Nano-carrier Formulations for Targeted Drug Delivery and Malaria Radical Cure

Information

  • Research Project
  • 9795610
  • ApplicationId
    9795610
  • Core Project Number
    R01AI132579
  • Full Project Number
    7R01AI132579-03
  • Serial Number
    132579
  • FOA Number
    PA-18-590
  • Sub Project Id
  • Project Start Date
    6/1/2017 - 7 years ago
  • Project End Date
    5/31/2021 - 3 years ago
  • Program Officer Name
    O'NEIL, MICHAEL T
  • Budget Start Date
    1/15/2019 - 6 years ago
  • Budget End Date
    5/31/2019 - 5 years ago
  • Fiscal Year
    2018
  • Support Year
    03
  • Suffix
  • Award Notice Date
    1/15/2019 - 6 years ago

Nano-carrier Formulations for Targeted Drug Delivery and Malaria Radical Cure

PROJECT SUMMARY/ABSTRACT Development of dormant hypnozoites in the hepatic tissues, which may cause malaria relapse weeks to months after the initial infection, poses the major challenge for treatment & control of vivax malaria. 8- Aminoquinolines (8-AQs) are the only antimalarial drugs active against Plasmodium vivax hypnozoites. However, the utility of 8-AQs has been limited due to a dose-limiting hemolytic toxicity in individuals with glucose-6- phosphate dehyrogenase (G6PD) deficiency. G6PD deficiency affects more than 400 million people worldwide Lipid/polymeric nanoparticle formulations have recently been shown to have significant oral bioavailability. This approach, along with targeted delivery to the hepatic tissues may be applied for improving therapeutic index of 8-AQs. The goal of this project would be to develop stable lipid nanoparticles [solid lipid nanoparticles (SLNs) or nanostructured lipid carriers (NLCs)] loaded with primaquine or NPC1161B, which can permeate across the intestinal epithelia, reach the blood circulation and distribute in the tissues intact following oral administration. Targeted and non-targeted nano-carrier formulations (polymeric, lipid based and micellar) of PQ and NPC1161B will be prepared and optimized for pharmaceutical properties. Lipid-based nanoparticles will be prepared by high-pressure homogenization technique using glyceryl stearate, glyceryl distearate, glyceryl behenate, miglyol and other GRAS listed, biocompatible and biodegradable lipids, and their combinations. The formulations will be evaluated with respect to drug loading, loading efficiency, particle size and size distribution, zeta potential, resistance to lipolysis, in vitro drug release rates, physical and chemical stability, uptake and metabolism by primary human hepatocytes. In vivo pharmacokinetics and tissue distribution in rodents will assess the liver/blood ratios of the drugs and characterize their metabolism and plasma/liver pharmacokinetics. The formulations with desired PK and metabolism profiles would be progressed to in vivo efficacy in rodent malaria blood and liver stage causal prophylaxis models. In vivo hemotoxicity will be evaluated in the recently developed humanized NOD-SCID mouse model engrafted with human G6PD deficient blood. Targeted orally bioavailable nano-carrier formulations of PQ and NPC1161B will reduce total dose of the drug required for complete efficacy, which presumably would translate to a higher total dose of active metabolite in parasitized liver cells required to clear vivax hypnozoites. Reduced exposure of erythrocytes to the drug or the metabolites would improve therapeutic index of these drugs and allow their safe use in G6D deficient individuals. This would also allow application of these drugs for public health and malaria control programs.

IC Name
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
  • Activity
    R01
  • Administering IC
    AI
  • Application Type
    7
  • Direct Cost Amount
    407445
  • Indirect Cost Amount
    333090
  • Total Cost
    740535
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    855
  • Ed Inst. Type
  • Funding ICs
    NIAID:740535\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    DDR
  • Study Section Name
    Drug Discovery and Mechanisms of Antimicrobial Resistance Study Section
  • Organization Name
    SOUTHERN RESEARCH INSTITUTE
  • Organization Department
  • Organization DUNS
    006900526
  • Organization City
    BIRMINGHAM
  • Organization State
    AL
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    352052708
  • Organization District
    UNITED STATES