Nano-composite and compositions therefrom

Information

  • Patent Grant
  • 7579398
  • Patent Number
    7,579,398
  • Date Filed
    Wednesday, February 1, 2006
    18 years ago
  • Date Issued
    Tuesday, August 25, 2009
    15 years ago
Abstract
The present invention relates to various nano-composites and compositions comprising a cationic mediator and method thereof. The cationic mediator comprises a polymeric group and a cationic unit selected from the group consisting of onium cation and heterocyclic cation. The nano-composites and compositions exhibit improved gas permeability property, strong moisture absorbance, and high electrical conductivity etc.
Description
BACKGROUND OF THE INVENTION

The present invention generally relates to nano-composites and compositions including the nano-composite (also referred to as an organo-clay). More particularly, the present invention relates to a nano-composite comprising a cationic mediator and a clay, a polymer electrolyte composition comprising a cationic mediator and a solvent, a moisture reducing composition comprising a cationic mediator, the manufacture thereof, and industrial applications therefore.


Since the discovery of exfoliated nylon/clay nanocomposites by Usuki et al. (J. Mater. Res. 1993, 8, 1174), there have been extensive efforts to prepare various polymer-layered material composites. The most common morphology for miscible polymer-layered material dispersions is known as intercalation and exfoliation, which provides a polymer having improved mechanical, permeability, thermal, and heat distortion temperature properties. However, for polymers, particularly nonpolar polymers, well-exfoliated polymer-layered material nanocomposites are notoriously difficult to obtain.


Gas impermeability is an important characteristics for many polymer products, for example, butyl rubber. However, unsaturated bonds in butyl rubber, contributed by the presence of isoprene monomer units in the backbone, can be attacked by atmospheric ozone. These attacks may, over time, lead to oxidative degradation, which may subsequently lead to chain cleavage. As such, there exists a continuous interest in lowering gas permeability of polymers.


One technique for lowering gas permeability is using well-exfoliated layered materials as an additive. However, the effort to improve gas permeability must be balanced against damaging other polymer properties such as vulcanization plateau, Shore A hardness, cure capability, rubber damping properties, cure time, modulus, stress-strain, and moisture absorption, in order to achieve an overall superior performance. For example, although they reduce gas permeability, organo-clays derived from some organic ammonium salts of low decomposition temperature, may damage or retard the cure process of the rubber compound, especially, when using free radical cure, sulfur cure, ZnO cure and etc.


The present invention provides nano-composites based on a cationic mediator which is comprised of a polymeric group and a cationic unit selected from the group consisting of onium cation and heterocyclic cation. According to selected embodiments, the invention employs green solvents, e.g. 1-methylimidazol, as the reactants in preparing the cationic mediator, making both the process and product relatively environmentally friendly.


SUMMARY OF THE INVENTION

According to one embodiment, the present invention provides a nano-composite comprising (a) a cationic mediator comprised of a polymeric group and a cationic unit which is selected from the group consisting of onium cation and heterocyclic cation, and (b) a clay, wherein said polymeric group is covalently bonded to said cationic unit, and said clay is exfoliated by said cationic mediator.


Another embodiment of the invention provides a rubber and/or tire product, which includes the nano-composite.


Another embodiment of the invention provides a method of exfoliating a clay.


According to another embodiment, the invention provides a polymeric electrolyte composition, comprised of the cationic mediator and a solvent. The polymeric electrolyte composition can be used as battery membrane, etc.


According to another embodiment, the invention provides a moisture reducing composition comprising the cationic mediator.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating preferred embodiments and are not to be construed as limiting the invention.


In the drawings appended hereto:



FIG. 1 shows the wide angle X-ray diffractions (XRD) of four samples in one embodiment of the invention. The four samples are MAE powder, MAE treated Exxpro rubber (no amine), MAE treated Exxpro rubber modified with triallyl amine, and MAE treated Exxpro rubber modified with tributyl amine.



FIG. 2 shows the small angle X-ray scatterings (SAXS) of three samples in one embodiment of the invention. The three samples are MAE treated Exxpro rubber, MAE treated Exxpro rubber modified with triallylamine, and MAE treated Exxpro rubber modified with tributylamine.





DETAILED DESCRIPTION OF THE INVENTION

The term “cationic mediator” is used in the present invention to define a chemical species able to effectively mediate, or compatibilize, an immiscible organic polymer and an inorganic layered material such as clay, into a relatively homogenous mixture which lacks significant phase separation. One exemplary form of “mediation” is to facilitate the intercalation or exfoliation of organic polymer in between the layers of the layered material.


The cationic mediator comprises at least one cationic unit, i.e. hydrophilic part, that can bind to the layers of the inorganic layered material with effectively higher affinity than with an organic, and typically also hydrophobic, material, such as butyl rubber. While typically a cationic mediator binds to an inorganic layered material by hydrophilic interaction or ionic bond, it can also bind or link to an organic material through a variety of physical and chemical forces such as hydrophobic interaction, covalent bonds, π-π stacking interaction, lock-key type interaction, hydrogen bonds, and coordination bonds etc. Accordingly, a cationic mediator of the present invention structurally also comprises, in addition to the “at least one cationic unit”, a polymeric group, examples of which include an organic binding unit, or a sufficiently long alkyl chain, etc.


The cationic unit, monoatomic or polyatomic, bears one or more elementary proton charges, i.e. positive charges. Depending upon the specific structure of a cationic mediator, such as the presence or absence of a conjugated system, the positive charge(s) can be either localized or delocalized. The cationic mediator is accompanied by negatively charged species to balance its positive charge and neutralize the overall charge of the system. Although the negatively charged species is typically independent, e.g. counter ion(s), it is also within the scope of the present invention that the negatively charged species is part of the cationic mediator, by which an inner salt is formed. In various embodiments of the present invention, the counter ions of the cationic mediators may also be those negatively charged groups of the layered material, for example, after the cationic mediators have exchanged some cations of the layered material by intercalating between the layers of the clay.


Exemplary counter ions of the cationic mediator include, but are not limited to, simple anions such as Cl, Br, F, I, O2−, S2−, Se2−, Te2−, N3−, As3−, and the like; and polyatomic anions such as BF4, PF6, CO32−, HCO3, SO42−, CF3SO3, SO32−, S2O32−, HSO4, H2PO4, HPO42−, PO43−, NO2, NO3, C2O42−, C2H3O2, OH, O22−, N3, CrO42−, Cr2O72−, BO33−, MnO4, AsO43−, SCN, CN, CNO, ClO, ClO2, ClO3, ClO4, BrO, BrO2, BrO3, BrO4, IO, IO2, IO3, IO4, and the like.


According to one embodiment, the present invention provides a nano-composite comprising (a) a cationic mediator comprised of a polymeric group and a cationic unit which is selected from the group consisting of onium cation and heterocyclic cation, and (b) an exfoliated clay, wherein said polymeric group is covalently bonded to said cationic unit.


Although the cationic unit in the mediator may be one or more of organometallic cations such as Fe3+, Fe2+, Co2+, Zn2+, Ni2+, Cu2+, Al3+, Ga3+, Mg2+ and the like, a preferred cationic unit is one or more onium cations such as ammonium, oxonium, fluoronium, phosphonium, sulfonium, chloronium, arsonium, selenonium, bromonium, stibonium, telluronium, iodonium, and bismuthonium having the general formulas (I) to (XIV) shown below:




embedded image



in which R1, R2, R3, and R4 can be independently any suitable univalent (i.e. having a valence of one) groups.


It is also within the scope of the invention that two or more of the R1, R2, R3, and R4 groups are replaced by a group having two or more free valencies on the same atom, for example, hydrocarbylidyne oxonium, iminium, nitrilium etc.


The heterocyclic cations include, but are not limited to, imidazolium, 1-alkylimidazolium, 1,3-dialkylimidazolium, 1-arylalkylimidazolium, 1-arylalky-3-alkyl-limidazolium, 1,3-diarylalkylimidazolium, benzimidazolium, imidazolinium, pyridinium, piperidinium, pyrazinium, piperazinium, pyrrolium, pyrrolidinium, pyrazolium, diazolium, triazolium, pyridazinium, tetrazolium, amidinium, guanidinium, oxazolium, oxadiazolium, oxatriazolium, thiazolium, thiadiazolium, thiatriazolium, quaternary pyrazolidine, quaternary pyrrolidones, indolium, isoindolium, quinolinium, isoquinolinium, quinazolinium, quinoxalinium, derivates thereof, and mixtures thereof.


Taking imidazolium to exemplify the meaning of derivatives, the cationic unit can have the formula (XIV) as shown below.




embedded image


In formulas (I) to (XIV), each of the R1, R2, R3, R4, R5, R6, and R7 groups can independently be hydrogen; a saturated or unsaturated, substituted or unsubstituted, straight or branched, cyclic or acyclic C1-C50 alkyl group; a substituted or unsubstituted aryl-containing or hetaryl-containing group; and the like.


Specific examples of R1, R2, R3, R4, R5, R6, and R7 groups include, but are not limited to, hydrogen, methyl, ethyl, vinyl, allyl, propyl, isopropyl, butyl, isobutyl, behenyl, palmitoleyl, oleyl, linoleyl, linelenyl, erucyl, capryl, tallow, n-pentyl, any isopentyl, n-hexyl, any isohexyl, n-heptyl, any isoheptyl, n-octyl, any isooctyl, n-nonyl, any isononyl, n-decyl, any isodecyl, n-undecyl, any isoundecyl, n-dodecyl or lauryl, any isododecyl, n-tridecyl, any isotridecyl, n-tetradecyl, myristyl, any isotetradecyl, n-pentadecyl, any isopentadecyl, n-hexadecyl or cetyl, palmityl, any isohexadecyl, n-heptadecyl, any isoheptadecyl, n-octadecyl, stearyl, any isooctadecyl, n-nonadecyl, any isononadecyl, n-eicosyl, any isoeicosyl, n-henicosyl, any isohenicosyl, n-docosyl, any isodocosyl, n-tricosyl, any isotricosyl, n-tetracosyl, any isotetracosyl, n-pentacosyl, any isopentacosyl, n-hexacosyl, any isohexacosyl, n-heptacosyl, any isoheptacosyl, n-octacosyl, any isooctacosyl, n-nonacosyl, any isononacosyl, n-triacontyl, any isotriacontyl, n-hentriacontyl, any isohentriacontyl, n-dotriacontyl, any isodotriacontyl, n-tritriacontyl, any isotritriacontyl, n-tetratriacontyl, any isotetratriacontyl, n-pentatriacontyl, any isopentatriacontyl, n-hexatriacontyl, any isohexatriacontyl, n-heptatriacontyl, any isoheptatriacontyl, n-octatriacontyl, any isooctatriacontyl, n-nonatriacontyl, any isononatriacontyl, n-tetracontyl, any isotetracontyl, n-hentetracontyl, any isohentetracontyl, n-dotetracontyl, any isodotetracontyl, n-tritetracontyl, any isotritetracontyl, n-tetratetracontyl, any isotetratetracontyl, n-pentatetracontyl, any isopentatetracontyl, n-hexatetracontyl, any isohexatetracontyl, n-heptatetracontyl, any isoheptatetracontyl, n-octatetracontyl, any isooctatetracontyl, n-nonatetracontyl, any isononatetracontyl, n-pentacontyl, any isopentacontyl, and the like.


In formulas (I) to (XIV), R1, R2, R3, R4, R5, R6, and R7 can also independently of each other be aryl-containing or hetaryl-containing groups. As used herein, the terms “aryl” and “hetaryl” are intended to embrace monocyclic or polycyclic aromatic hydrocarbon and heterocyclic groups. Examples of aralkyl and alkylaralkyl groups include, but are not limited to, benzyl, benzhydryl, tolylmethyl, trityl, cinnamyl, phenethyl, styryl, phenylbutyl, neophyl, and the like. Examples of aryl and alkylaryl groups include, but are not limited to, phenyl, biphenyl, tolyl, xylyl, mesityl, cumenyl, di(t-butyl)phenyl, anthryl, indenyl, naphthyl, and the like. Haloaryl and haloaralkyl groups are aryl and aralkyl groups which have been substituted with one or more halo groups. Examples of such groups include, but are not limited to, halobenzyl (e.g., fluorobenzyl, chlorobenzyl, bromobenzyl, or iodobenzyl, whether ortho-, meta-, or para-substituted), dihalobenzyl, trihalobenzyl, tetrahalobenzyl, pentahalobenzyl, halophenyl (e.g., fluorophenyl, chlorophenyl, bromophenyl, or iodophenyl, whether ortho-, meta-, or para-substituted), dihalophenyl, trihalophenyl, tetrahalophenyl, and pentahalophenyl.


Specific examples of other aryl-containing and hetaryl-containing R1, R2, R3, R4, R5, R6, and R7 groups include phenoxy, tolyloxy, xylyloxy, mesityloxy, and cumenyloxy; biphenyl, anilino, toluidino, tosyl, allyl-benzyl or -phenyl, furyl, pyridyl, 2-pyridyl (pyridin-2-yl), indol-1-yl, chloromethyl-benzyl or -phenyl, trifluoromethyl-benzyl or -phenyl, hydroxy-benzyl or -phenyl, methoxy-benzyl or -phenyl, ethoxy-benzyl or -phenyl, methoxyethoxy-benzyl or -phenyl, allyloxy-benzyl or -phenyl, phenoxy-benzyl or -phenyl, acetoxy-benzyl or -phenyl, benzoyloxy-benzyl or -phenyl, methylthio-benzyl or -phenyl, phenylthio-benzyl or -phenyl, tolylthio-benzyl or -phenyl, methylamino-benzyl or -phenyl, dimethylamino-benzyl or -phenyl, ethylamino-benzyl or -phenyl, diethylamino-benzyl or -phenyl, acetylamino-benzyl or -phenyl, carboxy-benzyl or -phenyl, methoxycarbonyl-benzyl or -phenyl, ethoxycarbonyl-benzyl or -phenyl, phenoxycarbonyl-benzyl or -phenyl, chlorophenoxycarbonyl-benzyl or -phenyl, N-cyclohexylcarbamoyloxy-benzyl or -phenyl, allyloxycarbonyl-benzyl or -phenyl, carbamoyl-benzyl or -phenyl, N-methylcarbamoyl-benzyl or -phenyl, N,N-dipropylcarbamoyl-benzyl or -phenyl, N-phenylcarbamoyl-benzyl or -phenyl, nitro-benzyl or -phenyl, cyano-benzyl or -phenyl, sulfo-benzyl or -phenyl, sulfonato-benzyl or -phenyl, phosphono-benzyl or -phenyl, phosphonato-benzyl or -phenyl groups, and morpholino-benzyl or -phenyl and the like.


Cationic unit(s) in the mediator may also cover any suitable and sufficiently stable ylium ions or carbocations such as carbenium, bis(ylium), tris(ylium), alkylium, carbonium such as di- or tri-arylcarbonium, vinyl cations, allyl cation, sulfanylium, germylium, furan-2-ylium, acylium, sulfonylium, and the like.


There is no specific limitation to the polymeric group in the cationic mediator. However, preferred polymeric groups include polymers that can facilitate intercalation or exfoliation between clay layers more effectively with than without the aid of the cationic unit as demonstrated above. Conveniently defined by its backbone structure, the polymeric group can have a saturated or unsaturated polyvinyl-type (i.e., carbon-chain) backbone, such as polychloroprene, polyethylene, isobutene-isoprene rubber (butyl rubber, IIR), halogenated butyl rubber (HIIR) such as CIIR and BrIIR, neoprene rubber, nitrile rubber (NBR), 1,2-polybutadiene, polyallene, polybutadiene (butadiene rubber, BR), polyisobutylene (PIB), polyisoprene, 3,4-polyisoprene, poly(methyl acrylate), poly(methyl vinyl ketone), ethylene-propylene elastomer, polystyrene (PS), polyacrylamide, poly(acrylamide oxime), polypropylene (PP), styrene-butadiene rubber (SBR), poly(methyl methacrylate), acrylonitrile-butadiene-styrene terpolymer (ABS), poly(vinyl chloride) (PVC), poly(vinylidene chloride), poly(vinyl pyridine), poly(vinyl pyrrolidone), poly(acrylic anhydride), polyacrylonitrile, Exxpro™ elastomers (brominated isobutylene p-methylstyrene copolymer, Exxon Chemical, TX, USA), styrene-acrylonitrile copolymer (SAN), ethylene-vinyl acetate copolymer (EVA) and the like, and mixtures thereof.


The polymeric group can also possess a backbone with one or more functional groups such as carbonyl, or a non-carbon element such as N, S or O etc. (i.e. heterochain polymer). Exemplary heterochain polymers include, but are not limited to, polyether such as poly(oxyethylene), polyformaldehyde, poly(phenylene oxide) or polyacetaldehyde; polyacrolein, polysulfide, polysulfone, poly(alkylene polysulfide), polyester, polycarbonate, polyphosphate ester, polyamide, polyurea, polyurethane, heterocyclic polymer, polyhydrazides, polyimide, melamine-formaldehyde resin (MF), polysaccharides, phenol-formaldehyde resin (PF), polyanhydride etc., and mixtures thereof.


More specific polymer examples are illustrated in the following scheme, in which n, x, y, and z are all integral numbers:




embedded image


Moreover, the polymeric group of the present invention can be inorganic or inorganic/organic polymer such as polysiloxane, polysilane, carborane polymer, and organometallic polymer etc.


The invention provides a nano-composite comprising (a) a cationic mediator comprised of a polymeric group and a cationic unit which is selected from the group consisting of onium cation and heterocyclic cation, and (b) a clay, wherein said polymeric group is covalently bonded to said cationic unit, and said clay is exfoliated by said cationic mediator. Since the polymeric group is covalently bonded to one or more of the cationic units, one or more coupling groups can be formed between the polymeric group and cationic units. The coupling groups, optionally together with the polymeric group, may sometimes be viewed as one of the R1, R2, R3, R4, R5, R6, and R7 groups, which are also contemplated to be within the scope of the present invention. Illustrative examples include:




embedded image


The architecture of the polymeric group can be linear, branched, or networked, a centipede polymer, a comb polymer, a star polymer, a ladder polymer, or a dendrimer and so on. When the polymeric group is a copolymer, it can be block copolymer, graft copolymer, statistical copolymer, random copolymer, periodic copolymer, and alternating copolymer etc. Likewise, terpolymers, tetrapolymers and so on, are also within the scope of the polymers of the present invention. Generally, the molecular weight of the polymer can be between 300 and 300,000,000, preferably between 1,000 and 100,000,000, more preferably between 5,000 and 10,000,000.


In the case exemplified in formulas (XVIII), (XIV), and (XX), the polymeric group connects to the cationic unit(s) via one or more covalent bonds (coupling groups). One end of the coupling group can connect to any suitable position in the polymeric group backbone, while the other end can connect to any suitable position in the cationic unit(s). Exemplary coupling groups include, but are not limited to, linear or branched (C1-C6)alkylene such as methylene, ethylene, and propylene, and linear or branched (C1-C6)oxyalkylene etc. The stereochemistry, due to the pendant cationic unit(s), of the polymeric group can be isotactic, syndiotactic, or atactic. However, it should be understood that, merely for nomenclature purpose, the coupling group, entirely or partially, can be named as part of the cationic unit(s), or part of the polymeric group. For example, the cationic mediator of the following structure can be described as 1-methylimidazolium with a methylene coupling group to the polymeric group, or a 1,3-dimethylimidazolium with a direct covalent bond to the polymeric group.




embedded image


Optionally, the nano-composite of the present invention may further mix with another polymer such as butyl rubber. Advantageously, butyl rubber can also exfoliate the clay. To this end, in the cationic mediator, at least one of R1, R2, R3, R4 groups for any of formula (I-XIII) onium cations, or at least one of R5, R6, and R7 groups for formula (XIV) heterocyclic cation, or at least part of the polymeric group, should preferably be of such length or size (e.g. having a carbon chain with at least four carbon atoms, at least eight carbon atoms, or at least 16 carbon atoms) to have sufficient hydrophobicity and be able to effectively bind with butyl rubber, and facilitate the co-intercalation or co-exfoliation of the butyl rubber in between clay layers.


Optionally, the cationic mediator of the present invention may be combined with other cationic mediators or surfactants, in exfoliating clay and forming the nano-composite of the present invention. Examples of the “other types of cationic mediator” may be dimethyl ditallow ammonium, trimethyl tallow ammonium, dimethyl dihydrogenated tallow ammonium, methyl ethyl ditallow ammonium, methyl ethyl benzyl tallow ammonium, dimethyl ethyl tallow ammonium, and some heterocyclic cations as indicated below.




embedded image


“Layered material” means an inorganic material that is in the form of a plurality of adjacent bound layers or plates. Layered materials used are those that can give at least one of the cationic mediators access to their interlayer spaces through exchanging, partially or completely, their cations with cationic mediators, a process called intercalation or exfoliation. Intercalated layered materials may retain order or uniformity in layer spacing and/or layer position. In one embodiment, the layered material is first intercalated, and then exfoliated. The cationic mediator to facilitate intercalation or exfoliation may be accompanied along with one or more polymers by connecting the polymer(s) through a variety of forces, for example, hydrophobic interaction, π-π stacking interaction, lock-key type interaction, hydrogen bonds, coordination bonds, covalent bonds, and combinations thereof. Under the influence of the cationic mediator, the polymer(s) can also intercalate in between, or compatiblize with, or exfoliate, or delaminate the layers of the layered material. In many cases, the layered material is clay, which typically comprises an inorganic phase having layered materials in plates or other shapes with a significantly high aspect ratio. The aspect ratio is defined as the ratio of the largest and smallest dimension of the clay particles.


Exemplary clays include, but are not limited to, synthetic mica; smectites such as montmorillonite (Bentonite), sodium montmorillonite, magnesium montmorillonite, calcium montmorillonite, beidellite, nontronite, hectorite, sodium hectorite, saponite, synthetic saponite, and sauconite; pyrophyllite; glauconites; vermiculites; polygorskines; sepiolites; allophanes; imogolites; talc; mica; fluoro-mica; illites; glauconite; phyllosilicates; volkonskoite; sobockite; stevensite; svinfordite; magadiite; kenyaite; kaolinite; dickite; nacrite; anauxite; ledikite; montronite; silicate; halloysite; metahalloysite; sericite; allophone; serpentine clays; chrysotile; antigorite; attapulgite; sepiolite; palygorskite; Kibushi clay; gairome clay; hisingerite; chlorite; and mixtures thereof.


Typical clays have a layered structure with a gap of about 0.1 nm between each layer and cations such as K+ and Na+ on the surface of each layer. The cations are attached by an ionic interaction with the negatively charged surface of the clay layers, and create a net neutral charge between clay layers.


The cationic mediator and the clay of the present invention are either commercially available, or can be prepared using synthetic techniques that are known to a person skilled in the art. For example, a brominated isobutylene p-methylstyrene copolymer can be obtained from Exxon Chemicals under the trade name of Exxpro 3745. Dimethylditallow ammonium treated mica and synthetic mica can be obtained from Coop Chemicals (Tokyo, Japan) under the trade name of MAE and ME-100, respectively. According to one embodiment, a cationic mediator comprised of a polyether group and an 1-methylimidazolium cation is produced by condensing a halogen-containing polymer such as polyepichlorohydrin with 1-methylimidazole at elevated temperature, preferably up to 70° C., more preferably up to 100° C., and most preferably up to 150° C. In this reaction, the reactant 1-methylimidazole is one example of room temperature ionic liquids which are commonly considered as a green solvent for chemical synthesis. It should be understood that, due to the accessibility of the polyepichlorohydrin chloro-group to the 1-methylimidazole, not necessarily all of the chloro-groups are converted to 1-methylimidazolium. Preferably, the conversion is at least 50%, more preferably at least 80%, and most preferably at least 95%. Without being bound by theory, the reaction is believed to occur in a mechanism as illustrated below.




embedded image


In one embodiment, a cationic mediator comprised of a butyl rubber group and ammonium is produced by reacting a solid state polymer, such as brominated butyl rubber, chlorinated butyl rubber or Exxpro, with suitable amine compounds, such as tributylamine or triallylamine. The reaction product can then be directly mixed with a clay or an organo-clay to prepare nano-composites of the present invention. The benefit of this embodiment is that, among others, the process does not need treatment of the clay using polymer surfactants in solution and is therefore efficient and cost-effective.


In various embodiments, the cationic mediator may be used to exfoliate a clay and form useful products such as a nano-composite, or organo-clay, or exfoliated clay. An exfoliated layered material does not retain the degree of order or uniformity in layer spacing and/or position that may be found in layered materials or intercalated layered materials. In the present invention, the ratio between clay and cationic mediator can be from 5:95 to 95:5 by weight, preferably from 30:70 to 70:30 by weight, and more preferably from 40:60 to 60:40. Preferably, the exfoliated clay will have an average between-layer gap greater than about 1 nm, and more preferably a gap greater than about 3.0 nm.


In the exfoliation procedure, optionally a clay may be first swelled by placing it in water. Swelling takes place because the cations of the clay become solubilized in the water, leaving adjacent negatively charged clay layers. The adjacent clay layers are repulsed by their similar negative charges, resulting in gaps. A cationic mediator may then be added to the swollen clay to form an organo-clay or the nano-composite. Alternatively, before addition of the cationic mediator, the clay may be pre-exfoliated with some cationic surfactants such as ammonium salts. Still alternatively, if a cationic mediator per se can exist as an ionic liquid during the exfoliation procedure, a clay may be directly mixed with the cationic mediator. The cationic mediator is attracted to the negatively charged surface of the clay, keeping the swelling state stable and forming gaps of at least about 5-10 nm between the layers. If additional non-polar polymer such as rubber is added to the clay/cationic mediator nano-composite, it can further separate the layers of the clay, because the added polymer and the cationic mediator can attract each other at, e.g., their hydrophobic portions, and the added polymer will penetrate between clay layers. The large molecule size of the cationic mediator and/or the added polymer can counteract any remaining Van der Waals interactions between the clay layers and the clay can be fully exfoliated, i.e. separated into discrete layers.


The nano-composite of present invention may be utilized in various applications, for example, rubber formulation and tire production, because the effective exfoliation of clays helps to improve gas permeability and other physical properties of rubber. In one embodiment of the invention, an organo-clay is dispersed into a rubber such as butyl rubber. Optionally, preferably prior to dispersing the organo-clay in the rubber, the organo-clay may be washed and dried. Preferably, the organo-clay is washed with an alcohol, such as, but not limited to, isopropanol, water or mixtures thereof. According to the present invention, the rubber so formulated has lower gas permeability without a negative impact on the cure properties.


In a rubber formulation, additional stabilizers, antioxidants, conventional fillers, processing aids, accelerators, extenders, curing agents, reinforcing agents, reinforcing resins, pigments, fragrances, and the like can optionally be added. Specific examples of useful antioxidants and stabilizers include 2-(2′-hydroxy-5′-methylphenyl)benzotriazole, nickel di-butyl-di-thiocarbamate, tris(nonylphenyl) phosphite, 2,6-di-t-butyl-4-methylphenol, and the like. Exemplary fillers include silica, carbon black, titanium dioxide, iron oxide, and the like. Suitable reinforcing materials are inorganic or organic products of high molecular weight. Examples include glass fibers, asbestos, boron fibers, carbon and graphite fibers, whiskers, quartz and silica fibers, ceramic fibers, metal fibers, natural organic fibers, and synthetic organic fibers.


As one exemplary benefit of the present invention, good cure properties and low gas permeability can both be achieved for some rubber formulations. Exemplary rubbers suitable to the present invention include, but are not limited to, butyl rubber, BR, Hcis BR, SBR, NR and so on. As used herein, the butyl rubber may include isobutylene, halobutyl rubber, and copolymers of isobutylene and one or more additional monomers, such as isoprene, styrene, butadiene, and mixtures thereof. The butyl rubber composition is useful in the formation of inner liners for automobile tires and in applications requiring good damping characteristics, such as engine mounts. Other uses for the butyl rubber include use in air cushions, pneumatic springs, air bellows, accumulator bags, tire-curing bladders, high temperature service hoses, and conveyor belts for handling hot materials.


The nano-composite of the present invention can be advantageously incorporated into butyl rubber by any method known to a skilled artisan, for example, wet/solvent method or a dry mixing method under mild mixing conditions. Such mild mixing conditions are, for example, similar to those normally used in butyl rubber mixing. The mixing may be accomplished, for example, by using any integral mixing device such as a Brabender mixer, a twinscrew extruder or a kneader, at a mixing rate of from about 20 to about 200 rpm, at a temperature of about 25° C. to about 250° C. for a period of about 3-30 minutes. In one embodiment, the mixing conditions are for example, mixing in a Brabender mixer at about 60 rpm at a temperature of about 70° C. for about three minutes. Of course, the organo-clay can be added according to any other method known by the skilled artisan. It is preferred that between about 1 and about 70%, more preferably, between about 3 and about 40% by weight of organo-clay or nano-composite is incorporated into the butyl rubber. Preferably, the clay in the final product is at least about 50% exfoliated, more preferably at least about 70% exfoliated. The degree of exfoliation may be found using an image created by transmission electron microscopy (TEM). The image includes black areas representing clay particles. Imaging analysis software may be used to determine the degree of exfoliation as the ratio of the population of the black areas that have a thickness of less than about 5 nm to the total population of black areas.


In the following, the invention will be described in more detail with reference to non-limiting examples. The following examples and tables are presented for purposes of illustration only and are not to be construed in a limiting sense.


EXAMPLES

Organo-clays or clays have been treated with solid reactive rubbers to form nano-composites. The solid reactive rubbers were prepared by reacting brominated butyl rubber, chlorinated butyl rubber or Exxpro with amines. Clays were exfoliated by one-step process, i.e. mixing clays or organo-clays with the reactive rubber, and the process does not need complicated processes containing the treatment using polymer surfactants in solution.


Example 1

To a 50 g Brabender mixer, 45 g of Exxpro 3745 (from Exxon chemical) and 2.1 g of tributylamine were added. The mixture was allowed to react at 100° C. for 4 minutes. In the same time the mixture was agitated at speed of 60 rpm. The whole process was protected by nitrogen purging.


Example 2

The process of example 1 was repeated with minor change of the materials used. In this example, to the 50 g Brabender mixture were charged 45 g of Exxpro 3745 and 1.5 g of triallylamine.


Example 3

38.4 g of the product from example 1 was mixed with MAE (from Coop Chemical Corp.) in the Brabender mixer at 60 rpm, 100° C. for 3 minutes, wherein MAE is dimethylditallow ammonium treated mica. After the stock was cooled to room temperature, the stock was added to the Brabender again. The remill process was taken at 60 rpm, 100° C. for 3 minutes.


Example 4

The process of example 3 was repeated with minor change of the material used. 38.4 g of the product from example 2 was mixed with MAE.


Example 5

38.4 g of Exxpro 3745 was mixed with MAE in the Brabender mixer at 60 rpm, 100° C. for 3 minutes. The stock was cooled to room temperature. The stock was added to the Brabender again. The remill process was taken at 60 rpm 100° C. for 3 minutes.


Example 6

Neat MAE powder and products from Examples 3, 4 and 5 were then examined using wide angle X-ray diffraction (XRD) and small angle X-ray scattering (SAXS) at 50 kV and 200 mA power. XRD and SAXS results in FIGS. 1 and 2 indicated that the new materials and the new treatment improved the exfoliation of MAE.


Example 7

A nitrogen purged Brabender mixer (˜60 g capacity) equipped with roller blades was initially set to 60 rpm and 75° C. The mixer was then charged with 30 g of Hydrin H75 from ZEON Chemicals in Tokyo, Japan. After 1 minute, 26.6 g of 1-methylimidazole (from Aldrich) was slowly added into the mixer, at about 5 g/min. Then, the agitation speed was adjusted to 20 rpm and the heating element was set to an isothermal condition. After 22 hours, the material in the mixer became very viscous and the temperature was adjusted to 100° C. After 1 hour, the heating element was turned off and the polymer was allowed to cool down. The polymer was removed from the mixer at 23° C.


Example 8

A nitrogen purged Brabender mixer (˜60 g capacity) equipped with roller blades was initially set to 60 rpm and 75° C. The mixer was then charged with 35 g of Hydrin H75 from ZEON Chemicals in Tokyo, Japan. After 1 minute, 26.6 g of 1-methylimidazole (from Aldrich) was slowly added into the mixer, at about 5 g/min. Then, the agitation speed was adjusted to 20 rpm and the heating element was set to be isothermal condition. After 21 hours, the polymer was removed from the mixer.


The exemplary embodiment has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the exemplary embodiment be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.

Claims
  • 1. A nano-composite comprising (a) a cationic mediator comprised of a polymeric group and a cationic unit which is selected from the group consisting of onium cation and heterocyclic cation, and(b) a clay,wherein said polymeric group is covalently bonded to said cationic unit, and said clay is exfoliated by said cationic mediator;wherein the polymeric group comprises a polyether or a butyl rubber and the cationic mediator has one of the formulas as shown below:
  • 2. The nano-composite of claim 1, further comprising a counter ion selected from the group consisting of Cl−, Br−, F−, I−, O2−, S2−, Se2−, Te2−, N3−, As3−, BF4−, PF6−, CO32−, HCO3−, SO42−, CF3SO3−, SO32−, S2O32−, HSO4−, H2PO4−, HPO42−, PO4−, NO2−, NO3−, C2O42−, C2H3O2−, OH−, O22−, N3−, CrO42−, Cr2O72−, BO33−, MnO4−, AsO43−, SCN−, CN−, CNO−, ClO−, ClO2−, ClO3−, ClO4−, BrO−, BrO2−, BrO3−, BrO4−, IO−, IO2−, IO3−, and IO4−.
  • 3. The nano-composite of claim 1, in which the clay is selected from the group consisting of mica; fluoro-mica; synthetic mica; smectites, montmorillonite (Bentonite), sodium montmorillonite, magnesium montmorillonite, calcium montmorillonite, beidellite, nontronite, hectorite, sodium hectorite, saponite, synthetic saponite, sauconite; pyrophyllite; glauconites; vermiculites; polygorskines; sepiolites; allophanes; imogolites; talc; illites; glauconite; phyllosilicates; volkonskoite; sobockite; stevensite; svinfordite; magadiite; kenyaite; kaolinite; dickite; nacrite; anauxite; ledikite; montronite; silicate; halloysite; metahalloysite; sericite; allophone; serpentine clays; chrysotile; antigorite; attapulgite; sepiolite; palygorskite; Kibushi clay; gairome clay; hisingerite; chlorite; and mixtures thereof.
  • 4. A rubber formulation, comprising the nano-composite of claim 1.
  • 5. A tire product, comprising the nano-composite of claim 1.
  • 6. A method of exfoliating a clay comprising combining a clay and a sufficient amount of a cationic mediator having a polymeric group;wherein the polymeric group comprises a polyether or a butyl rubber and the cationic mediator has one of the formulas as shown below:
  • 7. A method of improving rubber gas permeability comprising combining a clay and a sufficient amount of a cationic mediator having a polymeric group to at least partially exfoliate the clay; andcombining the exfoliated clay with a rubber;wherein the polymeric group comprises a polyether or a butyl rubber and the cationic mediator has one of the formulas as shown below:
  • 8. The nano-composite of claim 1, wherein at least one between-layer gap in said exfoliated clay comprises an average of at least 1 nm.
  • 9. The nano-composite of claim 1 wherein said at least one between-layer gap comprises an average of at least 3 nm.
  • 10. The nano-composite of claim 1 wherein the butyl rubber is halogenated butyl rubber.
  • 11. The nano-composite of claim 1 wherein the polyether is polyepichlorohydrin.
  • 12. The method of claim 7 wherein the butyl rubber is halogenated butyl rubber.
  • 13. The method of claim 7 wherein the polyether is polyepichlorohydrin.
  • 14. The method of claim 7 wherein the clay and the cationic mediator having a polymeric group are combined in the substantial absence of solvent or surfactant.
  • 15. The method of claim 7 further comprising forming a tire product from the combined rubber and exfoliated clay.
  • 16. The method of claim 7 wherein the cationic mediator further comprises a counter ion selected from the group consisting of Cl−, Br−, F−, I−, O2−, S2−, Se2−, Te2−, N3−, As3−, BF4−, PF6−, CO32−, HCO3−, SO42−, CF3SO3−, SO32−, S2O32−, HSO4−, H2PO4−, HPO42−, PO43−, NO2−, NO3−, C2O42−, C2H3O2−, OH−, O22−, N3−, CrO42−, Cr2O72−, BO33−, MnO4−, AsO43−, SCN−, CN−, CNO−, ClO−, ClO2−, ClO3−, ClO4−, BrO−, BrO2−, BrO3−, BrO4−, IO−, IO2−, IO3−, and IO4−.
  • 17. The method of claim 6 wherein the butyl rubber is halogenated butyl rubber.
  • 18. The method of claim 6 wherein the polyether is polyepichlorohydrin.
  • 19. The method of claim 6 wherein the clay and the cationic mediator having a polymeric group are combined in the substantial absence of solvent or surfactant.
  • 20. The method of claim 6 further comprising forming a tire product from the combined rubber and exfoliated clay.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of priority from U.S. Provisional Application No. 60/649,420, filed on Feb. 2, 2005.

US Referenced Citations (234)
Number Name Date Kind
2493318 Shonle et al. Jan 1950 A
2531396 Carter et al. Nov 1950 A
3598884 Wei et al. Aug 1971 A
3793402 Owens Feb 1974 A
3840620 Gallagher Oct 1974 A
3972963 Schwab et al. Aug 1976 A
4233409 Bulkley Nov 1980 A
4247434 Vanderhoff et al. Jan 1981 A
4326008 Rembaum Apr 1982 A
4386125 Shiraki et al. May 1983 A
4463129 Shinada et al. Jul 1984 A
4543403 Isayama et al. Sep 1985 A
4598105 Weber et al. Jul 1986 A
4602052 Weber et al. Jul 1986 A
4659790 Shimozato et al. Apr 1987 A
4665963 Timar et al. May 1987 A
4717655 Fulwyler Jan 1988 A
4725522 Breton et al. Feb 1988 A
4764572 Bean, Jr. Aug 1988 A
4773521 Chen Sep 1988 A
4774189 Schwartz Sep 1988 A
4788254 Kawakubo et al. Nov 1988 A
4829130 Licchelli et al. May 1989 A
4829135 Gunesin et al. May 1989 A
4837274 Kawakubo et al. Jun 1989 A
4837401 Hirose et al. Jun 1989 A
4861131 Bois et al. Aug 1989 A
4870144 Noda et al. Sep 1989 A
4871814 Gunesin et al. Oct 1989 A
4904730 Moore et al. Feb 1990 A
4904732 Iwahara et al. Feb 1990 A
4906695 Blizzard et al. Mar 1990 A
4920160 Chip et al. Apr 1990 A
4942209 Gunesin Jul 1990 A
5036138 Stamhuis et al. Jul 1991 A
5066729 Srayer, Jr. et al. Nov 1991 A
5073498 Schwartz et al. Dec 1991 A
5075377 Kawakubo et al. Dec 1991 A
5100947 Puydak et al. Mar 1992 A
5120379 Noda et al. Jun 1992 A
5130377 Trepka et al. Jul 1992 A
5162445 Powers et al. Nov 1992 A
5169914 Kaszas et al. Dec 1992 A
5178702 Frerking, Jr. et al. Jan 1993 A
5194300 Cheung Mar 1993 A
5219945 Dicker et al. Jun 1993 A
5227419 Moczygemba et al. Jul 1993 A
5237015 Urban Aug 1993 A
5241008 Hall Aug 1993 A
5247021 Fujisawa et al. Sep 1993 A
5256736 Trepka et al. Oct 1993 A
5262502 Fujisawa et al. Nov 1993 A
5290873 Noda et al. Mar 1994 A
5290875 Moczygemba et al. Mar 1994 A
5290878 Yamamoto et al. Mar 1994 A
5331035 Hall Jul 1994 A
5336712 Austgen, Jr. et al. Aug 1994 A
5362794 Inui et al. Nov 1994 A
5395891 Obrecht et al. Mar 1995 A
5395902 Hall Mar 1995 A
5399628 Moczygemba et al. Mar 1995 A
5399629 Coolbaugh et al. Mar 1995 A
5405903 Van Westrenen et al. Apr 1995 A
5421866 Stark-Kasley et al. Jun 1995 A
5436298 Moczygemba et al. Jul 1995 A
5438103 DePorter et al. Aug 1995 A
5447990 Noda et al. Sep 1995 A
5462994 Lo et al. Oct 1995 A
5514734 Maxfield et al. May 1996 A
5514753 Ozawa et al. May 1996 A
5521309 Antkowiak et al. May 1996 A
5525639 Keneko et al. Jun 1996 A
5527870 Maeda et al. Jun 1996 A
5530052 Takekoshi et al. Jun 1996 A
5576372 Kresge et al. Nov 1996 A
5576373 Kresge et al. Nov 1996 A
5580925 Iwahara et al. Dec 1996 A
5587423 Brandstetter et al. Dec 1996 A
5594072 Handlin, Jr. et al. Jan 1997 A
5614579 Roggeman et al. Mar 1997 A
5627252 De La Croi Habimana May 1997 A
5665183 Kresge et al. Sep 1997 A
5688856 Austgen, Jr. et al. Nov 1997 A
5707439 Takekoshi et al. Jan 1998 A
5728791 Tamai et al. Mar 1998 A
5733975 Aoyama et al. Mar 1998 A
5739267 Fujisawa et al. Apr 1998 A
5742118 Endo et al. Apr 1998 A
5763551 Wunsch et al. Jun 1998 A
5773521 Hoxmeier et al. Jun 1998 A
5777037 Yamanaka et al. Jul 1998 A
5807629 Elspass et al. Sep 1998 A
5811501 Chiba et al. Sep 1998 A
5834563 Kimura et al. Nov 1998 A
5847054 McKee et al. Dec 1998 A
5849847 Quirk Dec 1998 A
5855972 Kaeding Jan 1999 A
5883173 Elspass et al. Mar 1999 A
5891947 Hall et al. Apr 1999 A
5905116 Wang et al. May 1999 A
5910530 Wang et al. Jun 1999 A
5936023 Kato et al. Aug 1999 A
5955537 Steininger et al. Sep 1999 A
5986010 Clites et al. Nov 1999 A
5994468 Wang et al. Nov 1999 A
6011116 Aoyama et al. Jan 2000 A
6013699 Freeman et al. Jan 2000 A
6020446 Okamoto et al. Feb 2000 A
6025416 Proebster et al. Feb 2000 A
6025445 Chiba et al. Feb 2000 A
6034164 Elspass et al. Mar 2000 A
6060549 Li et al. May 2000 A
6060559 Feng et al. May 2000 A
6087016 Feeney et al. Jul 2000 A
6087456 Sakaguchi et al. Jul 2000 A
6106953 Zimmermann et al. Aug 2000 A
6117932 Hasegawa et al. Sep 2000 A
6121379 Yamanaka et al. Sep 2000 A
6127488 Obrecht et al. Oct 2000 A
6147151 Fukumoto et al. Nov 2000 A
6180693 Tang et al. Jan 2001 B1
6191217 Wang et al. Feb 2001 B1
6197849 Zilg et al. Mar 2001 B1
6204354 Wang et al. Mar 2001 B1
6225394 Lan et al. May 2001 B1
6255372 Lin et al. Jul 2001 B1
6268451 Faust et al. Jul 2001 B1
6277304 Wei et al. Aug 2001 B1
6348546 Hiiro et al. Feb 2002 B2
6359075 Wollum et al. Mar 2002 B1
6379791 Cernohous et al. Apr 2002 B1
6383500 Wooley et al. May 2002 B1
6395829 Miyamoto et al. May 2002 B1
6420486 DePorter et al. Jul 2002 B1
6437050 Krom et al. Aug 2002 B1
6441090 Demirors et al. Aug 2002 B1
6448353 Nelson et al. Sep 2002 B1
6472460 Okamoto et al. Oct 2002 B1
6486253 Gilmer et al. Nov 2002 B1
6489378 Sosa et al. Dec 2002 B1
6524595 Perrier et al. Feb 2003 B1
6573330 Fujikake et al. Jun 2003 B1
6598645 Larson Jul 2003 B1
6612351 Zanzig Sep 2003 B1
6617020 Zhou et al. Sep 2003 B2
6649702 Rapoport et al. Nov 2003 B1
6689469 Wang et al. Feb 2004 B2
6693746 Nakamura et al. Feb 2004 B1
6706804 Resendes Mar 2004 B2
6706813 Chiba et al. Mar 2004 B2
6706823 Wang et al. Mar 2004 B2
6727311 Ajbani et al. Apr 2004 B2
6737486 Wang May 2004 B2
6750297 Yeu et al. Jun 2004 B2
6759464 Ajbani et al. Jul 2004 B2
6774185 Lin et al. Aug 2004 B2
6777500 Lean et al. Aug 2004 B2
6780937 Castner Aug 2004 B2
6818693 Heinrich et al. Nov 2004 B2
6835781 Kondou et al. Dec 2004 B2
6849680 Knudson, Jr. et al. Feb 2005 B2
6858665 Larson Feb 2005 B2
6861462 Parker et al. Mar 2005 B2
6872785 Wang et al. Mar 2005 B2
6875818 Wang Apr 2005 B2
6908958 Maruyama et al. Jun 2005 B2
6956084 Wang et al. Oct 2005 B2
7019063 Wada et al. Mar 2006 B2
7071246 Xie et al. Jul 2006 B2
7112369 Wang et al. Sep 2006 B2
7179864 Wang Feb 2007 B2
7205370 Wang et al. Apr 2007 B2
7217775 Castner May 2007 B2
7238751 Wang et al. Jul 2007 B2
7241829 Chung et al. Jul 2007 B2
7371793 Gong et al. May 2008 B2
20010053813 Konno et al. Dec 2001 A1
20020007011 Konno et al. Jan 2002 A1
20020045714 Tomalia et al. Apr 2002 A1
20020095008 Heimrich et al. Jul 2002 A1
20020144401 Nogueroles Vines et al. Oct 2002 A1
20030004250 Ajbani et al. Jan 2003 A1
20030032710 Larson Feb 2003 A1
20030124353 Wang et al. Jul 2003 A1
20030130401 Lin et al. Jul 2003 A1
20030149185 Wang et al. Aug 2003 A1
20030198810 Wang et al. Oct 2003 A1
20030225190 Borbely et al. Dec 2003 A1
20040033345 Dubertret et al. Feb 2004 A1
20040059057 Swisher et al. Mar 2004 A1
20040127603 Lean et al. Jul 2004 A1
20040143064 Wang Jul 2004 A1
20040147639 Tsou et al. Jul 2004 A1
20040198917 Castner Oct 2004 A1
20040226643 Yagi et al. Nov 2004 A1
20040249045 Goodman et al. Dec 2004 A1
20050027057 Dias et al. Feb 2005 A1
20050027062 Waddell et al. Feb 2005 A1
20050098252 Muraoka et al. May 2005 A1
20050101743 Stacy et al. May 2005 A1
20050137288 Maruo et al. Jun 2005 A1
20050182158 Ziser et al. Aug 2005 A1
20050192408 Wang et al. Sep 2005 A1
20050197462 Wang et al. Sep 2005 A1
20050203248 Zheng et al. Sep 2005 A1
20050215693 Wang et al. Sep 2005 A1
20050222335 Jones et al. Oct 2005 A1
20050228074 Wang et al. Oct 2005 A1
20050277723 Gong et al. Dec 2005 A1
20050282956 Bohm et al. Dec 2005 A1
20060047054 Wang et al. Mar 2006 A1
20060084722 Lin et al. Apr 2006 A1
20060100339 Gong et al. May 2006 A1
20060173115 Wang et al. Aug 2006 A1
20060173130 Wang et al. Aug 2006 A1
20060205916 Takekoshi et al. Sep 2006 A1
20060235128 Wang et al. Oct 2006 A1
20070015853 Weng et al. Jan 2007 A1
20070129477 Weng et al. Jun 2007 A1
20070135579 Obrecht et al. Jun 2007 A1
20070142550 Wang et al. Jun 2007 A1
20070142559 Wang et al. Jun 2007 A1
20070149649 Wang et al. Jun 2007 A1
20070161734 Fudemoto et al. Jul 2007 A1
20070161754 Wang et al. Jul 2007 A1
20070185273 Wang et al. Aug 2007 A1
20070196653 Hall et al. Aug 2007 A1
20070238822 Wang et al. Oct 2007 A1
20070293684 Fudemoto et al. Dec 2007 A1
20080009579 Gong et al. Jan 2008 A1
20080081866 Gong et al. Apr 2008 A1
20080145660 Wang et al. Jun 2008 A1
20080149238 Kleckner et al. Jun 2008 A1
20080160305 Wang et al. Jul 2008 A1
Foreign Referenced Citations (39)
Number Date Country
3434983 Apr 1986 DE
4241538 Jun 1994 DE
0143500 Jun 1985 EP
0255170 Feb 1988 EP
0265142 Apr 1988 EP
0322905 Jul 1989 EP
0352042 Jan 1990 EP
0472344 Feb 1992 EP
0540942 May 1993 EP
0590491 Apr 1994 EP
0742268 Nov 1996 EP
1031605 Aug 2000 EP
1099728 May 2001 EP
1125927 Aug 2001 EP
1134251 Sep 2001 EP
1273616 Jun 2002 EP
1321489 Jun 2003 EP
1955517 Aug 1989 JP
01279943 Nov 1989 JP
05132605 May 1993 JP
06248017 Sep 1994 JP
08199062 Aug 1996 JP
3356001 Oct 2002 JP
2003-095640 Apr 2003 JP
9104992 Apr 1991 WO
9704029 Feb 1997 WO
9853000 Nov 1998 WO
9942518 Aug 1999 WO
WO 9942518 Aug 1999 WO
0075226 Dec 2000 WO
0187999 Nov 2001 WO
02031002 Apr 2002 WO
02081233 Oct 2002 WO
02100936 Dec 2002 WO
03085040 Oct 2003 WO
2004058874 Jul 2004 WO
2005095506 Oct 2005 WO
2006069793 Jul 2006 WO
2007149842 Dec 2007 WO
Related Publications (1)
Number Date Country
20090182087 A1 Jul 2009 US
Provisional Applications (1)
Number Date Country
60649420 Feb 2005 US