parameters by Temporal Decomposition,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'83), Apr. 1983, 4 pages.
Bahl, L. R., et al., “Acoustic Markov Models Used in the Tangora Speech Recognition System,” In Proceeding of International Conference on Acoustics, Speech, and Signal Processing (ICASSP'88), Apr. 11-14, 1988, vol. 1, 4 pages.
Bahl, L. R., et al., “A Maximum Likelihood Approach to Continuous Speech Recognition,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. PAMI-5, No. 2, Mar. 1983, 13 pages.
Bahl, L. R., et al., “A Tree-Based Statistical Language Model for Natural Language Speech Recognition,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, Issue 7, Jul. 1989, 8 pages.
Bahl, L. R., et al., “Large Vocabulary Natural Language Continuous Speech Recognition,” In Proceedings of 1989 International Conference on Acoustics, Speech, and Signal Processing, May 23-26, 1989, vol. 1, 6 pages.
Bahl, L. R., et al, “Multonic Markov Word Models for Large Vocabulary Continuous Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 1, No. 3, Jul. 1993, 11 pages.
Bahl, L. R., et al., “Speech Recognition with Continuous-Parameter Hidden Markov Models,” In Proceeding of International Conference on Acoustics, Speech, and Signal Processing (ICASSP'88), Apr. 11-14, 1988, vol. 1, 8 pages.
Banbrook, M., “Nonlinear Analysis of Speech from a Synthesis Perspective,” A thesis submitted for the degree of Doctor of Philosophy, The University of Edinburgh, Oct. 15, 1996, 35 pages.
Belaid, A., et al., “A Syntactic Approach for Handwritten Mathematical Formula Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, No. 1, Jan. 1984, 7 pages.
Bellegarda, E. J., et al., “On-Line Handwriting Recognition Using Statistical Mixtures,” Advances in Handwriting and Drawings: A Multidisciplinary Approach, Europia, 6th International IGS Conference on Handwriting and Drawing, Paris- France, Jul. 1993, 11 pages.
Bellegarda, J. R., “A Latent Semantic Analysis Framework for Large-Span Language Modeling,” 5th European Conference on Speech, Communication and Technology, (EUROSPEECH'97), Sep. 22-25, 1997, 4 pages.
Bellegarda, J. R., “A Multispan Language Modeling Framework for Large Vocabulary Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 6, No. 5, Sep. 1998, 12 pages.
Bellegarda, J. R., et al., “A Novel Word Clustering Algorithm Based on Latent Semantic Analysis,” In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'96), vol. 1, 4 pages.
Bellegarda, J. R., et al., “Experiments Using Data Augmentation for Speaker Adaptation,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'95), May 9-12, 1995, 4 pages.
Bellegarda, J. R., “Exploiting Both Local and Global Constraints for Multi-Span Statistical Language Modeling,” Proceeding of the 1998 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'98), vol. 2, May 12-15, 1998, 5 pages.
Bellegarda, J. R., “Exploiting Latent Semantic Information in Statistical Language Modeling,” In Proceedings of the IEEE, Aug. 2000, vol. 88, No. 8, 18 pages.
Bellegarda, J. R., “Interaction-Driven Speech Input—A Data-Driven Approach to the Capture of Both Local and Global Language Constraints,” 1992, 7 pages, available at http://old.sigchi.org/bulletin/1998.2/bellegarda.html.
Bellegarda, J. R., “Large Vocabulary Speech Recognition with Multispan Statistical Language Models,” IEEE Transactions on Speech and Audio Processing, vol. 8, No. 1, Jan. 2000, 9 pages.
Bellegarda, J. R., et al., “Performance of the IBM Large Vocabulary Continuous Speech Recognition System on the ARPA Wall Street Journal Task,” Signal Processing VII: Theories and Applications, © 1994 European Association for Signal Processing, 4 pages.
Bellegarda, J. R., et al., “The Metamorphic Algorithm: A Speaker Mapping Approach to Data Augmentation,” IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 8 pages.
Black, A. W., et al., “Automatically Clustering Similar Units for Unit Selection in Speech Synthesis,” In Proceedings of Eurospeech 1997, vol. 2, 4 pages.
Blair, D. C., et al., “An Evaluation of Retrieval Effectiveness for a Full-Text Document-Retrieval System,” Communications of the ACM, vol. 28, No. 3, Mar. 1985, 11 pages.
Briner, L. L., “Identifying Keywords in Text Data Processing,” In Zelkowitz, Marvin V., Ed, Directions and Challenges, 15th Annual Technical Symposium, Jun. 17, 1976, Gaithersbury, Maryland, 7 pages.
Bulyko, I., et al., “Joint Prosody Prediction and Unit Selection for Concatenative Speech Synthesis,” Electrical Engineering Department, University of Washington, Seattle, 2001, 4 pages.
Bussey, H. E., et al., “Service Architecture, Prototype Description, and Network Implications of A Personalized Information Grazing Service,” INFOCOM'90, Ninth Annual Joint Conference of the IEEE Computer and Communication Societies, Jun. 3-7 1990, http://slrohall.com/publications/, 8 pages.
Buzo, A., et al., “Speech Coding Based Upon Vector Quantization,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. Assp-28, No. 5, Oct. 1980, 13 pages.
Caminero-Gil, J., et al., “Data-Driven Discourse Modeling for Semantic Interpretation,” In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, May 7-10, 1996, 6 pages.
Cawley, G. C., “The Application of Neural Networks to Phonetic Modelling,” PhD Thesis, University of Essex, Mar. 1996, 13 pages.
Chang, S., et al., “A Segment-based Speech Recognition System for Isolated Mandarin Syllables,” Proceedings TENCON '93, IEEE Region 10 conference on Computer, Communication, Control and Power Engineering, Oct. 19-21, 1993, vol. 3, 6 pages.
Conklin, J., “Hypertext: An Introduction and Survey,” Computer Magazine, Sep. 1987, 25 pages.
Connolly, F. T., et al., “Fast Algorithms for Complex Matrix Multiplication Using Surrogates,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Jun. 1989, vol. 37, No. 6, 13 pages.
Deerwester, S., et al., “Indexing by Latent Semantic Analysis,” Journal of the American Society for Information Science, vol. 41, No. 6, Sep. 1990, 19 pages.
Deller, Jr., J. R., et al., “Discrete-Time Processing of Speech Signals,” © 1987 Prentice Hall, ISBN: 0-02-328301-7, 14 pages.
Digital Equipment Corporation, “Open VMS Software Overview,” Dec. 1995, software manual, 159 pages.
Donovan, R. E., “A New Distance Measure for Costing Spectral Discontinuities in Concatenative Speech Synthesisers,” 2001, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.6398, 4 pages.
Frisse, M. E., “Searching for Information in a Hypertext Medical Handbook,” Communications of the ACM, vol. 31, No. 7, Jul. 1988, 8 pages.
Goldberg, D., et al., “Using Collaborative Filtering to Weave an Information Tapestry,” Communications of the ACM, vol. 35, No. 12, Dec. 1992, 10 pages.
Gorin, A. L., et al., “On Adaptive Acquisition of Language,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), vol. 1, Apr. 3-6, 1990, 5 pages.
Gotoh, Y., et al., “Document Space Models Using Latent Semantic Analysis,” In Proceedings of Eurospeech, 1997, 4 pages.
Gray, R. M., “Vector Quantization,” IEEE ASSP Magazine, Apr. 1984, 26 pages.
Harris, F. J., “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” In Proceedings of the IEEE, vol. 66, No. 1, Jan. 1978, 34 pages.
Helm, R., et al., “Building Visual Language Parsers,” In Proceedings of CHI'91 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 8 pages.
Hermansky, H., “Perceptual Linear Predictive (PLP) Analysis of Speech,” Journal of the Acoustical Society of America, vol. 87, No. 4, Apr. 1990, 15 pages.
Hermansky, H., “Recognition of Speech in Additive and Convolutional Noise Based on Rasta Spectral Processing,” In proceedings of IEEE International Conference on Acoustics, speech, and Signal Processing (ICASSP'93), Apr. 27-30, 1993, 4 pages.
Hoehfeld M., et al., “Learning with Limited Numerical Precision Using the Cascade-Correlation Algorithm,” IEEE Transactions on Neural Networks, vol. 3, No. 4, Jul. 1992, 18 pages.
Holmes, J. N., “Speech Synthesis and Recognition—Stochastic Models for Word Recognition,” Speech Synthesis and Recognition, Published by Chapman & Hall, London, ISBN 0 412 534304, © 1998 J. N. Holmes, 7 pages.
Hon, H.W., et al., “CMU Robust Vocabulary-Independent Speech Recognition System,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-91), Apr. 14-17, 1991, 4 pages.
IBM Technical Disclosure Bulletin, “Speech Editor,” vol. 29, No. 10, Mar. 10, 1987, 3 pages.
IBM Technical Disclosure Bulletin, “Integrated Audio-Graphics User Interface,” vol. 33, No. 11, Apr. 1991, 4 pages.
IBM Technical Disclosure Bulletin, “Speech Recognition with Hidden Markov Models of Speech Waveforms,” vol. 34, No. 1, Jun. 1991, 10 pages.
Iowegian International, “FIR Filter Properties,” dspGuro, Digital Signal Processing Central, http://www.dspguru.com/dsp/taqs/fir/properties, downloaded on Jul. 28, 2010, 6 pages.
Jacobs, P. S., et al., “Scisor: Extracting Information from On-Line News,” Communications of the ACM, vol. 33, No. 11, Nov. 1990, 10 pages.
Jelinek, F., “Self-Organized Language Modeling for Speech Recognition,” Readings in Speech Recognition, edited by Alex Waibel and Kai-Fu Lee, May 15, 1990, © 1990 Morgan Kaufmann Publishers, Inc., ISBN: 1-55860-124-4, 63 pages.
Jennings, A., et al., “A Personal News Service Based on a User Model Neural Network,” IEICE Transactions on Information and Systems, vol. E75-D, No. 2, Mar. 1992, Tokyo, JP, 12 pages.
Ji, T., et al., “A Method for Chinese Syllables Recognition based upon Sub-syllable Hidden Markov Model,” 1994 International Symposium on Speech, Image Processing and Neural Networks, Apr. 13-16, 1994, Hong Kong, 4 pages.
Jones, J., “Speech Recognition for Cyclone,” Apple Computer, Inc., E.R.S., Revision 2.9, Sep. 10, 1992, 93 pages.
Katz, S. M., “Estimation of Probabilities from Sparse Data for the Language Model Component of a Speech Recognizer,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35, No. 3, Mar. 1987, 3 pages.
Kitano, H., “PhiDM-Dialog, An Experimental Speech-to-Speech Dialog Translation System,” Jun. 1991 Computer, vol. 24, No. 6, 13 pages.
Klabbers, E., et al., “Reducing Audible Spectral Discontinuities,” IEEE Transactions on Speech and Audio Processing, vol. 9, No. 1, Jan. 2001, 13 pages.
Klatt, D. H., “Linguistic Uses of Segmental Duration in English: Acoustic and Perpetual Evidence,” Journal of the Acoustical Society of America, vol. 59, No. 5, May 1976, 16 pages.
Kominek, J., et al., “Impact of Durational Outlier Removal from Unit Selection Catalogs,” 5th ISCA Speech Synthesis Workshop, Jun. 14-16, 2004, 6 pages.
Kubala, F., et al., “Speaker Adaptation from a Speaker-Independent Training Corpus,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), Apr. 3-6, 1990, 4 pages.
Kubala, F., et al., “The Hub and Spoke Paradigm for CSR Evaluation,” Proceedings of the Spoken Language Technology Workshop, Mar. 6-8, 1994, 9 pages.
Lee, K.F., “Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The SPHINX System,” Apr. 18, 1988, Partial fulfillment of the requirements for the degree of Doctor of Philosophy, Computer Science Department, Carnegie Mellon University, 195 pages.
Lee, L., et al., “A Real-Time Mandarin Dictation Machine for Chinese Language with Unlimited Texts and Very Large Vocabulary,” International Conference on Acoustics, Speech and Signal Processing, vol. 1, Apr. 3-6, 1990, 5 pages.
Lee, L, et al., “Golden Mandarin(II)—An Improved Single-Chip Real-Time Mandarin Dictation Machine for Chinese Language with Very Large Vocabulary,” 0-7803-0946-4/93 © 1993IEEE, 4 pages.
Lee, L, et al., “Golden Mandarin(II)—An Intelligent Mandarin Dictation Machine for Chinese Character Input with Adaptation/Learning Functions,” International Symposium on Speech, Image Processing and Neural Networks, Apr. 13-16, 1994, Hong Kong, 5 pages.
Lee, L., et al., “System Description of Golden Mandarin (I) Voice Input for Unlimited Chinese Characters,” International Conference on Computer Processing of Chinese & Oriental Languages, vol. 5, Nos. 3 & 4, Nov. 1991, 16 pages.
Lin, C.H., et al., “A New Framework for Recognition of Mandarin Syllables With Tones Using Sub-syllabic Unites,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-93), Apr. 27-30, 1993, 4 pages.
Linde, Y., et al., “An Algorithm for Vector Quantizer Design,” IEEE Transactions on Communications, vol. 28, No. 1, Jan. 1980, 12 pages.
Liu, F.H., et al., “Efficient Joint Compensation of Speech for the Effects of Additive Noise and Linear Filtering,” IEEE International Conference of Acoustics, Speech, and Signal Processing, ICASSP-92, Mar. 23-26, 1992, 4 pages.
Logan, B., “Mel Frequency Cepstral Coefficients for Music Modeling,” In International Symposium on Music Information Retrieval, 2000, 2 pages.
Lowerre, B. T., “The-HARPY Speech Recognition System,” Doctoral Dissertation, Department of Computer Science, Carnegie Mellon University, Apr. 1976, 20 pages.
Maghbouleh, A., “An Empirical Comparison of Automatic Decision Tree and Linear Regression Models for Vowel Durations,” Revised version of a paper presented at the Computational Phonology in Speech Technology workshop, 1996 annual meeting of the Association for Computational Linguistics in Santa Cruz, California, 7 pages.
Markel, J. D., et al., “Linear Prediction of Speech,” Springer-Verlag, Berlin Heidelberg New York 1976, 12 pages.
Morgan, B., “Business Objects,” (Business Objects for Windows) Business Objects Inc., DBMS Sep. 1992, vol. 5, No. 10, 3 pages.
Mountford, S. J., et al., “Talking and Listening to Computers,” The Art of Human-Computer Interface Design, Copyright © 1990 Apple Computer, Inc. Addison-Wesley Publishing Company, Inc., 17 pages.
Murty, K. S. R., et al., “Combining Evidence from Residual Phase and MFCC Features for Speaker Recognition,” IEEE Signal Processing Letters, vol. 13, No. 1, Jan. 2006, 4 pages.
Murveit H. et al., “Integrating Natural Language Constraints into HMM-based Speech Recognition,” 1990 International Conference on Acoustics, Speech, and Signal Processing, Apr. 3-6, 1990, 5 pages.
Nakagawa, S., et al., “Speaker Recognition by Combining MFCC and Phase Information,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Mar. 14-19, 2010, 4 pages.
Niesler, T. R., et al., “A Variable-Length Category-Based N-Gram Language Model,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'96), vol. 1, May 7-10, 1996, 6 pages.
Papadimitriou, C. H., et al., “Latent Semantic Indexing: A Probabilistic Analysis,” Nov. 14, 1997, http://citeseerx.ist.psu.edu/messages/downloadsexceeded.html, 21 pages.
Parsons, T. W., “Voice and Speech Processing,” Linguistics and Technical Fundamentals, Articulatory Phonetics and Phonemics, © 1987 McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 5 pages.
Parsons, T. W., “Voice and Speech Processing,” Pitch and Formant Estimation, © 1987 McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 15 pages.
Picone, J., “Continuous Speech Recognition Using Hidden Markov Models,” IEEE ASSP Magazine, vol. 7, No. 3, Jul. 1990, 16 pages.
Rabiner, L. R., et al., “Fundamental of Speech Recognition,” © 1993 AT&T, Published by Prentice-Hall, Inc., ISBN: 0-13-285826-6, 17 pages.
Rabiner, L. R., et al., “Note on the Properties of a Vector Quantizer for LPC Coefficients,” The Bell System Technical Journal, vol. 62, No. 8, Oct. 1983, 9 pages.
Ratcliffe, M., “ClearAccess 2.0 allows SQL searches off-line,” (Structured Query Language), ClearAcess Corp., MacWeek Nov. 16, 1992, vol. 6, No. 41, 2 pages.
Remde, J. R., et al., “SuperBook: An Automatic Tool for Information Exploration-Hypertext?,” In Proceedings of Hypertext'87 papers, Nov. 13-15, 1987, 14 pages.
Reynolds, C. F., “On-Line Reviews: A New Application of the HICOM Conferencing System,” IEE Colloquium on Human Factors in Electronic Mail and Conferencing Systems, Feb. 3, 1989, 4 pages.
Rigoll, G., “Speaker Adaptation for Large Vocabulary Speech Recognition Systems Using Speaker Markov Models,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'89), May 23-26, 1989, 4 pages.
Riley, M. D., “Tree-Based Modelling of Segmental Durations,” Talking Machines Theories, Models, and Designs, 1992 © Elsevier Science Publishers B.V., North-Holland, ISBN: 08-444-89115.3, 15 pages.
Rivoira, S., et al., “Syntax and Semantics in a Word-Sequence Recognition System,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'79), Apr. 1979, 5 pages.
Rosenfeld, R., “A Maximum Entropy Approach to Adaptive Statistical Language Modelling,” Computer Speech and Language, vol. 10, No. 3, Jul. 1996, 25 pages.
Roszkiewicz, A., “Extending your Apple,” Back Talk—Lip Service, A+ Magazine, The Independent Guide for Apple Computing, vol. 2, No. 2, Feb. 1984, 5 pages.
Sakoe, H., et al., “Dynamic Programming Algorithm Optimization for Spoken Word Recognition,” IEEE Transactins on Acoustics, Speech, and Signal Processing, Feb. 1978, vol. ASSP-26 No. 1, 8 pages.
Salton, G., et al., “On the Application of Syntactic Methodologies in Automatic Text Analysis,” Information Processing and Management, vol. 26, No. 1, Great Britain 1990, 22 pages.
Savoy, J., “Searching Information in Hypertext Systems Using Multiple Sources of Evidence,” International Journal of Man-Machine Studies, vol. 38, No. 6, Jun. 1993, 15 pages.
Scagliola, C., “Language Models and Search Algorithms for Real-Time Speech Recognition,” International Journal of Man-Machine Studies, vol. 22, No. 5, 1985, 25 pages.
Schmandt, C., et al., “Augmenting a Window System with Speech Input,” IEEE Computer Society, Computer Aug. 1990, vol. 23, No. 8, 8 pages.
Schütze, H., “Dimensions of Meaning,” Proceedings of Supercomputing'92 Conference, Nov. 16-20, 1992, 10 pages.
Sheth B., et al., “Evolving Agents for Personalized Information Filtering,” In Proceedings of the Ninth Conference on Artificial Intelligence for Applications, Mar. 1-5, 1993, 9 pages.
Shikano, K., et al., “Speaker Adaptation Through Vector Quantization,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'86), vol. 11, Apr. 1986, 4 pages.
Sigurdsson, S., et al., “Mel Frequency Cepstral Coefficients: An Evaluation of Robustness of MP3 Encoded Music,” In Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR), 2006, 4 pages.
Silverman, K. E. A., et al., “Using a Sigmoid Transformation for Improved Modeling of Phoneme Duration,” Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 15-19, 1999, 5 pages.
Tenenbaum, A.M., et al., “Data Structure Using Pascal,” 1981 Prentice-Hall, Inc., 34 pages.
Tsai, W.H., et al., “Attributed Grammar-A Tool for Combining Syntactic and Statistical Approaches to Pattern Recognition,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-10, No. 12, Dec. 1980, 13 pages.
Udell, J., “Computer Telephony,” BYTE, vol. 19, No. 7, Jul. 1, 1994, 9 pages.
Van Santen, J. P. H., “Contextual Effects on Vowel Duration,” Journal Speech Communication, vol. 11, No. 6, Dec. 1992, 34 pages.
Vepa, J., et al., “New Objective Distance Measures for Spectral Discontinuities in Concatenative Speech Synthesis,” In Proceedings of the IEEE 2002 Workshop on Speech Synthesis, 4 pages.
Verschelde, J., “MATLAB Lecture 8. Special Matrices in MATLAB,” Nov. 23, 2005, UIC Dept. of Math., Stat.. & C.S., MCS 320, Introduction to Symbolic Computation, 4 pages.
Vingron, M. “Near-Optimal Sequence Alignment,” Deutsches Krebsforschungszentrum (DKFZ), Abteilung Theoretische Bioinformatik, Heidelberg, Germany, Jun. 1996, 20 pages.
Werner, S., et al., “Prosodic Aspects of Speech,” Université de Lausanne, Switzerland, 1994, Fundamentals of Speech Synthesis and Speech Recognition: Basic Concepts, State of the Art, and Future Challenges, 18 pages.
Wikipedia, “Mel Scale,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Mel—scale, 2 pages.
Wikipedia, “Minimum Phase,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Minimum—phase, 8 pages.
Wolff, M., “Poststructuralism and the ARTFUL Database: Some Theoretical Considerations,” Information Technology and Libraries, vol. 13, No. 1, Mar. 1994, 10 pages.
Wu, M., “Digital Speech Processing and Coding,” ENEE408G Capstone-Multimedia Signal Processing, Spring 2003, Lecture-2 course presentation, University of Maryland, College Park, 8 pages.
Wu, M., “Speech Recognition, Synthesis, and H.C.I.,” ENEE408G Capstone-Multimedia Signal Processing, Spring 2003, Lecture-3 course presentation, University of Maryland, College Park, 11 pages.
Wyle, M. F., “A Wide Area Network Information Filter,” In Proceedings of First International Conference on Artificial Intelligence on Wall Street, Oct. 9-11, 1991, 6 pages.
Yankelovich, N., et al., “Intermedia: The Concept and the Construction of a Seamless Information Environment,” Computer Magazine, Jan. 1988, © 1988 IEEE, 16 pages.
Yoon, K., et al., “Letter-to-Sound Rules for Korean,” Department of Linguistics, The Ohio State University, 2002, 4 pages.
Zhao, Y., “An Acoustic-Phonetic-Based Speaker Adaptation Technique for Improving Speaker-Independent Continuous Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 15 pages.
Zovato, E., et al., “Towards Emotional Speech Synthesis: A Rule Based Approach,” 2 pages.
International Search Report dated Nov. 9, 1994, received in International Application No. PCT/US1993/12666, which corresponds to U.S. Appl. No. 07/999,302, 8 pages (Robert Don Strong).
International Preliminary Examination Report dated Mar. 1, 1995, received in International Application No. PCT/US1993/12666, which corresponds to U.S. Appl. No. 07/999,302, 5 pages (Robert Don Strong).
International Preliminary Examination Report dated Apr. 10, 1995, received in International Application No. PCT/US1993/12637, which corresponds to U.S. Appl. No. 07/999,354, 7 pages (Alejandro Acero).
International Search Report dated Feb. 8, 1995, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 7 pages (Yen-Lu Chow).
International Preliminary Examination Report dated Feb. 28, 1996, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 4 pages (Yen-Lu Chow).
Written Opinion dated Aug. 21, 1995, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 4 pages (Yen-Lu Chow).
International Search Report dated Nov. 8, 1995, received in International Application No. PCT/US1995/08369, which corresponds to U.S. Appl. No. 08/271,639, 6 pages (Peter V. De Souza).
International Preliminary Examination Report dated Oct. 9, 1996, received in International Application No. PCT/US1995/08369, which corresponds to U.S. Appl. No. 08/271,639, 4 pages (Peter V. De Souza).
Alfred App, 2011, http://www.alfredapp.com/, 5 pages.
Ambite, JL., et al., “Design and Implementation of the CALO Query Manager,” Copyright © 2006, American Association for Artificial Intelligence, (www.aaai.org), 8 pages.
Ambite, JL., et al., “Integration of Heterogeneous Knowledge Sources in the CALO Query Manager,” 2005, The 4th International Conference on Ontologies, DataBases, and Applications of Semantics (ODBASE), Agia Napa, Cyprus, ttp://www.isi.edu/people/ambite/publications/integration—heterogeneous—knowledge—sources—calo—query—manager, 18 pages.
Belvin, R. et al., “Development of the HRL Route Navigation Dialogue System,” 2001, In Proceedings of the First International Conference on Human Language Technology Research, Paper, Copyright © 2001 HRL Laboratories, LLC, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.6538, 5 pages.
Berry, P. M., et al. “PTIME: Personalized Assistance for Calendaring,” ACM Transactions on Intelligent Systems and Technology, vol. 2, No. 4, Article 40, Publication date: Jul. 2011, 40:1-22, 22 pages.
Butcher, M., “EVI arrives in town to go toe-to-toe with Siri,” Jan. 23, 2012, http://techcrunch.com/2012/01/23/evi-arrives-in-town-to-go-toe-to-toe-with-siri/, 2 pages.
Chen, Y., “Multimedia Siri Finds and Plays Whatever You Ask For,” Feb. 9, 2012, http://www.psfk.com/2012/02/multimedia-siri.html, 9 pages.
Cheyer, A. et al., “Spoken Language and Multimodal Applications for Electronic Realties,” © Springer-Verlag London Ltd, Virtual Reality 1999, 3:1-15, 15 pages.
Cutkosky, M. R. et al., “PACT: An Experiment in Integrating Concurrent Engineering Systems,” Journal, Computer, vol. 26 Issue 1, Jan. 1993, IEEE Computer Society Press Los Alamitos, CA, USA, http://dl.acm.org/citation.cfm?id=165320, 14 pages.
Elio, R. et al., “On Abstract Task Models and Conversation Policies,” http://webdocs.cs.ualberta.ca/˜ree/publications/papers2/ATS.AA99.pdf, May 1999, 10 pages.
Ericsson, S. et al., “Software illustrating a unified approach to multimodality and multilinguality in the in-home domain,” Dec. 22, 2006, Talk and Look: Tools for Ambient Linguistic Knowledge, http://vvww.talk-project.eurice.eu/fileadmin/talk/publications—public/deliverables—public/D1—6.pdf, 127 pages.
Evi, “Meet Evi: the one mobile app that provides solutions for your everyday problems,” Feb. 8, 2012, http://www.evi.com/, 3 pages.
Feigenbaum, E., et al., “Computer-assisted Semantic Annotation of Scientific Life Works,” 2007, http://tomgruber.org/writing/stanford-cs300.pdf, 22 pages.
Gannes, L., “Alfred App Gives Personalized Restaurant Recommendations,” allthingsd.com, Jul. 18, 2011, http://allthingsd.com/20110718/alfred-app-gives-personalized-restaurant-recommendations/, 3 pages.
Gautier, P. O., et al. “Generating Explanations of Device Behavior Using Compositional Modeling and Causal Ordering,” 1993, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.8394, 9 pages.
Gervasio, M. T., et al., Active Preference Learning for Personalized Calendar Scheduling Assistancae, Copyright © 2005, http://www.ai.sri.com/˜gervasio/pubs/gervasio-iui05.pdf, 8 pages.
Glass, A., “Explaining Preference Learning,” 2006, http://cs229.stanford.edu/proj2006/Glass-ExplainingPreferenceLearning.pdf, 5 pages.
Glass, J., et al., “Multilingual Spoken-Language Understanding in the MIT Voyager System,” Aug. 1995, http://groups.csail.mit.edu/sls/publications/1995/speechcomm95-voyager.pdf, 29 pages.
Goddeau, D., et al., “A Form-Based Dialogue Manager for Spoken Language Applications,” Oct. 1996, http://phasedance.com/pdf/icslp96.pdf, 4 pages.
Goddeau, D., et al., “Galaxy: A Human-Language Interface to On-Line Travel Information,” 1994 International Conference on Spoken Language Processing, Sep. 18-22, 1994, Pacific Convention Plaza Yokohama, Japan, 6 pages.
Gruber, T. R., et al., “An Ontology for Engineering Mathematics,” In Jon Doyle, Piero Torasso, & Erik Sandewall, Eds., Fourth International Conference on Principles of Knowledge Representation and Reasoning, Gustav Stresemann Institut, Bonn, Germany, Morgan Kaufmann, 1994, http://www-ksl.stanford.edu/knowledge-sharing/papers/engmath.html, 22 pages.
Gruber, T. R., “A Translation Approach to Portable Ontology Specifications,” Knowledge Systems Laboratory, Stanford University, Sep. 1992, Technical Report KSL 92-71, Revised Apr. 1993, 27 pages.
Gruber, T. R., “Automated Knowledge Acquisition for Strategic Knowledge,” Knowledge Systems Laboratory, Machine Learning, 4, 293-336 (1989), 44 pages.
Gruber, T. R., “(Avoiding) the Travesty of the Commons,” Presentation at NPUC 2006, New Paradigms for User Computing, IBM Almaden Research Center, Jul. 24, 2006. http://tomgruber.org/writing/avoiding-travestry.htm, 52 pages.
Gruber, T. R., “Big Think Small Screen: How semantic computing in the cloud will revolutionize the consumer experience on the phone,” Keynote presentation at Web 3.0 conference, Jan. 27, 2010, http://tomgruber.org/writing/web30jan2010.htm, 41 pages.
Gruber, T. R., “Collaborating around Shared Content on the WWW,” W3C Workshop on WWW and Collaboration, Cambridge, MA, Sep. 11, 1995, http://www.w3.org/Collaboration/Workshop/Proceedings/P9.html, 1 page.
Gruber, T. R., “Collective Knowledge Systems: Where the Social Web meets the Semantic Web,” Web Semantics: Science, Services and Agents on the World Wide Web (2007), doi:10.1016/j.websem.2007.11.011, keynote presentation given at the 5th International Semantic Web Conference, Nov. 7, 2006, 19 pages.
Gruber, T. R., “Where the Social Web meets the Semantic Web,” Presentation at the 5th International Semantic Web Conference, Nov. 7, 2006, 38 pages.
Gruber, T. R., “Despite our Best Efforts, Ontologies are not the Problem,” AAAI Spring Symposium, Mar. 2008, http://tomgruber.org/writing/aaai-ss08.htm, 40 pages.
Gruber, T. R., “Enterprise Collaboration Management with Intraspect,” Intraspect Software, Inc., Instraspect Technical White Paper Jul. 2001, 24 pages.
Gruber, T. R., “Every ontology is a treaty—a social agreement—among people with some common motive in sharing,” Interview by Dr. Miltiadis D. Lytras, Official Quarterly Bulletin of AIS Special Interest Group on Semantic Web and Information Systems, vol. 1, Issue 3, 2004, http://www.sigsemis.org 1, 5 pages.
Gruber, T. R., et al., “Generative Design Rationale: Beyond the Record and Replay Paradigm,” Knowledge Systems Laboratory, Stanford University, Dec. 1991, Technical Report KSL 92-59, Updated Feb. 1993, 24 pages.
Gruber, T. R., “Helping Organizations Collaborate, Communicate, and Learn,” Presentation to NASA Ames Research, Mountain View, CA, Mar. 2003, http://tomgruber.org/writing/organizational-intelligence-talk.htm, 30 pages.
Gruber, T. R., “Intelligence at the Interface: Semantic Technology and the Consumer Internet Experience,” Presentation at Semantic Technologies conference (SemTech08), May 20, 2008, http://tomgruber.org/writing.htm, 40 pages.
Gruber, T. R., Interactive Acquisition of Justifications: Learning “Why” by Being Told “What” Knowledge Systems Laboratory, Stanford University, Oct. 1990, Technical Report KSL 91-17, Revised Feb. 1991, 24 pages.
Gruber, T. R., “It Is What It Does: The Pragmatics of Ontology for Knowledge Sharing,” (c) 2000, 2003, http://vvww.cidoc-crm.org/docs/symposium—presentations/gruber—cidoc-ontology-2003.pdf, 21 pages.
Gruber, T. R., et al., “Machine-generated Explanations of Engineering Models: A Compositional Modeling Approach,” (1993) In Proc. International Joint Conference on Artificial Intelligence, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.930, 7 pages.
Gruber, T. R., “2021: Mass Collaboration and the Really New Economy,” TNTY Futures, the newsletter of the Next Twenty Years series, vol. 1, Issue 6, Aug. 2001, http://www.tnty.com/newsletter/futures/archive/v01-05business.html, 5 pages.
Gruber, T. R., et al.,“NIKE: A National Infrastructure for Knowledge Exchange,” Oct. 1994, http://www.eit.com/papers/nike/nike.html and nike.ps, 10 pages.
Gruber, T. R., “Ontologies, Web 2.0 and Beyond,” Apr. 24, 2007, Ontology Summit 2007, http://tomgruber.org/writing/ontolog-social-web-keynote.pdf, 17 pages.
Gruber, T. R., “Ontology of Folksonomy: A Mash-up of Apples and Oranges,” Originally published to the web in 2005, Int'l Journal on Semantic Web & Information Systems, 3(2), 2007, 7 pages.
Gruber, T. R., “Siri, a Virtual Personal Assistant—Bringing Intelligence to the Interface,” Jun. 16, 2009, Keynote presentation at Semantic Technologies conference, Jun. 2009. http://tomgruber.org/writing/semtech09.htm, 22 pages.
Gruber, T. R., “TagOntology,” Presentation to Tag Camp, www.tagcamp.org, Oct. 29, 2005, 20 pages.
Gruber, T. R., et al., “Toward a Knowledge Medium for Collaborative Product Development,” In Artificial Intelligence in Design 1992, from Proceedings of the Second International Conference on Artificial Intelligence in Design, Pittsburgh, USA, Jun. 22-25, 1992, 19 pages.
Gruber, T. R., “Toward Principles for the Design of Ontologies Used for Knowledge Sharing,” In International Journal Human-Computer Studies 43, p. 907-928, substantial revision of paper presented at the International Workshop on Formal Ontology, Mar. 1993, Padova, Italy, available as Technical Report KSL 93-04, Knowledge Systems Laboratory, Stanford University, further revised Aug. 23, 1993, 23 pages.
Guzzoni, D., et al., “Active, A Platform for Building Intelligent Operating Rooms,” Surgetica 2007 Computer-Aided Medical Interventions: tools and applications, pp. 191-198, Paris, 2007, Sauramps Médical, http://lsro.epfl.ch/page-68384-en.html, 8 pages.
Guzzoni, D., et al., “Active, A Tool for Building Intelligent User Interfaces,” ASC 2007, Palma de Mallorca, http://lsro.epfl.ch/page-34241.html, 6 pages.
Guzzoni, D., et al., “Modeling Human-Agent Interaction with Active Ontologies,” 2007, AAAI Spring Symposium, Interaction Challenges for Intelligent Assistants, Stanford University, Palo Alto, California, 8 pages.
Hardawar, D., “Driving app Waze builds its own Siri for hands-free voice control,” Feb. 9, 2012, http://venturebeat.com/2012/02/09/driving-app-waze-builds-its-own-siri-for-hands-free-voice-control/, 4 pages.
Intraspect Software, “The Intraspect Knowledge Management Solution: Technical Overview,” http://tomgruber.org/writing/intraspect-whitepaper-1998.pdf, 18 pages.
Julia, L., et al., Un éditeur interactif de tableaux dessinés à main levée (An Interactive Editor for Hand-Sketched Tables), Traitement du Signal 1995, vol. 12, No. 6, 8 pages. No English Translation Available.
Karp, P. D., “A Generic Knowledge-Base Access Protocol,” May 12, 1994, http://lecture.cs.buu.ac.th/˜f50353/Document/gfp.pdf, 66 pages.
Lemon, O., et al., “Multithreaded Context for Robust Conversational Interfaces: Context-Sensitive Speech Recognition and Interpretation of Corrective Fragments,” Sep. 2004, ACM Transactions on Computer-Human Interaction, vol. 11, No. 3, 27 pages.
Leong, L., et al., “CASIS: A Context-Aware Speech Interface System,” IUI'05, Jan. 9-12, 2005, Proceedings of the 10th international conference on Intelligent user interfaces, San Diego, California, USA, 8 pages.
Lieberman, H., et al., “Out of context: Computer systems that adapt to, and learn from, context,” 2000, IBM Systems Journal, vol. 39, Nos. 3/4, 2000, 16 pages.
Lin, B., et al., “A Distributed Architecture for Cooperative Spoken Dialogue Agents with Coherent Dialogue State and History,” 1999, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.272, 4 pages.
McGuire, J., et al., “SHADE: Technology for Knowledge-Based Collaborative Engineering,” 1993, Journal of Concurrent Engineering: Applications and Research (CERA), 18 pages.
Meng, H., et al., “Wheels: A Conversational System in the Automobile Classified Domain,” Oct. 1996, httphttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.3022, 4 pages.
Milward, D., et al., “D2.2: Dynamic Multimodal Interface Reconfiguration,” Talk and Look: Tools for Ambient Linguistic Knowledge, Aug. 8, 2006, http://www.ihmc.us/users/nblaylock/Pubs/Files/talk—d2.2.pdf, 69 pages.
Mitra, P., et al., “A Graph-Oriented Model for Articulation of Ontology Interdependencies,” 2000, http://ilpubs.stanford.edu:8090/442/1/2000-20.pdf, 15 pages.
Moran, D. B., et al., “Multimodal User Interfaces in the Open Agent Architecture,” Proc. of the 1997 International Conference on Intelligent User Interfaces (IUI97), 8 pages.
Mozer, M., “An Intelligent Environment Must be Adaptive,” Mar./Apr. 1999, IEEE Intelligent Systems, 3 pages.
Mühlhäuser, M., “Context Aware Voice User Interfaces for Workflow Support,” Darmstadt 2007, http://tuprints.ulb.tu-darmstadt.de/876/1/PhD.pdf, 254 pages.
Naone, E., “TR10: Intelligent Software Assistant,” Mar.-Apr. 2009, Technology Review, http://www.technologyreview.com/printer—friendly—article.aspx?id=22117, 2 pages.
Neches, R., “Enabling Technology for Knowledge Sharing,” Fall 1991, Al Magazine, pp. 37-56, (21 pages).
Nöth, E., et al., “Verbmobil: The Use of Prosody in the Linguistic Components of a Speech Understanding System,” IEEE Transactions on Speech and Audio Processing, vol. 8, No. 5, Sep. 2000, 14 pages.
Phoenix Solutions, Inc. v. West Interactive Corp., Document 40, Declaration of Christopher Schmandt Regarding the MIT Galaxy System dated Jul. 2, 2010, 162 pages.
Rice, J., et al., “Monthly Program: Nov. 14, 1995,” The San Francisco Bay Area Chapter of ACM SIGCHI, http://www.baychi.org/calendar/19951114/, 2 pages.
Rice, J., et al., “Using the Web Instead of a Window System,” Knowledge Systems Laboratory, Stanford University, (http://tomgruber.org/writing/ksl-95-69.pdf, Sep. 1995.) CHI '96 Proceedings: Conference on Human Factors in Computing Systems, Apr. 13-18, 1996, Vancouver, BC, Canada, 14 pages.
Rivlin, Z., et al., “Maestro: Conductor of Multimedia Analysis Technologies,” 1999 SRI International, Communications of the Association for Computing Machinery (CACM), 7 pages.
Seneff, S., et al., “A New Restaurant Guide Conversational System: Issues in Rapid Prototyping for Specialized Domains,” Oct. 1996, citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16...rep . . . , 4 pages.
Sheth, A., et al., “Relationships at the Heart of Semantic Web: Modeling, Discovering, and Exploiting Complex Semantic Relationships,” Oct. 13, 2002, Enhancing the Power of the Internet: Studies in Fuzziness and Soft Computing, SpringerVerlag, 38 pages.
Simonite, T., “One Easy Way to Make Siri Smarter,” Oct. 18, 2011, Technology Review, http://www.technologyreview.com/printer—friendly—article.aspx?id=38915, 2 pages.
Stent, A., et al., “The CommandTalk Spoken Dialogue System,” 1999, http://acl.idc.upenn.edu/P/P99/P99-1024.pdf, 8 pages.
Tofel, K., et al., “SpeakTolt: A personal assistant for older iPhones, iPads,” Feb. 9, 2012, http://gigaom.com/apple/speaktoit-siri-for-older-iphones-ipads/, 7 pages.
Tucker, J., “Too lazy to grab your TV remote? Use Siri instead,” Nov. 30, 2011, http://www.engadget.com/2011/11/30/too-lazy-to-grab-your-tv-remote-use-siri-instead/, 8 pages.
Tur, G., et al., “The CALO Meeting Speech Recognition and Understanding System,” 2008, Proc. IEEE Spoken Language Technology Workshop, 4 pages.
Tur, G., et al., “The-CALO-Meeting-Assistant System,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 6, Aug. 2010, 11 pages.
Vlingo InCar, “Distracted Driving Solution with Vlingo InCar,” 2:38 minute video uploaded to YouTube by Vlingo Voice on Oct. 6, 2010, http://www.youtube.com/watch?v=Vqs8XfXxgz4, 2 pages.
Vlingo, “Vlingo Launches Voice Enablement Application on Apple App Store,” Vlingo press release dated Dec. 3, 2008, 2 pages.
YouTube, “Knowledge Navigator,” 5:34 minute video uploaded to YouTube by Knownav on Apr. 29, 2008, http://www.youtube.com/watch?v=QRH8eimU—20, 1 page.
YouTube,“Send Text, Listen to and Send E-Mail ‘by Voice’ www.voiceassist.com,” 2:11 minute video uploaded to YouTube by VoiceAssist on Jul 30, 2009, http://www.youtube.com/watch?v=0tEU61nHHA4, 1 page.
YouTube, “Text'nDrive App Demo—Listen and Reply to your Messages by Voice while Driving!,” 1:57 minute video uploaded to YouTube by TextnDrive on Apr 27, 2010, http://www.youtube.com/watch?v=WaGfzoHsAMw, 1 page.
YouTube, “Voice on the Go (BlackBerry),” 2:51 minute video uploaded to YouTube by VoiceOnTheGo on Jul. 27, 2009, http://www.youtube.com/watch?v=pJqpWgQS98w, 1 page.
Zue, V., “Conversational Interfaces: Advances and Challenges,” Sep. 1997, http://www.cs.cmu.edu/˜dod/papers/zue97.pdf, 10 pages.
Zue, V. W., “Toward Systems that Understand Spoken Language,” Feb. 1994, ARPA Strategic Computing Institute, © 1994 IEEE, 9 pages.
International Search Report and Written Opinion dated Nov. 29, 2011, received in International Application No. PCT/US2011/20861, which corresponds to U.S. Appl. No. 12/987,982, 15 pages (Thomas Robert Gruber).
Agnäs, MS., et al., “Spoken Language Translator: First-Year Report,” Jan. 1994, SICS (ISSN 0283-3638), SRI and Telia Research AB, 161 pages.
Allen, J., “Natural Language Understanding,” 2nd Edition, Copyright © 1995 by The Benjamin/Cummings Publishing Company, Inc., 671 pages.
Alshawi, H., et al., “CLARE: A Contextual Reasoning and Cooperative Response Framework for the Core Language Engine,” Dec. 1992, SRI International, Cambridge Computer Science Research Centre, Cambridge, 273 pages.
Alshawi, H., et al., “Declarative Derivation of Database Queries from Meaning Representations,” Oct. 1991, Proceedings of the BANKAI Workshop on Intelligent Information Access, 12 pages.
Alshawi H., et al., “Logical Forms in The Core Language Engine,” 1989, Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics, 8 pages.
Alshawi, H., et al., “Overview of the Core Language Engine,” Sep. 1988, Proceedings of Future Generation Computing Systems, Tokyo, 13 pages.
Alshawi, H., “Translation and Monotonic Interpretation/Generation,” Jul. 1992, SRI International, Cambridge Computer Science Research Centre, Cambridge, 18 pages, http://www.cam.sri.com/tr/crc024/paper.ps.Z 1992.
Appelt, D., et al., “Fastus: A Finite-state Processor for Information Extraction from Real-world Text,” 1993, Proceedings of IJCAI, 8 pages.
Appelt, D., et al., “SRI: Description of the JV-FASTUS System Used for MUC-5,” 1993, SRI International, Artificial Intelligence Center, 19 pages.
Appelt, D., et al., SRI International Fastus System MUC-6 Test Results and Analysis, 1995, SRI International, Menlo Park, California, 12 pages.
Archbold, A., et al., “A Team User's Guide,” Dec. 21, 1981, SRI International, 70 pages.
Bear, J., et al., “A System for Labeling Self-Repairs in Speech,” Feb. 22, 1993, SRI International, 9 pages.
Bear, J., et al., “Detection and Correction of Repairs in Human-Computer Dialog,” May 5, 1992, SRI International, 11 pages.
Bear, J., et al., “Integrating Multiple Knowledge Sources for Detection and Correction of Repairs in Human-Computer Dialog,” 1992, Proceedings of the 30th annual meeting on Association for Computational Linguistics (ACL), 8 pages.
Bear, J., et al., “Using Information Extraction to Improve Document Retrieval,” 1998, SRI International, Menlo Park, California, 11 pages.
Berry, P., et al., “Task Management under Change and Uncertainty Constraint Solving Experience with the CALO Project,” 2005, Proceedings of CP'05 Workshop on Constraint Solving under Change, 5 pages.
Bobrow, R. et al., “Knowledge Representation for Syntactic/Semantic Processing,” From: AAA-80 Proceedings. Copyright © 1980, AAAI, 8 pages.
Bouchou, B., et al., “Using Transducers in Natural Language Database Query,” Jun. 17-19, 1999, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, 17 pages.
Bratt, H., et al., “The SRI Telephone-based ATIS System,” 1995, Proceedings of ARPA Workshop on Spoken Language Technology, 3 pages.
Bulyko, I. et al., “Error-Correction Detection and Response Generation in a Spoken Dialogue System,” © 2004 Elsevier B.V., specom.2004.09.009, 18 pages.
Burke, R., et al., “Question Answering from Frequently Asked Question Files,” 1997, Al Magazine, vol. 18, No. 2, 10 pages.
Burns, A., et al., “Development of a Web-Based Intelligent Agent for the Fashion Selection and Purchasing Process via Electronic Commerce,” Dec. 31, 1998, Proceedings of the Americas Conference on Information system (AMCIS), 4 pages.
Carter, D., “Lexical Acquisition in the Core Language Engine,” 1989, Proceedings of the Fourth Conference of the European Chapter of the Association for Computational Linguistics, 8 pages.
Carter, D., et al., “The Speech-Language Interface in the Spoken Language Translator,” Nov. 23, 1994, SRI International, 9 pages.
Chai, J., et al., “Comparative Evaluation of a Natural Language Dialog Based System and a Menu Driven System for Information Access: a Case Study,” Apr. 2000, Proceedings of the International Conference on Multimedia Information Retrieval (RIAO), Paris, 11 pages.
Cheyer, A., “A Perspective on Al & Agent Technologies for SCM,” VerticalNet, 2001 presentation, 22 pages.
Cheyer, A., et al., “Multimodal Maps: An Agent-based Approach,” International Conference on Cooperative Multimodal Communication, 1995, 15 pages.
Cheyer, A., et al., “The Open Agent Architecture,” Autonomous Agents and Multi-Agent systems, vol. 4, Mar. 1, 2001, 6 pages.
Cheyer, A., et al., “The Open Agent Architecture: Building communities of distributed software agents” Feb. 21, 1998, Artificial Intelligence Center SRI International, Power Point presentation, downloaded from http://www.ai.sri.com/˜oaa/, 25 pages.
Codd, E. F., “Databases: Improving Usability and Responsiveness—‘How About Recently’,” Copyright © 1978, by Academic Press, Inc., 28 pages.
Cohen, P.R., et al., “An Open Agent Architecture,” 1994, 8 pages. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.480.
Coles, L. S., et al., “Chemistry Question-Answering,” Jun. 1969, SRI International, 15 pages.
Coles, L. S., “Techniques for Information Retrieval Using an Inferential Question-Answering System with Natural-Language Input,” Nov. 1972, SRI International, 198 pages.
Coles, L. S., “The Application of Theorem Proving to Information Retrieval,” Jan. 1971, SRI International, 21 pages.
Constantinides, P., et al., “A Schema Based Approach to Dialog Control,” 1998, Proceedings of the International Conference on Spoken Language Processing, 4 pages.
Cox, R. V., et al., “Speech and Language Processing for Next-Millennium Communications Services,” Proceedings of the IEEE, vol. 88, No. 8, Aug. 2000, 24 pages.
Craig, J., et al., “Deacon: Direct English Access and Control,” Nov. 7-10, 1966 AFIPS Conference Proceedings, vol. 19, San Francisco, 18 pages.
Dar, S., et al., “DTL's DataSpot: Database Exploration Using Plain Language,” 1998 Proceedings of the 24th VLDB Conference, New York, 5 pages.
Davis, Z., et al., “A Personal Handheld Multi-Modal Shopping Assistant,” 2006 IEEE, 9 pages.
Decker, K., et al., “Designing Behaviors for Information Agents,” The Robotics Institute, Carnegie-Mellon University, paper, Jul. 6, 1996, 15 pages.
Decker, K., et al., “Matchmaking and Brokering,” The Robotics Institute, Carnegie-Mellon University, paper, May 16, 1996, 19 pages.
Dowding, J., et al., “Gemini: A Natural Language System for Spoken-Language Understanding,” 1993, Proceedings of the Thirty-First Annual Meeting of the Association for Computational Linguistics, 8 pages.
Dowding, J., et al., “Interleaving Syntax and Semantics in an Efficient Bottom-Up Parser,” 1994, Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, 7 pages.
Epstein, M., et al., “Natural Language Access to a Melanoma Data Base,” Sep. 1978, SRI International, 7 pages.
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results,” Classes/Subclasses Manually Reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page.
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results,” List of Publications Manually reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page.
Ferguson, G., et al., “TRIPS: An Integrated Intelligent Problem-Solving Assistant,” 1998, Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98) and Tenth Conference on Innovative Applications of Artificial Intelligence (IAAI-98), 7 pages.
Fikes, R., et al., “A Network-based knowledge Representation and its Natural Deduction System,” Jul. 1977, SRI International, 43 pages.
Gambäck, B., et al., “The Swedish Core Language Engine,” 1992 NOTEX Conference, 17 pages.
Glass, J., et al., “Multilingual Language Generation Across Multiple Domains,” Sep. 18-22, 1994, International Conference on Spoken Language Processing, Japan, 5 pages.
Green, C. “The Application of Theorem Proving to Question-Answering Systems,” Jun. 1969, SRI Stanford Research Institute, Artificial Intelligence Group, 169 pages.
Gregg, D. G., “DSS Access on the WWW: An Intelligent Agent Prototype,” 1998 Proceedings of the Americas Conference on Information Systems-Association for Information Systems, 3 pages.
Grishman, R., “Computational Linguistics: An Introduction,” © Cambridge University Press 1986, 172 pages.
Grosz, B. et al., “Dialogic: A Core Natural-Language Processing System,” Nov. 9, 1982, SRI International, 17 pages.
Grosz, B. et al., “Research on Natural-Language Processing at SRI,” Nov. 1981, SRI International, 21 pages.
Grosz, B., et al., “TEAM: An Experiment in the Design of Transportable Natural-Language Interfaces,” Artificial Intelligence, vol. 32, 1987, 71 pages.
Grosz, B., “Team: A Transportable Natural-Language Interface System,” 1983, Proceedings of the First Conference on Applied Natural Language Processing, 7 pages.
Guida, G., et al., “NLI: A Robust Interface for Natural Language Person-Machine Communication,” Int. J. Man-Machine Studies, vol. 17, 1982, 17 pages.
Guzzoni, D., et al., “Active, A platform for Building Intelligent Software,” Computational Intelligence 2006, 5 pages. http://www.informatik.uni-trier.de/˜ley/pers/hd/g/Guzzoni:Didier.
Guzzoni, D., “Active: A unified platform for building intelligent assistant applications,” Oct. 25, 2007, 262 pages.
Guzzoni, D., et al., “Many Robots Make Short Work,” 1996 AAAI Robot Contest, SRI International, 9 pages.
Haas, N., et al., “An Approach to Acquiring and Applying Knowledge,” Nov. 1980, SRI International, 22 pages.
Hadidi, R., et al., “Students' Acceptance of Web-Based Course Offerings: An Empirical Assessment,” 1998 Proceedings of the Americas Conference on Information Systems (AMCIS), 4 pages.
Hawkins, J., et al., “Hierarchical Temporal Memory: Concepts, Theory, and Terminology,” Mar. 27, 2007, Numenta, Inc., 20 pages.
He, Q., et al., “Personal Security Agent: KQML-Based PKI,” The Robotics Institute, Carnegie-Mellon University, paper, Oct. 1, 1997, 14 pages.
Hendrix, G. et al., “Developing a Natural Language Interface to Complex Data,” ACM Transactions on Database Systems, vol. 3, No. 2, Jun. 1978, 43 pages.
Hendrix, G., “Human Engineering for Applied Natural Language Processing,” Feb. 1977, SRI International, 27 pages.
Hendrix, G., “Klaus: A System for Managing Information and Computational Resources,” Oct. 1980, SRI International, 34 pages.
Hendrix, G., “Lifer: A Natural Language Interface Facility,” Dec. 1976, SRI Stanford Research Institute, Artificial Intelligence Center, 9 pages.
Hendrix, G., “Natural-Language Interface,” Apr.-Jun. 1982, American Journal of Computational Linguistics, vol. 8, No. 2, 7 pages. Best Copy Available.
Hendrix, G., “The Lifer Manual: A Guide to Building Practical Natural Language Interfaces,” Feb. 1977, SRI International, 76 pages.
Hendrix, G., et al., “Transportable Natural-Language Interfaces to Databases,” Apr. 30, 1981, SRI International, 18 pages.
Hirschman, L., et al., “Multi-Site Data Collection and Evaluation in Spoken Language Understanding,” 1993, Proceedings of the workshop on Human Language Technology, 6 pages.
Hobbs, J., et al., “Fastus: A System for Extracting Information from Natural-Language Text,” Nov. 19, 1992, SRI International, Artificial Intelligence Center, 26 pages.
Hobbs, J., et al.,“Fastus: Extracting Information from Natural-Language Texts,” 1992, SRI International, Artificial Intelligence Center, 22 pages.
Hobbs, J., “Sublanguage and Knowledge,” Jun. 1984, SRI International, Artificial Intelligence Center, 30 pages.
Hodjat, B., et al., “Iterative Statistical Language Model Generation for Use with an Agent-Oriented Natural Language Interface,” vol. 4 of the Proceedings of HCI International 2003, 7 pages.
Huang, X., et al., “The SPHINX-II Speech Recognition System: An Overview,” Jan. 15, 1992, Computer, Speech and Language, 14 pages.
Issar, S., et al., “CMU's Robust Spoken Language Understanding System,” 1993, Proceedings of EUROSPEECH, 4 pages.
Issar, S., “Estimation of Language Models for New Spoken Language Applications,” Oct. 3-6, 1996, Proceedings of 4th International Conference on Spoken language Processing, Philadelphia, 4 pages.
Janas, J., “The Semantics-Based Natural Language Interface to Relational Databases,” © Springer-Verlag Berlin Heidelberg 1986, Germany, 48 pages.
Johnson, J., “A Data Management Strategy for Transportable Natural Language Interfaces,” Jun. 1989, doctoral thesis submitted to the Department of Computer Science, University of British Columbia, Canada, 285 pages.
Julia, L., et al., “http://www.speech.sri.com/demos/atis.html,” 1997, Proceedings of AAAI, Spring Symposium, 5 pages.
Kahn, M., et al., “CoABS Grid Scalability Experiments,” 2003, Autonomous Agents and Multi-Agent Systems, vol. 7, 8 pages.
Kamel, M., et al., “A Graph Based Knowledge Retrieval System,” © 1990 IEEE, 7 pages.
Katz, B., “Annotating the World Wide Web Using Natural Language,” 1997, Proceedings of the 5th RIAO Conference on Computer Assisted Information Searching on the Internet, 7 pages.
Katz, B., “A Three-Step Procedure for Language Generation,” Dec. 1980, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 42 pages.
Kats, B., et al., “Exploiting Lexical Regularities in Designing Natural Language Systems,” 1988, Proceedings of the 12th International Conference on Computational Linguistics, Coling'88, Budapest, Hungary, 22 pages.
Katz, B., et al., “REXTOR: A System for Generating Relations from Natural Language,” In Proceedings of the ACL Oct. 2000 Workshop on Natural Language Processing and Information Retrieval (NLP&IR), 11 pages.
Katz, B., “Using English for Indexing and Retrieving,” 1988 Proceedings of the 1st RIAO Conference on User-Oriented Content-Based Text and Image (RIAO'88), 19 pages.
Konolige, K., “A Framework for a Portable Natural-Language Interface to Large Data Bases,” Oct. 12, 1979, SRI International, Artificial Intelligence Center, 54 pages.
Laird, J., et al., “SOAR: An Architecture for General Intelligence,” 1987, Artificial Intelligence vol. 33, 64 pages.
Langly, P., et al.,“A Design for the Icarus Architechture,” SIGART Bulletin, vol. 2, No. 4, 6 pages.
Larks, “Intelligent Software Agents: Larks,” 2006, downloaded on Mar. 15, 2013 from http://www.cs.cmu.edu/larks.html, 2 pages.
Martin, D., et al., “Building Distributed Software Systems with the Open Agent Architecture,” Mar. 23-25, 1998, Proceedings of the Third International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, 23 pages.
Martin, D., et al., “Development Tools for the Open Agent Architecture,” Apr. 1996, Proceedings of the International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, 17 pages.
Martin, D., et al., “Information Brokering in an Agent Architecture,” Apr. 1997, Proceedings of the second International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, 20 pages.
Martin, D., et al., “PAAM '98 Tutorial: Building and Using Practical Agent Applications,” 1998, SRI International, 78 pages.
Martin, P., et al., “Transportability and Generality in a Natural-Language Interface System,” Aug. 8-12, 1983, Proceedings of the Eight International Joint Conference on Artificial Intelligence, West Germany, 21 pages.
Matiasek, J., et al., “Tamic-P: A System for NL Access to Social Insurance Database,” Jun. 17-19, 1999, Proceeding of the 4th International Conference on Applications of Natural Language to Information Systems, Austria, 7 pages.
Michos, S.E., et al., “Towards an adaptive natural language interface to command languages,” Natural Language Engineering 2 (3), © 1994 Cambridge University Press, 19 pages. Best Copy Available.
Milstead, J., et al., “Metadata: Cataloging by Any Other Name . . . ” Jan. 1999, Online, Copyright © 1999 Information Today, Inc., 18 pages.
Minker, W., et al., “Hidden Understanding Models for Machine Translation,” 1999, Proceedings of ETRW on Interactive Dialogue in Multi-Modal Systems, 4 pages.
Modi, P. J., et al., “CMRadar: A Personal Assistant Agent for Calendar Management,” © 2004, American Association for Artificial Intelligence, Intelligent Systems Demonstrations, 2 pages.
Moore, R., et al., “Combining Linguistic and Statistical Knowledge Sources in Natural-Language Processing for ATIS,” 1995, SRI International, Artificial Intelligence Center, 4 pages.
Moore, R., “Handling Complex Queries in a Distributed Data Base,” Oct. 8, 1979, SRI International, Artificial Intelligence Center, 38 pages.
Moore, R., “Practical Natural-Language Processing by Computer,” Oct. 1981, SRI International, Artificial Intelligence Center, 34 pages.
Moore, R., et al., “SRI's Experience with the ATIS Evaluation,” Jun. 24-27, 1990, Proceedings of a workshop held at Hidden Valley, Pennsylvania, 4 pages. Best Copy Available.
Moore, et al., “The Information Warefare Advisor: An Architecture for Interacting with Intelligent Agents Across the Web,” Dec. 31, 1998 Proceedings of Americas Conference on Information Systems (AMCIS), 4 pages.
Moore, R., “The Role of Logic in Knowledge Representation and Commonsense Reasoning,” Jun. 1982, SRI International, Artificial Intelligence Center, 19 pages.
Moore, R., “Using Natural-Language Knowledge Sources in Speech Recognition,” Jan. 1999, SRI International, Artificial Intelligence Center, 24 pages.
Moran, D., et al., “Intelligent Agent-based User Interfaces,” Oct. 12-13, 1995, Proceedings of International Workshop on Human Interface Technology, University of Aizu, Japan, 4 pages. http://www.dougmoran.com/dmoran/PAPERS/oaa-iwhit1995.pdf.
Moran, D., “Quantifier Scoping in the SRI Core Language Engine,” 1988, Proceedings of the 26th annual meeting on Association for Computational Linguistics, 8 pages.
Motro, A., “Flex: A Tolerant and Cooperative User Interface to Databases,” IEEE Transactions on Knowledge and Data Engineering, vol. 2, No. 2, Jun. 1990, 16 pages.
Murveit, H., et al., “Speech Recognition in SRI's Resource Management and ATIS Systems,” 1991, Proceedings of the workshop on Speech and Natural Language (HTL'91), 7 pages.
OAA, “The Open Agent Architecture 1.0 Distribution Source Code,” Copyright 1999, SRI International, 2 pages.
Odubiyi, J., et al., “SAIRE—a scalable agent-based information retrieval engine,” 1997 Proceedings of the First International Conference on Autonomous Agents, 12 pages.
Owei, V., et al., “Natural Language Query Filtration in the Conceptual Query Language,” © 1997 IEEE, 11 pages.
Pannu, A., et al., “A Learning Personal Agent for Text Filtering and Notification,” 1996, The Robotics Institute School of Computer Science, Carnegie-Mellon University, 12 pages.
Pereira, “Logic for Natural Language Analysis,” Jan. 1983, SRI International, Artificial Intelligence Center, 194 pages.
Perrault, C.R., et al., “Natural-Language Interfaces,” Aug. 22, 1986, SRI International, 48 pages.
Pulman, S.G., et al., “Clare: A Combined Language and Reasoning Engine,” 1993, Proceedings of JFIT Conference, 8 pages. URL: http://www.cam.sri.com/tr/crc042/paper.ps.Z.
Ravishankar, “Efficient Algorithms for Speech Recognition,” May 15, 1996, Doctoral Thesis submitted to School of Computer Science, Computer Science Division, Carnegie Mellon University, Pittsburg, 146 pages.
Rayner, M., “Abductive Equivalential Translation and its application to Natural Language Database Interfacing,” Sep. 1993 Dissertation paper, SRI International, 163 pages.
Rayner, M., et al., “Adapting the Core Language Engine to French and Spanish,” May 10, 1996, Cornell University Library, 9 pages. http://arxiv.org/abs/cmp-Ig/9605015.
Rayner, M., et al., “Deriving Database Queries from Logical Forms by Abductive Definition Expansion,” 1992, Proceedings of the Third Conference on Applied Natural Language Processing, ANLC'92, 8 pages.
Rayner, M., “Linguistic Domain Theories: Natural-Language Database Interfacing from First Principles,” 1993, SRI International, Cambridge, 11 pages.
Rayner, M., et al., “Spoken Language Translation With Mid-90's Technology: A Case Study,” 1993, EUROSPEECH, ISCA, 4 pages. http://dblp.uni-trier.de/db/conf/interspeech/eurospeech1993.html#RaynerBCCDGKKLPPS93.
Roddy, D., et al., “Communication and Collaboration in a Landscape of B2B eMarketplaces,” VerticalNet Solutions, white paper, Jun. 15, 2000, 24 pages.
Rudnicky, A.I., et al., “Creating Natural Dialogs in the Carnegie Mellon Communicator System”.
Russell, S., et al., “Artificial Intelligence, A Modern Approach,” © 1995 Prentice Hall, Inc., 121 pages.
Sacerdoti, E., et al., “A Ladder User's Guide (Revised),” Mar. 1980, SRI International, Artificial Intelligence Center, 39 pages.
Sagalowicz, D., “A D-Ladder User's Guide,” Sep. 1980, SRI International, 42 pages.
Sameshima, Y., et al., “Authorization with security attributes and privilege delegation Access control beyond the ACL,” Computer Communications, vol. 20, 1997, 9 pages.
San-Segundo, R., et al., “Confidence Measures for Dialogue Management in the CU Communicator System,” Jun. 5-9, 2000, Proceedings of Acoustics, Speech, and Signal Processing (ICASSP'00), 4 pages.
Sato, H., “A Data Model, Knowledge Base, and Natural Language Processing for Sharing a Large Statistical Database,” 1989, Statistical and Scientific Database Management, Lecture Notes in Computer Science, vol. 339, 20 pages.
Schnelle, D., “Context Aware Voice User Interfaces for Workflow Support,” Aug. 27, 2007, Dissertation paper, 254 pages.
Sharoff, S., et al., “Register-domain Separation as a Methodology for Development of Natural Language Interfaces to Databases,” 1999, Proceedings of Human-Computer Interaction (INTERACT'99), 7 pages.
Shimazu, H., et al., “CAPIT: Natural Language Interface Design Tool with Keyword Analyzer and Case-Based Parser,” NEC Research & Development, vol. 33, No. 4, Oct. 1992, 11 pages.
Shinkle, L., “Team User's Guide,” Nov. 1984, SRI International, Artificial Intelligence Center, 78 pages.
Shklar, L., et al., “Info Harness: Use of Automatically Generated Metadata for Search and Retrieval of Heterogeneous Information,” 1995 Proceedings of CAiSE'95, Finland.
Singh, N., “Unifying Heterogeneous Information Models,” 1998 Communications of the ACM, 13 pages.
SRI2009, “SRI Speech: Products: Software Development Kits: EduSpeak,” 2009, 2 pages, available at http://web.archive.org/web/20090828084033/http://www.speechatsri.com/products/eduspeak.shtml.
Starr, B., et al., “Knowledge-Intensive Query Processing,” May 31, 1998, Proceedings of the 5th KRDB Workshop, Seattle, 6 pages.
Stern, R., et al. “Multiple Approaches to Robust Speech Recognition,” 1992, Proceedings of Speech and Natural Language Workshop, 6 pages.
Stickel, “A Nonclausal Connection-Graph Resolution Theorem-Proving Program,” 1982, Proceedings of AAAI'82, 5 pages.
Sugumaran, V., “A Distributed Intelligent Agent-Based Spatial Decision Support System,” Dec. 31, 1998, Proceedings of the Americas Conference on Information systems (AMCIS), 4 pages.
Sycara, K., et al., “Coordination of Multiple Intelligent Software Agents,” International Journal of Cooperative Information Systems (IJCIS), vol. 5, Nos. 2 & 3, Jun. & Sep. 1996, 33 pages.
Sycara, K., et al., “Distributed Intelligent Agents,” IEEE Expert, vol. 11, No. 6, Dec. 1996, 32 pages.
Sycara, K., et al., “Dynamic Service Matchmaking Among Agents in Open Information Environments ,” 1999, SIGMOD Record, 7 pages.
Sycara, K., et al., “The RETSINA MAS Infrastructure,” 2003, Autonomous Agents and Multi-Agent Systems, vol. 7, 20 pages.
Tyson, M., et al., “Domain-Independent Task Specification in the TACITUS Natural Language System,” May 1990, SRI International, Artificial Intelligence Center, 16 pages.
Wahlster, W., et al., “Smartkom: multimodal communication with a life-like character,” 2001 EUROSPEECH -Scandinavia, 7th European Conference on Speech Communication and Technology, 5 pages.
Waldinger, R., et al., “Deductive Question Answering from Multiple Resources,” 2003, New Directions in Question Answering, published by AAAI, Menlo Park, 22 pages.
Walker, D., et al., “Natural Language Access to Medical Text,” Mar. 1981, SRI International, Artificial Intelligence Center, 23 pages.
Waltz, D., “An English Language Question Answering System for a Large Relational Database,” © 1978 ACM, vol. 21, No. 7, 14 pages.
Ward, W., et al., “A Class Based Language Model for Speech Recognition,” © 1996 IEEE, 3 pages.
Ward, W., et al., “Recent Improvements in the CMU Spoken Language Understanding System,” 1994, ARPA Human Language Technology Workshop, 4 pages.
Ward, W., “The CMU Air Travel Information Service: Understanding Spontaneous Speech,” 3 pages.
Warren, D.H.D., et al., “An Efficient Easily Adaptable System for Interpreting Natural Language Queries,” Jul.-Dec. 1982, American Journal of Computational Linguistics, vol. 8, No. 3-4, 11 pages. Best Copy Available.
Weizenbaum, J., “ELIZA—Computer Program for the Study of Natural Language Communication Between Man and Machine,” Communications of the ACM, vol. 9, No. 1, Jan. 1966, 10 pages.
Winiwarter, W., “Adaptive Natural Language Interfaces to FAQ Knowledge Bases,” Jun. 17-19, 1999, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, 22 pages.
Wu, X. et al., “KDA: A Knowledge-based Database Assistant,” Data Engineering, Feb. 6-10, 1989, Proceeding of the Fifth International Conference on Engineering (IEEE Cat. No. 89CH2695-5), 8 pages.
Yang, J., et al., “Smart Sight: A Tourist Assistant System,” 1999 Proceedings of Third International Symposium on Wearable Computers, 6 pages.
Zeng, D., et al., “Cooperative Intelligent Software Agents,” The Robotics Institute, Carnegie-Mellon University, Mar. 1995, 13 pages.
Zhao, L., “Intelligent Agents for Flexible Workflow Systems,” Oct. 31, 1998 Proceedings of the Americas Conference on Information Systems (AMCIS), 4 pages.
Zue, V., et al., “From Interface to Content: Translingual Access and Delivery of On-Line Information,” 1997, EUROSPEECH, 4 pages.
Zue, V., et al., “Jupiter: A Telephone-Based Conversational Interface for Weather Information,” Jan. 2000, IEEE Transactions on Speech and Audio Processing, 13 pages.
Zue, V., et al., “Pegasus: A Spoken Dialogue Interface for On-Line Air Travel Planning,” 1994 Elsevier, Speech Communication 15 (1994), 10 pages.
Zue, V., et al., “The Voyager Speech Understanding System: Preliminary Development and Evaluation,” 1990, Proceedings of IEEE 1990 International Conference on Acoustics, Speech, and Signal Processing, 4 pages.
Jouvet et al., “Evaluating Grapheme-to-Phoneme Converters in Automatic Speech Recognition Context”, IEEE, 2012, pp. 4821-4824.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/044574, issued on Dec. 9, 2014, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/044574, mailed on Sep. 27, 2013, 12 pages.
Viikki et al., “Speaker- and Language-Independent Speech Recognition in Mobile Communication Systems”, IEEE, vol. 1, 2001, pp. 5-8.
Related Publications (1)
Number Date Country
20130332164 A1 Dec 2013 US