Lithium-ion is the battery chemistry of choice for powering future generations of portable electronics and hybrid and plug-in hybrid electric vehicles (EV), alternative power storage for grid back-up and point-of-use, and many military applications. For example, an EV battery will require high energy density, approximately 200 Wh/kg, high cycle-life, >1000 charge-discharge cycles, ease of maintenance, environmentally friendly, economic, and safe. The battery industry seeks the development of advanced battery chemistries, architectures, and manufacturing processes that can support the above goals. The present invention is a novel nano-composite Cu—Si anode for high-performance LIB and other energy storage applications.
Silicon (Si) is one of the most promising Lithium-Ion Battery (LIB) anode materials because its theoretical mass specific capacity (see: J. Lee, W. Kim, J. Kim, S. Lim, and S. Lee. Journal of Power Sources 176 [2008] 353-358; L. F. Cui, R. Ruffo, C. K. Chan, and Y. Cui, NanoLetters, 9, 491-495 [2009]; L. F. Cui, Y. Yang, C. M. Hsu, and Y. Cui, NanoLetters, 9, 3370-3374 [2009]); W. Xu and J. C. Flake, J. Electrochem. Soc. 157(1) A41-A45 [2010]), 4,200 Ah/kg, is much higher than any material in use today. Current industry dominant graphite anodes which have a theoretical mass specific capacity (see: D. Linden and T. Reddy. Handbook of Batteries [3rd Edition]) of 372 Ah/kg. Although Si has such high specific capacity, current designs suffer from strain related structural failures that have so far prevented the practical and broad implementation of this highly promising material. Si expands as much as 400% upon saturation with Li.
To circumvent the high strain problem, several approaches to Si anode fabrication have been studied, the most significant of which have been thin films. The following references are herein incorporated by reference: Si nanowires and silicon-carbon nanocomposites: J. Lee, W. Kim, J. Kim, S. Lim, and S. Lee. Journal of Power Sources 176 [2008] 353-358; I. Younezu, H. Tarui, S. Yoshimura, S. Fujitani, and T. Nohm, SANYO Electric Co., Ltd., Abs. 58, IMLB12 Metting, © 2004 The Electrochemical Society, Inc.; D. Yu, Y. Xing, Q. Hang, H. Yan, J. Xu, Z. Xi, and S. Feng, Physica E 9 [2001] 305-309; H. Yang, P. Fu, H. Zhang, Y. Song, Z. Zhou, M. Wu, L. Huang, and G. Xu, Journal of Power Sources 174 [2007] 533-537; L. F. Cui, R. Ruffo, C. K. Chan, and Y. Cui, NanoLetters, 9, 491-495 [2009], L. F. Cui, Y. Yang, C. M. Hsu, and Y. Cui, NanoLetters, 9, 3370-3374 [2009]); W. Xu and J. C. Flake, J. Electrochem. Soc. 157(1) A41-A45 [2010]). Xu et al provides a comprehensive review of several studies performed on Si thin films as the active material for Li-ion Cells (the following reference is incorporated by reference: H. Yang, P. Fu, H. Zhang, Y. Song, Z. Zhou, M. Wu, L. Huang, and G. Xu, Journal of Power Sources 174 [2007] 533-537). The highest capacities, >3000 Ah/kg, were observed with films <250 nm thick, and showed no signs of degradation up to 70 charge-discharge cycles. Yang et al produced an anode comprised of a 2000 nm thick amorphous Si (α-Si) film deposited on a Cu foil and reported structural and electrical stability for greater than 300 charge-discharge cycles at 1180 Ah/kg when tested in a full-cell format against a LiCoO2 cathode (see: H. Yang, P. Fu, H. Zhang, Y. Song, Z. Zhou, M. Wu, L. Huang, and G. Xu, Journal of Power Sources 174 [2007] 533-537). Although such high specific capacities were observed, thin films combined with the necessary electrical conductor, i.e. Cu foil, cannot meet the half-cell Volumetric Energy Density goals of 600 Wh/liter and/or Specific Energy Density of 400 Wh/kg. Energy Density is defined in Detailed Descriptions of the Preferred Embodiments.
Si structures with nanometer scale dimensions do not experience the high strain that bulk Si structures do, due to homogeneous expansion and ductility and have exhibited improvements in the performance of Si-based anodes (see: Investigating Nanopillars: Silicon Brittle? Not This Kind!, http://www.sciencedaily/2009/10/09100833455.htm). Also nanostructured Si anodes provide other advantages relative to transport kinetics of Li for the insertion/extraction process, and room for the Si to expand as it is alloys with Li. Cui et al demonstrated anodes comprised of SiNW arrays grown by a Vapor-Liquid-Solid (VLS) process on a stainless steel substrate were able to accommodate large strain without mechanical degradation (see: L. F. Cui, R. Ruffo, C. K. Chan, and Y. Cui, NanoLetters, 9, 491-495 [2009] which is incorporated herein by reference). The SiNW arrays also exhibited high charge storage capacity (>1000 Ah/kg, 3 times of carbon) maintaining 90% capacity retention as it approached 100 cycles, but with signs of degradation. Cui et al further demonstrated anodes comprised of carbon nanofibers coated with conformal α-Si films, and reported similar performance as the SINW (see: L. F. Cui, Y. Yang, C. M. Hsu, and Y. Cui, NanoLetters, 9, 3370-3374 [2009]). Additional approaches of combining Si with nanoparticles such as carbon nanotubes also exhibit promising performance (see: W. Wang, P. N. Kumta, J. Power Sources 172 [1007] 650). However it has also been reported that nanometer-sized Si particles in composites tend to agglomerate after the insertion/extraction of Li ions, compromising the various advantages afforded by the nanostructure (see: H. Li, X. Huang, L. Chen, G. Zhou, Z. Zhang, D. You, Y. J. Mo, N. Pei, Solid-State Ionics 135 [2000] 181; R. Teki, M. K. Data, R. Krishnana, T. C. Parker, T-M Lu, P. N. Kumta, and N. Koratkar, Small, 1-7 [2009]).
The Illuminex Corporation innovation is a unique Copper-Silicon-NanoComposite (CSNC) design comprised of a nano-structured Cu foil (sheet of copper covered with vertically aligned copper nanowires (CuNW) in an array) with a Silicon film, 10 nm-300 μm thick deposited over the surface. A Cu foil with a CuNW array on the surface has surface area enhanced 200 to 10,000 times compared to a planar Cu foil: Thus, a given thickness of Si on NW array will contain a higher volume than the same given thickness of Si on a planar surface. In such a configuration, the Volumetric Cell Capacity is 5 to 10 times than that of the 600 Wh/liter goal.
A conformal film of Si, or any other element or compound, such as Germanium, known to alloy with Li or any other species, is deposited on the CuNW array substrate as illustrated in
A thin film of Si on a CuNW array with high surface area enhancement produces a CSNC LIB anode with high energy density.
The anode is a copper foil or sheet with a high aspect ratio, high surface area CuNW array on one or both sides, and coated with a conformal film of high capacity Si. The Cu foil with the CuNW array is the substrate providing stable structural support to a conformal film of high capacity Si, and the anode, providing the negative electrical pole for the battery. This anode/electrode design is illustrated in
The CuNW arrays are produced with NW dia approximately 2-900 nm, center to center (C-C) distance approximately 50-980 nm, NW length approximately 0.1-200 microns as described in Detailed Descriptions of the Preferred Embodiments. The CuNW array substrate is then coated with a conformal film of Si, 1 nm to a maximum thickness less than the one-half the spacing between CuNW's, 2 nm to 300 nm depending on the array specifications, leaving open interstitial volume that is exposed to the battery's electrolyte and can accommodate the expansion of Si as it alloys with Li. To optimize area specific capacity, the NW array properties is balanced between the high surface area enhancement and the interstitial space which allows for thicker Si films and its expansion. The CuNW's provide electrical, thermal, and structural functions to the LIB anode.
The anode is a copper foil or sheet with a high aspect ratio, high surface area CuNW array on one or both sides which is coated with a conformal film of amorphous or crystalline Si using chemical vapor deposition (CVD) sputter coating or other methods. The Cu foil with the CuNW array is the substrate providing stable structural support to a conformal film of high capacity Si. This anode/electrode design is illustrated in
In embodiment 1 and embodiment 2, the copper nanowires bound to a Cu foil structurally act as a support for the chemically active silicon film to make anodes with sufficient quantities of Si in a stable form to achieve LIB industrial capacity needs while simultaneously benefiting from the electrical and thermal properties of the copper.
The Cu current collector is a planar Cu foil with an AAO (anodized aluminum oxide) template as a substrate for SiNW growth. This electrode design is illustrated in
An alternative approach is: The Cu current collector is a planar Cu foil without an AAO template as a substrate for SiNW growth. The metrics of the resulting SiNW array is stochastic. This process is described in Detailed Descriptions of the Preferred Embodiments.
In another embodiment SiNW arrays can be produced using an Au catalyst on an AAO on ITO coated ¾×1″ glass substrate. A Cu electrical contact was evaporated on a portion of the SiNW surface.
a. CuNW Array Process
Illuminex Corporation has developed a method of producing CuNW arrays directly on copper sheet or foil using electrochemical anodizing and plating processes readily scaled to large scale commercial plating techniques for high volume, low cost manufacturing.
As illustrated in
The Cu/AAO substrate is then placed in a copper electro-plating bath and copper is deposited into the pores of the AAO forming CuNW's bonded to the copper substrate. The AAO layer is then entirely chemically removed, leaving a copper sheet with a CuNW array as presented in SEM images contained in
The formation of self-ordered nano-porous (AAO) is a practical and flexible starting material for nano-structure fabrication, largely due to the relative ease of production and the large expanse of dimensions that can be obtained. Pores of AAO, 2-900 nm in diameter, can be controllably produced on center-to-center (C-C) distances of 130-980 nm with NW lengths of 0.1-100 microns: with diameters and C-C distances determined by the type, concentration, temperature and voltage applied to the anodization electrolyte (see: S. Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumori, J. Electrochem. Soc. 153, B384-B391 [2006]; S. Ono, M. Saito, and H. Asoh, Electrochimca Acta, 51, 827-833 [2005]), with the depths controlled by the initial Al thickness. Depending on the above AAO parameters, CuNW arrays can be produced with nanowire pitch, diameter and length, such that the total surface area of the array can be as much as 10,000 times the area of the planar copper substrate. This range of CuNW arrays is conceptually illustrated in
b. Silicon Deposition and SiNW Growth.
There are numerous Si deposition methods (see: J. Vossen, W. Kern, “Thin Film Processes”, Academic Press, 1978) available to deposit uniform, conformal Si films of varying thickness and morphology over the CuNW arrays. These include LPCVD, PECVD, dc-rf magnetron sputtering, and other processes that are described in references J. Lee, W. Kim, J. Kim, S. Lim, and S. Lee. Journal of Power Sources 176 (2008) 353-358.; L. F. Cui, R. Ruffo, C. K. Chan, and Y. Cui, NanoLetters, 9, 491-495 (2009).; L. F. Cui, Y. Yang, C. M. Hsu, and Y. Cui, NanoLetters, 9, 3370-3374 (2009).; W. Xu and J. C. Flake, J. Electrochem. Soc. 157(1) A41-A45 (2010).; D. Yu, Y. Xing, Q. Hang, H. Yan, J. Xu, Z. Xi, and S. Feng, Physica E 9 (2001) 305-309.; H. Yang, P. Fu, H. Zhang, Y. Song, Z. Zhou, M. Wu, L. Huang, and G. Xu, Journal of Power Sources 174 (2007) 533-537.; W. Wang, P. N. Kumta, J. Power Sources 172 (2007) 650.; and H. Li, X. Huang, L. Chen, G. Zhou, Z. Zhang, D. Yu, Y. J. Mo, N. Pei, Solid-State Ionics 135 (2000) 181 and references contained therein, all of which are incorporated herein by reference. In the preferred embodiments 1 and 2, the Si deposits conformally over the NW array as illustrated in
As in the preferred embodiment 3, SiNW arrays can be grown directly on Cu or Cu/AAO by VLS and VSS at temperatures typically above 800° C., where copper-silicide phases are formed (V. Schmidt, J. V. Witteman, S. Senz, and U. Gosele, Advanced Materials, 21, 2681-2702 [2009] is incorporated herein by reference). In the case an AAO template is used, the formation of the SiNW's initiates in the pores of the AAO, and the resulting NW metrics will be approximately equivalent to those of the AAO template. Without the template, SiNW growth is stochastic.
Methods to characterize the Si coated CuNW arrays, and/or SiNW arrays includes SEM, electron and x-ray diffraction techniques. NW array parameters, diameter, length, C-C spacing, is determined by SEM, and Si structure is determined by diffraction techniques.
The anode performance of the Illuminex CSNC anode is measured by constructing a standard half-cell consisting of coupling the CSNC anodes with lithium metal counter electrodes in a pouch configuration to determine:
Performance can be calculated as follows:
NW dia.−80 nm; C-C spacing−200 nm; NW Length−50 microns
NW density−2.9 billion/cm2; NW surface area−1.26×10−7 cm2
Coated NW circumference=π (Radiustot2−RadiusCuNW2)/(Radiustot−RadiusCuNW)
Area Enhancement=Total CuNW array area/cm2 of substrate NW Length×NW Circumference×NW density−580 cm2/cm2 of substrate or 580.
Cu foil thickness, without the array, is 0.01 mm, 10 microns, standard thickness for the industry. Total thickness is 60 microns, or 0.006 cm
Optimum thickness of Si is the maximum thickness such that there remains adequate interstitial volume to accommodate the 400% film expansion as Si alloys with Li. For the above CuNW array, maximum thickness is 50 nm. The total Si volume contained a square cm of CuNW array density is the number of NW's×(volume of each coated CuNW (Cu+Si) minus volume of each bare CuNW) or Area Enhancement×Si film thickness.
Si Volume=2.9 billion×5000 nm×(π(40+50 nm)2−π(40 nm)2)=0.0029 cc
Or 580 cm2×0.000005 cm=0.0029 cc
Si mass=0.0029 cc×2.3 g/cc=0.0067 g.
Capacity/cm2 of Si based anode=4200 mAh/g×0.0067 g=28.0 mAh/cm2.
Volumetric Capacity of Si based Anode=1.27×104 Wh/liter assuming a 3V potential.
180 microns thick graphite film on a planar 10 micron Cu foil @ 372 mAh/g. Total thickness=190 microns, or 0.019 cm.
Graphite volume=0.019 cc
Graphite mass=0.019 cc×2.16 g/cc=0.039 g
Capacity/cm2 of graphite based anode=372 mAh/g×0.039 g=14.5 mAh/cm2.
Volumetric Capacity of graphite based anode=2.28×103 Wh/liter assuming a 3V potential.
This application claims priority as a non-provisional continuation of U.S. Provisional Patent Application No. 61/299,749 filed on Jan. 29, 2010 which is herein incorporated by reference. This application claims priority as a continuation to U.S. patent application Ser. No. 12/777,165 filed on May 10, 2010 which is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61299749 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12777165 | May 2010 | US |
Child | 13016845 | US |