1. Field of the Invention
This invention is generally related to nanoparticle releasing medical devices, such as drug delivery vascular stents.
2. Description of the State of the Art
Stents are used not only as a mechanical intervention of vascular conditions but also as a vehicle for providing biological therapy. As a mechanical intervention, stents act as scaffoldings, functioning to physically hold open and, if desired, to expand the wall of the passageway. Typically, stents are capable of being compressed, so that they can be inserted through small vessels via catheters, and then expanded to a larger diameter once they are at the desired location. Examples in patent literature disclosing stents which have been applied in PTCA (Percutaneous Transluminal Coronary Angioplasty) procedures include stents illustrated in U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to Gianturco, and U.S. Pat. No. 4,886,062 issued to Wiktor.
Biological therapy can be achieved by medicating the stents. Medicated stents provide for the local administration of a therapeutic substance at the diseased site. In order to provide an efficacious concentration to the treated site, systemic administration of such medication often produces adverse or toxic side effects on the patient. Local delivery is a preferred method of treatment in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Local delivery thus produces fewer side effects and achieves more favorable results.
In many patients, especially diabetic patients, stentable lesions are focal manifestations of widespread vascular disease. The advent of drug eluting stents has brought relief from restenosis of the treated lesion, but leaves progression of regional vascular disease unaddressed.
The embodiments described below address the above-identified problems.
In some embodiments, provided herein is a medical device comprising a coating. The coating comprises nanobeads embedded in a slurry. The coating provides for a customizable controlled release of a bioactive agent or agents encapsulated in the nanobeads. The slurry can include a polymer or a non-polymer material. In some embodiments, the slurry comprises a material that can be one of ceramic materials, bioglass, polymer, and combinations thereof. The medical device can be any drug delivery device, some examples of which are stent.
In some embodiments, the nanobeads can include a first plurality of nanobeads that encapsulate a first bioactive agent and a second plurality of nanobeads that encapsulate a second bioactive agent. The first plurality of nanobeads and the second plurality of nanobeads can be embedded in the same layer of coating or in different layers of coating, e.g., a first layer comprising the first plurality of nanobeads, and a second layer comprising the second plurality of nanobeads. In some embodiments, the nanobeads can comprise a third plurality of nanobeads that encapsulate a third bioactive agent. The first plurality of nanobeads, the second plurality of nanobeads, and third plurality of nanobeads that encapsulate a third bioactive agent can be embedded in the same layer of slurry coating or in different layers of slurry coating, e.g., a first layer comprising the first plurality of nanobeads, a second layer comprising the second plurality of nanobeads, and a third layer comprising the third bioactive agent. In some embodiments, the first bioactive agent, the second bioactive agent, and/or the third bioactive agent are the same or different.
In some embodiments, the nanobeads can include more than three pluralities of nanobeads incorporating more than three bioactive agents included in more than three different layers, the first layer including the first plurality of nanobeads, the second layer including the second plurality of nanobeads, the third layer including the third plurality of nanobeads, the fourth layer including the fourth plurality of nanobeads, etc. These agents can be the same or different.
The bioactive agents can be any diagnostic, therapeutic, or prophylactic agent. Some examples of the bioactive agents are paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, 40-epi-(N1-tetrazolyl)-rapamycin (ABT-578), TAFA-93, biolimus-7, biolimus-9, clobetasol, pimecrolimus, imatinib mesylate, midostaurin, prodrugs thereof, co-drugs thereof, or combinations thereof.
The medical device described herein can be used to treat, prevent or ameliorate a medical condition in a patient by implanting in the patient the medical device and causing nanobeads in the medical device to release from the medical device so as to release the bioactive agent(s) to treat, prevent, or ameliorate the medical condition. Some examples of medical conditions or disorders that can be treated, prevented, or ameliorated by the medical device described herein include, but are not limited to, atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
In some embodiments, provided herein is a medical device comprising a coating. The coating comprises nanobeads embedded in a slurry. The coating provides for a customizable controlled release of a bioactive agent or agents encapsulated in the nanobeads. The slurry can include a polymer or a non-polymer material. In some embodiments, the slurry comprises a material that can be one of ceramic materials, bioglass, polymer, and combinations thereof. The medical device can be any drug delivery device, some examples of which are stents.
In some embodiments, the nanobeads can include a first plurality of nanobeads that encapsulate a first bioactive agent and a second plurality of nanobeads that encapsulate a second bioactive agent. The first plurality of nanobeads and the second plurality of nanobeads can be embedded in the same layer of coating or in different layers of coating, e.g., a first layer comprising the first plurality of nanobeads, and a second layer comprising the second plurality of nanobeads. In some embodiments, the nanobeads can comprise a third plurality of nanobeads that encapsulate a third bioactive agent. The first plurality of nanobeads, the second plurality of nanobeads, and third plurality of nanobeads that encapsulate a third bioactive agent can be embedded in the same layer of slurry coating or in different layers of slurry coating, e.g., a first layer comprising the first plurality of nanobeads, a second layer comprising the second plurality of nanobeads, and a third layer comprising the third bioactive agent. In some embodiments, the first bioactive agent, the second bioactive agent, and/or the third bioactive agent are the same or different.
In some embodiments, the nanobeads can include more than three pluralities of nanobeads incorporating more than three bioactive agents included in more than three different layers, the first layer including the first plurality of nanobeads, the second layer including the second plurality of nanobeads, the third layer including the third plurality of nanobeads, the fourth layer including the fourth plurality of nanobeads, etc. These agents can be the same or different.
The bioactive agents can be any diagnostic, therapeutic, or prophylactic agent. Some examples of the bioactive agents are paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, 40-epi-(N1-tetrazolyl)-rapamycin (ABT-578), TAFA-93, biolimus-7, biolimus-9, clobetasol, pimecrolimus, imatinib mesylate, midostaurin, prodrugs thereof, co-drugs thereof, or combinations thereof.
The medical device described herein can be used to treat, prevent or ameliorate a medical condition in a patient by implanting in the patient the medical device and causing nanobeads in the medical device to release from the medical device so as to release the bioactive agent(s) to treat, prevent, or ameliorate the medical condition. Some examples of medical conditions or disorders that can be treated, prevented, or ameliorated by the medical device described herein include, but are not limited to, atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
As used herein, the term “nanoparticles” and “nanobeads” can be used interchangeably. The term “nanocapsules” refers to nanoparticles having a shell encapsulating a bioactive agent. The term “matrix nanoparticles” refers to nanoparticles that do not have a shell where a bioactive agent(s) is dispersed in the matrix of the nanoparticles.
The nanobeads generally have a size a size in the range from about 1 nm to over 1000 nm, e.g., about 5 nm, about 10 nm, about 20 nm, about 50 nm, about 80 nm, about 90 nm, about 95 nm, about 100 nm, about 200 nm, about 500 nm, about 800 nm, about 900 nm, about 1000 nm or about 1500 nm. In some embodiments, the nanobeads can have a size from about 10 nm to about 1000 nm, from about 20 nm to about 500 nm, or from about 50 nm to about 200 mm.
The coating provides for controlled release of the drug(s) through use of different physical and chemical features of the encapsulating matrix or membrane. Once a medical device to which the nanoparticles are coated onto is deployed, the membrane of nanobeads encapsulating a bioactive agent can open up, releasing the drug(s) at controlled intervals and/or levels. Use of different physical and chemical features of the encapsulating membrane(s)/macromolecules/polymers/gels (e.g., microscopic spheres) and drug(s) (e.g., varying-thickness nanoencapsulating membranes, nanoencapsulating membranes of different chemical or physical character, or some combination of these features) leads to modulation of release profile of the bioactive agent in the nanobeads.
The nanobeads, can provide a variety of delivery profiles of a bioactive agent. For instance, in some embodiments, the nanobeads can have a layered construct including different layers of spheres such that the outermost spheres have the least (or most) thick membranes (or their equivalent in terms of physical or chemical character) and the innermost spheres might have the greatest (or least) membrane thickness (or equivalent), with intermediate layers such that the overall effect is to provide for a controlled or graduated release of a drug or drugs in terms of time and intensity of the drug and different drugs with different properties (chemical physical and biological) in nanobeads of each layer to target different layers of arterial tissue.
In some embodiments, an initial burst release of drug(s) from nanobeads can be caused by the pressure onto the nanobeads, e.g., pressure from a stent or a balloon delivery device, with a more graduated response to follow that is not pressure dependent.
In some embodiments, the nanobeads described herein can be used in lieu of or in combination with available coating systems for drug delivery stents. In some embodiments, the nanobeads can be used as non-stent delivery systems.
To facilitate the release of nanobeads from the vessel wall, in some
To facilitate the release of nanobeads from the vessel wall, in some embodiments, a patient can ingest or have delivered into the bloodstream a small molecule drug, chemical agent or catalyst to Activate/facilitate release of a drug or biopharmaceuticals that are in nanobeads, thus allowing the physician to externally control and very the rate of delivery from the nanobeads of the drug or biopharmaceuticals into the vessel wall. The doctor will thus be able to change the rate of release based upon the evolving assessment of the patient. The mechanism for activating the nanobeads contents could be by allowing the external agent to react with the slurry, the nanobead material or the nanobead contents in such a way that the properties are changed to allow the drug to release. In another embodiment, the oral or blood stream delivered drug or other substance would itself have a therapeutic effect. In still another embodiment the oral or blood stream delivered drug or other substance together with the nanobead contents would provide a therapeutic effect different than the individual effect of each alone. In this way the combined effect could provide a much broader and varied therapy. Such small molecule drug, chemical agent or catalyst can be anything that facilitates the release of nanobeads from a module including such nanobeads. For example, a small molecule drug, chemical agent or catalyst can be membrane disruptive or can change the acidity/basicity or enzyme activity surrounding the module. Administration of the small molecule drug, chemical agent or catalyst can therefore cause the nanobeads to be released from the module in the vessel wall.
In some embodiments, a magnetic material(s) (compound or element) can be included in nanobeads. This can allow an electromagnetic source located external to the vascular system to provide for the release of these nanobeads and to direct where they concentrate in the vascular system. Magnetic materials can be any biocompatible magnetic material. Some examples are materials containing iron, platinum elements or compounds. In some embodiments, magnetic materials can be made biocompatible by using a biocompatible coating (e.g., a coating formed of a biocompatible polymeric or non-polymeric material).
In some embodiments, to effect a sustained delivery of the nanobeads, the nanobeads containing a drug can be chemically bonded to a drug delivery system. In some embodiments, the nanobeads can be embedded in a slurry. Such slurry can be, e.g., a biodurable, biodegradable or bioabsorbable material, such as polymer, ceramic, or bioglass.
In some embodiments, chemically attaching the nanobeads to the delivery system can be achieved by coupling the functional groups on the surface of nanobeads and the delivery system. In some embodiments, chemically attaching the nanobeads to the delivery system can be achieved by grafting, e.g., by causing groups on the surface of the nanobeads to bind to the surface of the delivery system. In some embodiments, chemically attaching the nanobeads to the delivery system can be achieved by modification of surface of the nanobeads or the delivery system by attaching silane or siloxane groups to the surface of the nanobeads or the delivery system and then causing the nanobeads to be attached to delivery system via the silane or siloxane groups. The attaching methods are well established in the art (see, e.g., Greg T. Hermanson, “Bioconjugate Techniques”, Academic Press, Elsevier, 1996; J. Biomed. Mater. Res., 60, 472; Langmuir, 18 (2002) 4090; Appl. Polym. Sci., 22, 643-664; Macromolecules 34, 7236; J. Ame. Chem. Soc. (2003), 125, 1788; J. Biomed. Mater. Res. (2003), 65A, 196; Macromolecules 26, 5698; Advanced Drug Delivery Reviews, 43, (2002)3-12, 457-458; J. Polymer Sci. A, Polymer Chem, 28, 219 (1990); Nature, 378, 472 (1995); Nature 411, 59 (2001); Bioconj Chem. 14, 517 (2003); Trans Amer. Soc. Artif Inst Organs, 18, 10 (1972); U.S. Pat. No. 4,424,311; J, Adhes. Sci. Technol. 7, 1065-1076 (1993); Biomaterials 23 (2002)2043-2056; J. Am. Chem. Soc., vol 115, No. 23m 1993, 10715; J Polymer Sci., Symposium No. 51, 135-153 (1975); Angew. Chem., Int. Ed., 2006, 45, 2-20; Anticancer drugs, 16, 243-254; J. Contr. Res., 61, 137 (1999); Macromol Symposia, 172, 49 (2001); Biomaterials, 24, 4495 (2003); Macromolecules (2001) 34, 8657; Macromol Biosci (2004) 4, 192).
Nanobeads can be readily formed according to methods established in the art. Some examples of forming nanobeads are described in Seshadri and Sivasubramanian, Drug Delivery Technology, 7(3):39-46 (2007). Some other methods are described in the references described above.
Any biocompatible polymers can be included in the nanobeads described above and/or a coating including the nanobeads. The biocompatible polymer can be biodegradable (either bioerodible or bioabsorbable or both) or nondegradable, and can be hydrophilic or hydrophobic.
Representative biocompatible polymers include, but are not limited to, poly(ester amide), polyhydroxyalkanoates (PHA), poly(3-hydroxyalkanoates) such as poly(3-hydroxypropanoate), poly(3-hydroxybutyrate), poly(3-hydroxyvalerate), poly(3-hydroxyhexanoate), poly(3-hydroxyheptanoate) and poly(3-hydroxyoctanoate), poly(4-hydroxyalkanaote) such as poly(4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4-hydroxyhexanote), poly(4-hydroxyheptanoate), poly(4-hydroxyoctanoate) and copolymers including any of the 3-hydroxyalkanoate or 4-hydroxyalkanoate monomers described herein or blends thereof, poly(D,L-lactide), poly(L-lactide), polyglycolide, poly(D,L-lactide-co-glycolide), poly(L-lactide-co-glycolide), polycaprolactone, poly(lactide-co-caprolactone), poly(glycolide-co-caprolactone), poly(dioxanone), poly(ortho esters), poly(anhydrides), poly(tyrosine carbonates) and derivatives thereof, poly(tyrosine ester) and derivatives thereof, poly(imino carbonates), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acids), polycyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), polyphosphazenes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers, such as polyvinyl chloride, polyvinyl ethers, such as polyvinyl methyl ether, polyvinylidene halides, such as polyvinylidene chloride, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics, such as polystyrene, polyvinyl esters, such as polyvinyl acetate, copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers, polyamides, such as Nylon 66 and polycaprolactam, alkyd resins, polycarbonates, polyoxymethylenes, polyimides, polyethers, poly(glyceryl sebacate), poly(propylene fumarate), poly(n-butyl methacrylate), poly(sec-butyl methacrylate), poly(isobutyl methacrylate), poly(tert-butyl methacrylate), poly(n-propyl methacrylate), poly(isopropyl methacrylate), poly(ethyl methacrylate), poly(methyl methacrylate), epoxy resins, polyurethanes, rayon, rayon-triacetate, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, carboxymethyl cellulose, polyethers such as poly(ethylene glycol) (PEG), copoly(ether-esters) (e.g. poly(ethylene oxide-co-lactic acid) (PEO/PLA)), polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), poly(ether ester), polyalkylene oxalates, phosphoryl choline, choline, poly(aspirin), polymers and co-polymers of hydroxyl bearing monomers such as 2-hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, PEG acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(styrene-isoprene-styrene)-PEG (SIS-PEG), polystyrene-PEG, polyisobutylene-PEG, polycaprolactone-PEG (PCL-PEG), PLA-PEG, poly(methyl methacrylate)-PEG (PMMA-PEG), polydimethylsiloxane-co-PEG (PDMS-PEG), poly(vinylidene fluoride)-PEG (PVDF-PEG), PLURONIC™ surfactants (polypropylene oxide-co-polyethylene glycol), poly(tetramethylene glycol), hydroxy functional poly(vinyl pyrrolidone), biomolecules such as collagen, chitosan, alginate, fibrin, fibrinogen, cellulose, starch, dextran, dextrin, hyaluronic acid, fragments and derivatives of hyaluronic acid, heparin, fragments and derivatives of heparin, glycosamino glycan (GAG), GAG derivatives, polysaccharide, elastin, or combinations thereof. In some embodiments, the nanoparticles can exclude any one of the aforementioned polymers.
As used herein, the terms poly(D,L-lactide), poly(L-lactide), poly(D,L-lactide-co-glycolide), and poly(L-lactide-co-glycolide) can be used interchangeably with the terms poly(D,L-lactic acid), poly(L-lactic acid), poly(D,L-lactic acid-co-glycolic acid), or poly(L-lactic acid-co-glycolic acid), respectively.
In some embodiments, the nanobeads described herein or a slurry including the nanobeads can further include a biobeneficial material. The biobeneficial material can be a polymeric material or non-polymeric material. The biobeneficial material is preferably non-toxic, non-antigenic and non-immunogenic. A biobeneficial material is one which enhances the biocompatibility of the particles or device by being non-fouling, hemocompatible, actively non-thrombogenic, or anti-inflammatory, all without depending on the release of a pharmaceutically active agent.
The bioactive agents encapsulated in the nanobeads described herein can be any bioactive agent, which is a therapeutic, prophylactic, or diagnostic agent. These agents can have anti-proliferative or anti-inflammatory properties or can have other properties such as antineoplastic, antiplatelet, anti-coagulant, anti-fibrin, antithrombonic, antimitotic, antibiotic, antiallergic, and antioxidant. The agents can be cystostatic agents, agents that promote the healing of the endothelium such as NO releasing or generating agents, agents that attract endothelial progenitor cells, or agents that promote the attachment, migration and proliferation of endothelial cells (e.g., natriuretic peptide such as CNP, ANP or BNP peptide or an RGD or cRGD peptide), while quenching smooth muscle cell proliferation. Examples of suitable therapeutic and prophylactic agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities. Some other examples of the bioactive agent include antibodies, receptor ligands, enzymes, adhesion peptides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy. Examples of anti-proliferative agents include rapamycin and its functional or structural derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), and its functional or structural derivatives, paclitaxel and its functional and structural derivatives. Examples of rapamycin derivatives include 40-epi-(N1-tetrazolyl)-rapamycin (ABT-578), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin. Examples of paclitaxel derivatives include docetaxel. Examples of antineoplastics and/or antimitotics include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, thrombin inhibitors such as Angiomax (Biogen, Inc., Cambridge, Mass.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), nitric oxide or nitric oxide donors, super oxide dismutases, super oxide dismutase mimetic, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), estradiol, anticancer agents, dietary supplements such as various vitamins, and a combination thereof. Examples of anti-inflammatory agents including steroidal and non-steroidal anti-inflammatory agents include tacrolimus, dexamethasone, clobetasol, or combinations thereof. Examples of cytostatic substances include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.). An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, pimecrolimus, imatinib mesylate, midostaurin, bioactive RGD, and genetically engineered endothelial cells. The foregoing substances can also be used in the form of prodrugs or co-drugs thereof. The foregoing substances also include metabolites thereof and/or prodrugs of the metabolites. The foregoing substances are listed by way of example and are not meant to be limiting. Other active agents which are currently available or that may be developed in the future are equally applicable.
The dosage or concentration of the bioactive agent required to produce a favorable therapeutic effect should be less than the level at which the bioactive agent produces toxic effects and greater than the level at which non-therapeutic results are obtained. The dosage or concentration of the bioactive agent can depend upon factors such as the particular circumstances of the patient, the nature of the trauma, the nature of the therapy desired, the time over which the ingredient administered resides at the vascular site, and if other active agents are employed, the nature and type of the substance or combination of substances.
In some embodiments, the dose will be tailored to the specific anatomy for treatment. Some of these areas are arteries of coronary, cerebral. carotid, renal, iliac, popliteal, tibial, etc. Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art. In addition patient state of health, diabetes type of anatomy, type of lesion, severity of lesion and other indicators can be used to determine dose and elution profile.
The bioactive agents described herein can have different release profiles, e.g., fast release (e.g., release of about 50% of the agent within 24 hours), sustained release (e.g., release of about 50% of the agent over a period of days or months), or pulse release profile. In some embodiments, the sustained release profile can be a zero order release.
As used herein, an implantable device may be any suitable medical substrate that can be implanted in a human or veterinary patient. Examples of such implantable devices include self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), heart valve prostheses, cerebrospinal fluid shunts, pacemaker electrodes, catheters, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Abbott Vascular, Santa Clara, Calif.), anastomotic devices and connectors, orthopedic implants such as screws, spinal implants, electro-stimulatory devices. The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biodurable (biostable) polymers could also be used with the embodiments of the present invention.
In accordance with embodiments of the invention, the nanoparticles can be released from a medical device (e.g., stent) during delivery and (in the case of a stent) expansion of the device, or thereafter, and released at a desired rate and for a predetermined duration of time at the site of implantation.
Preferably, the medical device is a stent. The stent described herein is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating is particularly useful for treating diseased regions of blood vessels caused by lipid deposition, monocyte or macrophage infiltration, or dysfunctional endothelium or a combination thereof, or occluded regions of blood vessels caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis. Stents may be placed in a wide array of blood vessels, both arteries and veins.
Representative examples of sites include the iliac, renal, carotid and coronary arteries.
For implantation of a stent, an angiogram is first performed to determine the appropriate positioning for stent therapy. An angiogram is typically accomplished by injecting a radiopaque contrasting agent through a catheter inserted into an artery or vein as an x-ray is taken. A guidewire is then advanced through the lesion or proposed site of treatment. Over the guidewire is passed a delivery catheter which allows a stent in its collapsed configuration to be inserted into the passageway. The delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance. A stent having the above-described features may then be mechanically expanded or released to self expand at the desired area of treatment. A post-insertion angiogram may also be utilized to confirm appropriate positioning.
The nanobeads can be used with a stent as described above.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
2072303 | Herrmann et al. | Mar 1937 | A |
2386454 | Frosch et al. | Oct 1945 | A |
2647017 | Coulliette | Jul 1953 | A |
2701559 | Cooper | Feb 1955 | A |
3288728 | Gorham | Nov 1966 | A |
3687135 | Stroganov et al. | Aug 1972 | A |
3773737 | Goodman et al. | Nov 1973 | A |
3839743 | Schwarcz | Oct 1974 | A |
3849514 | Gray, Jr. et al. | Nov 1974 | A |
3900632 | Robinson | Aug 1975 | A |
4075045 | Rideout | Feb 1978 | A |
4104410 | Malecki | Aug 1978 | A |
4110497 | Hoel | Aug 1978 | A |
4132357 | Blackinton | Jan 1979 | A |
4164524 | Ward et al. | Aug 1979 | A |
4226243 | Shalaby et al. | Oct 1980 | A |
4321711 | Mano | Mar 1982 | A |
4323071 | Simpson et al. | Apr 1982 | A |
4329383 | Joh | May 1982 | A |
4338942 | Fogarty | Jul 1982 | A |
4343931 | Barrows | Aug 1982 | A |
4346028 | Griffith | Aug 1982 | A |
4439185 | Lundquist | Mar 1984 | A |
4489670 | Mosser et al. | Dec 1984 | A |
4516972 | Samson et al. | May 1985 | A |
4529792 | Barrows | Jul 1985 | A |
4538622 | Samson et al. | Sep 1985 | A |
4554929 | Samson et al. | Nov 1985 | A |
4573470 | Samson et al. | Mar 1986 | A |
4596574 | Urist | Jun 1986 | A |
4599085 | Riess et al. | Jul 1986 | A |
4608984 | Fogarty | Sep 1986 | A |
4611051 | Hayes et al. | Sep 1986 | A |
4612009 | Drobnik et al. | Sep 1986 | A |
4616593 | Kawamura et al. | Oct 1986 | A |
4616652 | Simpson | Oct 1986 | A |
4629563 | Wrasidlo | Dec 1986 | A |
4633873 | Dumican et al. | Jan 1987 | A |
4638805 | Powell | Jan 1987 | A |
4656083 | Hoffman et al. | Apr 1987 | A |
4656242 | Swan et al. | Apr 1987 | A |
4699611 | Bowden | Oct 1987 | A |
4702252 | Brooks et al. | Oct 1987 | A |
4718907 | Karwoski et al. | Jan 1988 | A |
4722335 | Vilasi | Feb 1988 | A |
4723549 | Wholey et al. | Feb 1988 | A |
4732152 | Wallstén et al. | Mar 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4739762 | Palmaz | Apr 1988 | A |
4740207 | Kreamer | Apr 1988 | A |
4743252 | Martin, Jr. et al. | May 1988 | A |
4748982 | Horzewski et al. | Jun 1988 | A |
4768507 | Fischell et al. | Sep 1988 | A |
4774039 | Wrasidlo | Sep 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4800882 | Gianturco | Jan 1989 | A |
4816339 | Tu et al. | Mar 1989 | A |
4818559 | Hama et al. | Apr 1989 | A |
4828561 | Woodroof | May 1989 | A |
4850999 | Planck | Jul 1989 | A |
4865870 | Hu et al. | Sep 1989 | A |
4871542 | Vilhardt | Oct 1989 | A |
4877030 | Beck et al. | Oct 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4879135 | Greco et al. | Nov 1989 | A |
4880683 | Stow | Nov 1989 | A |
4882168 | Casey et al. | Nov 1989 | A |
4886062 | Wiktor | Dec 1989 | A |
4902289 | Yannas | Feb 1990 | A |
4906423 | Frisch | Mar 1990 | A |
4931287 | Bae et al. | Jun 1990 | A |
4932353 | Kawata et al. | Jun 1990 | A |
4941870 | Okada et al. | Jul 1990 | A |
4943346 | Mattelin | Jul 1990 | A |
4950227 | Savin et al. | Aug 1990 | A |
4955899 | Della Corna et al. | Sep 1990 | A |
4967606 | Wells et al. | Nov 1990 | A |
4977901 | Ofstead | Dec 1990 | A |
4988356 | Crittenden et al. | Jan 1991 | A |
4994033 | Shockey et al. | Feb 1991 | A |
4994298 | Yasuda | Feb 1991 | A |
4994560 | Kruper, Jr. et al. | Feb 1991 | A |
5015505 | Cetnar | May 1991 | A |
5019090 | Pinchuk | May 1991 | A |
5019096 | Fox, Jr. et al. | May 1991 | A |
5028597 | Kodama et al. | Jul 1991 | A |
5037392 | Hillstead | Aug 1991 | A |
5037427 | Harada et al. | Aug 1991 | A |
5040548 | Yock | Aug 1991 | A |
5047050 | Arpesani | Sep 1991 | A |
5049132 | Shaffer et al. | Sep 1991 | A |
5053048 | Pinchuk | Oct 1991 | A |
5059166 | Fischell | Oct 1991 | A |
5059169 | Zilber | Oct 1991 | A |
5059211 | Stack et al. | Oct 1991 | A |
5062829 | Pryor et al. | Nov 1991 | A |
5064435 | Porter | Nov 1991 | A |
5078720 | Burton et al. | Jan 1992 | A |
5081394 | Morishita et al. | Jan 1992 | A |
5084065 | Weldon et al. | Jan 1992 | A |
5085629 | Goldberg et al. | Feb 1992 | A |
5087244 | Wolinsky et al. | Feb 1992 | A |
5087394 | Keith | Feb 1992 | A |
5100429 | Sinofsky et al. | Mar 1992 | A |
5100992 | Cohn et al. | Mar 1992 | A |
5102402 | Dror et al. | Apr 1992 | A |
5104410 | Chowdhary | Apr 1992 | A |
5108416 | Ryan et al. | Apr 1992 | A |
5108417 | Sawyer | Apr 1992 | A |
5108755 | Daniels et al. | Apr 1992 | A |
5112457 | Marchant | May 1992 | A |
5116318 | Hillstead | May 1992 | A |
5116365 | Hillstead | May 1992 | A |
5123917 | Lee | Jun 1992 | A |
5127362 | Iwatsu et al. | Jul 1992 | A |
5133742 | Pinchuk | Jul 1992 | A |
5134192 | Feijen et al. | Jul 1992 | A |
5147370 | McNamara et al. | Sep 1992 | A |
5156623 | Hakamatsuka et al. | Oct 1992 | A |
5156911 | Stewart | Oct 1992 | A |
5158548 | Lau et al. | Oct 1992 | A |
5163951 | Pinchuk et al. | Nov 1992 | A |
5163952 | Froix | Nov 1992 | A |
5163958 | Pinchuk | Nov 1992 | A |
5165919 | Sasaki et al. | Nov 1992 | A |
5167614 | Tessmann et al. | Dec 1992 | A |
5171445 | Zepf | Dec 1992 | A |
5176638 | Don Michael | Jan 1993 | A |
5188734 | Zepf | Feb 1993 | A |
5192311 | King et al. | Mar 1993 | A |
5197977 | Hoffman, Jr. et al. | Mar 1993 | A |
5205822 | Johnson et al. | Apr 1993 | A |
5213561 | Weinstein et al. | May 1993 | A |
5213576 | Abiuso et al. | May 1993 | A |
5219980 | Swidler | Jun 1993 | A |
5222971 | Willard et al. | Jun 1993 | A |
5225750 | Higuchi et al. | Jul 1993 | A |
5226889 | Sheiban | Jul 1993 | A |
5226913 | Pinchuk | Jul 1993 | A |
5229045 | Soldani | Jul 1993 | A |
5229172 | Cahalan et al. | Jul 1993 | A |
5232444 | Just et al. | Aug 1993 | A |
5234456 | Silvestrini | Aug 1993 | A |
5234457 | Andersen | Aug 1993 | A |
5236447 | Kubo et al. | Aug 1993 | A |
5242399 | Lau et al. | Sep 1993 | A |
5254089 | Wang | Oct 1993 | A |
5254091 | Aliahmad et al. | Oct 1993 | A |
5258020 | Froix | Nov 1993 | A |
5258419 | Rolando et al. | Nov 1993 | A |
5269802 | Garber | Dec 1993 | A |
5272012 | Opolski | Dec 1993 | A |
5278200 | Coury et al. | Jan 1994 | A |
5279594 | Jackson | Jan 1994 | A |
5282823 | Schwartz et al. | Feb 1994 | A |
5282860 | Matsuno et al. | Feb 1994 | A |
5286254 | Shapland et al. | Feb 1994 | A |
5289831 | Bosley | Mar 1994 | A |
5290271 | Jernberg | Mar 1994 | A |
5292516 | Viegas et al. | Mar 1994 | A |
5298260 | Viegas et al. | Mar 1994 | A |
5300295 | Viegas et al. | Apr 1994 | A |
5304200 | Spaulding | Apr 1994 | A |
5306250 | March et al. | Apr 1994 | A |
5306286 | Stack et al. | Apr 1994 | A |
5306294 | Winston et al. | Apr 1994 | A |
5306501 | Viegas et al. | Apr 1994 | A |
5306786 | Moens et al. | Apr 1994 | A |
5308641 | Cahalan et al. | May 1994 | A |
5314472 | Fontaine | May 1994 | A |
5318531 | Leone | Jun 1994 | A |
5328471 | Slepian | Jul 1994 | A |
5330500 | Song | Jul 1994 | A |
5330768 | Park et al. | Jul 1994 | A |
5336518 | Narayanan et al. | Aug 1994 | A |
5342283 | Good | Aug 1994 | A |
5342348 | Kaplan | Aug 1994 | A |
5342395 | Jarrett et al. | Aug 1994 | A |
5342621 | Eury | Aug 1994 | A |
5344426 | Lau et al. | Sep 1994 | A |
5344455 | Keogh et al. | Sep 1994 | A |
5350800 | Verhoeven et al. | Sep 1994 | A |
5356433 | Rowland et al. | Oct 1994 | A |
5360401 | Turnland et al. | Nov 1994 | A |
5360443 | Barone et al. | Nov 1994 | A |
5364354 | Walker et al. | Nov 1994 | A |
5366504 | Andersen et al. | Nov 1994 | A |
5368560 | Rambo et al. | Nov 1994 | A |
5370684 | Vallana et al. | Dec 1994 | A |
5380299 | Fearnot et al. | Jan 1995 | A |
5383925 | Schmitt | Jan 1995 | A |
5383927 | DeGoicoechea et al. | Jan 1995 | A |
5385580 | Schmitt | Jan 1995 | A |
5387450 | Stewart | Feb 1995 | A |
5389106 | Tower | Feb 1995 | A |
5399666 | Ford | Mar 1995 | A |
5405472 | Leone | Apr 1995 | A |
5409495 | Osborn | Apr 1995 | A |
5411466 | Hess | May 1995 | A |
5411477 | Saab | May 1995 | A |
5412035 | Schmitt et al. | May 1995 | A |
5415938 | Cahalan et al. | May 1995 | A |
5417981 | Endo et al. | May 1995 | A |
5423849 | Engelson et al. | Jun 1995 | A |
5423885 | Williams | Jun 1995 | A |
5429618 | Keogh | Jul 1995 | A |
5441515 | Khosravi et al. | Aug 1995 | A |
5443458 | Eury et al. | Aug 1995 | A |
5443496 | Schwartz et al. | Aug 1995 | A |
5443500 | Sigwart | Aug 1995 | A |
5445646 | Euteneuer et al. | Aug 1995 | A |
5447724 | Helmus et al. | Sep 1995 | A |
5451233 | Yock | Sep 1995 | A |
5455040 | Marchant | Oct 1995 | A |
5456661 | Narciso, Jr. | Oct 1995 | A |
5456713 | Chuter | Oct 1995 | A |
5458615 | Klemm et al. | Oct 1995 | A |
5460610 | Don Michael | Oct 1995 | A |
5462990 | Hubbell et al. | Oct 1995 | A |
5464450 | Buscemi et al. | Nov 1995 | A |
5464650 | Berg et al. | Nov 1995 | A |
5470313 | Crocker et al. | Nov 1995 | A |
5470603 | Staniforth et al. | Nov 1995 | A |
5476476 | Hillstead | Dec 1995 | A |
5476509 | Keogh et al. | Dec 1995 | A |
5485496 | Lee et al. | Jan 1996 | A |
5496346 | Horzewski et al. | Mar 1996 | A |
5500013 | Buscemi et al. | Mar 1996 | A |
5501227 | Yock | Mar 1996 | A |
5502158 | Sinclair et al. | Mar 1996 | A |
5507768 | Lau et al. | Apr 1996 | A |
5511726 | Greenspan et al. | Apr 1996 | A |
5514154 | Lau et al. | May 1996 | A |
5514379 | Weissleder et al. | May 1996 | A |
5516560 | Harayama et al. | May 1996 | A |
5516881 | Lee et al. | May 1996 | A |
5527337 | Stack et al. | Jun 1996 | A |
5537729 | Kolobow | Jul 1996 | A |
5538493 | Gerken et al. | Jul 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5545408 | Trigg et al. | Aug 1996 | A |
5551954 | Buscemi et al. | Sep 1996 | A |
5554120 | Chen et al. | Sep 1996 | A |
5554182 | Dinh et al. | Sep 1996 | A |
5556413 | Lam | Sep 1996 | A |
5558642 | Schweich, Jr. et al. | Sep 1996 | A |
5562728 | Lazarus et al. | Oct 1996 | A |
5569463 | Helmus et al. | Oct 1996 | A |
5571135 | Fraser et al. | Nov 1996 | A |
5571166 | Dinh et al. | Nov 1996 | A |
5571567 | Shah | Nov 1996 | A |
5578046 | Liu et al. | Nov 1996 | A |
5578073 | Haimovich et al. | Nov 1996 | A |
5584877 | Miyake et al. | Dec 1996 | A |
5588962 | Nicholas et al. | Dec 1996 | A |
5591199 | Porter et al. | Jan 1997 | A |
5591224 | Schwartz et al. | Jan 1997 | A |
5591227 | Dinh et al. | Jan 1997 | A |
5591607 | Gryaznov et al. | Jan 1997 | A |
5593403 | Buscemi | Jan 1997 | A |
5593434 | Williams | Jan 1997 | A |
5595722 | Grainger et al. | Jan 1997 | A |
5599301 | Jacobs et al. | Feb 1997 | A |
5599307 | Bacher et al. | Feb 1997 | A |
5599352 | Dinh et al. | Feb 1997 | A |
5599922 | Gryaznov et al. | Feb 1997 | A |
5605696 | Eury et al. | Feb 1997 | A |
5607442 | Fischell et al. | Mar 1997 | A |
5607467 | Froix | Mar 1997 | A |
5609629 | Fearnot et al. | Mar 1997 | A |
5610241 | Lee et al. | Mar 1997 | A |
5611775 | Machold et al. | Mar 1997 | A |
5616338 | Fox, Jr. et al. | Apr 1997 | A |
5618298 | Simon | Apr 1997 | A |
5618299 | Khosravi et al. | Apr 1997 | A |
5620420 | Kriesel | Apr 1997 | A |
5624411 | Tuch | Apr 1997 | A |
5628730 | Shapland et al. | May 1997 | A |
5628755 | Heller et al. | May 1997 | A |
5628781 | Williams et al. | May 1997 | A |
5628785 | Schwartz et al. | May 1997 | A |
5628786 | Banas et al. | May 1997 | A |
5629077 | Turnlund et al. | May 1997 | A |
5631135 | Gryaznov et al. | May 1997 | A |
5632771 | Boatman et al. | May 1997 | A |
5632840 | Campbell | May 1997 | A |
5637113 | Tartaglia et al. | Jun 1997 | A |
5644020 | Timmermann et al. | Jul 1997 | A |
5645559 | Hachtman et al. | Jul 1997 | A |
5649951 | Davidson | Jul 1997 | A |
5649977 | Campbell | Jul 1997 | A |
5651174 | Schwartz et al. | Jul 1997 | A |
5653691 | Rupp et al. | Aug 1997 | A |
5656080 | Staniforth et al. | Aug 1997 | A |
5656082 | Takatsuki et al. | Aug 1997 | A |
5658995 | Kohn et al. | Aug 1997 | A |
5667523 | Bynon et al. | Sep 1997 | A |
5667767 | Greff et al. | Sep 1997 | A |
5667796 | Otten | Sep 1997 | A |
5670558 | Onishi et al. | Sep 1997 | A |
5674242 | Phan et al. | Oct 1997 | A |
5679400 | Tuch | Oct 1997 | A |
5693085 | Buirge et al. | Dec 1997 | A |
5693376 | Fetherston et al. | Dec 1997 | A |
5695498 | Tower | Dec 1997 | A |
5695810 | Dubin et al. | Dec 1997 | A |
5697967 | Dinh et al. | Dec 1997 | A |
5700286 | Tartaglia et al. | Dec 1997 | A |
5702754 | Zhong | Dec 1997 | A |
5702818 | Cahalan et al. | Dec 1997 | A |
5707385 | Williams | Jan 1998 | A |
5711763 | Nonami et al. | Jan 1998 | A |
5711812 | Chapek et al. | Jan 1998 | A |
5711958 | Cohn et al. | Jan 1998 | A |
5713949 | Jayaraman | Feb 1998 | A |
5716981 | Hunter et al. | Feb 1998 | A |
5718726 | Amon et al. | Feb 1998 | A |
5720726 | Marcadis et al. | Feb 1998 | A |
5721131 | Rudolph et al. | Feb 1998 | A |
5722984 | Fischell et al. | Mar 1998 | A |
5723219 | Kolluri et al. | Mar 1998 | A |
5725549 | Lam | Mar 1998 | A |
5726297 | Gryaznov et al. | Mar 1998 | A |
5728068 | Leone et al. | Mar 1998 | A |
5728751 | Patnaik | Mar 1998 | A |
5730698 | Fischell et al. | Mar 1998 | A |
5733326 | Tomonto et al. | Mar 1998 | A |
5733327 | Igaki et al. | Mar 1998 | A |
5733330 | Cox | Mar 1998 | A |
5733564 | Lehtinen | Mar 1998 | A |
5733925 | Kunz et al. | Mar 1998 | A |
5735897 | Buirge | Apr 1998 | A |
5741554 | Tisone | Apr 1998 | A |
5741881 | Patnaik | Apr 1998 | A |
5746745 | Abele et al. | May 1998 | A |
5746998 | Torchilin et al. | May 1998 | A |
5756457 | Wang et al. | May 1998 | A |
5756476 | Epstein et al. | May 1998 | A |
5759205 | Valentini | Jun 1998 | A |
5759474 | Rupp et al. | Jun 1998 | A |
5765682 | Bley et al. | Jun 1998 | A |
5766204 | Porter et al. | Jun 1998 | A |
5766239 | Cox | Jun 1998 | A |
5766710 | Turnlund et al. | Jun 1998 | A |
5769883 | Buscemi et al. | Jun 1998 | A |
5769884 | Solovay | Jun 1998 | A |
5770609 | Grainger et al. | Jun 1998 | A |
5772864 | Møller et al. | Jun 1998 | A |
5776184 | Tuch | Jul 1998 | A |
5780807 | Saunders | Jul 1998 | A |
5782742 | Crocker et al. | Jul 1998 | A |
5783657 | Pavlin et al. | Jul 1998 | A |
5788626 | Thompson | Aug 1998 | A |
5788979 | Alt et al. | Aug 1998 | A |
5800392 | Racchini | Sep 1998 | A |
5800516 | Fine et al. | Sep 1998 | A |
5804318 | Pinchuk et al. | Sep 1998 | A |
5807244 | Barot | Sep 1998 | A |
5810871 | Tuckey et al. | Sep 1998 | A |
5810873 | Morales | Sep 1998 | A |
5811151 | Hendriks et al. | Sep 1998 | A |
5811447 | Kunz et al. | Sep 1998 | A |
5820917 | Tuch | Oct 1998 | A |
5823996 | Sparks | Oct 1998 | A |
5824048 | Tuch | Oct 1998 | A |
5824049 | Ragheb et al. | Oct 1998 | A |
5824056 | Rosenberg | Oct 1998 | A |
5826586 | Mishra et al. | Oct 1998 | A |
5830178 | Jones et al. | Nov 1998 | A |
5830179 | Mikus et al. | Nov 1998 | A |
5830217 | Ryan | Nov 1998 | A |
5830461 | Billiar | Nov 1998 | A |
5830879 | Isner | Nov 1998 | A |
5833644 | Zadno-Azizi et al. | Nov 1998 | A |
5833651 | Donovan et al. | Nov 1998 | A |
5833659 | Kranys | Nov 1998 | A |
5834582 | Sinclair et al. | Nov 1998 | A |
5836962 | Gianotti | Nov 1998 | A |
5836965 | Jendersee et al. | Nov 1998 | A |
5837008 | Berg et al. | Nov 1998 | A |
5837313 | Ding et al. | Nov 1998 | A |
5837835 | Gryaznov et al. | Nov 1998 | A |
5840009 | Fischell et al. | Nov 1998 | A |
5840083 | Braach-Maksvytis | Nov 1998 | A |
5843033 | Ropiak | Dec 1998 | A |
5843119 | Schulewitz | Dec 1998 | A |
5843172 | Yan | Dec 1998 | A |
5846247 | Unsworth et al. | Dec 1998 | A |
5849859 | Acemoglu | Dec 1998 | A |
5851508 | Greff et al. | Dec 1998 | A |
5853408 | Muni | Dec 1998 | A |
5854207 | Lee et al. | Dec 1998 | A |
5854376 | Higashi | Dec 1998 | A |
5855598 | Pinchuk | Jan 1999 | A |
5855612 | Ohthuki et al. | Jan 1999 | A |
5855618 | Patnaik et al. | Jan 1999 | A |
5857998 | Barry | Jan 1999 | A |
5858556 | Eckhart et al. | Jan 1999 | A |
5858746 | Hubbell et al. | Jan 1999 | A |
5858990 | Walsh | Jan 1999 | A |
5860954 | Ropiak | Jan 1999 | A |
5865814 | Tuch | Feb 1999 | A |
5866113 | Hendriks et al. | Feb 1999 | A |
5868781 | Killion | Feb 1999 | A |
5869127 | Zhong | Feb 1999 | A |
5871436 | Eury | Feb 1999 | A |
5871437 | Alt | Feb 1999 | A |
5873904 | Ragheb et al. | Feb 1999 | A |
5874101 | Zhong et al. | Feb 1999 | A |
5874109 | Ducheyne et al. | Feb 1999 | A |
5874165 | Drumheller | Feb 1999 | A |
5874355 | Huang et al. | Feb 1999 | A |
5876426 | Kume et al. | Mar 1999 | A |
5876433 | Lunn | Mar 1999 | A |
5876743 | Ibsen et al. | Mar 1999 | A |
5877224 | Brocchini et al. | Mar 1999 | A |
5877263 | Patnaik et al. | Mar 1999 | A |
5879713 | Roth et al. | Mar 1999 | A |
5883011 | Lin et al. | Mar 1999 | A |
5888533 | Dunn | Mar 1999 | A |
5891192 | Murayama et al. | Apr 1999 | A |
5893840 | Hull et al. | Apr 1999 | A |
5893852 | Morales | Apr 1999 | A |
5895407 | Jayaraman | Apr 1999 | A |
5897911 | Loeffler | Apr 1999 | A |
5897955 | Drumheller | Apr 1999 | A |
5898178 | Bunker | Apr 1999 | A |
5902631 | Wang et al. | May 1999 | A |
5902875 | Roby et al. | May 1999 | A |
5905168 | Dos Santos et al. | May 1999 | A |
5906759 | Richter | May 1999 | A |
5910564 | Gruning et al. | Jun 1999 | A |
5914182 | Drumheller | Jun 1999 | A |
5914387 | Roby et al. | Jun 1999 | A |
5916234 | Lam | Jun 1999 | A |
5916870 | Lee et al. | Jun 1999 | A |
5919893 | Roby et al. | Jul 1999 | A |
5921416 | Uehara | Jul 1999 | A |
5922005 | Richter et al. | Jul 1999 | A |
5922393 | Jayaraman | Jul 1999 | A |
5925552 | Keogh et al. | Jul 1999 | A |
5925720 | Kataoka et al. | Jul 1999 | A |
5928916 | Keogh | Jul 1999 | A |
5932299 | Katoot | Aug 1999 | A |
5935135 | Bramfitt et al. | Aug 1999 | A |
5942209 | Leavitt et al. | Aug 1999 | A |
5947993 | Morales | Sep 1999 | A |
5948018 | Dereume et al. | Sep 1999 | A |
5948428 | Lee et al. | Sep 1999 | A |
5951881 | Rogers et al. | Sep 1999 | A |
5954744 | Phan et al. | Sep 1999 | A |
5955509 | Webber et al. | Sep 1999 | A |
5957975 | Lafont et al. | Sep 1999 | A |
5958385 | Tondeur et al. | Sep 1999 | A |
5962138 | Kolluri et al. | Oct 1999 | A |
5965720 | Gryaznov et al. | Oct 1999 | A |
5968091 | Pinchuk et al. | Oct 1999 | A |
5968092 | Buscemi et al. | Oct 1999 | A |
5969422 | Ting et al. | Oct 1999 | A |
5971954 | Conway et al. | Oct 1999 | A |
5972027 | Johnson | Oct 1999 | A |
5972029 | Fuisz | Oct 1999 | A |
5972505 | Phillips et al. | Oct 1999 | A |
5976155 | Foreman et al. | Nov 1999 | A |
5976182 | Cox | Nov 1999 | A |
5980564 | Stinson | Nov 1999 | A |
5980928 | Terry | Nov 1999 | A |
5980972 | Ding | Nov 1999 | A |
5981568 | Kunz et al. | Nov 1999 | A |
5984449 | Tajika et al. | Nov 1999 | A |
5986169 | Gjunter | Nov 1999 | A |
5997468 | Wolff et al. | Dec 1999 | A |
5997517 | Whitbourne | Dec 1999 | A |
6010445 | Armini et al. | Jan 2000 | A |
6010530 | Goicoechea | Jan 2000 | A |
6010573 | Bowlin | Jan 2000 | A |
6011125 | Lohmeijer et al. | Jan 2000 | A |
6013099 | Dinh et al. | Jan 2000 | A |
6015541 | Greff et al. | Jan 2000 | A |
6019789 | Dinh et al. | Feb 2000 | A |
6024918 | Hendriks et al. | Feb 2000 | A |
6027510 | Alt | Feb 2000 | A |
6027526 | Limon et al. | Feb 2000 | A |
6030371 | Pursley | Feb 2000 | A |
6033582 | Lee et al. | Mar 2000 | A |
6033719 | Keogh | Mar 2000 | A |
6034204 | Mohr et al. | Mar 2000 | A |
6042606 | Frantzen | Mar 2000 | A |
6042875 | Ding et al. | Mar 2000 | A |
6045899 | Wang et al. | Apr 2000 | A |
6048964 | Lee et al. | Apr 2000 | A |
6051021 | Frid | Apr 2000 | A |
6051576 | Ashton et al. | Apr 2000 | A |
6051648 | Rhee et al. | Apr 2000 | A |
6054553 | Groth et al. | Apr 2000 | A |
6056906 | Werneth et al. | May 2000 | A |
6056993 | Leidner et al. | May 2000 | A |
6059752 | Segal | May 2000 | A |
6059810 | Brown et al. | May 2000 | A |
6060451 | DiMaio et al. | May 2000 | A |
6060518 | Kabanov et al. | May 2000 | A |
6063092 | Shin | May 2000 | A |
6066156 | Yan | May 2000 | A |
6071266 | Kelley | Jun 2000 | A |
6071305 | Brown et al. | Jun 2000 | A |
6074659 | Kunz et al. | Jun 2000 | A |
6080099 | Slater et al. | Jun 2000 | A |
6080177 | Igaki et al. | Jun 2000 | A |
6080190 | Schwartz | Jun 2000 | A |
6080488 | Hostettler et al. | Jun 2000 | A |
6083258 | Yadav | Jul 2000 | A |
6086610 | Duerig et al. | Jul 2000 | A |
6090330 | Gawa et al. | Jul 2000 | A |
6093199 | Brown et al. | Jul 2000 | A |
6093463 | Thakrar | Jul 2000 | A |
6096070 | Ragheb et al. | Aug 2000 | A |
6096525 | Patnaik | Aug 2000 | A |
6099455 | Columbo et al. | Aug 2000 | A |
6099559 | Nolting | Aug 2000 | A |
6099561 | Alt | Aug 2000 | A |
6099562 | Ding et al. | Aug 2000 | A |
6103230 | Billiar et al. | Aug 2000 | A |
6106454 | Berg et al. | Aug 2000 | A |
6106530 | Harada | Aug 2000 | A |
6106889 | Beavers et al. | Aug 2000 | A |
6107416 | Patnaik et al. | Aug 2000 | A |
6110180 | Foreman et al. | Aug 2000 | A |
6110188 | Narciso, Jr. | Aug 2000 | A |
6110483 | Whitbourne et al. | Aug 2000 | A |
6113629 | Ken | Sep 2000 | A |
6117479 | Hogan et al. | Sep 2000 | A |
6117979 | Hendriks et al. | Sep 2000 | A |
6120477 | Campbell et al. | Sep 2000 | A |
6120491 | Kohn et al. | Sep 2000 | A |
6120535 | McDonald et al. | Sep 2000 | A |
6120536 | Ding et al. | Sep 2000 | A |
6120788 | Barrows | Sep 2000 | A |
6120847 | Yang et al. | Sep 2000 | A |
6120904 | Hostettler et al. | Sep 2000 | A |
6121027 | Clapper et al. | Sep 2000 | A |
6123712 | Di Caprio et al. | Sep 2000 | A |
6125523 | Brown et al. | Oct 2000 | A |
6126686 | Badylak et al. | Oct 2000 | A |
6127173 | Eckstein et al. | Oct 2000 | A |
6129761 | Hubbell | Oct 2000 | A |
6129928 | Sarangapani et al. | Oct 2000 | A |
6132809 | Hynes et al. | Oct 2000 | A |
6136333 | Cohn et al. | Oct 2000 | A |
6140127 | Sprague | Oct 2000 | A |
6140431 | Kinker et al. | Oct 2000 | A |
6143037 | Goldstein et al. | Nov 2000 | A |
6143354 | Koulik et al. | Nov 2000 | A |
6143370 | Panagiotou et al. | Nov 2000 | A |
6149574 | Trauthen et al. | Nov 2000 | A |
6150630 | Perry et al. | Nov 2000 | A |
6153252 | Hossainy et al. | Nov 2000 | A |
6156373 | Zhong et al. | Dec 2000 | A |
6159227 | Di Caprio et al. | Dec 2000 | A |
6159229 | Jendersee et al. | Dec 2000 | A |
6159951 | Karpeisky et al. | Dec 2000 | A |
6159978 | Myers et al. | Dec 2000 | A |
6160084 | Langer et al. | Dec 2000 | A |
6165212 | Dereume et al. | Dec 2000 | A |
6166130 | Rhee et al. | Dec 2000 | A |
6168617 | Blaeser et al. | Jan 2001 | B1 |
6168619 | Dinh et al. | Jan 2001 | B1 |
6169170 | Gryaznov et al. | Jan 2001 | B1 |
6171609 | Kunz | Jan 2001 | B1 |
6172167 | Stapert et al. | Jan 2001 | B1 |
6174316 | Tuckey et al. | Jan 2001 | B1 |
6174330 | Stinson | Jan 2001 | B1 |
6177523 | Reich et al. | Jan 2001 | B1 |
6180632 | Myers et al. | Jan 2001 | B1 |
6183505 | Mohn, Jr. et al. | Feb 2001 | B1 |
6187045 | Fehring et al. | Feb 2001 | B1 |
6193727 | Foreman et al. | Feb 2001 | B1 |
6203551 | Wu | Mar 2001 | B1 |
6209621 | Treacy | Apr 2001 | B1 |
6210715 | Starling et al. | Apr 2001 | B1 |
6211249 | Cohn et al. | Apr 2001 | B1 |
6214115 | Taylor et al. | Apr 2001 | B1 |
6214407 | Laube et al. | Apr 2001 | B1 |
6214901 | Chudzik et al. | Apr 2001 | B1 |
6217586 | Mackenzie | Apr 2001 | B1 |
6217721 | Xu et al. | Apr 2001 | B1 |
6224626 | Steinke | May 2001 | B1 |
6224675 | Prentice et al. | May 2001 | B1 |
6224894 | Jamiolkowski et al. | May 2001 | B1 |
6228845 | Donovan et al. | May 2001 | B1 |
6231590 | Slaikeu et al. | May 2001 | B1 |
6231600 | Zhong | May 2001 | B1 |
6240616 | Yan | Jun 2001 | B1 |
6242041 | Katoot et al. | Jun 2001 | B1 |
6245076 | Yan | Jun 2001 | B1 |
6245099 | Edwin et al. | Jun 2001 | B1 |
6245103 | Stinson | Jun 2001 | B1 |
6245753 | Byun et al. | Jun 2001 | B1 |
6245760 | He et al. | Jun 2001 | B1 |
6248129 | Froix | Jun 2001 | B1 |
6248344 | Ylanen et al. | Jun 2001 | B1 |
6251135 | Stinson et al. | Jun 2001 | B1 |
6251136 | Guruwaiya et al. | Jun 2001 | B1 |
6251142 | Bernacca et al. | Jun 2001 | B1 |
6253443 | Johnson | Jul 2001 | B1 |
6254632 | Wu et al. | Jul 2001 | B1 |
6258099 | Mareiro et al. | Jul 2001 | B1 |
6258121 | Yang et al. | Jul 2001 | B1 |
6258371 | Koulik et al. | Jul 2001 | B1 |
6262034 | Mathiowitz et al. | Jul 2001 | B1 |
6270788 | Koulik et al. | Aug 2001 | B1 |
6273850 | Gambale | Aug 2001 | B1 |
6273913 | Wright et al. | Aug 2001 | B1 |
6277110 | Morales | Aug 2001 | B1 |
6277449 | Kolluri et al. | Aug 2001 | B1 |
6279368 | Escano et al. | Aug 2001 | B1 |
6281262 | Shikinami | Aug 2001 | B1 |
6283947 | Mirzaee | Sep 2001 | B1 |
6283949 | Roorda | Sep 2001 | B1 |
6284305 | Ding et al. | Sep 2001 | B1 |
6284333 | Wang et al. | Sep 2001 | B1 |
6287332 | Bolz et al. | Sep 2001 | B1 |
6287628 | Hossainy et al. | Sep 2001 | B1 |
6290721 | Heath | Sep 2001 | B1 |
6293966 | Frantzen | Sep 2001 | B1 |
6294836 | Paranjpe et al. | Sep 2001 | B1 |
6296603 | Turnlund et al. | Oct 2001 | B1 |
6299604 | Ragheb et al. | Oct 2001 | B1 |
6303901 | Perry et al. | Oct 2001 | B1 |
6306176 | Whitbourne | Oct 2001 | B1 |
6312459 | Huang et al. | Nov 2001 | B1 |
6319520 | Wuthrich et al. | Nov 2001 | B1 |
6322588 | Ogle et al. | Nov 2001 | B1 |
6322847 | Zhong et al. | Nov 2001 | B1 |
6327772 | Zadno-Azizi et al. | Dec 2001 | B1 |
6331313 | Wong et al. | Dec 2001 | B1 |
6335029 | Kamath et al. | Jan 2002 | B1 |
6344035 | Chudzik et al. | Feb 2002 | B1 |
6346110 | Wu | Feb 2002 | B2 |
6358556 | Ding et al. | Mar 2002 | B1 |
6362099 | Gandikota et al. | Mar 2002 | B1 |
6364903 | Tseng et al. | Apr 2002 | B2 |
6375458 | Moorleghem et al. | Apr 2002 | B1 |
6375826 | Wang et al. | Apr 2002 | B1 |
6379379 | Wang | Apr 2002 | B1 |
6379381 | Hossainy et al. | Apr 2002 | B1 |
6387118 | Hanson | May 2002 | B1 |
6387121 | Alt | May 2002 | B1 |
6387379 | Goldberg et al. | May 2002 | B1 |
6388043 | Langer et al. | May 2002 | B1 |
6395325 | Hedge et al. | May 2002 | B1 |
6395326 | Castro et al. | May 2002 | B1 |
6406738 | Hogan et al. | Jun 2002 | B1 |
6409761 | Jang | Jun 2002 | B1 |
6413272 | Igaki | Jul 2002 | B1 |
6419692 | Yang et al. | Jul 2002 | B1 |
6420189 | Lopatin | Jul 2002 | B1 |
6423092 | Datta et al. | Jul 2002 | B2 |
6436816 | Lee et al. | Aug 2002 | B1 |
6444567 | Besser et al. | Sep 2002 | B1 |
6447835 | Wang et al. | Sep 2002 | B1 |
6451373 | Hossainy et al. | Sep 2002 | B1 |
6454738 | Tran et al. | Sep 2002 | B1 |
6455424 | McTeer et al. | Sep 2002 | B1 |
6461632 | Gogolewski | Oct 2002 | B1 |
6462284 | Hashimoto | Oct 2002 | B1 |
6464720 | Boatman et al. | Oct 2002 | B2 |
6468906 | Chan et al. | Oct 2002 | B1 |
6479565 | Stanley | Nov 2002 | B1 |
6481262 | Ching et al. | Nov 2002 | B2 |
6482834 | Spada et al. | Nov 2002 | B2 |
6485512 | Cheng | Nov 2002 | B1 |
6488701 | Nolting et al. | Dec 2002 | B1 |
6488773 | Ehrhardt et al. | Dec 2002 | B1 |
6491666 | Santini, Jr. et al. | Dec 2002 | B1 |
6492615 | Flanagan | Dec 2002 | B1 |
6494862 | Ray et al. | Dec 2002 | B1 |
6494908 | Huxel et al. | Dec 2002 | B1 |
6495156 | Wenz et al. | Dec 2002 | B2 |
6495200 | Chan et al. | Dec 2002 | B1 |
6503538 | Chu et al. | Jan 2003 | B1 |
6503556 | Harish et al. | Jan 2003 | B2 |
6503954 | Bhat et al. | Jan 2003 | B1 |
6504307 | Malik et al. | Jan 2003 | B1 |
6506437 | Harish et al. | Jan 2003 | B1 |
6510722 | Ching et al. | Jan 2003 | B1 |
6511748 | Barrows | Jan 2003 | B1 |
6517888 | Weber | Feb 2003 | B1 |
6517889 | Jayaraman | Feb 2003 | B1 |
6521284 | Parsons et al. | Feb 2003 | B1 |
6524232 | Tang et al. | Feb 2003 | B1 |
6524347 | Myers et al. | Feb 2003 | B1 |
6527801 | Dutta | Mar 2003 | B1 |
6527863 | Pacetti et al. | Mar 2003 | B1 |
6528526 | Myers et al. | Mar 2003 | B1 |
6530950 | Alvarado et al. | Mar 2003 | B1 |
6530951 | Bates et al. | Mar 2003 | B1 |
6537589 | Chae et al. | Mar 2003 | B1 |
6539607 | Fehring et al. | Apr 2003 | B1 |
6540776 | Sanders Millare et al. | Apr 2003 | B2 |
6540777 | Stenzel | Apr 2003 | B2 |
6544223 | Kokish | Apr 2003 | B1 |
6544543 | Mandrusov et al. | Apr 2003 | B1 |
6544582 | Yoe | Apr 2003 | B1 |
6554758 | Turnlund et al. | Apr 2003 | B2 |
6554854 | Flanagan | Apr 2003 | B1 |
6555059 | Myrick et al. | Apr 2003 | B1 |
6555157 | Hossainy | Apr 2003 | B1 |
6558733 | Hossainy et al. | May 2003 | B1 |
6562136 | Chappa et al. | May 2003 | B1 |
6565599 | Hong et al. | May 2003 | B1 |
6565659 | Pacetti et al. | May 2003 | B1 |
6569191 | Hogan | May 2003 | B1 |
6569193 | Cox et al. | May 2003 | B1 |
6572644 | Moein | Jun 2003 | B1 |
6572672 | Yadav et al. | Jun 2003 | B2 |
6574851 | Mirizzi | Jun 2003 | B1 |
6582417 | Ledesma et al. | Jun 2003 | B1 |
6585755 | Jackson et al. | Jul 2003 | B2 |
6585765 | Hossainy et al. | Jul 2003 | B1 |
6585926 | Mirzaee | Jul 2003 | B1 |
6592614 | Lenker et al. | Jul 2003 | B2 |
6592617 | Thompson | Jul 2003 | B2 |
6596296 | Nelson et al. | Jul 2003 | B1 |
6605114 | Yan et al. | Aug 2003 | B1 |
6605154 | Villareal | Aug 2003 | B1 |
6605874 | Leu et al. | Aug 2003 | B2 |
6610087 | Zarbatany et al. | Aug 2003 | B1 |
6613072 | Lau et al. | Sep 2003 | B2 |
6616765 | Wu et al. | Sep 2003 | B1 |
6623448 | Slater | Sep 2003 | B2 |
6625486 | Lundkvist et al. | Sep 2003 | B2 |
6626939 | Burnside et al. | Sep 2003 | B1 |
6635269 | Jennissen | Oct 2003 | B1 |
6635964 | Maex et al. | Oct 2003 | B2 |
6645135 | Bhat | Nov 2003 | B1 |
6645195 | Bhat et al. | Nov 2003 | B1 |
6645243 | Vallana et al. | Nov 2003 | B2 |
6645547 | Shekalim et al. | Nov 2003 | B1 |
6656162 | Santini, Jr. et al. | Dec 2003 | B2 |
6656216 | Hossainy et al. | Dec 2003 | B1 |
6656506 | Wu et al. | Dec 2003 | B1 |
6660034 | Mandrusov et al. | Dec 2003 | B1 |
6663662 | Pacetti et al. | Dec 2003 | B2 |
6663880 | Roorda et al. | Dec 2003 | B1 |
6664187 | Ngo et al. | Dec 2003 | B1 |
6664335 | Krishnan | Dec 2003 | B2 |
6666214 | Canham | Dec 2003 | B2 |
6666880 | Chiu et al. | Dec 2003 | B1 |
6667049 | Janas et al. | Dec 2003 | B2 |
6669723 | Killion et al. | Dec 2003 | B2 |
6669980 | Hansen | Dec 2003 | B2 |
6673154 | Pacetti et al. | Jan 2004 | B1 |
6673385 | Ding et al. | Jan 2004 | B1 |
6676697 | Richter | Jan 2004 | B1 |
6676700 | Jacobs et al. | Jan 2004 | B1 |
6679980 | Andreacchi | Jan 2004 | B1 |
6689099 | Mirzaee | Feb 2004 | B2 |
6689375 | Wahlig et al. | Feb 2004 | B1 |
6695920 | Pacetti et al. | Feb 2004 | B1 |
6699281 | Vallana et al. | Mar 2004 | B2 |
6703307 | Lopatin et al. | Mar 2004 | B2 |
6706013 | Bhat et al. | Mar 2004 | B1 |
6706273 | Roessler | Mar 2004 | B1 |
6709379 | Brandau et al. | Mar 2004 | B1 |
6709514 | Hossainy | Mar 2004 | B1 |
6712845 | Hossainy | Mar 2004 | B2 |
6713119 | Hossainy et al. | Mar 2004 | B2 |
6716444 | Castro et al. | Apr 2004 | B1 |
6719934 | Stinson | Apr 2004 | B2 |
6719989 | Matsushima et al. | Apr 2004 | B1 |
6720402 | Langer et al. | Apr 2004 | B2 |
6723120 | Yan | Apr 2004 | B2 |
6733768 | Hossainy et al. | May 2004 | B2 |
6740040 | Mandrusov et al. | May 2004 | B1 |
6743462 | Pacetti | Jun 2004 | B1 |
6746773 | Llanos et al. | Jun 2004 | B2 |
6749626 | Bhat et al. | Jun 2004 | B1 |
6752826 | Holloway et al. | Jun 2004 | B2 |
6753007 | Haggard et al. | Jun 2004 | B2 |
6753071 | Pacetti | Jun 2004 | B1 |
6758859 | Dang et al. | Jul 2004 | B1 |
6759054 | Chen et al. | Jul 2004 | B2 |
6764505 | Hossainy et al. | Jul 2004 | B1 |
6774278 | Ragheb et al. | Aug 2004 | B1 |
6776792 | Yan et al. | Aug 2004 | B1 |
6783793 | Hossainy et al. | Aug 2004 | B1 |
6818063 | Kerrigan | Nov 2004 | B1 |
6846323 | Yip et al. | Jan 2005 | B2 |
6860946 | Hossainy et al. | Mar 2005 | B2 |
6861088 | Weber et al. | Mar 2005 | B2 |
6865810 | Stinson | Mar 2005 | B2 |
6869443 | Buscemi et al. | Mar 2005 | B2 |
6878160 | Gilligan et al. | Apr 2005 | B2 |
6887270 | Miller et al. | May 2005 | B2 |
6887485 | Fitzhugh et al. | May 2005 | B2 |
6890546 | Mollison et al. | May 2005 | B2 |
6899731 | Li et al. | May 2005 | B2 |
20010007083 | Roorda | Jul 2001 | A1 |
20010014717 | Hossainy et al. | Aug 2001 | A1 |
20010016753 | Caprio et al. | Aug 2001 | A1 |
20010020011 | Mathiowitz et al. | Sep 2001 | A1 |
20010029351 | Falotico et al. | Oct 2001 | A1 |
20010037145 | Guruwaiya et al. | Nov 2001 | A1 |
20010044652 | Moore | Nov 2001 | A1 |
20010051608 | Mathiowitz et al. | Dec 2001 | A1 |
20020002399 | Huxel et al. | Jan 2002 | A1 |
20020004060 | Heublein et al. | Jan 2002 | A1 |
20020004101 | Ding et al. | Jan 2002 | A1 |
20020005206 | Falotico et al. | Jan 2002 | A1 |
20020007213 | Falotico et al. | Jan 2002 | A1 |
20020007214 | Falotico | Jan 2002 | A1 |
20020007215 | Falotico et al. | Jan 2002 | A1 |
20020009604 | Zamora et al. | Jan 2002 | A1 |
20020016625 | Falotico et al. | Feb 2002 | A1 |
20020032414 | Ragheb et al. | Mar 2002 | A1 |
20020032434 | Chudzik et al. | Mar 2002 | A1 |
20020051730 | Bodnar et al. | May 2002 | A1 |
20020062148 | Hart | May 2002 | A1 |
20020065553 | Weber | May 2002 | A1 |
20020071822 | Uhrich | Jun 2002 | A1 |
20020077693 | Barclay et al. | Jun 2002 | A1 |
20020082679 | Sirhan et al. | Jun 2002 | A1 |
20020087123 | Hossainy et al. | Jul 2002 | A1 |
20020091433 | Ding et al. | Jul 2002 | A1 |
20020094440 | Llanos et al. | Jul 2002 | A1 |
20020111590 | Davila et al. | Aug 2002 | A1 |
20020116050 | Kocur | Aug 2002 | A1 |
20020120326 | Michal | Aug 2002 | A1 |
20020138133 | Lenz et al. | Sep 2002 | A1 |
20020142039 | Claude | Oct 2002 | A1 |
20020155212 | Hossainy | Oct 2002 | A1 |
20020161114 | Gunatillake et al. | Oct 2002 | A1 |
20020165608 | Llanos et al. | Nov 2002 | A1 |
20020176849 | Slepian | Nov 2002 | A1 |
20020183581 | Yoe et al. | Dec 2002 | A1 |
20020187632 | Marsh | Dec 2002 | A1 |
20020188037 | Chudzik et al. | Dec 2002 | A1 |
20020188277 | Roorda et al. | Dec 2002 | A1 |
20030003221 | Zhong et al. | Jan 2003 | A1 |
20030004141 | Brown | Jan 2003 | A1 |
20030028243 | Bates et al. | Feb 2003 | A1 |
20030028244 | Bates et al. | Feb 2003 | A1 |
20030031780 | Chudzik et al. | Feb 2003 | A1 |
20030032767 | Tada et al. | Feb 2003 | A1 |
20030033001 | Igaki | Feb 2003 | A1 |
20030036794 | Ragheb et al. | Feb 2003 | A1 |
20030039689 | Chen et al. | Feb 2003 | A1 |
20030040712 | Ray et al. | Feb 2003 | A1 |
20030040790 | Furst | Feb 2003 | A1 |
20030054090 | Hansen | Mar 2003 | A1 |
20030055482 | Schwager et al. | Mar 2003 | A1 |
20030059520 | Chen et al. | Mar 2003 | A1 |
20030060877 | Falotico et al. | Mar 2003 | A1 |
20030065377 | Davila et al. | Apr 2003 | A1 |
20030072868 | Harish et al. | Apr 2003 | A1 |
20030073961 | Happ | Apr 2003 | A1 |
20030083646 | Sirhan et al. | May 2003 | A1 |
20030083739 | Cafferata | May 2003 | A1 |
20030088307 | Shulze et al. | May 2003 | A1 |
20030093107 | Parsonage et al. | May 2003 | A1 |
20030097088 | Pacetti | May 2003 | A1 |
20030097173 | Dutta | May 2003 | A1 |
20030099682 | Moussy et al. | May 2003 | A1 |
20030099712 | Jayaraman | May 2003 | A1 |
20030100865 | Santini, Jr. et al. | May 2003 | A1 |
20030105518 | Dutta | Jun 2003 | A1 |
20030105530 | Pirhonen et al. | Jun 2003 | A1 |
20030113439 | Pacetti et al. | Jun 2003 | A1 |
20030113445 | Martin | Jun 2003 | A1 |
20030138487 | Hogan et al. | Jul 2003 | A1 |
20030150380 | Yoe | Aug 2003 | A1 |
20030157241 | Hossainy et al. | Aug 2003 | A1 |
20030158517 | Kokish | Aug 2003 | A1 |
20030171053 | Sanders | Sep 2003 | A1 |
20030185964 | Weber et al. | Oct 2003 | A1 |
20030187495 | Cully et al. | Oct 2003 | A1 |
20030190406 | Hossainy et al. | Oct 2003 | A1 |
20030203617 | Lane et al. | Oct 2003 | A1 |
20030207020 | Villareal | Nov 2003 | A1 |
20030208259 | Penhasi | Nov 2003 | A1 |
20030209835 | Chun et al. | Nov 2003 | A1 |
20030211230 | Pacetti et al. | Nov 2003 | A1 |
20030226833 | Shapovalov et al. | Dec 2003 | A1 |
20030236565 | DiMatteo et al. | Dec 2003 | A1 |
20040018296 | Castro et al. | Jan 2004 | A1 |
20040029952 | Chen et al. | Feb 2004 | A1 |
20040047978 | Hossainy et al. | Mar 2004 | A1 |
20040047980 | Pacetti et al. | Mar 2004 | A1 |
20040052858 | Wu et al. | Mar 2004 | A1 |
20040052859 | Wu et al. | Mar 2004 | A1 |
20040054104 | Pacetti | Mar 2004 | A1 |
20040060508 | Pacetti et al. | Apr 2004 | A1 |
20040062853 | Pacetti et al. | Apr 2004 | A1 |
20040063805 | Pacetti et al. | Apr 2004 | A1 |
20040071861 | Mandrusov et al. | Apr 2004 | A1 |
20040072922 | Hossainy et al. | Apr 2004 | A1 |
20040073298 | Hossainy | Apr 2004 | A1 |
20040086542 | Hossainy et al. | May 2004 | A1 |
20040086550 | Roorda et al. | May 2004 | A1 |
20040093077 | White et al. | May 2004 | A1 |
20040096504 | Michal | May 2004 | A1 |
20040098095 | Burnside et al. | May 2004 | A1 |
20040098117 | Hossainy et al. | May 2004 | A1 |
20040111149 | Stinson | Jun 2004 | A1 |
20040127970 | Saunders et al. | Jul 2004 | A1 |
20040142015 | Hossainy et al. | Jul 2004 | A1 |
20040143317 | Stinson et al. | Jul 2004 | A1 |
20040167610 | Fleming, III | Aug 2004 | A1 |
20040213893 | Boulais | Oct 2004 | A1 |
20040236399 | Sundar | Nov 2004 | A1 |
20040236417 | Yan et al. | Nov 2004 | A1 |
20040265475 | Hossainy et al. | Dec 2004 | A1 |
20050037052 | Udipi et al. | Feb 2005 | A1 |
20050038134 | Loomis et al. | Feb 2005 | A1 |
20050038497 | Neuendorf et al. | Feb 2005 | A1 |
20050043786 | Chu et al. | Feb 2005 | A1 |
20050049693 | Walker | Mar 2005 | A1 |
20050049694 | Neary | Mar 2005 | A1 |
20050054774 | Kangas | Mar 2005 | A1 |
20050055044 | Kangas | Mar 2005 | A1 |
20050055078 | Campbell | Mar 2005 | A1 |
20050060020 | Jenson | Mar 2005 | A1 |
20050064088 | Fredrickson | Mar 2005 | A1 |
20050065501 | Wallace | Mar 2005 | A1 |
20050065545 | Wallace | Mar 2005 | A1 |
20050065593 | Chu et al. | Mar 2005 | A1 |
20050074406 | Couvillon et al. | Apr 2005 | A1 |
20050074545 | Thomas | Apr 2005 | A1 |
20050075714 | Cheng et al. | Apr 2005 | A1 |
20050079274 | Palasis et al. | Apr 2005 | A1 |
20050084515 | Udipi et al. | Apr 2005 | A1 |
20050106210 | Ding et al. | May 2005 | A1 |
20050113903 | Rosenthal et al. | May 2005 | A1 |
20050129727 | Weber et al. | Jun 2005 | A1 |
20060045901 | Weber | Mar 2006 | A1 |
20070259101 | Kleiner et al. | Nov 2007 | A1 |
Number | Date | Country |
---|---|---|
2 008 312 | Jul 1990 | CA |
2 007 648 | Apr 1991 | CA |
1 322 628 | Oct 1993 | CA |
1 336 319 | Jul 1995 | CA |
1 338 303 | May 1996 | CA |
042 24 401 | Jan 1994 | DE |
044 07 079 | Sep 1994 | DE |
197 31 021 | Jan 1999 | DE |
199 16 086 | Oct 1999 | DE |
198 56 983 | Dec 1999 | DE |
0 108 171 | May 1984 | EP |
0 144 534 | Jun 1985 | EP |
0 301 856 | Feb 1989 | EP |
0 380 668 | Apr 1989 | EP |
0 351 314 | Jan 1990 | EP |
0 364 787 | Apr 1990 | EP |
0 396 429 | Nov 1990 | EP |
0 397 500 | Nov 1990 | EP |
0 464 755 | Jan 1992 | EP |
0 493 788 | Jul 1992 | EP |
0 526 606 | Sep 1992 | EP |
0 514 406 | Nov 1992 | EP |
0 517 075 | Dec 1992 | EP |
0 540 290 | May 1993 | EP |
0 553 960 | Aug 1993 | EP |
0 554 082 | Aug 1993 | EP |
0 565 251 | Oct 1993 | EP |
0 578 998 | Jan 1994 | EP |
0 604 022 | Jun 1994 | EP |
0 621 017 | Oct 1994 | EP |
0 623 354 | Nov 1994 | EP |
0 649 637 | Apr 1995 | EP |
0 665 023 | Aug 1995 | EP |
0 701 802 | Mar 1996 | EP |
0 701 803 | Mar 1996 | EP |
0 709 068 | May 1996 | EP |
0 716 836 | Jun 1996 | EP |
0 732 087 | Sep 1996 | EP |
0 832 618 | Sep 1996 | EP |
0 756 853 | Feb 1997 | EP |
0 809 999 | Dec 1997 | EP |
0 832 655 | Apr 1998 | EP |
0 834 293 | Apr 1998 | EP |
0 850 604 | Jul 1998 | EP |
0 850 651 | Jul 1998 | EP |
0 879 595 | Nov 1998 | EP |
0 910 584 | Apr 1999 | EP |
0 923 953 | Jun 1999 | EP |
0 953 320 | Nov 1999 | EP |
0 627 226 | Dec 1999 | EP |
0 970 711 | Jan 2000 | EP |
0 972 498 | Jan 2000 | EP |
0 974 315 | Jan 2000 | EP |
0 982 041 | Mar 2000 | EP |
1 023 879 | Aug 2000 | EP |
1 034 752 | Sep 2000 | EP |
1 075 838 | Feb 2001 | EP |
1 103 234 | May 2001 | EP |
1 192 957 | Apr 2002 | EP |
1 273 314 | Jan 2003 | EP |
0 869 847 | Mar 2003 | EP |
0 941 072 | Jan 2004 | EP |
1 681 035 | Jul 2006 | EP |
2 753 907 | Apr 1998 | FR |
2 247 696 | Mar 1992 | GB |
2 316 086 | Jan 2000 | GB |
2 316 342 | Jan 2000 | GB |
2 333 975 | Jan 2000 | GB |
2 336 551 | Jan 2000 | GB |
2 356 586 | May 2001 | GB |
2 356 587 | May 2001 | GB |
2 333 474 | Jun 2001 | GB |
2 334 685 | Jun 2001 | GB |
2 356 585 | Jul 2001 | GB |
2 374 302 | Aug 2001 | GB |
2 370 243 | Jun 2002 | GB |
2 384 199 | Jul 2003 | GB |
SHO49-48336 | Dec 1974 | JP |
SHO54-18317 | Jul 1979 | JP |
SHO60-28504 | Jul 1985 | JP |
21199867 | May 1994 | JP |
HEI8-33718 | Feb 1996 | JP |
HEI0-151190 | Jun 1998 | JP |
2919971 | Jul 1999 | JP |
2001-190687 | Jul 2001 | JP |
0872531 | Oct 1981 | SU |
0876663 | Oct 1981 | SU |
0905228 | Feb 1982 | SU |
0790725 | Feb 1983 | SU |
1016314 | May 1983 | SU |
0811750 | Sep 1983 | SU |
1293518 | Feb 1987 | SU |
1477423 | May 1989 | SU |
WO 8903232 | Apr 1989 | WO |
WO 9001969 | Mar 1990 | WO |
WO 9004982 | May 1990 | WO |
WO 9006094 | Jun 1990 | WO |
WO 9111176 | Aug 1991 | WO |
WO 9112846 | Sep 1991 | WO |
WO 9117744 | Nov 1991 | WO |
WO 9117789 | Nov 1991 | WO |
WO 9210218 | Jun 1992 | WO |
WO 9306792 | Apr 1993 | WO |
WO 9409760 | May 1994 | WO |
WO 9421196 | Sep 1994 | WO |
WO 9510989 | Apr 1995 | WO |
WO 9511817 | May 1995 | WO |
WO 9524929 | Sep 1995 | WO |
WO 9529647 | Nov 1995 | WO |
WO 9533422 | Dec 1995 | WO |
WO 9628115 | Sep 1996 | WO |
WO 9635516 | Nov 1996 | WO |
WO 9640174 | Dec 1996 | WO |
WO 9710011 | Mar 1997 | WO |
WO 9745105 | Dec 1997 | WO |
WO 9746590 | Dec 1997 | WO |
WO 9804415 | Feb 1998 | WO |
WO 9807390 | Feb 1998 | WO |
WO 9808463 | Mar 1998 | WO |
WO 9817331 | Apr 1998 | WO |
WO 9820863 | May 1998 | WO |
WO 9823228 | Jun 1998 | WO |
WO 9832398 | Jul 1998 | WO |
WO 9834669 | Aug 1998 | WO |
WO 9836784 | Aug 1998 | WO |
WO 9901118 | Jan 1999 | WO |
WO 9903515 | Jan 1999 | WO |
WO 9916386 | Apr 1999 | WO |
WO 9938546 | Aug 1999 | WO |
WO 9942147 | Aug 1999 | WO |
WO 9963981 | Dec 1999 | WO |
WO 0002599 | Jan 2000 | WO |
WO 0012147 | Mar 2000 | WO |
WO 0018446 | Apr 2000 | WO |
WO 0064506 | Nov 2000 | WO |
WO 0101890 | Jan 2001 | WO |
WO 0115751 | Mar 2001 | WO |
WO 0117459 | Mar 2001 | WO |
WO 0117577 | Mar 2001 | WO |
WO 0143727 | Jun 2001 | WO |
WO 0145763 | Jun 2001 | WO |
WO 0149338 | Jul 2001 | WO |
WO 0151027 | Jul 2001 | WO |
WO 0152772 | Jul 2001 | WO |
WO 0157144 | Aug 2001 | WO |
WO 0174414 | Oct 2001 | WO |
WO 0191918 | Dec 2001 | WO |
WO 0203890 | Jan 2002 | WO |
WO 02026162 | Apr 2002 | WO |
WO 02034311 | May 2002 | WO |
WO 02047731 | Jun 2002 | WO |
WO 02049771 | Jun 2002 | WO |
WO 02056790 | Jul 2002 | WO |
WO 02058753 | Aug 2002 | WO |
WO 02087550 | Nov 2002 | WO |
WO 02102283 | Dec 2002 | WO |
WO 03000308 | Jan 2003 | WO |
WO 03007918 | Jan 2003 | WO |
WO 03007919 | Jan 2003 | WO |
WO 03022323 | Mar 2003 | WO |
WO 03028780 | Apr 2003 | WO |
WO 03037223 | May 2003 | WO |
WO 03039612 | May 2003 | WO |
WO 03061841 | Jul 2003 | WO |
WO 03072084 | Sep 2003 | WO |
WO 03072086 | Sep 2003 | WO |
WO 03080147 | Oct 2003 | WO |
WO 03082368 | Oct 2003 | WO |
WO 2004000383 | Dec 2003 | WO |
WO 2004009145 | Jan 2004 | WO |
WO 2004017947 | Mar 2004 | WO |
WO 2004017976 | Mar 2004 | WO |
WO 2004023985 | Mar 2004 | WO |
WO 2004024339 | Mar 2004 | WO |
WO 2004069169 | Aug 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20080317813 A1 | Dec 2008 | US |