Nano structured LEDs

Information

  • Patent Grant
  • 8791470
  • Patent Number
    8,791,470
  • Date Filed
    Monday, October 5, 2009
    15 years ago
  • Date Issued
    Tuesday, July 29, 2014
    10 years ago
Abstract
An embodiment relates to a nanowire-containing LED device with optical feedback comprising a substrate, a nanowire protruding from a first side the substrate, an active region to produce light, a optical sensor and a electronic circuit, wherein the optical sensor is configured to detect at least a first portion of the light produced in the active region, and the electronic circuit is configured to control an electrical parameter that controls a light output of the active region. Yet, another embodiment relates to an image display having the nanowire-containing LED device with optical feedback.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

None.


BACKGROUND

PCT International Publication WO 2008/079076, published on Jul. 3, 2008, shows that nanowires can be used for constructing light emitting diodes (LED). Nano-structured LEDs produce light with very high efficiency. They provide a wide range in the choice of materials thereby allowing access to a wide range of wavelengths including red, green and blue light. It is well known, however, that PIN junction LEDs have a light output and wavelength that varies with temperature. Thus, even though the concept of an LED television (TV) is known, the practical application of LEDs for TV has not hitherto been possible.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a schematic of a nanowire-containing light emitting diode (LED) with optical feedback.



FIG. 2 is a schematic of a pinned photodiode.



FIG. 3 is a schematic of tessellations for the LED array.



FIG. 4 is a schematic of a chip partitioned to include the LED array and optical feedback.





DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.


The term nanowire refers to a structure that has a thickness or diameter of the order of several nanometers, for example, 100 nanometers or less and an unconstrained length. An active nanowire is generally capable of converting photons into excitons. Nanowires could exhibit aspect ratios (length-to-width ratio) of 1000 or more. As such they could be referred to as 1-dimensional materials. Nanowires could have many interesting properties that are not seen in bulk or 3-D materials. This is because electrons in nanowires could be quantum confined laterally and thus occupy energy levels that could be different from the traditional continuum of energy levels or bands found in bulk materials. As a result, nanowires could have discrete values of electrical and optical conductance. Nanowires could include metallic (e.g., Ni, Pt, Au), semiconducting (e.g., Si, InP, GaN, etc.), and insulating (e.g., SiO2,TiO2) materials. Molecular nanowires are composed of repeating molecular units either organic or inorganic. Examples of nanowires include inorganic molecular nanowires (Mo6S9-xIx, Li2Mo6Se6), which could have a diameter of 0.9 nm, and can be hundreds of micrometers long. Other examples are based on semiconductors such as InP, Si, GaN, etc., dielectrics (e.g. SiO2,TiO2), or metals (e.g. Ni, Pt). An active-pixel sensor (APS), also commonly written active pixel sensor, is an image sensor consisting of an integrated circuit containing an array of pixel sensors, each pixel containing a photodetector and an active amplifier. A passive-pixel sensor is a pixel sensor without its own amplifier.


The term excitons refers to electron-hole pairs.


An active element is any type of circuit component with the ability to electrically control electron and/or hole flow (electricity controlling electricity or light, or vice versa). Components incapable of controlling current by means of another electrical signal are called passive elements. Resistors, capacitors, inductors, transformers, and even diodes are all considered passive elements. Active elements include in embodiments disclosed herein, but are not limited to, an active nanowire, an active waveguide, transistors, silicon-controlled rectifiers (SCRs), light emitting diodes, and photodiodes.


A waveguide is a system or material designed to confine and direct electromagnetic radiation of selective wavelengths in a direction determined by its physical boundaries. Preferably, the selective wavelength is a function of the diameter of the waveguide. An active waveguide is a waveguide that has the ability to electrically control electron and/or hole flow (electricity controlling electricity or light, or vice versa). This ability of the active waveguide, for example, is one reason why the active waveguide could be considered to be “active” and within the genus of an active element.


An optical pipe is an element to confine and transmit an electromagnetic radiation. The optical pipe can include a core and a cladding. The core could be a nanowire. The optical pipe could be configured to separate wavelengths of an electromagnetic radiation beam at a selective wavelength through the core and the cladding, wherein the core is configured to be both a channel to transmit the wavelengths up to the selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the core. A core and a cladding are generally complimentary components of the optical pipe and are configured to separate wavelengths of an electromagnetic radiation beam at a selective wavelength through the core and cladding.


A photogate is a gate used in an optoelectronic device. Typically the photogate comprises a metal-oxide-semiconductor (MOS) structure. The photogate controls the accumulation of photons generated charges during the integration time of the photodiode and controls the transfer of charges when integration is over. A photodiode comprises a pn junction, however, a photogate can be placed on any type semiconductor material. A vertical photogate is a new structure. Normally, photogates are placed horizontally on planar photodiode devices. In a nanowire device, however, the photogate can be formed in a vertical direction. That is, the photogate can be oriented standing up covering the lateral surface of the nanowire.


A transfer gate is a gate of a switch transistor used in a pixel. The transfer gate's role is to transfer the charges from one side of a device to another. In some embodiments, the transfer gate is used to transfer the charges from the photodiode to the sensing node (or floating diffusion).


A reset gate is a gate used for resetting a device. In some embodiments, the reset gate is the sense node that is formed by an n+ region. Reset means to restore to original voltage level set by a certain voltage. In some embodiments, the voltage of the reset drain (RD) is the voltage used as a reset level. Reset means to clear any pending errors or events and bring a system to normal condition or initial state, usually in a controlled manner. Rest is usually done in response to an error condition or completion of events when it is impossible or undesirable for a processing activity to proceed. The ability for an electronic device to be able to reset itself in case of error, abnormal power loss or completion of events could be an aspect of embedded system design and programming.


An intrinsic semiconductor, also called an undoped semiconductor or i-type semiconductor, is a pure semiconductor without any significant dopant species present. The number of charge carriers is therefore determined by the properties of the material itself instead of the amount of impurities. In intrinsic semiconductors, the number of excited electrons and the number of holes are equal: n=p. The conductivity of intrinsic semiconductors can be due to crystal defects or to thermal excitation. In an intrinsic semiconductor, the number of electrons in the conduction band is equal to the number of holes in the valence band.


A SOC (system on a chip) is a single integrated circuit, i.e., a processor, a bus, and/or other elements on a single monolithic substrate. A system on a chip may include a configurable logic unit. The configurable logic unit may include a processor, interface, and a programmable logic on the same substrate. A system-on-chip IC may include various reusable functional blocks, such as microprocessors, interfaces, memory arrays, and DSPs (digital signal processors). Such pre-designed functional blocks are commonly called cores. Generally, the SOC may include a plurality of cores in a single chip. The cores embedded in the SOC may be separately designed and tested before being combined in a chip. SOCs may have significant advantages over electronic systems created on boards with discrete components. An integrated circuit having an SOC is generally much smaller than a circuit board based system. The reduction in size afforded by SOCs also may lead to improvements in power consumption and device speed. SOCs may combine fixed and programmable intellectual property cores with custom logic and memory, connected through a bus, on a single piece of silicon, thereby greatly reducing its overall cost.


A chip is a semiconducting material (usually silicon) on which an integrated circuit is embedded. A typical chip can contain millions of electronic components (transistors). There are different types of chips. For example, CPU chips (also called microprocessors) contain an entire processing unit, whereas memory chips contain blank memory.


An integrated circuit (also known as IC, microchip, silicon chip, computer chip or chip) is a device that may include many electronic components (transistors, capacitors, resistors, diodes, and other circuit components). These components are often interconnected to form multiple circuit components (e.g., gates, cells, memory units, arithmetic units, controllers, decoders, etc.) on the IC. An example of an integrated circuit is a central processing unit (CPU) in a computer. An integrated circuit may implement one or more cores that perform the various functions of the integrated circuit as well as circuitry for communicating with other integrated circuits and devices external to the integrated circuit. Integrated circuits typically comprise a semiconductor substrate on which several component layers have been formed to produce a large number of laterally-distributed transistors and other circuit devices. Additional connection layers may be formed on top of the component layers to provide interconnections among and power to the circuit devices, and input and output signal connections to the devices. An integrated circuit is generally fabricated utilizing a chip of silicon or other semiconductor material, also referred to as a die. The die consists of a substrate composed of a semiconductor material such as silicon or germanium. One side of the substrate may be provided with a plurality of circuit structures that makeup the integrated circuit and the other may be left as relatively bare substrate material that is normally planarized via a polishing step. A die is typically installed in a package, and electrically connected to leads of the package. A hybrid integrated circuit is a miniaturized electronic circuit constructed of individual semiconductor devices, as well as passive components, bonded to a substrate or circuit board. Integrated circuits can be classified into analog integrated circuits, digital integrated circuits and mixed signal integrated circuits (both analog and digital on the same chip).


A digital signal processor (DSP) is a specialized microprocessor designed specifically for digital signal processing such as video signal processing, generally in real-time computing. Digital signal processing algorithms typically require a large number of mathematical operations to be performed quickly on a set of data. Signals are converted from analog to digital, manipulated digitally, and then converted again to analog form.


A PN junction is a junction formed by combining p-type and n-type semiconductors together in very close contact. A PIN junction is a junction formed by combining a lightly doped ‘near’ intrinsic semiconductor region between a p-type semiconductor and an n-type semiconductor regions. The p-type and n-type regions are typically heavily doped because they are used for ohmic contacts.


The term junction refers to the region where the two regions of the semiconductor meet. It can be thought of as the border region between the p-type and n-type blocks.


An embodiment relates to a nanostrucuted LED with an optical feedback comprising a substrate, a nanowire protruding from a first side the substrate, an active region to produce light, a optical sensor and a electronic circuit, wherein the optical sensor is configured to detect at least a first portion of the light produced in the active region, and the electronic circuit is configured to control an electrical parameter that controls a light output of the active region. The nanostructured LED in one example implementation, may further comprise a volume element epitaxially connected to the nanowire. The volume element could provide a high doping degree for the formation of the active region, typically within or close to the nanowire, with or without requiring the nanowire itself to be doped. Preferably, the nanostructured LED without optical feedback would be the combination of the substrate, the nanowire and a volume element, wherein a portion of the nanowire and a portion of the volume element are configured to form the active region. The volume, element could be a cylindrical bulb, but is not limited to a cylindrical bulb with a dome-shaped top, a spherical/ellipsoidal, and pyramidal. The volume element can extend in three dimensions; can have a large volume, and a large surface. The volume element/nanowire architecture enhances both electrical and optical performance of a LED. By using different material compositions in the nanowire and the volume element, the nanowire material composition can be chosen to propagate into the volume element in order to decrease the optical disturbance by the connection with the nanowire.


The nanostructured LED of an embodiment may include a PN or PIN-junction that could produce an active region to produce light within the structure during use. The nanowire, a part of the nanowire, or a structure in connection with the nanowire, could form a waveguide directing at least a portion of the light produced in the active region in a given direction.


The nanowire and the volume element could be embedded in a low index material like SiO2. In one possible implementation the low index region (e.g., a cover layer) is in turn enclosed by a cylindrical ring of metal to provide optical isolation of the each LED from its neighbors. This metal ring may also aid in the local removal of heat generated by each LED.


A nano-structured LED makes it possible to use a very large fraction of the light produced by the LED. This is at least partly achieved by the nanowire being used as a waveguide, directing the light produced in the junction out of the surface.


The use of the nanowire as a waveguide offers a possibility to direct light in well defined directions. By using concepts from the area of fiber optics light beams can be focused, or dispersed, depending on the intended use. In this case a concave surface on the nanowire and the silica surrounding it would help provide a focused beam of light suitable for a display system.


The nanowire technology offers possibilities in choices of materials and material combinations not possible in conventional bulk layer techniques. This could be used in the nano-structured LED to provide LEDs producing light in wavelength regions not accessible by conventional techniques, for example violet and UV.


The nano-structured LED allows for inclusions of heterostructures as well as areas of different doping within the nanowire, facilitating optimization of electrical and/or optical properties.


In embodiments herein that require precise control of the light output of an LED or the uniformity of multiple LEDs, arranged in a two dimensional grid for display purposes, an optical feedback loop to create a uniformity of light emission is highly desirable. Such a feedback loop would include an optical sensor to measure a fraction of the light output of the LED in real time and an electronic circuit to use the measurement to adjust the operating point of the LED.


An embodiment could include a nano-structured LED grown on a substrate that already has an embedded photodiode such as pinned photodiode. The light from the nano-structured LED is partially transmitted to the substrate where a photodiode measures and provides a signal proportional to the intensity of the light generated by the LED. This signal in turn is used in a feedback loop to control the bias point of the LED such that a stable light output is maintained at the desired intensity.


The nanowire-containing LED with optical feedback (NWLOF) could further comprise a partially reflective layer on the substrate surrounding and/or within the nanowire, wherein the partially reflective layer is configured to allow a first portion of the light to transmit through the partially reflective layer to the optical sensor and to allow at least a second portion of the light to reflect from a surface of the partially reflective layer.


The NWLOF could further comprise one or more cladding layers surrounding the nanowire, wherein the one or more cladding layers are configured such that the nanowire is configured to form a waveguide. The NWLOF could further comprise a low-index material having a lower refractive index surrounding the nanowire and a metal layer surrounding the low-index material.


The NWLOF could further comprise a volume element, wherein a portion of the nanowire and a portion of the volume element are configured to form the active region.



FIG. 1 provides an example implementation of this concept. The LED could be composed of the p region in the substrate over which it is grown, the intrinsic nanowire made out of any of the suitable materials listed above and an n type epitaxial region surrounding and contacting the nanowire. A photodiode is embedded into the substrate on which the nanowire is grown. An example of a pinned photodiode is illustrated in FIG. 2.


In embodiments herein, there are a variety of possible implementations of photodiodes and nano-structured LEDs. FIG. 1 is an example implementation. Another possible implementation (not shown in FIG. 1) would place the LED on the back side of the substrate containing the photodiode. This would require thinning the substrate such that photons from the LED can easily be collected by the potential well (the n+ region in FIG. 1) of the photodiode.


A nanostructured LED according to the embodiments comprises of an upstanding nanowire. For the purpose of this application an upstanding nanowire should be interpreted as a nanowire protruding from the substrate in some angle, the upstanding nanowire for example being grown from the substrate, preferably by as vapor-liquid-solid (VLS) grown nanowires. The angle with the substrate will typically be a result of the materials in the substrate and the nanowire, the surface of the substrate and growth conditions. By controlling these parameters it is possible to produce nanowires pointing in only one direction, for example vertical, or in a limited set of directions. For example nanowires and substrates of zinc-blende and diamond semiconductors composed of elements from columns III, V and IV of the periodic table, such nanowires can be grown in the [111] directions and then be grown in the normal direction to any {111} substrate surface. Other directions given as the angle between normal to the surface and the axial direction of the nanowire include 70,53° {111}, 54,73° {100}, and 35,27° and 90°, both to {110}. Thus the nanowires define one, or a limited set, of directions.


According to the embodiments, a part of the nanowire or structure formed from the nanowire could be used as a waveguide directing and confining at least a portion of the light created in {in or from/out of?} the nanostructured LED in a direction given by the upstanding nanowire. The waveguiding nanostructured LED structure could include a high refractive index nanowire with one or more surrounding cladding with refractive indices less than that of the core. The structure could be either circular symmetrical or close to being circular symmetrical. Light waveguiding in circular symmetrical structures are well know for fiber-optic applications and many parallels can be made to the area of rare-earth-doped fiber optic devices. However, one difference is that fiber amplifier are optically pumped to enhance the light guided through them while the described nanostructured LED can be seen as an efficient light to electricity converter and vice versa.


Preferably, an output of the optical sensor is an input to the electronic circuit. Preferably, the electrical parameter comprises voltage or current. Preferably, the electronic circuit is configured to control voltage or current such that the light output is maintained substantially constant irrespective of a temperature of the active region within an operating temperature range of the active region. Preferably, the optical sensor comprises a pn or p-i-n photodiode having a performance characteristic that is substantially insensitive to a temperature in an operating temperature range of the active region. Preferably, at least a portion of the light produced in the active region is directed in a direction given by the nanowire. Preferably, the nanowire is configured to both produce light and form a waveguide.


Preferably, the volume element comprises a doping layer configured to provide a p or n region and a well layer. Preferably, the optical sensor comprises a pinned photodiode in the substrate. Preferably, the one or more cladding layers are configured to provide a graded refractive index such that a refractive index of the nanowire is higher than that of the one or more cladding layer. Preferably, the NWLOF comprises a plurality of the nanowires comprising different materials emit different ranges of wavelengths of the light. Preferably, the NWLOF comprises a plurality of the nanowires comprising different diameters that form waveguides for different ranges of wavelengths of the light. Preferably, the NWLOF comprises a plurality of the nanowires comprising different materials emit different ranges of wavelengths of the light and the NWLOF comprises a plurality of the nanowires comprising different diameters that form waveguides for different ranges of wavelengths of the light. Preferably, the nanowire and the volume element are arranged to direct the light through the nanowire and the substrate such that the light is emitted from a second side of the substrate opposite the first side. Preferably, The substrate contains a photodiode that is optically coupled to the nanowire. Preferably, the volume element is configured to spread the light by dispersion at a junction between the nanowire and the volume element. Preferably, the electronic circuit comprises a controller configured to calibrate the electrical parameter. Preferably, the controller comprises memory, the memory comprising values for controlling the electrical parameter so that the light output is set by the values stored in the memory. Preferably, the controller comprises memory; wherein the controller is configured to calibrate the electrical parameter to cause the light output to more closely match a target output based on target values of the light output stored in the memory. Preferably, the target values represent current values for different colors of the light. Preferably, the target values represent target brightness levels.


The waveguiding properties of the nanowire can be improved in different ways. The nanowire could have a first effective refractive index, nw, and a cladding surrounding at least a portion of the nanowire could have a second effective refractive index, nc, and by assuring that the first refractive index is larger than the second refractive index, nw>nc, good wave-guiding properties could be provided to the nanowire. The waveguiding properties may be further improved by introducing an optically active cladding.


The high index material in the nanowire could, for example, be silicon nitride having a refractive index of about 2.0. The lower index cladding layer material could, for example, be a glass, for example a material selected from Table I, having a refractive index about 1.5.









TABLE I





Typical Material Index of Refraction


















PESiN
2.00



PESiO
1.46



SiO2
1.46





In Table I, PESiN refers to plasma enhanced Si3N4 and PESiO refers to plasma enhanced SiO2.






For a LED operating in different wavelengths from the visible to the IR and deep in the micrometer wavelengths, a variety of materials can be used, such as: Si, GaAs (p), InAs, Ge, ZnO, InN, GaInN, GaN AlGaInN, InP, InAsP, GaInP, InGaP:Si, InGaP:Zn, GaInAs, AlInP, GaAlInP, GaAlInAsP, GaInSb, InSb among others. To create CMOS circuits, Si and doped Si materials are preferable.


In one embodiment, the typical values of the refractive indexes for III-V semiconductor nanowire material are in the range from 2.5 to 5.5 when combined with glass type of cladding material (such as SiO2 or Si3N4) having refractive indexes ranging from 1.4 to 2.3, satisfying the waveguiding requirement, nw>nc.


One consideration in the optimization of light extraction is to make the Numerical Aperture (NA) vary along the nanowire structure to optimize light extraction from the structure. In general, it is ideal to have the NA be highest when the light generation takes place furthest away from the exit location. This will maximize the light captured and guided toward the exit. In contrast, closer to the exit end of the structure, the NA can be made smaller since light generated will radiate in random directions and most of the radiate light will hit the top and side of the top part of the structure and exit. Having a lower NA in the top part of the structure also minimizes the light captures and guide back down through the structure that may not be ideal unless a reflector is inserted in the bottom of the structure. A low NA can be obtained by surrounding the III-V nanowire core with another cladding of different composition with slightly less refractive index.


A nanostructured LED according to the embodiments could comprise a substrate and a nanowire epitaxially grown from the substrate in a defined angle θ. A portion of the nanowire is enclosed by a volume element. The volume element is preferably epitaxially connected to the nanowire. A portion of or all of the nanowire could be arranged to act as a waveguiding portion directing at least a portion of the impinging light in a direction given by the elongated direction of the nanowire, and will be referred to as a waveguide. The nanowire could have a diameter in the order of 50 nm to 500 nm. The length of the nanowire could be of the order of 1 to 10 μm. The pn-junction results in an active region arranged in the nanowire.


The materials of the different members of the nanostructured LED are chosen so that the nanowire will have good waveguiding properties vis-a-vis the surrounding materials, i.e. the refractive index of the material in the nanowire should preferably be larger than the refractive indices of the surrounding materials.


If the nanowire has a first refracting index, nw, the material surrounding the nanowire in wave guide portion, typically a cover layer, a second refractive index, nc, and the a volume element, a third refractive nve, then nw>nc and nw>nve. Typical values for the nanostructured LED are nw˜4, nc˜1.5 and nve˜3.


In addition, the nanowire may be provided with one or more layers. A first layer may be introduced to improve the surface properties (i.e., reduce charge leakage) of the nanowire. Further layers, for example an optical layer may be introduced specifically to improve the waveguiding properties of the nanowire, in manners similar to what is well established in the area of fiber optics. The optical layer typically has a refractive index in between the refractive index of the nanowire and the surrounding cladding region material. Alternatively the intermediate layer has a graded refractive index, which has been shown to improve light transmission in certain cases. If an optical layer is utilized, the refractive index of the nanowire, nw, should define an effective refractive index for both the nanowire and the layers.


The ability to grow nanowires with well defined diameters could be to optimize the waveguiding properties of the nanowire with regards to the wavelength of the light confined in the nanostructured LED. The diameter of the nanowire could be chosen so as to have a favorable correspondence to the wavelength of the desired light. Preferably the dimensions of the nanowire are such that a uniform optical cavity, optimized for the specific wavelength of the produced light, is provided along the nanowire. The nanowire generally is sufficiently wide to capture the desired light. A rule of thumb would be that diameter must be larger than λ/2nw, wherein λ is the wavelength of the desired light and nw is the refractive index of the nanowire. As an example a diameter of about 60 nm may be appropriate to confine blue light only and one 80 nm may be appropriate for to confine both blue and green light in a silicon nanowire.


In the infrared and near infrared a diameter above 100 nm would be sufficient. An approximate preferred upper limit for the diameter of the nanowire is given by the growth constrains, and could be in the order of 500 nm. The length of the nanowire is typically and preferably in the order of 1-10 μm, providing enough volume for the active region.


A reflective layer could be in one embodiment, provided on the substrate and extending under the wire. The reflective layer is preferably provided in the form of a multilayered structure comprising repeated layers of silicates for example, or as a metal film.


An alternative approach to getting a reflection in the lower end of the nanowire could be to arrange a reflective layer in the substrate underneath the nanowire. Yet another alternative could be to introduce reflective means within the waveguide. Such reflective means can be a multilayered structure provided during the growth process of the nanowire, the multilayered structure comprising repeated layers of for example SiNx/SiOx (dielectric) or GaAs/AlGaAs (semiconductor). Such repeated layers with controlled thickness could also serve as optical grating filters to precisely control the output wavelength of the LED to mitigate wavelength drift for example with temperature.


In a further embodiment, a major part of the produced light is directed by the waveguide of the nanowire in a downward direction through the substrate. The light can be directed through the entire thickness of the substrate, or alternatively the substrate could be provided with a cut out beneath the base of the nanowire in order to reduce the thickness of the substrate and thereby reduce the scattering or absorption of light in the substrate. The substrate is preferably made of transparent material. A portion, or preferably the entire outer surface of the volume element may be covered by a reflective layer that increases the radiation of the produced light through the waveguide. The reflective layer, for example formed of a metal, may additionally serve as a contact. Part of the nanowire and the substrate could optionally covered by a protective layer of SiC or SiN, for example.


In an embodiment, the volume element can be arranged to be a dispersive element, giving a light radiation that is essentially evenly distributed over a wide angle. Such device can be well suited for illuminating purposes wherein an even illumination is required. The active region may be arranged in the nanowire but alternatively may be within the volume element, and above the upper end of the nanowire, or radially outwards of the nanowire and possibly above. The nanowire should preferably at its lower end be provided with some of the reflective means, for example a reflective material within the nanowire, in order to redirect light upwards. The geometry of the volume element can be designed to further disperse the light. Dispersion is provided at the junction between the nanowire waveguide and the volume element and further at the edge formed by the upper boundary of the volume element. The height and width of the volume element can be chosen so that the edge disperses light further. One embodiment can be optimized for providing a collected and directionally oriented beam. The nanowire of relatively large diameter, preferably above 150 nm, can extend to the upper surface of the volume element. The nanowire can be provided with a concave lens like exit surface on the upper end.


Nanowires, acting as waveguides, can be used to improve the performance of conventional planar LEDs. In an embodiment, a plurality of nanowires can be arranged on the surface of a planar LED. Light is produced in the active region, which could be au active layer of the planar LED, for example of GaAsP. The nanowires can be epitaxially connected on top of the planar LED layers in order to get a good matching of the different parts. The nanowires may be coated by a cladding layer protecting the nanowires and/or improving the properties, for example Si3N4. The surface in between the nanowires can be preferably coated with a reflective layer, for example of Au. At least a part of the light, produced in the active region, could enter the nanowires that are acting as waveguides and leading the light away from the substrate plane.


Depending on the intended use of the nanostructured LED, availability of suitable production processes and cost for materials etc., a wide range of materials can be used for the different parts of the structure. Suitable materials for LED have to be matched with suitable materials for the photo diodes based on the wavelength of the light being emitted/detected by the system. Both the LED and the photo diode should work as intended in the wavelength range of light for which the system is configured to operate.


In addition, the nanowire based technology allows for defect free combinations of materials that otherwise would be impossible to combine. The III-V semiconductors are of particular interest due to their properties facilitating high speed and low power electronics. Suitable materials for the substrate include, but is not limited to: Si, GaAs, GaP, GaP:Zn, InAs, InP, GaN, Al2O3, SiC, Ge, GaSb, ZnO, InSb, SOI (silicon-on-insulator), CdS, ZnSe, CdTe. In the case of the present invention (i.e. for creating display structure in the visible light), a Si substrate is preferred since it embeds a CMOS photodiode underneath the LED. For wavelengths between blue and near IR, Si could be used in the photo diode. For wavelengths outside the range of light detected by Si, such as IR or UV light, it is possible to use GaAs in photodiodes for LED in the range of 800-1500 nm, e.g., 850 nm; and InGaAs/InP in the range 1310-1550 nm.


Suitable materials for the nanowire include, but is not limited to: Si, GaAs (p), InAs, Ge, ZnO, InN, GaInN, GaN AlGaInN, BN, InP, InAsP, GaInP, InGaP:Si, InGaP:Zn, GaInAs, AlInP, GaAlInP, GaAlInAsP, GaInSb, InSb. For this application the nano wire materials are carefully selected from the list above and the Table 1 below to produce red, green and blue light.









TABLE 1







List of band gaps















Band gap (eV) @




Material  custom character
Symbol  custom character
300K  custom character

















Silicon
Si
1.11




Selenium
Se
1.74




Germanium
Ge
0.67




Silicon carbide
SiC
2.86




Aluminum phosphide
AlP
2.45




Aluminium arsenide
AlAs
2.16




Aluminium antimonide
AlSb
1.6




Aluminium nitride
AlN
6.3




Diamond
C
5.5




Gallium(III) phosphide
GaP
2.26




Gallium(III) arsenide
GaAs
1.43




Gallium(III) nitride
GaN
3.4




Gallium(II) sulfide
GaS
2.5 (@ 295K)




Gallium antimonide
GaSb
0.7




Indium(III) nitride
InN
0.7




Indium(III) phosphide
InP
1.35




Indium(III) arsenide
InAs
0.36




Zinc oxide
ZnO
3.37




Zinc sulfide
ZnS
3.6




Zinc selenide
ZnSe
2.7




Zinc telluride
ZnTe
2.25




Cadmium sulfide
CdS
2.42




Cadmium selenide
CdSe
1.73




Cadmium telluride
CdTe
1.49




Lead(II) sulfide
PbS
0.37




Lead(II) selenide
PbSe
0.27




Lead(II) telluride
PbTe
0.29




Copper(II) oxide
CuO
1.2










The relationship between wavelength and bandgap energy may be obtained from:









E
=
hv






=

hc
λ







=



(

4.13566733
×

10

-
15







eV





s

)



(

3
×

10
8






m


/


s

)


λ








Where E is the energy, v is the frequency, λ is the wavelength of a photon, h is Planck's constant, and c is the Speed of light. For quick calculations, this reduces to







E


(
eV
)


=

1240

λ


(
nm
)







A stream of photons with a wavelength of 532 nm (green light) would have an energy of approximately 2.33 eV. Similarly, 1 eV would correspond to a stream of infrared photons of wavelength 1240 nm, and so on.

1 eV=8065.5447 cm−1


Possible donor dopants for example include GaP, Te, Se, S, etc, and acceptor dopants for the same material are Zn, Fe, Mg, Be, Cd, etc. It should be noted that the nanowire technology makes it possible to use nitrides such as SiN, GaN, InN and AlN, which facilitates fabrication of LEDs detecting light in wavelength regions not easily accessible by conventional technique. Other combination of particular commercial interest include, but is not limited to GaAs, GaInP, GaAlInP, GaP systems. Typical doping levels range from 1×1018 cm−3 to 1×1020 cm−3.


The appropriateness of low resistivity contact materials are dependent on the material to be deposited on, but metal, metal alloys, as well as non-metal compounds, like: Al, Al—Si, TiSi2, TiN, W, MoSi2, PtSi, CoSi2, WSi2, In, AuGa, AuSb, AuGe, PdGe, Ti/Pt/Au, Ti/Al/Ti/Au, Pd/Au, ITO (InSnO), etc. and combinations of, e.g., metal and ITO can be used.


The substrate could be an integral part of the device, since it also contains the photodiodes necessary to detect light that has not been confined to the nanowire. For this application, the substrate in addition also contains standard CMOS circuits to control the biasing, amplification and readout of the LED as well as any other CMOS circuit deemed necessary and useful. The substrate includes substrates having active devices therein. Suitable materials for the substrates include silicon and silicon-containing materials. Generally, each sensor element of the embodiment includes a nanostructured LED structure comprising a nanowire, a cladding enclosing at least a portion of the nanowire, a coupler and two contacts. Similarly, for light in higher wavelengths, GaAs circuitry can be used with the appropriate light emitting materials for those wavelengths.


In one embodiment, a micro lens could be located on the LED, for example, as shown in FIG. 1. The micro lens may comprise any of several optically transparent lens materials that are known in the art. Non-limiting examples include optically transparent inorganic materials, optically transparent organic materials and optically transparent composite materials. Most common are optically transparent organic materials. Typically the lens layers could be formed incident to patterning and reflow of an organic polymer material that has a glass transition temperature lower than the series of color filter layers, if present, or the patterned planarizing layer. Polymeric materials should preferably have a high degree of stability with temperature to act as micro lenses for LEDs since this device needs to perform at high temperatures. The micro lens of FIG. 1 does not require a new material; simply patterning the clad material to the right shape forms it.


A method of fabricating nanostructured LED is to first grow a nanowire. Part of the nanowire could then be masked and the volume element could be grown selectively. The volume element grows both axially and radial, hence, when the nanowire is masked partly, the nanowire becomes enclosed in the volume element. Appropriate masking materials are e.g. silicon nitride, silicon oxide etc.


Considering systems where nanowire growth is locally enhanced by a substance, as VLS grown nanowires, the ability to alter between radial and axial growth by altering growth conditions enables the procedure (nanowire growth, mask formation, and subsequent selective growth) and can be repeated to form nanowire/3D-sequences of higher order. For systems where the nanowire growth and selective growth are not distinguished by separate growth conditions it may be better to first grow the nanowire along the length and by different selective growth steps grow different types of 3D regions or volume elements.


According to the present invention, in order to fabricate a light emitting pn diode/array with active nanowire region(s) formed of GaAs and InGaP, comprises the steps of: Preferably, the substrate could be Si containing the photodiode. Subsequently, to grow a GaAs nano wire, for example, one could lay down an epitaxial layer of p+ GaP on the silicon substrate.


1. Defining of local catalyst/catalysts on a p+ GaP substrate by lithography.


2. Growing GaAs nanowire from local catalyst. The growth parameters adjusted for catalytic wire growth.


3. Radial growing of thin InGaP concentric layer around the nanowire (cladding layer).


4. Depositing of SiO2 as mask material.


5. Back etching of mask to open up the upper parts of the nanowires.


6. Selective growing of n+ InGaP volume element. The growth parameters adjusted to give radial growth.


7. Forming contacts on the volume element and to the substrate.


In the embodiments herein, silicon nanowires (NW) could be grown on a layer of silicon. The process could apply for growing Si NW on dielectric layer, or for III-V compound grown on the appropriate substrate, including Si substrate with or without a thin Molybdenum layer.


The silicon nanowire of the embodiments disclosed herein could be made as follows. A substrate is provided which comprises silicon having a silicon dioxide surface. The surface can be modified to remove an oxide layer with a surface treatment to promote adsorption of a gold nanoparticle, or gold alloys nanoparticle like AuGa. Onto this modified surface, preferably a Si substrate have the {111} plane, (Au is used to create the Si—Au eutectic point and grow the Si nanowire when SiH4 is introduced), the gold nanoparticle can be formed by deposition of a gold layer, followed by removal of the gold layer over regions other than desired location of the gold nanoparticle. The silicon nanowire can be grown, for example, by plasma enhanced vapor-liquid-solid growth. In a first step, a catalyst particle (typically gold or gold alloy) may be deposited on top of the substrate by either a standard electron beam lithography (EBL) process or using self-assembly of prefabricated catalyst colloids. Other processes for depositing catalysts, such as electroless plating may also be used.


The diameters of nanowires after growth are generally determined by the area of the catalyst particles. Therefore, a desired diameter of the nanowire can be synthesized by depositing a catalyst particle with an appropriate size. This step typically determines the functionality of the nanowire pixel because the nanowire diameter should be of an appropriate cross-section area to allow the transmission of light with specific wavelengths and long enough to allow the light absorption and creation of excitons (electron-hole pairs).


A single nanowire can be grown from the catalyst particle under proper conditions. Using silicon as an example, a suitable nanowire can be grown using the vapor-liquid-solid (VLS) process with presence of SiH4 at, for example, temperature at 650 C. and pressure of 200 mTorr. A temperature below 450 C. is advisable for the integration compatibility of CMOS circuits and nanowire synthesis. Many researchers have been able to synthesize silicon nanowires at 430 C. or even below 400 C. by using some special techniques, for example, using aluminum catalysts or plasma enhanced growth. During the VLS process, the silicon nanowire can be doped to create a p+-i(intrinsic)-n+ structure by introducing B2H6, H2 and PH3, respectively.


Nanowires have a higher surface-to-volume ratio than the corresponding bulk materials. Therefore the surface states of nanowires play a more important role in their electronic and optical properties. The impact of nanowire surface states, however, can be minimized by surface passivation after the nanowire synthesis. Typically, surface passivation can be achieved with a monolayer of materials to react with silicon dangling bonds at the surface of the nanowire. This is accomplished with the formation of stable bonds after reaction. Advantageously, passivation has almost no effect on the nanowire physical dimension since it is only one-monolayer thick.


Subsequent steps could relate to the forming of an epitaxial layer that is n or p doped covering the nanowire or of one or more of the dielectric layers around the nanowire.


The epitaxial n or p doped layer covering the nanowire could be grown using vapor-phase epitaxy (VPE), a modification of chemical vapor deposition. Molecular-beam epitaxy, liquid-phase epitaxy (MBE and LPE) and solid-phase epitaxy (SPE) could also be used. In each of these processes, a dopant could be added into the epitaxially grown layer during the epitaxial layer growth process.


A conformal dielectric coating around the nanowire, if needed, could be made by chemical vapor deposition (CVD), atomic layer deposition (ALD), oxidation or nitration could be made around the nanowire. Then, doped glass dielectric layer could be formed on the conformal dielectric coating by plasma enhanced chemical vapor deposition, spin-on coating or sputtering, optionally with an initial atomic layer deposition. The deposited doped glass dielectric layer could be etched back by chemical-mechanical planarization or other methods of etching.


In one embodiment, a funnel and a lens on the funnel to channel electromagnetic radiation such as light out of the nanowire waveguide could be made as follows: deposition of a glass/oxide/dielectric layer by CVD, sputter deposition or spin-on coating; application of a photoresist on the deposited glass/oxide/dielectric layer; removal of the photoresist outside an opening centered over the nanowire within the deep cavity; and forming a coupler by semi-isotropic etching in the glass/oxide/dielectric layer.


Additional steps could relate to the forming of a metal or metal oxide ring layer around the one or more dielectric layers by depositing a metal such a copper on the vertical walls of the one or more dielectric layers.


The growth process can be varied in known ways to include heterostructures in the nanowires, provide reflective layers etc. The stem in some embodiment can be provided by first growing a thin nanowire, depositing a reflective layer or a selective growth mask covering the lower part, and radial growing a cladding layer or increasing the nanowire thickness.


The nanowire-containing LEDs with optical feedback could be used in an image display device having a large number of identical display elements, generally greater than 1 million, in a grid. The embodiments disclosed here would allow the manufacture of such a grid of NWLOF.


In some implementations a large plurality of nanostructured LEDs can be provided in one image display device. A plurality of nanostructured LEDs can be epitaxially grown on a Zn-doped GaP substrate. The nanowires of the LEDs can be of intrinsic GaAs, and provided with a concentric layer of undoped InGaP. The volume elements can comprise of Si-doped InGaP. The lower parts of the nanowires and the substrate can be covered by a SiO2-layer. A back plane contact can be provided on the substrate connecting a plurality of LEDs, and each individual LED can be provided with a wrap around contact on the volume elements. The wrap around contacts can be connected for a group-wise addressing of the LEDs.


In one embodiment the inherent property that nanowires grow in a limited set of preferred directions, as discussed above, can be used to grown nanowires in the same direction, or one of a limited set of directions. The direction of the grown nanowires could be perpendicular to the substrate or at an angle from the perpendicular to the substrate. Preferably the LEDs can be arranged to produce fairly directed light beams. Adjacent to the group of LEDs a reflective material can be provided, with an angle to the substrate corresponding to the direction of the LEDs so that the light emitted from the LEDs can be reflected by the reflective material in a desired direction.


Additional features of the image display devices disclosed herein are: (1) A light emitting surface with different pixels. There are three types of pixels, each emitting one color: red, blue or green. The display color is constructed from the combination of the three (red, blue and green) colors. The eye (human) views the surface directly through a magnifying lens and thus sees the image. The image could change with time to display moving objects and the like. (2) There could be the same pixel configuration as in feature (1), but the light emitted from the surface is focused through a lens, and then the final image is displayed on a non-active surface such as a screen. Both cases are viable embodiments. The first relates to a display such as TV, computer screen and the like, and the other is to an electronic projector. An illustration of how a chip of the image display device could be partitioned is shown in FIG. 4 to create a system on a chip (SOC). The video image from the LED array is focused through a lens and is viewed either directly as in a head mounted display or is projected onto a screen


Preferably, the plurality of NWLOFs comprises at least a first active region for emitting a first color, a second active region for emitting a second color, and a third active region for emitting a third color. Preferably, the image display does not include a color filter.


Optionally, the image display device could have three chips to produce red, green and blue and the light, respectively, from each chip and to be interleaved by an external circuit and optical system. Each chip may only consist of a single color array of LEDs for the ease of manufacturing.


Preferably, the plurality of NWLOFs comprises at least a first electrical parameter to control emission of the first color, a second electrical parameter to control emission of the second color, and a third electrical parameter to control emission of the third color. Preferably, the image display comprises a display device, a microdisplay, a computer display, TV and a display system on a chip.


According to embodiments herein, it is possible to manufacture a device that has other complex circuits besides the NWLOF. Such a device could be a system on a chip (SoC) made on a silicon substrate, for example.


For example, the display (such as that shown in FIG. 4) could be a self contained display device that has the following circuits: a NWLOF grid; a row column addressing circuitry; a video signal processing chain for the photodiode array; a feedback loop circuitry for the bias circuits of the nanowire LED; power supplies and regulation circuits; digital circuits to decode standard video signals; and a thermally sound design that would allow for the management of all heat generated by the device. Once this SoC is accomplished, it would now be possible to design a single chip display system that requires nothing other than a lens to operate as display SoC.


These are the major circuit blocks required for a display chip:

    • 1) A nano wired LED array in a tessellation described in FIG. 3.
    • 2) Row column decode circuitry to individually address an LED and its associated photodiode or to a mapping of a group of contiguous LEDs to a single photodiode.
    • 3) A major analog circuit block to provide the Video Signal Processing Chain for read out of photodiode array to provide the input to the controller circuit, the controller circuit itself being for stabilizing the light output of the LED array individually or in groups, power supplies and regulators for the LED array and the photodiode array.
    • 4) A digital video decoding circuit to convert standard video input into a form necessary for all other circuits to operate in the chip.
    • 5) Memory blocks, both dynamic and static, to be used as video data buffers and program storage.
    • 6) Microprocessor, which is optional, could be included to carry out any of the functions capable of a microprocessor.


With the appropriate choice of materials for the nano-wire, the epitaxial layer and the diameter of the nanowire, Red, Green and Blue LEDs can be implemented. The preferred tessellations for the LED array is shown in FIGS. 3(a) and 3(b). There are a number of other possible arrangements, for example:





































R
G
B
R
G
B
R
G
B
R
G
B
R
G
B
R
G
B
R
G
B
R
G
B


B
G
R
B
G
R
B
G
R
B
G
R
B
G
R
B
G
R
B
G
R
B
G
R


R
G
B
R
G
B
R
G
B
R
G
B
R
G
B
R
G
B
R
G
B
R
G
B









The pinned photodiode shown in FIG. 2 is described in U.S. Pat. No. 6,100,551, which is incorporated herein in their entirety by reference. FIG. 2 illustrates a cross sectional diagram of the devices used in creating the sensor of the present invention. This is the result of integration of an active pixel sensor (APS) architecture typically fabricated in CMOS technology with a pinned photodiode device (item 12 PPD in FIG. 2) using a mixed process technology. The PPD becomes the photoactive element in an XY-addressable area array.


The uniformity of the photodiode array is first ensured by dark and uniform illumination of the entire array with an external source while the nano wire LEDs are turned off. The gains, the black levels of the three color channels, and whatever other controls available in the circuits are then adjusted to their initial values. Similarly, the pixel to pixel uniformity of the LED array is ensured by setting the loop gain values of the photodiode/LED pair either individually or in mapped groups through an initial calibration process.


In subsequent operation the LED output will retain immunity to temperature variation to the degree that the pinned photodiode allows. In addition this approach will mitigate the development of non-uniformity and local or global drift in brightness, including fixed pattern noise due to manufacturing non-uniformity, in the display generated by the LED array during operation.


The entire processing, memory, control, and driver system may be generally referred to as a controller. Various other types of circuitry may also act as the controller, and the embodiment is not limited to a particular circuitry used.


All references mentioned in the application are incorporated herein in their entirety by reference.

Claims
  • 1. A device comprising a substrate, a nanowire protruding from a first side of the substrate, a light-emitting diode (LED) comprising a portion of the nanowire, an optical sensor in the substrate and surrounding the nanowire, and an electronic circuit, wherein the optical sensor is configured to detect at least a first portion of a light produced in the LED by recombination of electrons and holes in the LED, and the electronic circuit is configured to control a bias of the LED.
  • 2. The device of claim 1, wherein the LED comprises a PN junction or a PIN-junction.
  • 3. The device of claim 1, wherein an output of the optical sensor is an input to the electronic circuit.
  • 4. The device of claim 1, wherein the electronic circuit is configured to control the bias such that the light output of the LED is maintained substantially constant irrespective of a temperature of the LED within an operating temperature range of the LED.
  • 5. The device of claim 1, wherein the electronic circuit is configured to control the bias such that the light output is maintained substantially constant irrespective of composition variations of the LED.
  • 6. The device of claim 1, wherein at least a portion of the light produced in the LED is directed in a direction parallel with the nanowire.
  • 7. The device of claim 1, wherein the nanowire is a waveguide.
  • 8. The device of claim 1, further comprising a volume element, wherein the LED comprises a portion of the volume element.
  • 9. The device of claim 8, wherein the volume element comprises a doping layer configured to provide a p or n region and a well layer.
  • 10. The device of claim 1, wherein the optical sensor comprises a pinned photodiode.
  • 11. The device of claim 1, further comprising a partially reflective layer on the substrate surrounding and/or within the nanowire, wherein the partially reflective layer is configured to allow the first portion of the light to transmit through the partially reflective layer to the optical sensor and to allow at least a second portion of the light to reflect from a surface of the partially reflective layer.
  • 12. The device of claim 1, further comprises one or more cladding layers surrounding the nanowire, wherein the one or more cladding layers are configured such that the nanowire is configured to form a waveguide.
  • 13. The device of claim 12, wherein the one or more cladding layers are configured to provide a graded refractive index such that a refractive index of the nanowire is higher than that of the one or more cladding layer.
  • 14. The device of claim 1, wherein the device comprises a plurality of the nanowires comprising different materials emit different ranges of wavelengths of light.
  • 15. The device of claim 1, wherein the device comprises a plurality of the nanowires comprising different diameters that form waveguides for different ranges of wavelengths of light.
  • 16. The device of claim 1, wherein the device comprises a plurality of the nanowires comprising different materials emit different ranges of wavelengths of light and the device comprises a plurality of the nanowires comprising different diameters that form waveguides for different ranges of wavelengths of light.
  • 17. The device of claim 8, wherein the nanowire and the volume element are arranged to direct the light through the nanowire and the substrate such that the light is emitted from a second side of the substrate opposite the first side.
  • 18. The device of claim 8, wherein the volume element is configured to spread the light by dispersion at a junction between the nanowire and the volume element.
  • 19. The device of claim 1, wherein the electronic circuit comprises a controller configured to calibrate the bias.
  • 20. The device of claim 19, wherein the controller comprises memory, the memory comprising values for controlling the bias so that light output of the LED is set by the values stored in the memory.
  • 21. The device of claim 19, wherein the controller comprises memory, wherein the controller is configured to calibrate the bias to cause light output of the LED to match a target output based on target values of the light output stored in the memory.
  • 22. The device of claim 21, wherein the target values represent current values for different colors of the light.
  • 23. The device of claim 21, wherein the target values represent target brightness levels.
  • 24. The device of claim 1, further comprising a low-index material surrounding the nanowire and a metal layer surrounding the low-index material; wherein the low-index material has a lower refractive index than the nanowire.
  • 25. The device of claim 1, wherein the device is an electronic chip.
  • 26. The device of claim 25, wherein the LED produces only a single color light.
  • 27. The device of claim 21, wherein the electronic chip comprises at least a first LED for emitting a first color, a second LED for emitting a second color, and a third LED for emitting a third color.
  • 28. The device of claim 25, wherein the chip does not include a color filter.
  • 29. An image display comprising a device of claim 1.
  • 30. The image display of claim 29, wherein the device comprises at least a first LED for emitting a first color, a second LED for emitting a second color, and a third LED for emitting a third color.
  • 31. The image display of claim 29, wherein the image display does not include a color filter.
  • 32. The image display of claim 29, configured to produce a first color, a second color and a third color, and configured to control emission of the first color by a first bias, control emission of the second color by a second bias, and control emission of the third color by a third bias.
  • 33. The image display of claim 29, wherein the optical sensor comprises a PN or PIN photodiode having a performance characteristic that is substantially insensitive to a temperature in an operating temperature range of the LED.
  • 34. The image display of claim 29, wherein the optical sensor comprises a PN or PIN photodiode having a performance characteristic that is substantially insensitive to composition variations of the LED.
  • 35. The image display of claim 29, wherein the image display comprises a television system on a chip.
  • 36. The image display of claim 29, wherein the image display comprises a micro-display.
  • 37. The image display of claim 29, further comprising a lens configured to project the light on a screen.
  • 38. The image display of claim 29, wherein the substrate comprises silicon.
  • 39. The image display of claim 38, wherein the nanowire comprises materials that emits red, green or blue light.
  • 40. The device of claim 27, wherein the first, second and third colors are red, green and blue, respectively.
  • 41. The device of claim 1, further comprising a feedback loop between the optical sensor and the electronic circuit.
  • 42. The device of claim 1, wherein the electronic circuit is configured to control the bias based on an output of the optical sensor so that light output of the LED is maintained substantially constant irrespective of a temperature of the LED.
  • 43. The device of claim 1, wherein the optical sensor comprises a PN or PIN photodiode having a performance characteristic that is substantially insensitive to a temperature in an operating temperature range of the LED.
  • 44. The device of claim 1, wherein the LED is optically isolated from any neighboring LED.
  • 45. The device of claim 1, wherein the optical sensor measures and provides a signal proportional to an intensity of the light.
  • 46. The device of claim 1, wherein at least a portion of the light is infrared.
  • 47. The device of claim 1, wherein the nanowire has a diameter above 100 nm.
  • 48. The device of claim 1, wherein the nanowire comprises GaAs.
US Referenced Citations (397)
Number Name Date Kind
1918848 Land Apr 1929 A
3903427 Pack Sep 1975 A
4017332 James Apr 1977 A
4357415 Hartman Nov 1982 A
4387265 Dalal Jun 1983 A
4400221 Rahilly Aug 1983 A
4443890 Eumurian Apr 1984 A
4513168 Borden Apr 1985 A
4620237 Traino Oct 1986 A
4678772 Segal et al. Jul 1987 A
4827335 Saito May 1989 A
4846556 Haneda Jul 1989 A
4880613 Satoh Nov 1989 A
4896941 Hayashi Jan 1990 A
4950625 Nakashima Aug 1990 A
4971928 Fuller Nov 1990 A
4972244 Buffet Nov 1990 A
5096520 Faris Mar 1992 A
5124543 Kawashima Jun 1992 A
5247349 Olego Sep 1993 A
5272518 Vincent Dec 1993 A
5311047 Chang May 1994 A
5347147 Jones Sep 1994 A
5362972 Yazawa et al. Nov 1994 A
5374841 Goodwin Dec 1994 A
5401968 Cox Mar 1995 A
5449626 Hezel Sep 1995 A
5468652 Gee Nov 1995 A
5602661 Schadt Feb 1997 A
5612780 Rickenbach Mar 1997 A
5671914 Kalkhoran Sep 1997 A
5696863 Kleinerman Dec 1997 A
5723945 Schermerhorn Mar 1998 A
5747796 Heard May 1998 A
5767507 Unul Jun 1998 A
5798535 Huang et al. Aug 1998 A
5844290 Furumiya Dec 1998 A
5853446 Carre Dec 1998 A
5857053 Kane Jan 1999 A
5877492 Fujieda Mar 1999 A
5880495 Chen Mar 1999 A
5885881 Ojha Mar 1999 A
5900623 Tsang et al. May 1999 A
5943463 Unuma Aug 1999 A
5968528 Deckner et al. Oct 1999 A
6033582 Lee Mar 2000 A
6037243 Ha et al. Mar 2000 A
6046466 Ishida et al. Apr 2000 A
6074892 Bowers et al. Jun 2000 A
6100551 Lee et al. Aug 2000 A
6270548 Campbell Aug 2001 B1
6301420 Greenaway Oct 2001 B1
6326649 Chang Dec 2001 B1
6388243 Berezin May 2002 B1
6388648 Clifton May 2002 B1
6407439 Hier Jun 2002 B1
6459034 Muramoto et al. Oct 2002 B2
6463204 Ati Oct 2002 B1
6542231 Garrett Apr 2003 B1
6563995 Kane May 2003 B2
6566723 Vook May 2003 B1
6680216 Kwasnick et al. Jan 2004 B2
6709929 Zhang Mar 2004 B2
6720594 Rahn Apr 2004 B2
6771314 Bawolek Aug 2004 B1
6805139 Savas Oct 2004 B1
6812473 Amemiya Nov 2004 B1
6927145 Yang Aug 2005 B1
6960526 Shah Nov 2005 B1
6967120 Jang Nov 2005 B2
6969899 Yaung Nov 2005 B2
6987258 Mates Jan 2006 B2
6996147 Majumdar Feb 2006 B2
7052927 Fletcher May 2006 B1
7064372 Duan Jun 2006 B2
7105428 Pan Sep 2006 B2
7109517 Zaidi Sep 2006 B2
7153720 Augusto Dec 2006 B2
7163659 Stasiak Jan 2007 B2
7208783 Palsule Apr 2007 B2
7230286 Cohen Jun 2007 B2
7235475 Kamins Jun 2007 B2
7241434 Anthony Jul 2007 B2
7254151 Lieber Aug 2007 B2
7262400 Yaung Aug 2007 B2
7265328 Mouli Sep 2007 B2
7272287 Bise Sep 2007 B2
7285812 Tang et al. Oct 2007 B2
7306963 Linden Dec 2007 B2
7307327 Bahl Dec 2007 B2
7311889 Awano Dec 2007 B2
7330404 Peng Feb 2008 B2
7335962 Mouli Feb 2008 B2
7336860 Cyr Feb 2008 B2
7358583 Reznik Apr 2008 B2
7381966 Starikov Jun 2008 B2
7416911 Heath Aug 2008 B2
7446025 Cohen Nov 2008 B2
7462774 Roscheisen Dec 2008 B2
7471428 Ohara Dec 2008 B2
7491269 Legagneux Feb 2009 B2
7507293 Li Mar 2009 B2
7521322 Tang et al. Apr 2009 B2
7524694 Adkisson Apr 2009 B2
7582857 Gruev Sep 2009 B2
7598482 Verhulst Oct 2009 B1
7622367 Nuzzo Nov 2009 B1
7626685 Jin Dec 2009 B2
7646138 Williams Jan 2010 B2
7646943 Wober Jan 2010 B1
7647695 MacNutt Jan 2010 B2
7649665 Kempa Jan 2010 B2
7655860 Parsons Feb 2010 B2
7663202 Wang et al. Feb 2010 B2
7692860 Sato et al. Apr 2010 B2
7704806 Chae Apr 2010 B2
7713779 Firon May 2010 B2
7719678 Kamins May 2010 B2
7719688 Kamins May 2010 B2
7732769 Snider Jun 2010 B2
7732839 Sebe Jun 2010 B2
7736954 Hussain Jun 2010 B2
7740824 Godfried Jun 2010 B2
7790495 Assefa et al. Sep 2010 B2
7888155 Chen Feb 2011 B2
8030729 Quitoriano Oct 2011 B2
8035184 Dutta et al. Oct 2011 B1
8049203 Samuelson Nov 2011 B2
8063450 Wernersson et al. Nov 2011 B2
8067299 Samuelson Nov 2011 B2
8084728 Tsang Dec 2011 B2
8093675 Tsunemi et al. Jan 2012 B2
8118170 Sato Feb 2012 B2
8143658 Samuelson Mar 2012 B2
8193524 Bjorek Jun 2012 B2
8208776 Tokushima Jun 2012 B2
8212138 Landis Jul 2012 B2
8222705 Ogino Jul 2012 B2
8242353 Karg Aug 2012 B2
8269985 Wober Sep 2012 B2
8274039 Wober Sep 2012 B2
8299472 Yu et al. Oct 2012 B2
8330090 Agarwal Dec 2012 B2
8384007 Yu et al. Feb 2013 B2
8455857 Samuelson Jun 2013 B2
8546742 Wober Oct 2013 B2
20020003201 Yu Jan 2002 A1
20020020846 Pi et al. Feb 2002 A1
20020021879 Lee Feb 2002 A1
20020104821 Bazylenko Aug 2002 A1
20020109082 Nakayama et al. Aug 2002 A1
20020130311 Lieber Sep 2002 A1
20020172820 Majumdar et al. Nov 2002 A1
20030003300 Korgel et al. Jan 2003 A1
20030006363 Campbell Jan 2003 A1
20030077907 Kao et al. Apr 2003 A1
20030089899 Lieber May 2003 A1
20030103744 Koyama Jun 2003 A1
20030132480 Chau Jul 2003 A1
20030189202 Li Oct 2003 A1
20030227090 Okabe Dec 2003 A1
20040026684 Empedocles Feb 2004 A1
20040058058 Shchegolikhin Mar 2004 A1
20040065362 Watabe Apr 2004 A1
20040075464 Samuelson et al. Apr 2004 A1
20040095658 Buretea May 2004 A1
20040109666 Kim Jun 2004 A1
20040118337 Mizutani Jun 2004 A1
20040118377 Bloms Jun 2004 A1
20040122328 Wang Jun 2004 A1
20040124366 Zeng Jul 2004 A1
20040155247 Benthien Aug 2004 A1
20040156610 Charlton Aug 2004 A1
20040180461 Yaung Sep 2004 A1
20040213307 Lieber Oct 2004 A1
20040217086 Kawashima Nov 2004 A1
20040223681 Block Nov 2004 A1
20040241965 Merritt Dec 2004 A1
20040261840 Schmit Dec 2004 A1
20050009224 Yang Jan 2005 A1
20050082676 Andry Apr 2005 A1
20050087601 Gerst, III Apr 2005 A1
20050095699 Miyauchi et al. May 2005 A1
20050116271 Kato Jun 2005 A1
20050133476 Islam Jun 2005 A1
20050161662 Majumdar Jul 2005 A1
20050164514 Rauf Jul 2005 A1
20050190453 Dobashi Sep 2005 A1
20050201704 Ellwood Sep 2005 A1
20050218468 Owen Oct 2005 A1
20050242409 Yang Nov 2005 A1
20050284517 Shinohara Dec 2005 A1
20060011362 Tao Jan 2006 A1
20060038990 Habib et al. Feb 2006 A1
20060113622 Adkisson Jun 2006 A1
20060121371 Wu Jun 2006 A1
20060146323 Bratkovski Jul 2006 A1
20060162766 Gee Jul 2006 A1
20060260674 Tran Nov 2006 A1
20060273262 Sayag Dec 2006 A1
20060273389 Cohen Dec 2006 A1
20060284118 Asmussen Dec 2006 A1
20070012980 Duan Jan 2007 A1
20070012985 Stumbo Jan 2007 A1
20070023799 Boettiger Feb 2007 A1
20070025504 Tumer Feb 2007 A1
20070029545 Striakhilev Feb 2007 A1
20070052050 Dierickx Mar 2007 A1
20070076481 Tennant Apr 2007 A1
20070082255 Sun Apr 2007 A1
20070099292 Miller May 2007 A1
20070104441 Ahn et al. May 2007 A1
20070108371 Stevens May 2007 A1
20070114622 Adkisson May 2007 A1
20070120254 Hurkx et al. May 2007 A1
20070126037 Ikeda Jun 2007 A1
20070137697 Kempa Jun 2007 A1
20070138376 Naughton Jun 2007 A1
20070138380 Adkisson et al. Jun 2007 A1
20070138459 Wong Jun 2007 A1
20070139740 Igura Jun 2007 A1
20070140638 Yang Jun 2007 A1
20070145512 Rhodes Jun 2007 A1
20070148599 True Jun 2007 A1
20070152248 Choi Jul 2007 A1
20070155025 Zhang Jul 2007 A1
20070164270 Majumdar Jul 2007 A1
20070170418 Bowers et al. Jul 2007 A1
20070172623 Kresse Jul 2007 A1
20070187787 Ackerson Aug 2007 A1
20070196239 Vink Aug 2007 A1
20070200054 Reznik Aug 2007 A1
20070205483 Williams Sep 2007 A1
20070217754 Sasaki Sep 2007 A1
20070228421 Shioya et al. Oct 2007 A1
20070238265 Kurashina Oct 2007 A1
20070238285 Borden Oct 2007 A1
20070241260 Jaeger Oct 2007 A1
20070246689 Ge Oct 2007 A1
20070248958 Jovanovich Oct 2007 A1
20070272828 Xu Nov 2007 A1
20070285378 Lankhorst et al. Dec 2007 A1
20070290193 Tucker Dec 2007 A1
20070290265 Augusto Dec 2007 A1
20080001498 Muller Jan 2008 A1
20080029701 Onozawa Feb 2008 A1
20080036038 Hersee Feb 2008 A1
20080044984 Hsieh Feb 2008 A1
20080047601 Nag Feb 2008 A1
20080047604 Korevaar et al. Feb 2008 A1
20080055451 Kanbe Mar 2008 A1
20080065451 For Mar 2008 A1
20080073742 Adkisson Mar 2008 A1
20080079022 Yamamoto Apr 2008 A1
20080079076 Sheen Apr 2008 A1
20080083963 Hsu et al. Apr 2008 A1
20080088014 Adkisson Apr 2008 A1
20080090401 Bratkovski Apr 2008 A1
20080092938 Majumdar Apr 2008 A1
20080096308 Santori Apr 2008 A1
20080108170 Adkisson May 2008 A1
20080116537 Adkisson May 2008 A1
20080128760 Jun Jun 2008 A1
20080145965 Reznik Jun 2008 A1
20080149914 Samuelson et al. Jun 2008 A1
20080149944 Samuelson Jun 2008 A1
20080157253 Starikov Jul 2008 A1
20080166883 Liu et al. Jul 2008 A1
20080169017 Korevaar Jul 2008 A1
20080169019 Korevaar Jul 2008 A1
20080173615 Kim Jul 2008 A1
20080188029 Rhodes Aug 2008 A1
20080191278 Maekawa Aug 2008 A1
20080191298 Lin et al. Aug 2008 A1
20080211945 Hong Sep 2008 A1
20080218740 Williams Sep 2008 A1
20080224115 Bakkers et al. Sep 2008 A1
20080225140 Raynor Sep 2008 A1
20080233280 Blanchet Sep 2008 A1
20080237568 Kobayashi et al. Oct 2008 A1
20080246020 Kawashima et al. Oct 2008 A1
20080246123 Kamins Oct 2008 A1
20080248304 Hanrath et al. Oct 2008 A1
20080251780 Li et al. Oct 2008 A1
20080258747 Kluth Oct 2008 A1
20080260225 Szu Oct 2008 A1
20080266556 Kamins Oct 2008 A1
20080277646 Kim Nov 2008 A1
20080283728 Inoue Nov 2008 A1
20080283883 Shim Nov 2008 A1
20080297281 Ayazi Dec 2008 A1
20080311693 Maxwell Dec 2008 A1
20080311712 Anwat et al. Dec 2008 A1
20090001498 Wang Jan 2009 A1
20090020150 Atwater Jan 2009 A1
20090032687 Lapstun Feb 2009 A1
20090046362 Guo Feb 2009 A1
20090046749 Mizuuchi Feb 2009 A1
20090050204 Habib Feb 2009 A1
20090057650 Lieber et al. Mar 2009 A1
20090072145 Peczalski Mar 2009 A1
20090121136 Gruss May 2009 A1
20090127442 Lee May 2009 A1
20090146198 Joe Jun 2009 A1
20090151782 Ko Jun 2009 A1
20090152664 Klem Jun 2009 A1
20090153961 Murakami et al. Jun 2009 A1
20090165844 Dutta Jul 2009 A1
20090173976 Augusto Jul 2009 A1
20090179225 Fertig Jul 2009 A1
20090179289 Park Jul 2009 A1
20090188552 Wang Jul 2009 A1
20090189144 Quitoriano Jul 2009 A1
20090189145 Want et al. Jul 2009 A1
20090199597 Danley Aug 2009 A1
20090201400 Zhang et al. Aug 2009 A1
20090206405 Doyle Aug 2009 A1
20090224245 Umezaki Sep 2009 A1
20090224349 Gambino Sep 2009 A1
20090230039 Hoenig Sep 2009 A1
20090233445 Lee Sep 2009 A1
20090243016 Kawahara et al. Oct 2009 A1
20090244514 Jin Oct 2009 A1
20090260687 Park Oct 2009 A1
20090261438 Choi Oct 2009 A1
20090266418 Hu Oct 2009 A1
20090266974 Verhulst Oct 2009 A1
20090272423 Niira Nov 2009 A1
20090278998 El-Ghoroury et al. Nov 2009 A1
20090289320 Cohen Nov 2009 A1
20090305454 Cohen Dec 2009 A1
20100006817 Ohlsson et al. Jan 2010 A1
20100019252 Bratkovski et al. Jan 2010 A1
20100019296 Cha Jan 2010 A1
20100019355 Kamins Jan 2010 A1
20100090341 Wan Apr 2010 A1
20100101633 Park Apr 2010 A1
20100104494 Meng Apr 2010 A1
20100110433 Nedelcu et al. May 2010 A1
20100116976 Wober May 2010 A1
20100127153 Agarwal May 2010 A1
20100132779 Hong Jun 2010 A1
20100133986 Kim Jun 2010 A1
20100136721 Song Jun 2010 A1
20100148221 Yu Jun 2010 A1
20100163714 Wober Jul 2010 A1
20100163941 Jung Jul 2010 A1
20100178018 Augusto Jul 2010 A1
20100186809 Samuelson Jul 2010 A1
20100187404 Klem Jul 2010 A1
20100200065 Choi Aug 2010 A1
20100207103 Farrow Aug 2010 A1
20100218816 Guha Sep 2010 A1
20100229939 Shen Sep 2010 A1
20100230653 Chen Sep 2010 A1
20100237454 Fujisawa Sep 2010 A1
20100244108 Kohnke et al. Sep 2010 A1
20100244169 Maeda et al. Sep 2010 A1
20100249877 Naughton Sep 2010 A1
20100258184 Laughlin Oct 2010 A1
20100276572 Iwabuchi Nov 2010 A1
20100277607 Choi Nov 2010 A1
20100282314 Coakley Nov 2010 A1
20100295019 Wang et al. Nov 2010 A1
20100302440 Wober Dec 2010 A1
20100304061 Ye et al. Dec 2010 A1
20100308214 Wober Dec 2010 A1
20100320444 Dutta Dec 2010 A1
20110018424 Takada Jan 2011 A1
20110036396 Jayaraman Feb 2011 A1
20110037133 Su et al. Feb 2011 A1
20110050042 Choi Mar 2011 A1
20110080508 Katsuno et al. Apr 2011 A1
20110127490 Mi Jun 2011 A1
20110133060 Yu et al. Jun 2011 A1
20110133160 Yu et al. Jun 2011 A1
20110135814 Miyauchi et al. Jun 2011 A1
20110139176 Cheung et al. Jun 2011 A1
20110146771 Chuang Jun 2011 A1
20110147870 Ang et al. Jun 2011 A1
20110180894 Samuelson Jul 2011 A1
20110195577 Kushibiki et al. Aug 2011 A1
20110226937 Yu et al. Sep 2011 A1
20110248315 Nam Oct 2011 A1
20110249219 Evans Oct 2011 A1
20110249322 Wang Oct 2011 A1
20110253982 Wang et al. Oct 2011 A1
20110272014 Mathai et al. Nov 2011 A1
20110297214 Kim Dec 2011 A1
20110309237 Seo et al. Dec 2011 A1
20110315988 Yu et al. Dec 2011 A1
20110316106 Kim Dec 2011 A1
20120009714 Mouli Jan 2012 A1
20120029328 Shimizu Feb 2012 A1
20120075513 Chipman et al. Mar 2012 A1
20120196401 Graham Aug 2012 A1
20120258563 Ogino Oct 2012 A1
Foreign Referenced Citations (23)
Number Date Country
0809303 Sep 2006 EP
2348399 Apr 2000 GB
359013708 Jan 1984 JP
59198413708 Jan 1984 JP
2002151715 May 2002 JP
2005252210 Sep 2005 JP
2007201091 Aug 2007 JP
200845402 Nov 2008 TW
200915551 Apr 2009 TW
8603347 Jun 1986 WO
0002379 Jan 2000 WO
03107439 Dec 2003 WO
2005064337 Jul 2005 WO
2008069565 Jun 2008 WO
2008079076 Jul 2008 WO
2008131313 Oct 2008 WO
2008135905 Nov 2008 WO
2008135905 Nov 2008 WO
2008143727 Nov 2008 WO
2009116018 Sep 2009 WO
2009137241 Nov 2009 WO
2010019887 Feb 2010 WO
2010039631 Apr 2010 WO
Non-Patent Literature Citations (116)
Entry
William Shockley and H. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. of Appl. Physics, Mar. 1961, 32(3).
International Preliminary Report on Patentability for PCT International Application No. PCT/US2010/035722, mailed Nov. 3, 2011.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/051435, mailed Dec. 3, 2010.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2009/063592, mailed Jan. 13, 2010.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/059468, mailed Feb. 11, 2011.
Pain et al., A Back-Illuminated Megapixel CMOS Image Sensor, IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors, Karuizawa, Japan, Jun. 9-11, 2005, Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena California.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/059501, mailed Feb. 15, 2011.
Adler, Nanowire Lawns Make for Sheets of Image Sensors, NewScientist.com, Jul. 28, 2008.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/051446, mailed Jan. 3, 2011.
Kim et al., Electronic Structure of Vertically Aligned Mn-Doped CoFe2O4 Nanowires and Their Application as Humidity Sensors and Photodetectors, Journal of Physical Chemistry C, Apr. 7, 2009.
Shimizu et al., Homoepitaxial Growth of Vertical Si Nanowires on Si(100) Substrate using Anodic Aluminum Oxide Template, (abstract only), Materials Research Society.
Song et al., Vertically Standing Ge Nanowires on GaAs(110) Substrates, Nanotechnology 19, Feb. 21, 2008.
“CMOS image sensor pixel optical efficiency and optical crosstalk optimization using FDTD Solutions” www.lumerical.com/fdtd—microlens/cmos—image—sensor—pixel—microlens.php, Mar. 19, 2009.
Furumiya, et al. “High-sensitivity and no-crosstalk pixel technology for embedded CMOS image sensor”; IEEE Electron Device Letters, vol. 48, No. 10, Oct. 2001.
International Search Report and Written Opinion for PCT International Application No. PCT/US2010/035722, mailed Jul. 20, 2010.
T. H. Hsu, et al. ‘Light Guide for Pixel Crosstalk Improvement in Deep Submicron CMOS Image Sensor’; IEEE Electron Device Letters, vol. 25, No. 1, Jan. 2004.
Tseng, et al. ‘Crosstalk improvement technology applicable to 0.14 βm CMOS image sensor’; IEEE International Electron Devices Meeting, Dec. 13-15, 2004; IEDM Technical Digest, pp. 997-1000.vbTab.
CMOS image sensor pixel microlens array optimization using FDTD Solutions, http://www.lumerical—com/ fdtd—microlens/cmos—image—sensor—pixel—microlens.php, pp. 1-2, Jun. 25, 2008.
Babinec et al., High-Flux, Low-Power Diamond Nanowire Single-Photon Source Arrays: An Enabling Material for Optical and Quantum Computing and Cryptography, obtained on Jul. 22, 2010 at URL: <http://otd.harvard.edu/technologies/tech.php?case=3702>.
Baillie et al., ‘Zero-space microlenses for CMOS image sensors: optical modeling and lithographic process development’, Publication Date May 2004, http://adsabs.harvard.edu/abs/2004SPIE.5377..953B, pp. 1-2.vbTab.
Barclay et al., Chip-Based Microcavities Coupled to NV Centers in Single Crystal Diamond, Applied Physics Letters, Nov. 12, 2009, vol. 95, Issue 19.
Brouri et al., Photon Antibunching in the Flurescence of Individual Colored Centers in Diamond, Optics Letters, Sep. 1, 2000, vol. 25, Issue 17.
Chung, Sung-Wook et al. Silicon Nanowire Devices. Applied Physics Letters, vol. 76, No. 15 (Apr. 10, 2000), pp. 2068-2070.
Deptuch et al., Vertically Integrated Circuits at Fermilab, IEEE Transactions on Nuclear Science, Aug. 2010, vol. 54, Issue 4, pp. 2178-2186.
Ekroll, On the Nature of Simultaneous Color Contrast, Dissertation, University of Kiel, 2005.
Fan et al., Large-Scale, Heterogeneous Integration of Nanowire Arrays for Image Sensor Circuitry, Proceedings of the National Academy of Sciences (PNAS) of the United States of America, Aug. 12, 2008, vol. 105, No. 32.
Fang et al., Fabrication of Slantingly-Aligned Silicon Nanowire Arrays for Solar Cell Applications, Nanotechnology, 2008, vol. 19, No. 25.
Gadelrab et al., The Source-Gated Amorphous Silicon Photo-Transistor, IEEE Transactions on Electron Devices, Oct. 1997, vol. 44, No. 10, pp. 1789-1794.
Gambino et al., ‘CMOS Imager with Copper Wiring and Lightpipe,’ Electron Devices Meeting, 2006. IEDM '06, International Publication Date: Dec. 11-13, 2006, pp. 1-4.
Garnett et al., Light Trapping in Silicon Nanowire Solar Cells, Nanoletters, Jan. 28, 2010, vol. 10, No. 3, pp. 1082-1087.
Guillaumée, et al., Polarization Sensitive Silicon Photodiodes Using Nanostructured Metallic Grids, Applied Physics Letters 94, 2009.
International Preliminary Report on Patentability for PCT International Patent Application No. PCT/U62009/055963, mailed Mar. 17, 2011.
International Search Report and Written Opinion for PCT International Application No. PCT/US2010/035726, mailed Jul. 21, 2010.
International Search Report and Written Opinion for PCT International Application No. PCT/US2010/057227, mailed Jan. 26, 2011.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2009/055963, mailed Oct. 15, 2009.vbTab.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/035727, mailed Sep. 27, 2010.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/059491, mailed Feb. 9, 2011.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/059504, mailed Apr. 7, 2011.
Jin-Kon Kim; ‘New Functional Nanomaterials Based on Block Copolymers’ http://www.ziu.edu.cn/adver/subjectizyhd/jz0707061313.html.
Juan et al., High Aspect Ratio Polymide Etching Using an Oxygen Plasma Generated by Electron Cyclotron Resonance Source, Journal of Vacuum Science and Technology, Jan./Feb. 1994, vol. 12, No. 1., pp. 422-426.
Junger, et. al., Polarization- and wavelength-sensitive sub-wavelength structures fabricated in the metal layers of deep submicron CMOSs processes, Proc. of SPIE, vol. 7712, 2010.
Kalkofen et al., Atomic Layer Deposition of Boron Oxide as Dopant Source for Shallow Doping of Silicon, Meeting Abstract 943, 217th ECS Meeting, MA2010-01, Apr. 25-30, 2010, Vancouver Canada, El—Advanced Gate Stack, Source / Drain, and Channel Engineering for Si-Based CMOS 6: New Materials, Process, and Equipment.
Kane, Why Nanowires Make Great Photodetectors, EurekAlert.com article, Apr. 25, 2007.
Kempa, Thomas J. et al. Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices. Nano Letters. 2008, vol. 8, No. 10, 3456-3460.
Lee et al., Vertical Pillar-Superlattice Array and Graphene Hybrid Light Emitting Diodes, Nano Letters, 2010, vol. 10, pp. 2783-2788.
Lin et al., Fabrication of Nanowire Anisotropic Conductive Film for Ultra-fine Pitch Flip Chip Interconnection, Electronic Components and Technology Conference, Jun. 20, 2005, 55th Proceedings, pp. 66-70.
Lin et al., Reducing Dark Current in a High-Speed Si-Based Interdigitated Trench-Electrode MSM Photodetector, IEEE Transactions on Electron Devices, May 2003, vol. 50, No. 5, pp. 1306-1313.
Loncar et al., Diamond Nanotechnology, SPIE Newsroom, May 18, 2010, obtained at url: <http://spie.org/x40194.xml?ArticleID=x40194>.
Loose et al., CMOS Detector Technology, Scientific Detector Workshop, Sicily, 2005, Experimental Astronomy, vol. 19, Issue 1-3, pp. 111-134.
Makarova et al., Fabrication of High Density, High-Aspect-Ratio Polyimide Nanofilters, Journal of Vacuum Science and Technology, Nov./Dec. 2009, vol. 27, No. 6., pp. 2585-2587.
N.L. Dmitruk, et al.; ‘Modeling and Measurement of Optical Response of 1D Array of Metallic Nanowires for Sensing and Detection Application’; 26th International Conference on Microelectronics (MIEL 2008), Nis, Serbia, May 11-14, 2008.
Nguyen et al., Deep Reactive Ion etching of Polyimide for Microfluidic Applications, Journal of the Korean Physical Society, Sep. 2007, vol. 51, No. 3, pp. 984-988.
Ozgur Yavuzcetin, et al.; ‘Index-tuned Anti-reflective Coating using a Nanostructured Metamaterial’; http://www.umass.edu/research/rld/bioportal/vuewtech.php?tid=40.
Parraga et al., Color and Luminance Information in Natural Scenes, Journal of Optical Society of America A, Optics, Image, Science and Vision, Jun. 1998, vol. 15, No. 6.
Reynard Corporation; ‘Anti-Reflection Coatings (AR)’, http://www.reynardcorp.com/coating—anti—reflection.php.
Rosfjord et al., Nanowire Single-Photon Detector with an Integrated Optical Cavity and Anti-Reflection Coating, Optics Express: The International Electronic Journal of Optics, Jan. 23, 2006, vol. 14, No. 2, pp. 527-534.
Rugani, First All-Nanowire Sensor, Technology Review, Aug. 13, 2008, Published by MIT.
Rutter, Diamond-Based Nanowire Devices Advance Quantum Science, SEAS Communications, Feb. 14, 2010, obtained at url:<http://news.harvard.edu/gazette/story/2010/02/digging-deep-into-diamonds/>.
Sarkar et. al., Integrated polarization-analyzing CMOS image sensor for detecting incoming light ray direction, Sensors Application Symposium (SAS) p. 194-199, 1010 IEEE.
Schmidt et al., Realization of a Silicon Nanowire Vertical Surround-Gate Field-Effect Transistor, Small, Jan. 2006, vol. 2, No. 1, pp. 85-88.
Thelander et al., Nanowire-Based One-Dimensional Electronics, Materials Today, Oct. 2006, vol. 9, No. 10, pp. 28-35.
Trentler, Timothy J. et al. Solution-Liquid-Solid Growth of Cyrstalline III-V Semiconductors: An Analogy to Vapor Liquid-Solid Growth. vol. 270(5243), Dec. 15, 1995, pp. 1791-1794.
Verheijen, Marcel A. et al. Growth Kinetics of Heterostructured GaP-GaAs Nanowires. J. Am. Chem. Soc. 2006, 128, 1353-1359.
Wang, Introduction to Nanotechnology—Where Opportunities arise & Great Future Being Built from Small Things.
Wong et al., Lateral Nanoconcentrator Nanowire Multijunction Photovoltaic Cells, GCEP Progress report, Apr. 20, 2009, pp. 1-18.
Ye et al., Fabrication Techniques of High Aspect Ratio Vertical Lightpipes Using a Dielectric Photo Mask, SPIE, Proceedings, Feb. 2010, vol. 7591.
Zhang et al., Ultrahigh Responsivity Visible and Infrared Detection Using Silicon Nanowire Phototransistors, Nanoletters, May 14, 2010, vol. 10, No. 6, pp. 2117-2120.
Lu et al., Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate, NanoLetters, Jan. 2003, vol. 3, No. 1, pp. 93-99.
Madou, Properties and Growth of Silicon, Including Crystalline Silicon, Fundamentals of Microfabrication, 2nd Ed., CRC Press, 2002, pp. 125-204.
Holmes et al., Control of Thickness and Orientation of Solution-Grown Silicon Nanowires, Science, Feb. 25, 2000, vol. 287, No. 5457, pp. 1471-1473.
Morales et al., A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires, Science, Jan. 9, 1998, vol. 279, pp. 208-211.
Hanrath et al., Nucleation and Growth of Germanium Nanowires Seeded by Organic Monolayer-Coated Gold Nanocrystals, J. Am. Chem. Soc., Feb. 20, 2002, vol. 124, No. 7, pp. 1424-1429.
Hanrath et al., Supercritical Fluid-Liquid-Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals, Advanced Materials, Mar. 4, 2003, vol. 15, No. 5, pp. 437-440.
Wagner et al., Vapor-Liquid-Solid Mechanism of Single Crystal Growth, Applied Physics Letters, Mar. 1, 1964, vol. 4, No. 5, pp. 89-90.
Law et al., Semiconductor Nanowires and Nanotubes, Annu. Rev. Mater. Res., 2004, vol. 34, pp. 83-122.
Hochbaum et al., Controlled Growth of Si Nanowire Arrays for Device Integration, Nano Letters, Mar. 2005, vol. 5, No. 3, pp. 457-460.
Ge et al., Orientation-Controlled Growth of Single-Crystal Silicon-Nanowire Arrays, Advanced Materials, Jan. 18, 2005, vol. 17, No. 1, pp. 56-61.
Lugstein et al., Ga/Au Alloy Catalyst for Single Crystal Silicon-Nanowire Epitaxy, Applied Physics Letters, Jan. 8, 2007, vol. 90, No. 2, pp. 023109-1-023109-3.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2011/060348, mailed Mar. 9, 2012.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2011/064635, mailed Apr. 13, 2012.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2011/066097, mailed Mar. 12, 2012.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2011/067712, mailed May 3, 2012.
International Preliminary Report on Patentability mailed Dec. 23, 2011, for PCT/US10/51435.
Baomin Wang and Paul W. Leu, Nanotechology 23 (2012) 194003, 7 pages.
Sangmoo Jeon, et al., Nano Lett. 2012, 12, 2971-2976.
Sangmoo Jeong et al., J. Vac. Sci. Technol. A 30(6), Nov./Dec. 2012.
Sarkar et. al., Integrated polarization-analyzing CMOS image sensor for detecting incoming light ray direction, Sensors Application Symposium (SAS), Mar. 29, 2012, p. 194-199, 1010 IEEE.
Jin-Kon Kim; ‘New Functional Nanomaterials Based on Block Copolymers’ http://www.ziu.edu.cn/adver/subjectizyhd/jz0707061313.html, Jul. 7, 2011.
Ozgur Yavuzcetin, et al.; ‘Index-tuned Anti-reflective Coating using a Nanostructured Metamaterial’; http://www.umass.eduiresearch/rld/bioportal/vuewtech.php?tid=40, Feb. 28, 2007.
Reynard Corporation; ‘Anti-Reflection Coatings (AR)’, http://www.reynardcorp.com/coating—anti—reflection.php, undated.
Shimizu et al., Homoepitaxial Growth of Vertical Si Nanowires on Si(100) Substrate using Anodic Aluminum Oxide Template, (abstract only), Materials Research Society, Fall 2007.
Wang, Introduction to Nanotechnology—Where Opportunities arise & Great Future Being Built from Small Things, Fall 2008.
International Preliminary Report and Written Opinion re PCT/US2010/059491, mailed Jun. 21, 2012.
International Search Report and Written Opinion re PCT/US2011/57325, mailed Jun. 22, 2012.
International Preliminary Report and Written Opinion re PCT/US2010/059468, mailed Jun. 21, 2012.
International Preliminary Report and Written Opinion re PCT/US2010/059504, mailed Jun. 21, 2012.
International Preliminary Report and Written Opinion re PCT/US2010/059496, mailed Jun. 21, 2012.
U.S. Office Action for U.S. Appl. No. 12/573,582, dated Jun. 28, 2012.
International Preliminary Search Report on Patentability of PCT/US201-057325, mailed May 2, 2013.
U.S. Office Action for U.S. Appl. No. 13/494,661, notification date Nov. 7, 2012.
U.S. Office Action for U.S. Appl. No. 12/633,313, dated Aug. 1, 2013, 20 pages.
U.S. Office Action for U.S. Appl. No. 12/966,514, dated Aug. 15, 2013, 17 pages.
U.S. Office Action for U.S. Appl. No. 12/966,535, mailed Jun. 14, 2013, 22 pages.
U.S. Office Action for U.S. Appl. No. 13/048,635, mailed Jun. 6, 2013, 24 pages.
U.S. Office Action for U.S. Appl. No. 12/966,573, dated Aug. 6, 2013, 13 pages.
Canadian Office Action of Canadian Application No. 3,676,376, dated Oct. 11, 2013.
Catrysse, et al., An Integrated Color Pixel in 0.18pm CMOS Technology, Proceedings IEDM 2001, pp. 559-562.
Choi et al., Optimization of sidewall roughness in silica waveguides to reduce propagation losses, May 2001, Lasers and Electro-Optics, 2001. CLEO '01. Technical Digest. Summaries of papers presented at the Conference on, pp. 175-176.
Geyer et al., Model for the Mass Transport during Metal-Assisted Chemical Etching with Contiguous Metal Films as Catalysts, J. Phys. Chem. C 2012, 116, 13446-13451.
Hopkins, Addressing sidewall roughness using dry etching silicon and Si02, Jul. 1, 2004, ElectrolQ, vol. 47, Issue 7.
Mei-Ling Kuo et al. “Realization of a near-perfect antireflection coating for silicon solar energy utilization” (Nov. 1, 2008, vol. 33, No. 21, Optics Letters).
Mukhopadhyay, When PDMS Isn't the Best, American Chemical Society, May 1, 2007.
Seo, et. al., “Multicolored vertical silicon nanowires,” Nano Letters, vol. 11 issue 4, pp. 1851-1856, 2010.
Taiwanese Office Action of Taiwan Patent Application No. 099116881, issued Jul. 18, 2013 (8 pages).
U.S. Final Office Action for U.S. Appl. No. 12/966,514, mailed Mar. 19, 2013, 50 pages.
U.S. Final Office Action for U.S. Appl. No. 13/494,661, mailed Mar. 7, 2013, 10 pages.
Related Publications (1)
Number Date Country
20110079796 A1 Apr 2011 US