1. Field of the Invention
The present invention relates to the construction of composite containers/enclosures, and more particularly to modularly constructed composite containers/enclosures.
2. Background Art
A need exists for lightweight durable materials, as well as more efficient processes for assembling structures, in many applications. Such durable materials may be needed for various reasons, such as a need to provide resistance to mechanical, thermal, chemical, and/or other environmental phenomena, and/or to address further requirements for durability. A wide variety of applications may benefit from materials that have such durability. Examples of such applications include vehicles (e.g., delivery trucks, trains, trailers, boats, aircraft, etc.), shipping and storage containers, homes, and further structures. Applications that require movement of materials would benefit from materials having a decreased weight. For instance, items such as vehicles, shipping and storage containers, etc., require the expenditure of energy for the purpose of movement, and therefore would benefit from lighter weight materials. Thus, what is desired are materials that are lightweight and durable, and that may be used in a variety of applications.
Thus, what is desired are durable and easy to assemble materials, and a manufacturing process that incorporates such materials for construction of enclosures such as vehicles (e.g., delivery trucks, trailers, trains, trailers, boats, aircraft, etc.), shipping containers, homes, and other enclosure structures.
Furthermore, many applications, including vehicles, shipping and storage containers, homes, and further structures would benefit from additional functionality. Such functionality may include greater intelligence, sensors, and further types of functionality. However, such additional functionality may result in a higher cost to an application. Thus, what is desired are ways of providing additional functionality to applications in a manner that does not significantly increase costs and that is spatially efficient.
Methods, systems, and apparatuses are provided herein for containers and for assembling the same. Such containers may be used in/as structures such as delivery trucks, shipping containers, aircraft, modular homes, and further structures.
In one implementation, a container includes a plurality of panels, a nanomaterial, and an attachment mechanism. The plurality of panels forms an enclosure having an internal cavity. Each panel is formed of a plurality of layers arranged in a stack. The nanomaterial is dispersed in a material of at least one layer of one or more of the panels. The attachment mechanism attaches together a first panel and a second panel of the plurality of panels.
The attachment mechanism may be any suitable type of attachment mechanism. For instance, the first panel may include a first flange and the second panel may include a second flange. The attachment mechanism may include a clip that couples the first flange to the second flange to attach the first panel to the second panel.
Each panel may include one or more layers. Layers can be formed from and/or may include a variety of materials, including a neat material, a woven material, a ribbon, a cured foam material, a plurality of solid rods, or a plurality of hollow tubes. Layers in a panel may be attached together by an adhesive material between one or more layers of the panel, by compression, or by any other suitable attachment technique. For example, a foam layer may be formed as an adhesive layer between other layers to attach together multiple layers.
A container may further include one or more functional elements included in one or more layers of one or more panels. Examples of functional elements include a power generator, a storage device, a communication module, a heat generator, a display, a microcontroller, and a sensor.
A panel may include an outer layer that is configured to provide protection for the container. A container may include an opening through a panel that opens to the internal cavity, and a door coupled to the panel that is configured to enable access and disable access to the internal cavity through the opening.
In another implementation, a method of fabricating a container is provided. A plurality of panels are attached together to form an enclosure having an internal cavity, with each panel being formed of a plurality of layers arranged in a stack. In one example, a plurality of layers may be joined (e.g., foamed) together during a monolithic panel forming process to form a container. At least one of the panels may be formed to include one or more nanomaterials and/or functional elements included in a material of a layer of the panel.
These and other objects, advantages and features will become readily apparent in view of the following detailed description of the invention. Note that the Summary and Abstract sections may set forth one or more, but not all exemplary embodiments of the present invention as contemplated by the inventor(s).
The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention.
The present invention will now be described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. Additionally, the left-most digit(s) of a reference number identifies the drawing in which the reference number first appears.
The present specification discloses one or more embodiments that incorporate the features of the invention. The disclosed embodiment(s) merely exemplify the invention. The scope of the invention is not limited to the disclosed embodiment(s). The invention is defined by the claims appended hereto.
References in the specification to “one embodiment,” “an embodiment,” “an example embodiment,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
Furthermore, it should be understood that spatial descriptions (e.g., “above,” “below,” “up,” “left,” “right,” “down,” “top,” “bottom,” “vertical,” “horizontal,” etc.) used herein are for purposes of illustration only, and that practical implementations of the structures described herein can be spatially arranged in any orientation or manner.
The example embodiments described herein are provided for illustrative purposes, and are not limiting. Further structural and operational embodiments, including modifications/alterations, will become apparent to persons skilled in the relevant art(s) from the teachings herein.
Methods, systems, and apparatuses are provided herein for a box or container, also referred to as a “unibox.” The container may be formed from two or more parts, portions, or pieces, such as being formed of two halves. The pieces may be formed in a variety of ways. For instance, in an example two-piece embodiment, a pair of molds may be constructed. A first half of a container may be manufactured within a first mold of the pair, deriving a shape from the first mold. A second half of the container may be manufactured using the second mold. Alternatively, a single mold may be used to form both halves of the pair. For example, in an embodiment, the container may be a monolithically molded container that forms an enclosure.
The separate pieces may be joined together using adhesives, rivets, nails, screws, bolts, clamping mechanisms, and/or by other attachment mechanisms. For instance, in a two-piece embodiment, the two halves may each include an interior flange that can be used to connect the two halves together. Through the use of interior flanges, an outside surface of the container can remain smooth and have a monolithic appearance.
In embodiments, the container is assembled to be lightweight, strong, and tough/durable. Furthermore, the container may be assembled to have any size, including being relatively large, such as having a size to be used as a container car, shipping container, semi-trailer, aircraft body, home/building, or other structure.
In further embodiments, the container may include one or more functions, such as computing/decision-making, power generation, power storage, wireless communications capability, memory, one or more sensors, a display for graphics/video, being enabled to programmatically change colors, and/or further functions.
In embodiments, the container may be single or multilayered, manufactured with one or more materials, and may be enhanced with one or more micro-scale and/or nano-scale technologies/components/particles. Structures, such as trucks, trailers, boats, airplanes, homes, container cars, shipping containers, and further “containers,” currently are manufactured using multiple panels that are joined together. Embodiments of the present invention enable such container structures to be manufactured more efficiently, such as by using fewer parts and having lower labor costs, and by using parts that are stronger and/or lighter than conventional panels used to assemble structures. Furthermore, such structures may be manufactured more safely, as laborers are not required to construct the container while enclosed within the container.
In embodiments, containers can be assembled/manufactured into any geometric shape or contour, including rectangular, cylindrical, round, etc. In an embodiment, a container is a formed as a shaped, multilayered panel, assembled from one or more materials. The materials may be optionally enhanced with micro-scale and/or nano-scale technologies/components.
For example, the structure of a container may be modularly formed by combining multiple layers of one or more materials. A layer of a container may be formed completely of a single material (i.e., a homogeneous layer), such as a polymer material. For example, a layer may be formed of a thermoplastic or thermosetting plastic material. Alternatively, a layer may be formed of a first material combined with one or more further materials (e.g., a heterogeneous layer).
Examples of such further materials are micro-scale and/or nano-scale technologies, component, and/or materials. As used herein, a nanoscale material or “nanomaterial” is a structure having at least one region or characteristic dimension with a dimension of less than 1000 nm. Examples of nanomaterials, including NEMS (nanoelectromechanical systems) devices and NST (nanosystems technology) devices, are described throughout this document. As used herein, a microscale material or device is a structure having at least one region or characteristic dimension with a dimension in the range of 1 micrometer (μm) to 1000 μm. Examples of microscale materials and devices, including MEMS (microelectromechanical systems) devices and MST (microsystems technology) devices, are described throughout this document.
For example, in an embodiment, the material of a layer may be enhanced with one or more nanomaterials. Nanomaterials/components such as nanowires, nanotubes, nanorods, nanoparticles, nanosensors, etc., may be used to enhance the first material of a layer, such as to strengthen the material, harden the material, or otherwise modify properties of the layer. For instance, any type of nanotube may be used, including single-walled nanotubes and multi-walled nanotubes. Example types of nanoparticles include organic nanoparticles, such as fullerenes (e.g., buckyballs), graphite, other carbon nanoparticles, nano-platelets, and inorganic nanoparticles, such as particles formed by titanium (Ti), titanium oxide (TiO), or nano-clay. Further types of nanomaterials not mentioned herein may also be used, as would be known to persons skilled in the relevant art(s). Micro-scale materials/components may additionally or alternatively be used in layers. The micro-scale and/or nano-scale components can vary in size, concentration, orientation, make-up (type), and mixture (multiple types of components in one system), depending on the particular application. Further, these functional elements may be either distributed through the material and impregnated in the matrix, or may be discrete elements embedded in the material.
The introduction of nanomaterials into panel embodiments can provide numerous benefits. Many nanomaterials have beneficial properties, including strength, stiffness, and hardness. Carbon nanotubes are one of the strongest and stiffest materials known in terms of tensile strength and elastic modulus. A single-wall carbon nanotube is a sheet of graphite (graphene) that is one atom thick, and is rolled in a cylinder with diameter of the order of a nanometer. A carbon nanotube may have a length-to-diameter ratio that exceeds 10,000. Multi-walled carbon nanotubes have been tested to have a tensile strength in the order of 63 GPa, which is much greater than that for high-carbon steel, having a tensile strength of approximately 1.2 GPa. Because carbon nanotubes have a low density for a solid (1.3-1.4 g/cm3), the specific strength of carbon nanotubes (e.g., 48,462 kN·m/kg) is extremely high, compared to that for high-carbon steel (e.g., 154 kN·m/kg). Furthermore, polymerized single walled nanotubes are comparable to diamond in terms of hardness, but are less brittle. Thus, in applications requiring durable materials such as delivery vehicles, incorporating nanomaterials in layers of panels can provide benefits in strength, stiffness, and hardness, among other benefits. The concentration and types of nanomaterials formed in a layer can be selected as desired for a particular application.
In an embodiment, a layer may be formed as a planar sheet of a material. In another embodiment, a layer may be formed from, or may include fibers, woven fibers and/or ribbons of material. In an embodiment, a layer may be a “foam” layer or may include a foam-based material. For example, a foam layer may be formed by applying a suitable material (e.g., a liquid or gel resin, including a polymer such as a polyurethane) between two solid layers of material (e.g., a polymer, metal, or ceramic material), or into a mold, and causing the material to foam and harden/cure. For example, the material may be a combination of two or more materials that cure when mixed together. The material of the foam layer may have further materials (e.g., nanomaterials, fibers, ribbons, woven fibers, woven ribbons, functional materials, etc.) dispersed within the foam layer prior to hardening, to provide the benefits of the further materials to the foam layer.
Layers of a container may be modularly configured in any way, by combining layers, as desirable for a particular application. For instance, layers may be stacked to form the structure of a container. Any combination of one or more woven, one or more non-woven layers, and one or more foam layers may be stacked and/or shaped to form a container. The layers that form a container may be rigid or flexible. When the layers are flexible, the formed container may have flexiblity. Such flexibility may be desirable for damping a velocity of received projectiles, vehicle collisions, or other impacts. Likewise, containers formed to be stiffer may be desirable for providing structural integrity in a variety of applications. Any number of layers (and type) can be stacked to provide a desired level of durability, resistance to projectiles, hardness, etc.
Containers can be formed to have flat, curved, or contoured surfaces, and can be formed in any geometric shape having an enclosure. In an embodiment, the layers of the container may be shaped prior to being attached together to form the container. In another embodiment, the container may be shaped during the process of forming the layers. For instance, the layers may be formed in a mold that provides a shape of a portion of a container, or an entirety of a container. For example, a container may be formed by a plurality of layers joined together during a monolithic process, where a foam material is formed between layers to join them together. Such a process may be performed in a mold chamber to form a container into the shape predetermined by the mold chamber. In this manner, a monolithically molded container may be formed. In another embodiment, the container may be shaped after the layers are attached together. For instance, a formed panel may be bent into a desired shape, may be cut into multiple pieces that may be reassembled (e.g., using any of nails, screws, bolts, an adhesive material, etc.) into the container.
Example embodiments for layer materials, layers, containers, and processes and systems for assembling the same, are described in the following subsections.
Example embodiments for layers and for layer materials used to assemble panels and containers are described in this section. Such example embodiments are provided for purposes of illustrations, and are not intended to be limiting. Further structural and operational embodiments, including modifications/alterations, will become apparent to persons skilled in the relevant art(s) from the teachings herein.
For example,
As shown in
For example, in an embodiment, layers 104 and 106 may be weaves of polypropylene ribbons, and each of layers 104 and 106 may have a thickness in the range of 0.005-0.006 inches (e.g., 0.132 mm) and a weight of approximately 0.02 lbs/sq-ft (0.11 Kg/sq-meter). Polypropylene may be formed into ribbons using an extrusion process, and the ribbons may be weaved together to form the fabric of each of layers 104 and 106. In an embodiment, nanomaterials (e.g., multi-walled carbon nanotubes) may be introduced into the polymer (e.g., polypropylene) resin before performing the extrusion. For example, layer 104 and/or layer 106 may include a plurality of fiberglass infused polyester tubes having a 0.25 inch inner diameter and a 0.5 inch outer diameter. Persons skilled in the relevant arts would be able to implement tubes having various sizes, including various cross-sectional dimensions, various materials, and various orientations and positions within a stack.
In an alternative embodiment, layers 104 and 106 (and/or one or more other layers in panel 100) may include fibers or rods arranged in a single substantially uniform direction (e.g., being parallel/unidirectional). The fibers/rods may alternatively be oriented in a plurality of directions to accommodate loadings to panel 100 from multiple directions. The fibers may be individual fibers or woven fibers. In embodiments, the rods may be solid or hollow. Example embodiments for layers that include rods are described in further detail below. In a still further embodiment, layers 104 and 106 (and/or one or more other layers in panel 100) may include fibers having random orientations.
First, fourth, and sixth layers 102, 108, and 112 are homogeneous planar layers of material. Layers 102, 108, and 112 may be formed in a variety of ways, including by a molding process, an extruding process, being cut from a larger sheet of material, or by other process of forming, as would be known to persons skilled in the relevant art(s). Layers 102, 108, and 112 may be made of a variety of materials, such as a thin film, monolithic material. For example, layers 102, 108, and 112 may be made of a polymer, such as polyurethane, polyester, acrylic, phenolic, epoxy, elastomerics, polyolefins, polypropylene, polyethylene, vinyl ester, etc. In one embodiment, layers 102, 108, and 112 may be made of a homogeneous material. For example, in an embodiment, each of layers 102, 108, and 112 may be a polyurethane (PU) thin film, having a thickness in the range of 0.010-0.015 inches. In another embodiment, layers 102, 108, and 112 may include a first material (e.g., a polymer) that has one or more further materials included therein, such as one or more microscale materials and/or nanomaterials. A layer that does not include such microscale materials and nanomaterials may be referred to as a “neat” layer.
Fifth layer 110 is a foam layer. Fifth layer 110 may be formed in various ways, such as by applying a suitable material (e.g., liquid or gel such as an epoxy) between two solid layers of material (e.g., fourth and sixth layers 108 and 112 in
Note that the particular arrangement of layers, the number of layers, and combination of different types of layers for panel 100 in
Note that in a further embodiment, panel 100 may include one or more layers of further materials. For example, panel 100 may include one or more layers of fabric made from another synthetic fiber such as Kevlar, additional types of nanoparticles, etc., that are interspersed throughout panel 100. In another embodiment, panel 100 may include one or more layers of recyclable materials. For example, the properties of an extruded polypropylene (or other material) ribbon may be enhanced by recycling and then re-extruding the polypropylene into ribbon form a second time or even further times.
Each layer may be selected/tuned to a degree of precision based on the requirements of a particular application, such as impact resistance, stiffness, melt-point, flammability, chemical resistance, electrical conductivity, aerial density, and/or other requirements. Such tuning can be performed in a number of ways. For example, tuning can be performed by selecting the material for the layer, selecting dimensions of the layer (e.g., thickness, length, width), selecting whether the layer is woven, non-woven, or foam, if the layer is woven, selecting whether fibers, matte, yarn, and/or ribbon is woven to form the layer, selecting whether to add nanomaterials to the layer, selecting the type of and concentration of nanomaterials added to the layer (if added), and/or by performing other selection criteria described elsewhere herein or otherwise known.
In an embodiment, a panel may be manufactured to be any weight, including lightweight, medium weight, or heavyweight, depending on factors such as materials used in layers of the panel, thicknesses of the layers, a number of layers, etc. A panel may be manufactured of any thickness, including thick, medium thickness, and/or thin. For example, in one embodiment, a panel can be 0.5 pounds per square foot at ¼″ thick. In an embodiment, a panel may be stiff or flexible.
Embodiments enable a modularly-constructed container to be constructed from modular/interchangeable components. Embodiments provide building blocks that may be fully integrated to create a self-contained system. Panels may be modularly combined as building blocks to create a variety of container form factors. Furthermore, containers may be manufactured that are fully integrated and self-contained. For example, the structure of a container may include power generation and storage capability. Micro- and/or nanotechnology based technologies can be integrated with traditional manufacturing techniques as desired based on the particular application. MNT encompasses any technologies where the performance criterion is met by engineering on and having knowledge of the same size scale as the phenomena of interest.
One example container configuration includes multiple materials and components in a layered system. A polymer “skin” layer is provided on both outer sides of the pieces of the container. Such polymer skin layers may be the same or differ from the outside to the inside of a given container. A secondary material layer of each piece may be a foam core layer, reinforced with a weave of fibers, random fibers, rods, and/or further materials distributed throughout the layer. Multiple layers of each can be used to enable a desired strength/thickness. The container layers can include one or more sensors and/or other functional elements distributed throughout the container (e.g., in the skin layers and/or the core layer(s)). In an embodiment, the sensors may also be built into the matte/weave/fibers/skins. Each layer/material may be enhanced with nanomaterials.
For instance, in embodiments, one or more layers of a panel may include rods that provide structural reinforcement to the panel.
Rods 308 can be solid (e.g., as shown in
A panel that includes rods 308 may be manufactured in a variety of ways. For instance, as shown in
In another embodiment, recesses 310 and 312 may not be pre-formed in first and second layers 302 and 304. To form panel 300, rods 308 may be positioned between layers 302 and 304, and layers 302 and 304 may be moved into contact with each other. By compressing layers 302 and 304 together, rods 308 may form recesses 310 and 312 in layers 302 and 304, respectively.
In another embodiment, layers 302 and 304 may instead be formed as a single layer in which rods 308 are positioned.
Referring back to
First and second adhesive layers 606 and 608 bond together first, second, and third layers 302, 304, and 306. First adhesive layer 606 may be applied to the second surface of first layer 302, and second adhesive layer 608 may be applied to the second surface of second layer 304. First and second adhesive layers 606 may each be any type of adhesive material described elsewhere herein, including a resin, a foam layer, a glue, an epoxy, etc., and may optionally include micro- and/or nanomaterials. First and second coating layers 602 and 604 may be applied to first and second layers 302 and 304, respectively, in any manner described herein, including by laminating, molding, spraying, etc. When first and second layers 302 and 304 are moved into contact with each other (e.g., by a compression mechanism), first and second adhesive layers 606 and 608 come into contact with each other and bond together first, second, and third layers 302, 304, and 306. Furthermore, first and second adhesive layers 606 and 608 may combine to form a single layer in panel 600.
Rods 308 provide additional strength to panels 300, 500, and 600, including strength in tension, compression, and/or torsion with respect to panels 300, 500, and 600. Rods 308 may be textured (e.g., provided with grooves, ridges, etc.) to enhance adhesion with layers 302, 304, and/or 502. Panels 300, 500, and 600, may be combined in any manner to form larger panels. For example,
As shown in
Further description and examples of layer materials (e.g., polymers, fibers, ribbons, yarns, rods, etc.), layers (e.g., homogeneous, heterogeneous, fiber layers, yarn layers, woven layers, rod layers, etc.), panels, and adhesive materials that may be incorporated in panels are described in U.S. application Ser. No. [to be assigned], titled “Nano-Enhanced Modularly Constructed Container,” which is incorporated by reference in its entirety herein.
Containers formed using panels may have a variety of configuration. In embodiments, a container may be formed from a single panel, a pair of panels, three panels, and/or any further numbers of panels. Furthermore, a container may be formed by panels having various shapes. For instance,
Such container portions may be combined to form containers of shapes other than rectangular, as desired for a particular application.
First and second container portions 900 and 1000 may each be formed from one or more panels (e.g., panel 100 shown in
Container portions 900 and 1000 may be joined together to form a rectangular enclosure.
First and second container portions 900 and 1000 may be attached together in various ways. For instance, as shown in
For instance,
Clips 1200 and 1300 may include various materials, such as a metal or a combination of polymers/fibers, and may be formed according to any suitable manufacturing process, including being machined, cast, molded, extruded, or otherwise formed. Furthermore, clips 1200 and 1300 may have any size and any slot depth, as desired for a particular application.
Flanges 904 and 1004 may be made of a similar material to the rest of first and second container portions 900 and 1000, or of a different material, such as a metal or other material. Furthermore, although shown in
In alternative embodiments, first and second container portions 900 and 1000 can have other shapes (e.g., hemispherical, triangular, etc.) than shown in
In an embodiment, container 1100 may be manufactured to be any weight, including being relatively lightweight, medium weight, or heavyweight. A container may be manufactured to have walls of any thickness, including walls that are relatively thick, of medium thickness, and/or are thin. For example, in one embodiment, the material of a wall of container 1100 can be 0.5 pounds per square foot at ¼″ thick. In an embodiment, a container may be stiff or flexible.
Furthermore, in an embodiment, a container may be formed in include one or more openings to enable access to the interior cavity of the container. For instance, in embodiments, one or more surfaces of a container may include a port, a window, or other type of continuous opening. In another embodiment, one or more surfaces of a container may include a door, a hatch, or other type of opening having a covering that may be opened or closed as needed.
For instance,
Container 1500 may include a covering for opening 1506 that may be opened or closed as needed. For example,
In
Note that in a further embodiment, a door mechanism, such as doors 1602 and 1604, may be attached to container 1500 to close cavity 1508 (cover opening 1506) in a permanent or semi-permanent configuration. For example, an attachment mechanism, such as one or more bolts, screws, nails, rivets, or other attachment mechanism may be used to attach the door mechanism to cover opening 1506 in a manner that requires the attachment mechanism to be removed prior to a user being enabled to open or remove the door mechanism.
In embodiments, containers may be formed to have any shape, including a rectangular shape (e.g., as shown in
In embodiments, a container of the present invention, such as container 1100 of
In embodiments, container 1800 may include a communication medium, wired and/or wireless, for elements of container 1800 to communicate with each other and/or for communication within elements (e.g., for elements that include an array of sub-elements). For example, communication module 1806, as further described below, may be used for communications within container 1800, as well as communications with entities external to container 1800. In another example, a layer of container 1800 may be a flexible (or non-flexible) trace layer providing a network of electrical connections for container 1800. Wires, wire ribbons, nanowires, and/or further types of electrically conducting (including semi-conducting), materials may be used for physical electrical connections within container 1800. For example, in an embodiment, a particular layer of container 1800 may be configured as an interconnection layer for container 1800. The interconnection layer may include electrical wiring or other electrical connections of any form, to distribute power to elements of container 1800 and/or to enable elements of container 1800 to communicate with each other.
In an embodiment, a container may be configured to generate power. For example, power generator 1802 may include one or more power generation mechanisms, such as a solar power generator (e.g., solar cells), mechanical motion power generators (e.g., piezoelectric membranes, piezoelectric nanorods that generate power due to vibration, nanowires that generate electricity due to motion/vibration, etc.), resistive power generators, and/or further power generation/energy harvesting mechanisms to generator power for container 1800. For example, an outer layer of container 1800 may be an active photovoltaic layer. A single power generation mechanism may be present in container 1800, or multiple power generation mechanisms may be present in container 1800. For example, an array of power generation elements may be distributed throughout container 1800 (e.g., within a material of one or more layers of container 1800, and/or on a surface of one or more layers of container 1800), or otherwise positioned in container 1800. For example, in an embodiment, power generator 1802 may be a MEMS power harvesting integrated circuit die or chip. An array of such dies/chips may be present in container 1800. In an embodiment, a material of one or more layers of container 1800 may be configured to generate power. In another embodiment, one or more discrete power generator elements may be included in one or more layers of container 1800.
In an embodiment, a container may be configured to store power/energy, such as through the incorporation of one or more batteries, and/or other form of distributed power storage mechanism or element. For example, power storage 1804 may include one or more batteries and/or other types of power storage mechanisms/elements. For instance, in an embodiment, a container may include a pair of electrically conductive (e.g., metal) layers that sandwich a dielectric layer to form a capacitor for storing power. Example types of batteries include thin film lithium ion batteries, distributed chip scale capacitors, conventional batteries, etc. A single power storage mechanism/element may be present in container 1800, or multiple power storage mechanisms/elements may be present in container 1800. For example, an array of power storage elements may be distributed throughout container 1800, or otherwise positioned in container 1800.
In an embodiment, a container may be configured to communicate wirelessly with other devices that are external or internal to the container, including receiving information from, and transmitting information to such external and/or internal devices. For example, container 1800 may include communication module 1806. Communication module 1806 may include a transmitter and a receiver (or transceiver), and one or more antennas. Communications module 1806 is configured to enable container 1800 to communicate with other communication modules of container 1800 and/or with one or more remote entities. For example, communications module 1806 may be configured to communicate with a structure with which container 1800 is associated, such as a controller, GPS system, or other component of a vehicle with which container 1800 is associated. Container 1800 may be configured to communicate with a remote computer system, including a mobile device (e.g., Palm Pilot, personal digital assistant (PDA, notebook computer, etc.), a centralized entity, etc.
For example, communications module 1800 may be configured to communicate with a communications network in a wired or wireless fashion, including a personal area network (PAN) (e.g., a BLUETOOTH network), a local area network (e.g., a wireless LAN, such as an IEEE 802.11 network), and/or a wide area network (WAN) such as the Internet. Thus, communication module 1806 may include a BLUETOOTH chip, WLAN chip, etc., conventionally used in devices, and/or other communication enabling hardware/software/firmware. Communication module 1806 may communicate according to radio frequencies (RF), infrared (IR) frequencies, etc. Communication module 1806 may be configured to transmit data from container 1800, such as data captured by sensor 1810, information from microcontroller 1814, and/or further data. Furthermore, communication module 1806 may be configured to receive data for container 1800, such as instructions for container 1800 (e.g., for microcontroller 1814), data for storage in data storage 1808, image data for display by display 1812, and/or further data.
A single power communication module 1806 may be present in container 1800, or multiple communication modules 1806 may be present in container 1800. For example, an array of communication modules 1806 may be distributed throughout container 1800, or otherwise positioned in container 1800.
In an embodiment, a container may be configured to store information. For example, container 1800 may include data storage 1808. Data storage 1808 is used to store information/data for container 1800. For example, captured sensor data, manifest data, etc., may be stored in data storage 1808. Images may be stored in data storage 1808, such as advertisement images, etc., that may be displayed by display 1812, as further described below.
Data storage 1808 can be any type of storage medium, including memory circuits (e.g., a RAM, ROM, EEPROM, or FLASH memory chip), a hard disk/drive, optical disk/drive (e.g., CDROM, DVD, etc), etc., and any combination thereof. Data storage 1808 can be built-in storage of container 1800, and/or can be additional storage installed (removable or non-removable) in container 1800. A single storage element may be present in container 1800, or multiple storage elements may be present in container 1800. For example, an array of storage elements may be distributed throughout container 1800, or otherwise positioned in container 1800.
In an embodiment, a container may incorporate one or more sensors. For example, container 1800 may include sensor 1810. Sensor 1810 can be any type of sensor, including a microscale sensor (e.g., a microelectromechanical sensor (MEMS)) or a nanoscale sensor. For example, sensor 1810 can be an environmental sensor that detects an environmental attribute such as a gas (e.g., carbon dioxide, carbon monoxide, methane, etc.), a chemical, weather, temperature, pressure, light, wind, vibration, etc. Sensor 1810 can be a sensor desired to be used in homeland security applications. For instance, sensor 1810 may be configured to sense bomb making materials, toxic substances, nuclear materials/radiation, chemical warfare agents, etc. Sensor 1810 can be configured to sense motion, such as being an accelerometer, a gyro, or other motion sensor. For example, sensor 1810 may be configured to detect a tilt, such as the tilt of a payload carried by a truck or other structure associated with container 1800. Sensor 1810 can be a light sensor, a sound sensor (e.g., a microphone), or any other sensor type. A single sensor 1810 may be present in container 1800, or multiple sensors 1810 may be present in container 1800. For example, an array of sensors 1810 may be distributed throughout container 1800, or otherwise positioned in container 1800. Sensor(s) 1810 may be positioned anywhere in container 1800, including in a coating 1818 of container 1800 and/or in a layer of container 1800 (e.g., embedded in a foam layer, etc.). In an embodiment, one or more of sensor(s) 1810 may be upgradable and/or changeable (e.g., may be changed if a sensor ceases to function correctly).
In an embodiment, a container may include one or more displays to display text and/or graphics, such as video, and/or to enable container 1800 to change colors programmatically. For instance, container 1800 may include display 1812. Display 1812 may be any type of display, including an LCD (liquid crystal display) container or other display mechanism. In another embodiment, display 1812 is a micro- or nano-enabled display. For example, display 1812 may include an array of mirrors, similar in scale and operation to a digital light processing (DLP) display. Alternatively, display 1812 may include an array of nanomaterials in a layer (or multiple layers) of container 1800 configured to function as a display. Such a display may be present over any portion, including all, of a surface of container 1800, including an entire surface of the structure with which container 1800 is associated. Such a display 1812 (or combination of displays 1812) may be configured to display a color as the color of the structure (e.g., a blue truck, a red car, etc.), one or more static images (e.g., advertising or marketing images), one or more motion images (e.g., video, such as an advertising video), etc. A single display 1812 may be present in container 1800, or multiple displays 1812 may be present in container 1800. For example, an array of displays 1812 may be distributed throughout container 1800, or otherwise positioned in container 1800. For instance, display 1812 may be a device or a layer (e.g., a complete or partial layer) in container 1800. In one example embodiment, display 1812 may be configured to display one or more pre-programmed images and/or videos. In another embodiment, display 1812 may display images and/or video according to instructions received from microcontroller 1814. In an embodiment, particular images and/or video may be displayed by display 1812 depending upon stimuli received/detected by sensor 1810.
In an embodiment, a container may include temperature/environmental control functionality. For example, in one embodiment, container 1800 may include environmental control module 1816. Environmental control module 1816 may include a heat generator (e.g., including one or more heating elements) and/or a cooling device (e.g., one or more heat removing/transferring or cooling elements) and/or may include one or more temperature sensors (and/or may receive temperature information from sensor 1810). For example, environmental control module 1816 may include a thermoelectric cooler for cooling purposes. Container 1800 may include materials (e.g., metals, etc.) configured to transfer/spread heat.
Environmental control module 1816 may be used to regulate the temperature of container 1800. For example, environmental control module 1816 may regulate a temperature of container 1800 to regulate a temperature of a structure that container 1800 is incorporated into and/or to regulate a temperature of a cargo contained in container 1800. Environmental control module 1816 may regulate a temperature of container 1800 to minimize variability in operation of sensor 1810. Environmental control module 1816 may regulate a temperature of container 1800 for additional reasons. A single environmental control module 1816 may be present in container 1800, or multiple environmental control modules 1816 may be present in container 1800. For example, an array of environmental control modules 1816 may be distributed throughout container 1800, or otherwise positioned in container 1800.
In an embodiment, a container may be controlled by a user and/or be centrally controlled. For example, in one embodiment, container 1800 may include a user interface, such as a keypad, touch pad, a roller ball, a stick, a click wheel, and/or voice recognition technology for a user to control and/or otherwise interact with container 1800.
In an embodiment, container 1800 may include microcontroller 1814. Microcontroller 1814 may be any type of microcontroller/processor, including hardware, software, and/or firmware, including in silicon, nanowires, and/or any other form. Microcontroller 1814 may be present to perform a control function for container 1800, including coordinating/instructing operation of display 1812, accessing communication module 1806 to receive and/or transmit communications, to access data storage 1808, communicating with sensor 1810, controlling/monitoring environmental control module 1818, etc. A single microcontroller 1814 may be present in container 1800, or multiple microcontrollers 1814 may be present in container 1800. For example, an array of microcontrollers 1814 may be distributed throughout container 1800, or otherwise positioned in container 1800.
Container 1800 may include one or more layers, such as one or more outer layers (e.g., top and bottom layers) configured to provide environmental protection for container 1800. For example, the one or more protective layers may be made from a harder and/or more durable material (e.g., a dense polymer, a metal, etc.) and/or may incorporate nanomaterials and/or other particles (e.g., metal particles) that increase a durability and/or hardness of the one or more layers. The one or more protective layers may provide protection against weather (e.g., rain, sleet, snow, extreme cold, extreme heat), against impacts (e.g., from vehicles, from projectiles such as bullets, etc.), against explosions, and/or against further external threats and/or internal threats or sources of damage. For example, container 1800 may be a container configured to contain an explosive material.
Container 1800 may be configured to damp an explosive force if the explosive material inside explodes. Furthermore, the protective layers may include one or more functional elements, as desired for a particular application. For example, a protection layer may include solar energy collection elements (e.g., power generators 1802).
In embodiments, a container may include one or more of a variety of types of coatings 1818, such as polymers, paints, ceramics, metals, etc. For example, in an embodiment, coating 1818 of container 1800 is a skin gel coat, which may be clear or opaque, and may be applied in any manner, such as by spraying, painting, depositing, etc.
Coating 1818 may be a color-changing paint, for example. For example, a color of coating 1818 may be configured to change according to environmental attributes (e.g., temperature), or according to a control signal provided by microcontroller 1814
The elements of container 1800 shown in
First coating layer 1902a is formed on a first surface of a core portion 1912 of container wall 1900. Second coating layer 1902b is formed on a second surface of core portion 1912 of container wall 1900. Layers 1902a, 1902b, 1904, 1906a, 1906b, and 1908 may include any of the materials and layer types (e.g., homogeneous, heterogeneous, solid, woven, foam, etc.) described elsewhere herein, and may be attached together in any manner described elsewhere herein or otherwise known.
Core portion 1912 of container wall 1900 has a first portion 1914 and a second portion 1916. First portion 1914 of core portion 1912 includes a stack of first conductive layer 1906a, energy storage layer 1908, and second conductive layer 1906b. Second portion 1916 of core portion 1912 includes active layer 1904.
First and second coating layers 1902a and 1902b provide environmental protection for container wall 1900. First and second conductive layers 1906a and 1906b provide power and signal pathways from energy storage layer 1908 to active layer 1904.
Energy storage layer 1908 provides a repository power for the container. Active layer 1904 provides functionality of the container. For example,
In embodiments, multiple layers of materials may be used to form a single functional layer. Functional/active elements 1908/1910 can include processing elements, sensing elements, communication elements, and/or any other elements described elsewhere herein. More than one type of active element can be used in any single layer. Layers of panels, such as container wall 1900, may be manufactured/assembled according to a particular application. The embodiment of
Containers may be assembled in a variety of ways, according to embodiments. For instance,
Flowchart 2000 begins with step 2002. In step 2002, a plurality of layers is formed. For instance, referring to
In an embodiment, step 2002 of flowchart 2000 may include one or both of the steps shown in a flowchart 2200 in
In an embodiment where functional elements 2110 is/are received by layer fabricator 2102, one or more of functional elements 2110 may be incorporated into a material of layer material 2112 by layer fabricator 2102 (prior to forming a layer), may be incorporated into a formed layer by layer fabricator 2102, and/or may be applied to a surface of a formed layer by layer fabricator 2102. In embodiments, the one or more functional elements 2110 may be incorporated into a material of layer material 2112 by layer fabricator 2102 in any manner described elsewhere herein or otherwise known, including incorporating the one or more functional elements 2110 into a solid (e.g., powder) or liquid material of layer material 2112 prior to formation of a layer. The one or more functional elements 2110 may be incorporated into a formed layer by layer fabricator 2102 in any manner described elsewhere herein or otherwise known, including by machining, drilling, or otherwise forming an opening in the formed layer and inserting the one or more functional elements into the opening. The one or more functional elements 2110 may be applied to a surface of a formed layer by layer fabricator 2102 in any manner described elsewhere herein or otherwise known, including, including by spraying on, by using an attachment mechanism (e.g., an adhesive material, solder, one or more nails, screws, bolts, rivets, etc.), or by other technique.
Referring back to
Nanomaterial 2108 may include one or more of the nanomaterials described elsewhere herein, including nanowires, nanorods, nanotubes (e.g., carbon nanotubes), glass fibres, carbon fibres, nanoparticles (e.g., silver nanoparticles), nano silica, nano clay, nano aluminum, nano silver, nano carbon, black oxides, graphene, nano platelets, organic and inorganic nano elements, etc. It is noted that persons skilled in the relevant art(s) would be capable of selecting from a wide variety of nanomaterials, whether or not such materials include the “nano” prefix. The particular nanomaterials included in a layer may be selected based on a particular application for the layer/panel, as would be known to persons skilled in the relevant art(s) from the teachings herein. For example, silver nanoparticles may be included in a layer for bacteria resistance in a medical application. It is also recognized that the nanomaterials may be treated in such as way as to provide additional functionality. Such additional functionality may be stand alone (e.g., nano chemical sensors) or the nanomaterials may interact with other components in a panel to enable a desired functionality (e.g., as in the case of reinforcing fibers, electrical conductivity, or thermal conductivity).
In an embodiment where nanomaterial 2108 is received by layer fabricator 2102, nanomaterial 2108 may be incorporated into a material of layer material 2112 by layer fabricator 2102 in any manner described elsewhere herein or otherwise known. For example, in an embodiment, nanomaterial 2108 may be added to a foam material to be incorporated into a layer.
For instance,
As shown in
Note that the example of
In step 2004, the plurality of layers is attached together in a stack to form at least one panel. For instance, referring to
Note that in embodiments, a formed panel (e.g., any of panels 100, 300, 500, 600, 700, a panel having a construction similar to wall 1900, etc.) may be received by layer attacher 2104 to be stacked and attached to one or more other formed panels and/or layers. Layer attacher 2104 may be configured to form one panel 2118 that is used to form a container, or a plurality of panels 2118 that can be combined to form panel 2118.
In step 2006, the at least one panel is processed to form a container. For instance, referring to
For instance, in an embodiment, step 2006 of flowchart 2000 may include one or more of the steps shown in a flowchart 2400 shown in
In step 2402 of flowchart 2400, a shape of a panel is modified. Step 2402 is optional. For instance, as shown in
Panel shaper 2502 may not be required if panels 2118 received from layer attacher 2104 are previously shaped (e.g., by a molding process performed by layer fabricator 2102 and/or by layer attacher 2104 shown in
In step 2404, a plurality of panels is attached together to form the container. Step 2404 is optional. For instance, as shown in
Panel combiner 2504 may not be required if a single piece (i.e., single panel) container is being formed by system 2100. In an embodiment, panel combiner 2504 is not present in panel processor 2500, and panel 2510 is provided to coating applicator 2506 as container 2512.
In step 2406, a coating is applied to the container. Step 2406 is optional. For instance, as shown in
In step 2408, a door is attached to the container. Step 2408 is optional. For instance, as shown in
Door attacher 2508 may not be required if a container formed by system 2100 does not require a door. In an embodiment, door attacher 2508 is not present in panel processor 2500, and container 2514 is output from panel processor 2500 as container 2120.
Referring back to
Referring back to flowchart 2000 (
The container material embodiments of
In an embodiment, a container may form a large structure, such as an automobile, a truck such as a delivery truck, a trailer, a shipping container, a boat, an aircraft skin, a home/building or further structure. Such structures may be newly built with a container of the present invention, and/or existing structures may be retrofitted with a container of the present invention. In an embodiment, a container may be built or wrapped around a structure. For example, a container may be formed/attached around an outer surface of an automobile, truck, shipping container, aircraft, etc. Alternatively, a container may form a portion or all of the structure. For example, a container of the present invention may replace a container of an automobile, truck, shipping container, aircraft, home, other building, boat, or other structure. A container may be a canister that stores a flammable and/or explosive material, such as a fuel, fireworks, ammunition, or other explosive material.
Containers formed according to embodiments of the present invention have many applications. For example, containers may be used in applications of homeland security, environmental monitoring, defense, displays, recreational vehicles, inventory management, shipping, infrastructure, construction, transportation, energy generation, storage, distribution, weather monitoring, transportation of freight, travel, etc.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application claims the benefit of U.S. Provisional Application No. 60/956,265, filed on Aug. 16, 2007, which is incorporated by reference herein in its entirety. The following applications of common assignee are related to the present application, were filed on the same date as the present application, and are herein incorporated by reference in their entireties: U.S. application Ser. No. [to be assigned], titled “Nano-Enhanced Modularly Constructed Composite Panel,” and U.S. application Ser. No. [to be assigned], titled “Nano-Enhanced Smart Panel.”
Number | Date | Country | |
---|---|---|---|
60956265 | Aug 2007 | US |