This application claims priority to and the benefit of Indian Patent Application No. 201921005029, filed Feb. 8, 2019, which is incorporated herein in its entirety by reference.
This invention refers to a formulation for point of care ready to use haemostats which hasten the clotting of blood and prevent the chances of advancement in the severity of the patient's condition due to haemorrhage. The invention specifically refers to nanocomposite formulations consist of combination of calcium-silicate nanoparticles in a biopolymeric matrix which have a wide range of application as anti-haemorrhagic agents in both civilian accidents and haemorrhage associated with army personnel in battle field.
Uncontrollable haemorrhage is the leading cause of death in battle-field which predominantly affects the limbs and becomes more challenging in a remote battle field where the immediate medical care is difficult to achieve. There is an urgent need to stabilise the soldier temporarily at the field, to prevent life threatening blood loss, infections and pain which can enable the soldier to complete first aid task prior to being transfened for hospital. To circumvent such problems, various polymers have been used and are under examination to be used as hemostatic agent for the fast clotting of blood in accidental haemorrhage. Globally, Celox® Gauze, Chito-SAM® and QuickClot® are marketed products which are being used to stop lethal bleeding. Celox® Gauze and Chito-SAM® are Z folded chitosan impregnated bandages which are applied on wound site with pressure. These products are in both Gauze and granular form but granular forms are not easy to handle and apply in terms of its deposition over specific area. Gauze forms are better in that respect but require an additional person to push the Gauze deeper in the wound. Animal studies and case reports revealed that QuickClot® is poorly biodegradable and induce thermal injuries/burning sensation at the site of application. Even if it has proven to be quite promising hemostat in venous haemorrhage and mixed arterial-venous bleeding it failed to show any benefit on arterial injury model. QuickClot ACS® (QC, zeolite based hemostat) is improved version of QuickClot® which is easy to handle and does not induce any thermal sensation but is not arterial hemostatic. None of these dressings are antibacterial or pain relieving and are available as bulky gauze or granules which are difficult to self administer. All existing hemostats need improvement in terms of their ability of preventing arterial haemorrhage.
CN1330389C claims development of hemostatic gel comprising polylactic acid (PLA), protein and polysaccharide hemostatic drug and polyvinyl pyrrolidone. The amount of constituent was varying, viz. for pyrrolidone it was extending from 10% to 93%, for protein and polysaccharide it was varying from 5% to 65% and for PLA it was varying from 0% to 30%. All the components were mixed together to form the hemostatic gel. The inventors claim that application of gel over injury leads to the generation of non-adhesive thin film which stops haemorrhagic loss of blood. The patent teaches a composition of synthetic polymers and proteins as a hemostat.
US20070237811A1 discloses use of chitosan as a biopolymeric hydrogel or foam that can be layered onto appropriate backing to be used as wound dressing. The claims also propose the addition of anti-inflammatory, anti-viral, anti-fungal, collagen, maltodextrin and anti-bacterial agents to increase the effectiveness as wound dressing and hemostatic agent. 29 gm of chitosan with 200,000 centipoise (cps) viscosity was dissolved in 550 ml of 8% acetic acid prepared in deionised water. Sodium bicarbonate in the amount of 19.2 gm was added to the chitosan-acetic acid mixture under continuous stirring to generate foam within chitosan gel. Chitosan foamed gel can be sterilized and filled inside squeezable tube and dispensed out over injury to stop bleeding. Although the inventors have given clear methodology to develop gel and explained the vital role of constituent in making embodiments a hemostatic wound dressing. But, neither in vitro nor in vivo validation of the embodiments had been done to prove the efficacy of the formulation. The patent teaches a composition of chitosan requiring acetic acid for its preparation.
WO2007074326A1 protects hemostatic powder consists of chitosan salt and at least one inert material and medical surfactant. Proportion of chitosan in hemostatic powder was 20% by weight, inert material 30% by weight where as medical surfactant constitute 0.01% by weight. In order to prepare chitosan salt, chitosan was mixed with acid (e.g. succinic acid) in a solvent comprised 80:20 (v/v) ratio of ethanol: water. Medical surfactant viz. lauric acid or oleic acid was also added to the mixture. Blend was mixed properly in dough style mixture for 15 mins to change it into slurry. Slurry, thus formed, was dried at 60° C. to evaporate the solvent. Solid chunk obtained was passed through grinding mill to make uniform fine powder. This chitosan salt powder was then mixed with dry inert powder, viz. cellulose, fumed silica, alginate, sand, clay, microcrystalline cellulose, to produce final hemostat. The patent teaches a combination of chitosan and surfactants and requires ethanol during the formation.
CN1044745856A invention refers to a biological hemostatic gel made up of peanut coat and chitosan powder. It claims 0.8-1.3% of soluble chitosan, 1-2.6% of peanut coat powder of red peanuts, 0.3-0.8% of panax pseudoginseg powder, 0.2-0.3% of chlorhexidine acetate, 0.8-1.3% of carbomer and 93.7-96.9% of deionized water. In order to prepare hemostatic gel, deionized water was heated till 55-60° C. and then 0.2-0.3% of chlorhexidine acetate was added to increase the acidity of the solution which increased the rate of 0.8-1.3% chitosan dissolution. After stirring for 15 mins, 1-2.6% of peanut powder, 0.3-0.8% of panax pseudoginseg powder and 0.8-1.3% of carbomer was added and further stirred for 30 mins to dissolve them. The inventors claim that the invention can be directly applied over wound/injuries to stop the bleeding. Though the inventors have claimed that it can increase the rapid haemostasis but neither in vitro nor in vivo study was reported to back the idea of developing this particular hemostat. The patent teaches a multicomponent formulation of chitosan, peanuts and ginseng powders and requires acidic conditions for dissolution.
In one aspect, the present invention provides a nanocomposite formulation for use in hemostasis comprising at least one calcium-silicate nanoparticles and at least one polysaccharide.
In another aspect, the present invention provides a solvent free method of preparation of a nanocomposite formulation for use in hemostasis comprising at least one calcium-silicate nanoparticles and at least one polysaccharide.
Reference will be made to embodiments of the invention, examples of which may be illustrated in accompanying figures. These figures are intended to be illustrative, not limiting. Although the invention is generally described in context of these embodiments, it should be understood that it is not intended to limit the scope of the invention to these particular embodiments.
Definition: “Nanocomposites” are combination of phosphorus-calcium-silicate nanoparticles in a biopolymeric matrix.
The present invention is directed towards a formulation for use in hemostasis comprising at least one calcium-silicate nanoparticles and at least one polysaccharide especially designed for deep wound and is meant to push inside wound/injury to stop the blood loss. These hemostats are self administrable in nature and clot the blood instantly by transforming into a highly cross-linked semi-solid mass upon mixing with blood.
In one aspect, the invention provides a nanocomposite formulation for use in hemostasis comprising at least one calcium-silicate nanoparticle and at least one polysaccharide.
In an embodiment, the calcium-silicate nanoparticle is in the size range of 40-150 nm.
In another embodiment, the polysaccharide is selected from gellan, Carboxymehtyl cellulose, Xanthan, Alginate and carbopol.
The calcium-silicate nanoparticles may be present in the range of 4-7% w/v.
The polysaccharide may be present in the range of 0.1-2% w/v.
The formulation may be in the form of gel, dry flakes, powder, coated on patch/fabric or developed as hemostatic uniform/garments through stitching.
The present invention is further directed towards a solvent free process for the preparation of a formulation comprising blending of at least one calcium-silicate nanoparticles and at least one polysaccharide in a specific ratio at a predetermined temperature.
In an embodiment the blending may by mortar and pestle, sonication or homogenization.
In an embodiment, the calcium-silicate nanoparticle is in the size range of 40-150 nm.
In another embodiment, the polysaccharide is selected from gellan, Carboxymehtyl cellulose, Xanthan, Alginate and carbopol.
The ratio of calcium-silicate nanoparticles and polysaccharide is in the range of 4-7 : 0.1-2 w/v %, particularly in the ratio of 4:1 or 5:1 w/v %.
The blending is carried out at a temperature of 25-90° C.
The following experimental examples are illustrative of the invention but not limitative of the scope thereof:
Solution 1 was prepared by dissolving 2.36 gm of calcium nitrate and 5.47 ml of tetraethyl orthosilicate in ethanol:water (1:1, v/v) solution. Then the pH was adjusted to 1-2 with the help of 1-2 ml of nitric acid. Solution 2 was prepared by dissolving 0.33 gm of ammonium dibasic phosphate in 1200 ml of MilliQ and pH was adjusted to 10-11 with the help of 5-6 ml of ammonia water. Solution 2 was kept for stirring and solution 1 was added to it slowly to obtain a milky solution. This milky solution was kept under stirring for 12 hours at room temperature and thereafter it was centrifuged at 10000×g for 15 min at 10° C. Pellet was resuspended in MilliQ and the centrifugation was repeated 2-3 times to obtain the pure calcium-silicate nanoparticles. This pure calcium-silicate nanoparticles was dried through lyophilization/freeze drying (freezing at −196° C. for 20 mins and drying at −40° C.) and further calcinated at 500° C. in muffle furnace for 3 hours to obtain the crystalline calcium-silicate nanoparticles (size 60-80 nm) comprised weight percent of 4.54, 20.26, 30.59 and 39.37% for P, Ca, Si and O respectively (
Developed calcium-silicate nanoparticles (5%, w/v) were blended with gellan (1%, w/v; purity ≥80%) at temperature 25° C. in 5 ml MilliQ with the help of mortar-pestle to form hemostatic gel (
Developed calcium-silicate nanoparticles (4%, w/v) were blended with gellan (1%, w/v) at temperature 25° C. in 5 ml MilliQ with the help of mortar-pestle to form hemostatic gel (
Developed calcium-silicate nanoparticles and gellan were blended together in ratio of 4:1 (wt/wt) at temperature 25° C. to obtain hemostatic powder (
Developed calcium-silicate nanoparticles (4%, w/v) were blended with gellan (1%, w/v) at temperature 25° C. in 5 ml MilliQ using mortar-pestle. For blending of constituents sonication (at power 80 W, on time 3 sec and off time 1 sec for 4 min duration) was also tried. Gel was coated over three layers of cotton bandage. After that it was covered with parafilm and allowed to air dry for 2 days to develop smart fabric (
Developed calcium-silicate nanoparticles (4%, w/v) were blended with gellan (1%, w/v) at temperature 25° C. in 5 ml MilliQ using mortar-pestle. For blending of constituents sonication (at power 80 W, on time 3 sec and off time 1 sec for 4 min duration) can also be used. 1 ml of hemostatic gel was transferred to each well of 24 well cell culture plates. It was then lyophilized/freeze drying (freezing at −196° C. for 20 mins and drying at −40° C.) for 24 hours to generate tablet shape hemostatic pellet (
Developed calcium-silicate nanoparticles (4%, w/v) were blended with gellan (1%, w/v) at temperature 25° C. in 5 ml MilliQ using mortar-pestle. For blending of constituents sonication (at power 80 W, on time 3 sec and off time 1 sec for 4 min duration) can also be used. 1 ml of hemostatic gel was transferred to each well of 24 well cell culture plates. It was then lyophilized/freeze drying (freezing at −196° C. for 20 mins and drying at −40° C.) for 24 hours to generate tablet shape hemostatic pellet. These pellets were broken down into small flakes (
The hemostatic activity of gel (5% calcium-silicate nanoparticle and 1% gellan) was evaluated using 3 ml of citrated goat blood and clotting time was recorded by tilting the tube on regular intervals. The clotting time was found to be 6.9±0.32, 4±0.20, 2±0.25, 1±0.10 min for 25, 50, 100, 150 mg of gel respectively (
The gel (4% calcium-silicate nanoparticle and 1% gellan) was also evaluated for hemostatic parameters like prothrombin time (PT) and activated partial thromboplastin time (APTT) in human plasma and it was found to be 5±1 and 8.3±1.5 sec respectively. PT of gel was found to be higher than celox® but lower than control. However, APTT time of gel was lower than both control and celox®. Hemostatic powder was tested for its hemostatic activity with human plasma. 15 mg of this powder was used to determine the PT and APTT with human plasma. The PT and APTT of the powder was found to be 2.3±0.6 and 3.3±1.5 sec respectively whereas for celox® it was found to be 3.3±0.6 and 15.3 ±0.6 sec respectively. Experiment showed that both PT and APTT of plasma mixed with powder was less than both, control and celox®. The developed pellets were tested for its hemostatic activity with human plasma. 15 mg of pellets were also tested for PT and APTT with human plasma and found that pellets clotted the entire plasma instantly whereas PT and APTT of celox® was found to be 3.3±0.6 and 15.3±0.6 sec respectively. Developed flakes were also tested for PT and APTT in human plasma and it was found that 15 mg flakes clotted the entire plasma instantly (
The in vivo blood clotting ability of all the hemostats was evaluated through tail amputation model (n=6, 6-8 weeks old) in albino wistar rat. Tail of each rat was amputated and thereafter formulation was applied. Amount of blood released as well as the time required to stop the blood loss was determined. The time required to clot the blood and the released blood mass is shown in
Fixed dose acute dermal toxicity of the hemostats was determined in GLP facility as per OECD guidelines in Sprague Dawley rats. Hemostatic gel was tested for the dose of 50-2000 mg/kg body weight and no clinical sign and mortalities were observed at any of the tested dose. Hence, it is concluded that the acute dermal median lethal dose (LD50) of hemostatic gel in Sprague Dawley rats is>2000 mg/kg body weight and classified as “Category 5/Unclassified” (2000<ATE≤5000 mg/kg body weight) according to the Globally Harmonized System (GHS) of Classification.
The formulations of the present invention in the form of gel, powder, pellet, flakes and smart fabric have shown better hemostatic activity than brand names/marketed formulation celox®. Moreover, the dose required to clot the similar volume of blood was lower in our formulation as compared to marketed celox®. The developed smart fabric can be used for both superficial and deep wound due its quick clotting time and extensive blood absorption capacity. This fabric can be stitched over the sleeves of garments/uniform and the injured person can just snatch it off and apply over the injury. The gel, flakes, powder, smart fabric and pellets are hemostatic agents for superficial wound but smart fabric, gel and pellets are meant to be used for deep wound. Moreover, the longer residence time of pellet would enable the complete removal of pellet. Also, the in vivo hemostasis study showed that the developed formulation were quicker in clotting the blood than marketed celox®. The developed hemostats were non toxic for topical applications as we observed in acute dermal toxicity study. Hence, all the hemostats can be used as anti-haemorrhagic agent in both civilian accidents and haemorrhage associated with army personnel in battle field.
The foregoing description of the invention has been set merely to illustrate the invention and is not intended to be limiting. Since the modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to the person skilled in the art, the invention should be construed to include everything within the scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201921005029 | Feb 2019 | IN | national |