Neon lighting is formed of brightly glowing, electrified glass tubes or bulbs that contain rarefied neon or other gases. Neon lights are a type of cold cathode gas-discharge light. A neon tube is a sealed glass tube with a metal electrode at each end, filled with one of a number of gases at low pressure. A high potential of several thousand volts applied to the electrodes ionizes the gas in the tube, causing it to emit colored light. The color of the light depends on the gas in the tube. Neon lights were named for neon, a noble gas which gives off a popular orange light, but other gases and chemicals are used to produce other colors, such as hydrogen (red), helium (yellow), carbon dioxide (white), and mercury (blue). Neon tubes can be fabricated in curving artistic shapes, to form letters or pictures. They are mainly used to make dramatic, multicolored glowing signage for advertising, called neon signs, which were popular from the 1920s to the 1950s.
The range of outer diameters for the glass tubing used in neon lighting is 9 to 25 mm; with standard electrical equipment, the tubes can be as long as 30 metres (98 ft). The pressure of the gas inside is in the range 3-20 Torr (0.4-3 kPa), which corresponds to a partial vacuum in the tubing. Noble gases, known for being chemically unreactive, produce vivid colors. Neon, in particular, gives off a bright glow. The other noble gases, argon, helium, xenon, and krypton, are also used to create bright, colorful signs and displays. Radon, the other noble gas, is radioactive and not used in signs.
The neon sign is an evolution of the earlier Geissler tube, which is an electrified glass tube containing a “rarefied” gas (the gas pressure in the tube is well below atmospheric pressure). When a voltage is applied to electrodes inserted through the glass, an electrical glow discharge results. Geissler tubes were quite popular in the late 19th century, and the different colors they emitted were characteristics of the gases within. They were, however, unsuitable for general lighting; the pressure of the gas inside typically declined in use. The direct predecessor of neon tube lighting was the Moore tube, which used nitrogen or carbon dioxide as the luminous gas and a patented mechanism for maintaining pressure; Moore tubes were sold for commercial lighting for a number of years in the early 1900s. The discovery of neon in 1898 by the British scientists William Ramsay and Morris W. Travers included the observation of a brilliant red glow in Geissler tubes. Travers wrote, “the blaze of crimson light from the tube told its own story and was a sight to dwell upon and never forget.” Following neon's discovery, neon tubes were used as scientific instruments and novelties.
Neon tube signs are produced by the craft of bending glass tubing into shapes. A worker skilled in this craft is known as a glass bender, neon bender or tube bender. The neon tube is commonly made out of 4 or 5-foot long straight sticks of hollow glass sold by sign suppliers to neon shops worldwide, where they are manually assembled into individual custom designed and fabricated lamps.
Tubing in external diameters ranging from about 8-15 mm with a 1 mm wall thickness is most commonly used, although 6 mm tubing is now commercially available in colored glass tubes. The tube is heated in sections using several types of burners that are selected according to the amount of glass to be heated for each bend. These burners include ribbon, cannon, or crossfires, as well as a variety of gas torches. Ribbon burners are strips of fire that make the gradual bends, while crossfires are used to make sharp bends. The interior of the tubes may be coated with a thin phosphorescent powder coating, affixed to the interior wall of the tube by a binding material. The tube is filled with a purified gas mixture, and the gas ionized by a high voltage applied between the ends of the sealed tube through cold cathodes welded onto the ends. The color of the light emitted by the tube may be just that coming from the gas, or the light from the phosphor layer. Different phosphor-coated tubing sections may be butt welded together using glass working torches to form a single tube of varying colors, for effects such as a sign where each letter displays a different color letter within a single word.
“Neon” is used to denote the general type of lamp, but neon gas is only one of the types of tube gases principally used in commercial application. Pure neon gas is used to produce only about one-third of the colors (mostly shades of red and orange, and some warmer or more intense shades of pink). The greatest number of colors (including all shades of blue, yellow, green, violet, and white, as well as some cooler or softer shades of pink) produced by filling with another inert gas, argon, and a drop of mercury (Hg) which is added to the tube immediately after purification. Each gas used in neon lights has its own color. Neon is red, helium is orange, argon is lavender, krypton is gray or green, mercury vapor is light blue, and xenon is gray or blue. Mixing gases and elements added to a neon light creates different hues. When the tube is ionized by electrification, the mercury evaporates into mercury vapor, which fills the tube and produces strong ultraviolet light. The ultraviolet light thus produced excites the various phosphor coatings designed to produce different colors. Even though this class of neon tubes use no neon at all, they are still denoted as “neon.” Mercury-bearing lamps are a type of cold-cathode fluorescent lamps.
Each type of neon tubing produces two different possible colors, one with neon gas and the other with argon/mercury. Some “neon” tubes are made without phosphor coatings for some of the colors. Clear tubing filled with neon gas produces the ubiquitous yellowish orange color with the interior plasma column clearly visible, and is the cheapest and simplest tube to make. Traditional neon glasses in America over 20 years old are lead glass that are easy to soften in gas fires, but recent environmental and health concerns of the workers has prompted manufacturers to seek more environmentally safe special soft glass formulas. One of the vexing problems avoided this way is lead glass' tendency to burn into a black spot emitting lead fumes in a bending flame too rich in the fuel/oxygen mixture. Another traditional line of glasses was colored soda lime glasses coming in a myriad of glass color choices, which produce the highest quality, most hypnotically vibrant and saturated hues. Still more color choices are afforded in either coating, or not coating, these colored glasses with the various available exotic phosphors.
A light assembly is disclosed that is formed of a carbon nanotube having an electrode inserted in each end. The electrodes form a gaseous seal with the carbon nanotube at each end of the carbon nanotube. A gas is sealed within the carbon nanotube by the electrodes. The gas emits light through the carbon nanotube when voltage is applied across said electrodes. The gas may be neon, argon, helium, xenon, krypton, hydrogen and carbon dioxide. The light assembly may also include a ring of sealant bonding the ends of the carbon nanotube to the electrodes to form the gas seal. The ring of sealant is applied over exterior surfaces of the electrodes and the carbon nanotube. The ring of sealant may be formed of an adhesive such as an epoxy or cyanoacrylate (aka “Super Glue”). The ring of sealant may also be formed of a glass. Alternatively, the light assembly may include a pair of end surfaces bonding each electrode to each end of the carbon nanotube, thereby sealing the gas within the carbon nanotube. These end surfaces may be formed of graphene, an adhesive, or a glass. The light assembly may also include a scaffolding to support the carbon nanotube and hold it in a desired shape. This scaffolding may include a frame having a patterned array of posts where the carbon nanotube is shaped and attached to the patterned array of posts to form a desired light-emitting shape. Alternatively, the carbon nanotube may be supported and placed into a desired shape by bonding it to a substrate with bonding pads. The substrate may be made of a glass, semiconductor, plastic, paper, graphene, carbon fiber composite, carbon fiber, or other composite material. The light assembly may also include a controller configured to regulate the electrical operation of the light assembly. The controller is electrically connected to the electrodes. It is desirable that the carbon nanotube be made of a semiconducting carbon nanotube.
A gas light source is disclosed that is formed of a graphene cylinder having an electrode inserted in each end where the electrodes form a gaseous seal with the graphene cylinder at each end of the graphene cylinder. A gas is sealed within the graphene cylinder by the electrodes. The gas emits light through the graphene cylinder when voltage is applied across the electrodes. The gas may be neon, argon, helium, xenon, krypton, hydrogen or carbon dixoide. The gas light source may also include a ring of sealant bonding the ends of the graphene cylinder to the electrodes. The ring of sealant may be applied over exterior surfaces of the electrodes and the graphene cylinder. The ring of sealant may be formed of an adhesive such as an epoxy or cyanoacrylate. The ring of sealant may also be formed of a glass. Alternatively, the light source may include a pair of end surfaces bonding each electrode to each end of the graphene cylinder, thereby sealing the gas within the graphene cylinder. These end surfaces may be formed of graphene, an adhesive, or a glass. The light source may further include a scaffolding to support the light source and hold it into a desired shape. This scaffolding may include a substrate formed of glass, semiconductor, plastic, paper, graphene, carbon fiber, or composite material and bonding pads attaching the graphene cylinder to the substrate and holding it into a visually desired shape. It is desirable that the graphene cylinder be made of a semiconducting carbon nanotube.
A seven-segment display is disclosed that includes seven light sources made of graphene cylinders arranged in the pattern of a figure eight in which each light source may be activated and lit independently in order to create various alpha-numeric symbols. The seven light sources are mounted into a component housing. An additional light source is attached to the component housing to serve as a decimal point. A processor controller activates the individual light sources to produce various alpha-numeric symbols. An RGB pixel is disclosed that is formed of three light sources made of graphene cylinders, each filled with a different gas that emits either red, green, or blue light. A processor controller is electrically coupled to the RGB pixel to pulse-width modulate the various graphene cylinder light sources to produce different desired colors and time dependent light color patterns. A display is disclosed that is formed of arrays of RGB pixels 40. These RGB pixels are operated by a grid of electrodes insulated by dielectric layers. A processor controller regulates the operation of the array of RGB pixels through pulse-width modulation to produce different desired colors and time dependent light color patterns at different levels of brightness. The front and back panels of this display are made of glass allowing light emitting from the array of RGB pixels to pass through. A nano-gas light lamp is disclosed that is formed of a graphene capsule. A pair of electrodes extend into the capsule and are bonded and sealed in place with a plug. The graphene capsule contains a gas that emits light when it is stimulated by an electric voltage.
The novel features that are considered characteristic of the invention are set forth with particularity in the appended claims. The invention itself; however, both as to its structure and operation together with the additional objects and advantages thereof are best understood through the following description of the preferred embodiment of the present invention when read in conjunction with the accompanying drawings, wherein:
Graphene is a hexagonal lattice of carbon atoms that form an atomically contiguous sheet. Graphene is formed of an atomically contiguous lattice of covalently-bonded carbon atoms. Graphene sheet, also referred to as a graphene lattice, is a flat monolayer of carbon atoms that are tightly packed into a two-dimensional lattice. Graphene is 97.7% optically transparent. Graphene is an extremely strong material due to the covalent carbon-carbon bonds. It is desirable to utilize graphene lattices that are defect free as the presence of defects reduces the strength of the graphene lattice. The intrinsic strength of a defect free sheet of graphene 100 is 42 N/m, making it one of the strongest materials known. The strength of graphene is comparable to the hardness of diamonds. Graphene is also a highly flexible material. Multiple monolayers of graphene sheet can be grown on top of each other to create a multi-layer graphene sheet. Graphene exhibits a wavelength dependent index of refraction.
Graphene is also an impermeable membrane to even the smallest atoms, thereby maintaining the atmosphere of a vacuum or gas within the graphene cladding 18. Although it is only one atom thick, an interesting property of graphene is its impermeability. Graphene's p-orbitals forms a dense, delocalized cloud that blocks the gap within its aromatic rings. This creates a repelling field, which does not allow even the smallest molecules, like hydrogen and helium, to pass through even when 1-5 atm pressure difference is imposed across its atomic thickness at room temperature. The ability to withstand such pressure differences (6 atm) in graphene is a result of its high strength (breaking strength=42 N/m) and Young's modulus (1 TPa), which retains the structural integrity of graphene. Thus, a graphene cylinder can maintain a core made of a vacuum or gas when each end of the graphene cylinder 18 is sealed. A further discussion on graphene's impermeability is provided in the following scientific article hereby incorporated by reference: Vikas, Berry. Impermeability of graphene and its applications. Carbon (2013), http://dx.doi.org/10.1016/j.carbon.2013.05.052.
Graphene cylinder 20 contains a gas 22. Gas 22 may be neon, argon, helium, xenon, krypton, hydrogen or carbon dixoide. Electrodes 18 are bonded to each end of graphene cylinder 20 to form a gaseous seal with graphene cylinder 20, thereby holding gas 22 within gas light tube assembly 12 regardless of the atmosphere external to gas light tube assembly 12 due to the gaseous impermeability of graphene cylinder 20, electrodes 18, and the gaseous seal formed between graphene cylinder 20 and electrodes 18. Gas 22 is contained within gas light tube assembly under a particular pressure range. This pressure range may be 2-5 Torr, 5-10 Torr, 10-15 Torr, or 15-20 Torr.
Carbon nanotubes can be conducting or semiconducting. The diameter of a carbon nanotube and the amount of twist in its lattice determines whether it's metallic or semiconducting. Electrons in carbon nanotubes can only be at certain energy levels, just like electrons in atoms. A nanotube is metallic if the energy level that allows delocalized electrons to flow between atoms throughout the nanotube (referred to as the conduction band) is right above the energy level used by electrons attached to atoms (the valance band). In a metallic nanotube, electrons can easily move to the conduction band. A nanotube is semiconducting if the energy level of the conduction band is high enough so that there is an energy gap between it and the valance band. In this case, additional energy, such as light, is needed for an electron to jump that gap to move to the conduction band. While there is no gap between the valance and conduction bands for armchair nanotubes (which makes them metallic), an energy gap does exist between the valance and conduction bands in about two thirds of zigzag and chiral nanotubes—which makes them semiconducting. Conducting carbon nanotubes act as one-dimensional nanowires. Semiconducting carbon nanotubes are basically non-conducting, have small dielectric constants, medium to large band gaps and hence can act as insulating shields to electric fields generated by electrodes 18. It is desirable to make graphene cylinder 20 out of a semiconducting carbon nanotube. With semiconducting carbon nanotubes, electrodes 18 generate an electric field that causes gas 22 to discharge photons that are emitted through graphene cylinder 20 outward to the external environment creating a light source.
Graphene cylinder 20 may have end surfaces 24 that form a gaseous seal with electrodes 18 bonding electrodes 18 to graphene cylinder 20. These end surfaces 24 may be made out of a variety of materials that function to bond electrodes 18 to cylinder 20 and form a gaseous seal to keep gas 22 contained entirely within assembly 12. End surfaces 24 may be made of an adhesive. Such an adhesive could include, but is not limited to, an epoxy and cyanoacrylate. Other materials for end surfaces can include a glass, graphene, or composite material.
Controller power source 16 controls the operation of light source 10. For example, controller 16 may turn light source 10 ON and OFF. In addition, controller 16 may operate light source 10 with a Pulse Width Modulated (PWM) voltage in order to create the desired light with a reduced amount of power usage. It is possible to vary the brightness of light source 10 with PWM. Controller 16 may further control light source 10 to operate to produce various time dependent patterns of light, such as a blinking light that varies in the speed and duration at which it blinks. Electrodes 18 may be made of a metal. Electrodes 18 may take the form of a metal nanowire. Alternatively, electrodes 18 may be formed of conducting carbon nanotubes. A starting voltage (usually 55-110 volts AC, or 90-140 volts DC) is applied, the gas ionizes and starts to glow permitting a very small current to travel from one electrode to the other. Once ionized, a lower voltage will maintain the operation of the light source 10. The maintaining voltage is usually 10-20 volts below the starting voltage, depending on the light source 12 and the operating current. For light source 10 operating on AC voltages of 60 Hz or higher frequency, the light output will appear to the eye as continuous.
A light assembly is disclosed that is formed of a carbon nanotube 20 having an electrode 18 inserted in each end. The electrodes 18 form a gaseous seal with the carbon nanotube 20 at each end of the carbon nanotube 20. A gas 22 is sealed within the carbon nanotube 20 by the electrodes 18. The gas 22 emits light through the carbon nanotube 20 when voltage is applied across said electrodes 18. The gas 22 may be neon, argon, helium, xenon, krypton, hydrogen and carbon dioxide. The light assembly 12 may also include a ring of sealant 34 bonding the ends of the carbon nanotube 20 to the electrodes 19 to form the gas seal. The ring of sealant 34 is applied over exterior surfaces of the electrodes 18 and the carbon nanotube 20. The ring of sealant 34 may be formed of an adhesive such as an epoxy or cyanoacrylate (aka “Super Glue”). The ring of sealant 34 may also be formed of a glass. Alternatively, the light assembly 12 may include a pair of end surfaces 24 bonding each electrode 18 to each end of the carbon nanotube 20, thereby sealing the gas 22 within the carbon nanotube 20. These end surfaces 24 may be formed of graphene, an adhesive, or a glass. The light assembly 12 may also include a scaffolding to support the carbon nanotube 20 and hold it in a desired shape. This scaffolding may include a frame 26 having a patterned array of posts 28 where the carbon nanotube 20 is shaped and attached to the patterned array of posts 28 to form a desired light-emitting shape. Alternatively, the carbon nanotube 20 may be supported and placed into a desired shape by bonding it to a substrate 32 with bonding pads 30. The substrate 32 may be made of a glass, semiconductor, plastic, paper, graphene, carbon fiber composite, carbon fiber, or other composite material. The light assembly may also include a controller 16 configured to regulate the electrical operation of the light assembly. The controller 16 is electrically connected to the electrodes 18. It is desirable that the carbon nanotube 20 be made of a semiconducting carbon nanotube.
A gas light source 10 is disclosed that is formed of a graphene cylinder 20 having an electrode 18 inserted in each end where the electrodes 18 form a gaseous seal with the graphene cylinder 20 at each end of the graphene cylinder 20. A gas 22 is sealed within the graphene cylinder 20 by the electrodes 18. The gas 22 emits light through the graphene cylinder 20 when voltage is applied across the electrodes 18. The gas 22 may be neon, argon, helium, xenon, krypton, hydrogen or carbon dioxide. The gas light source 12 may also include a ring of sealant 34 bonding the ends of the graphene cylinder 20 to the electrodes 18. The ring of sealant 34 may be applied over exterior surfaces of the electrodes 18 and the graphene cylinder 20. The ring of sealant 34 may be formed of an adhesive such as an epoxy or cyanoacrylate. The ring of sealant 34 may also be formed of a glass. Alternatively, the light source may include a pair of end surfaces 24 bonding each electrode 18 to each end of the graphene cylinder 20, thereby sealing the gas 22 within the graphene cylinder 20. These end surfaces 24 may be formed of graphene, an adhesive, or a glass. The light source 12 may further include a scaffolding to support the light source 12 and hold it into a desired shape. This scaffolding may include a substrate 32 formed of glass, semiconductor, plastic, paper, graphene, carbon fiber, or composite material and bonding pads 30 attaching the graphene cylinder 20 to the substrate 32 and holding it into a visually desired shape. It is desirable that the graphene cylinder 20 be made of a semiconducting carbon nanotube.
While the invention has been shown and described with reference to a particular embodiment thereof, it will be understood to those skilled in the art, that various changes in form and details may be made therein without departing from the spirit and scope of the invention.
Number | Date | Country | |
---|---|---|---|
Parent | 15861980 | Jan 2018 | US |
Child | 16367236 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15401084 | Jan 2017 | US |
Child | 15861980 | US |