1. Field of the Invention
The invention generally relates to nanocrystals and nanocrystalline materials, as well as the processes for forming nanocrystals and nanocrystalline materials.
2. Description of the Relted Art
Nanotechnology has become a popular field of science with applications in many industries. Nanocrystalline materials, a species of nanotechnology, have been developed and utilized for all sorts of applications, such as fuel cells catalysts, battery catalysts, polymerization catalysts, catalytic converters, photovoltaic cells, light emitting devices, energy scavenger devices, and recently, flash memory devices. Often, the nanocrystalline materials contain multiple nanocrystals or nanodots of a noble metal, such as platinum or palladium.
Flash memory devices for storing and transferring digital data are found in many consumer products. Flash memory devices are used by computers, digital assistants, digital cameras, digital audio recorders and players, and cellular telephones. Silicon-based flash memory devices generally contain multiple layers of different crystallinity or doped materials of silicon, silicon oxide, and silicon nitride. These silicon-based devices are usually very thin and are simple to fabricate, but are susceptible to complete failure with only slight damage.
Therefore, a need exists for a method for forming nanocrystalline materials for use in flash memory devices as well as other devices.
Embodiments of the invention provide metallic nanocrystalline materials, devices that utilize these materials, as well as the methods to form the metallic nanocrystalline materials. In one embodiment, a method for forming a metallic nanocrystalline material on a substrate is provided which includes exposing a substrate to a pretreatment process, forming a tunnel dielectric layer on the substrate, exposing the substrate to a post-treatment process, forming a metallic nanocrystalline layer on the tunnel dielectric layer, and forming a dielectric capping layer on the metallic nanocrystalline layer. The method further provides forming the metallic nanocrystalline layer having a nanocrystalline density of at least about 5×1012 cm−2, preferably, of at least about 8×1012 cm−2. In one example, the metallic nanocrystalline layer contains platinum, palladium, nickel, iridium, ruthenium, cobalt, tungsten, tantalum, molybdenum, rhodium, gold, suicides thereof, nitrides thereof, carbides thereof, alloys thereof, or combinations thereof. In another example, the metallic nanocrystalline layer contains platinum, ruthenium, nickel, alloys thereof, or combinations thereof. In another example, the metallic nanocrystalline layer contains ruthenium or a ruthenium alloy.
In another embodiment, a method for forming a multi-layered metallic nanocrystalline material on a substrate is provided which includes exposing a substrate to a pretreatment process, forming a tunnel dielectric layer on the substrate, forming a first metallic nanocrystalline layer on the tunnel dielectric layer, forming an intermediate dielectric layer on the first metallic nanocrystalline layer, forming a second metallic nanocrystalline layer on the intermediate dielectric layer, and forming a dielectric capping layer on the second metallic nanocrystalline layer.
In another embodiment, a method for forming a multi-layered metallic nanocrystalline material on a substrate is provided which includes exposing a substrate to a pretreatment process, forming a tunnel dielectric layer on the substrate, forming a plurality of bi-layers on the substrate, wherein each of the bi-layers comprises an intermediate dielectric layer deposited on a metallic nanocrystalline layer, and forming a dielectric capping layer on the plurality of bi-layers. In one example, the plurality of bi-layers may contain at least 10 metallic nanocrystalline layers and at least 10 intermediate dielectric layers. In another example, the plurality of bi-layers may contain at least 50 metallic nanocrystalline layers and at least 50 intermediate dielectric layers. In another example, the plurality of bi-layers may contain at least 100 metallic nanocrystalline layers and at least 100 intermediate dielectric layers.
In one embodiment, a metallic nanocrystalline material is provided which includes a tunnel dielectric layer disposed on a substrate, a first metallic nanocrystalline layer disposed on the tunnel dielectric layer, a first intermediate dielectric layer disposed on the first metallic nanocrystalline layer, a second metallic nanocrystalline layer disposed on the first intermediate dielectric layer, a second intermediate dielectric layer disposed on the second metallic nanocrystalline layer, a third metallic nanocrystalline layer disposed on the second intermediate dielectric layer, and a dielectric capping layer disposed on the third metallic nanocrystalline layer.
In another embodiment, the method further provides exposing the metallic nanocrystalline layer to a rapid thermal annealing process (RTA) to control the nanocrystalline size and size distribution. The metallic nanocrystalline layer may be formed at a temperature within a range from 300° C. to about 1,250° C. during the RTA process. In some examples, the temperature may be within a range from 400° C. to about 1,100° C. or from 500° C. to about 1,000° C. In the metallic nanocrystalline layer, at least about 80% by weight of the nanocrystals have a nanocrystalline grain size within a range from about 1 nm to about 5 nm. In other examples, at least about 90%, 95%, or 99% by weight of the nanocrystals have the nanocrystalline grain size within the range from about 1 nm to about 5 nm. The method further provides forming the metallic nanocrystalline layer by a vapor deposition process, such as atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), or by a liquid deposition process, such as electroless deposition or electrochemical plating (ECP).
The method further provides forming a hydrophobic surface on the substrate during the pretreatment process. The hydrophobic surface may be formed by exposing the substrate to a reducing agent, such as silane, disilane, ammonia, hydrazine, diborane, triethylborane, hydrogen, atomic hydrogen, or plasmas thereof. The method may also provide exposing the substrate to a degassing process during the pretreatment process. Alternatively, the method may provide forming a nucleation surface or a seed surface on the substrate during the pretreatment process. The nucleation surface or the seed surface may be formed by ALD, P3i flooding, or charge gun flooding.
In another aspect, the method further provides forming the tunnel dielectric layer on the substrate with a uniformity of less than about 0.5%. The tunnel dielectric layer may be formed by pulsed DC deposition, RF sputtering, electroless deposition, ALD, CVD, or PVD. The method further provides exposing the substrate to RTA, laser annealing, doping, P3i flooding, or CVD during the post-treatment process. In one example, a sacrificial capping layer may be deposited on the substrate during the post-treatment process. The sacrificial capping layer may be deposited by a spin-on process, electroless deposition, ALD, CVD, or PVD.
So that the manner in which the above recited features of the invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Embodiments of the invention provide metallic nanocrystals and nanocrystalline materials containing the metallic nanocrystals, as well as processes for forming the metallic nanocrystals and the nanocrystalline materials. Metallic nanocrystals and the nanocrystalline materials, as described herein, may be used in semiconductor and electronics devices (e.g., flash memory devices, photovoltaic cells, light emitting devices, and energy scavenger devices), biotechnology, and in many processes that utilize a catalyst, such as fuel cell catalysts, battery catalysts, polymerization catalysts, or catalytic converters. In one example, metallic nanocrystals may be used to form a non-volatile memory device, such as NAND flash memory.
Embodiments herein provide methods that may be used to form flash memory cell 200, as depicted in
Embodiments herein provide methods that may be used to form flash memory cells having two or more bi-layers of metallic nanocrystalline layers and dielectric layers. In one embodiment, a method for forming a multi-layered metallic nanocrystalline material on a substrate is provided which includes exposing the substrate to a pretreatment process, forming a tunnel dielectric layer on the substrate, exposing the substrate to a post-treatment process, forming a first metallic nanocrystalline layer on the tunnel dielectric layer, forming an intermediate dielectric layer on the first metallic nanocrystalline layer, forming a second metallic nanocrystalline layer on the intermediate dielectric layer, forming a dielectric capping layer on the second metallic nanocrystalline layer, and exposing the substrate to a metrological process. In another embodiment, a method for forming a multi-layered metallic nanocrystalline material on a substrate is provided which includes exposing the substrate to a pretreatment process, forming a tunnel dielectric layer on the substrate, forming a first metallic nanocrystalline layer on the tunnel dielectric layer, forming an intermediate dielectric layer on the first metallic nanocrystalline layer, forming a second metallic nanocrystalline layer on the intermediate dielectric layer, forming a dielectric capping layer on the second metallic nanocrystalline layer, and exposing the substrate to a metrological process. In another embodiment, a method for forming a multi-layered metallic nanocrystalline material on a substrate is provided which includes exposing the substrate to a pretreatment process, forming a tunnel dielectric layer on the substrate, forming a first metallic nanocrystalline layer on the tunnel dielectric layer, forming an intermediate dielectric layer on the first metallic nanocrystalline layer, forming a second metallic nanocrystalline layer on the intermediate dielectric layer, forming a dielectric capping layer on the second metallic nanocrystalline layer, and exposing the substrate to a metrological process. In another embodiment, a method for forming a multi-layered metallic nanocrystalline material on a substrate is provided which includes exposing the substrate to a pretreatment process, forming a tunnel dielectric layer on the substrate, exposing the substrate to a post-treatment process, forming a first metallic nanocrystalline layer on the tunnel dielectric layer, forming an intermediate dielectric layer on the first metallic nanocrystalline layer, forming a second metallic nanocrystalline layer on the intermediate dielectric layer, and forming a dielectric capping layer on the second metallic nanocrystalline layer. In another embodiment, a method for forming a multi-layered metallic nanocrystalline material on a substrate is provided which includes forming a tunnel dielectric layer on the substrate, exposing the substrate to a post-treatment process, forming a first metallic nanocrystalline layer on the tunnel dielectric layer, forming an intermediate dielectric layer on the first metallic nanocrystalline layer, forming a second metallic nanocrystalline layer on the intermediate dielectric layer, forming a dielectric capping layer on the second metallic nanocrystalline layer, and forming a control gate layer on the dielectric capping layer.
Embodiments herein provide methods that may be used to form flash memory cell 300, as depicted in
In another embodiment, a method for forming a multi-layered metallic nanocrystalline material on a substrate is provided which includes exposing the substrate to a pretreatment process, forming a tunnel dielectric layer on the substrate, forming a first metallic nanocrystalline layer on the tunnel dielectric layer, forming a first intermediate dielectric layer on the first metallic nanocrystalline layer, forming a second metallic nanocrystalline layer on the first intermediate dielectric layer, forming a second intermediate dielectric layer on the second metallic nanocrystalline layer, forming a third metallic nanocrystalline layer on the second intermediate dielectric layer, forming a dielectric capping layer on the third metallic nanocrystalline layer, and exposing the substrate to a metrological process.
In another embodiment, a method for forming a multi-layered metallic nanocrystalline material on a substrate is provided which includes exposing the substrate to a pretreatment process, forming a tunnel dielectric layer on the substrate, forming a first metallic nanocrystalline layer on the tunnel dielectric layer, forming a first intermediate dielectric layer on the first metallic nanocrystalline layer, forming a second metallic nanocrystalline layer on the first intermediate dielectric layer, forming a second intermediate dielectric layer on the second metallic nanocrystalline layer, forming a third metallic nanocrystalline layer on the second intermediate dielectric layer, forming a dielectric capping layer on the third metallic nanocrystalline layer, and exposing the substrate to a metrological process.
In another embodiment, a method for forming a multi-layered metallic nanocrystalline material on a substrate is provided which includes exposing the substrate to a pretreatment process, forming a tunnel dielectric layer on the substrate, exposing the substrate to a post-treatment process, forming a first metallic nanocrystalline layer on the tunnel dielectric layer, forming a first intermediate dielectric layer on the first metallic nanocrystalline layer, forming a second metallic nanocrystalline layer on the first intermediate dielectric layer, forming a second intermediate dielectric layer on the second metallic nanocrystalline layer, forming a third metallic nanocrystalline layer on the second intermediate dielectric layer, and forming a dielectric capping layer on the third metallic nanocrystalline layer.
In another embodiment, a method for forming a multi-layered metallic nanocrystalline material on a substrate is provided which includes forming a tunnel dielectric layer on the substrate, exposing the substrate to a post-treatment process, forming a first metallic nanocrystalline layer on the tunnel dielectric layer, forming a first intermediate dielectric layer on the first metallic nanocrystalline layer, forming a second metallic nanocrystalline layer on the first intermediate dielectric layer, forming a second intermediate dielectric layer on the second metallic nanocrystalline layer, forming a third metallic nanocrystalline layer on the second intermediate dielectric layer, forming a dielectric capping layer on the third metallic nanocrystalline layer, and forming a control gate layer on the dielectric capping layer.
Region 452, between bi-layer 4506 and bi-layer 450N may contain no bi-layers 450 or may contain several hundred bi-layers 450. In one example, region 452 does not contain a bi-layer 450, therefore, N=7 for bi-layer 450N and flash memory cell 400 contains a total of 7 bi-layers 450. In another example, region 452 contains 3 additional bi-layers 450 (not shown), therefore, N=10 for bi-layer 450N and flash memory cell 400 contains a total of 10 bi-layers 450. In another example, region 452 contains 43 additional bi-layers 450 (not shown), therefore, N=50 for bi-layer 450N and flash memory cell 400 contains a total of 50 bi-layers 450. In another example, region 452 contains 93 additional bi-layers 450 (not shown), therefore, N=100 for bi-layer 450N and flash memory cell 400 contains a total of 100 bi-layers 450. In another example, region 452 contains 193 additional bi-layers 450 (not shown), therefore, N=200 for bi-layer 450N and flash memory cell 400 contains a total of 200 bi-layers 450.
Flash memory cell 400 may have several hundred bi-layers 450 within a multi-layered metallic nanocrystalline material, as depicted in
The substrate surface may be pretreated to have a smooth surface to prevent non-uniform nucleation. In one embodiment, a variety of dielectric steps and finishing steps are used to form a desirable substrate surface. In some examples, the pretreatment process may provide a smooth surface having a uniformity of about 2 Å to about 3 Å. In another embodiment, the substrate surface may be pretreated to have a hydrophobic enhances surface to enhance the de-wetting of the substrate surface. The substrate may be exposed to a reducing gas to maximize dangling hydrogen bonds. The reducing agent may include silane (SiH4), disilane (Si2H6), ammonia (NH3), hydrazine (N2H4), diborane (B2H6), triethylborane (Et3B), hydrogen (H2), atomic hydrogen (H), plasmas thereof, radicals thereof, derivatives thereof, or combinations thereof. Other examples provide a degassing process or a pre-cleaning process to prevent out-gassing after depositing the metal layer. In another embodiment, the pretreatment process provides a nucleation surface or a seed surface on the substrate. In other embodiments, the nucleation surface or the seed surface is formed by an ALD process, a P3i flooding process, or a charge gun flooding process.
The tunnel dielectric layer may be formed on the substrate, preferably, on a pretreated surface of the substrate. In one embodiment, the tunnel dielectric layer may be formed of the substrate with a uniformity of less than about 0.5%, preferably, less than about 0.3%. Examples provide that the tunnel dielectric layer may be formed or deposited by a pulsed DC deposition process, a RF sputtering process, an electroless deposition process, an ALD process, a CVD process, or a PVD process.
Subsequent the deposition of the tunnel dielectric layer, the substrate may be exposed to a RTA process during the post-treatment process. Other post-treatment process include a doping process, a P3i flooding process, a CVD process, a laser anneal process, a flash anneal, or combinations thereof. In an alternative embodiment, a sacrificial capping layer may be deposited on the substrate during the post-treatment process. The sacrificial capping layer may be deposited by an electroless process, an ALD process, a CVD process, a PVD process, a spin-on process, or combinations thereof.
Embodiments provide that metallic nanocrystals 222, 322, and 422 may contain at least one metal such as platinum, palladium, nickel, iridium, ruthenium, cobalt, tungsten, tantalum, molybdenum, rhodium, gold, silicides thereof, nitrides thereof, carbides thereof, alloys thereof, or combinations thereof. The metal may be deposited by an electroless process, an electroplating process (ECP), an ALD process, a CVD process, a PVD process, or combinations thereof.
In one embodiment, the metallic nanocrystalline layers (e.g., nanocrystal layers 220, 320, and 420) may be exposed to a RTA to control the nanocrystalline size and size distribution. In one example, the metallic nanocrystalline layer is formed at a temperature within a range from about 300° C. to about 1,250° C., preferably, from about 400° C. to about 1,100° C., and more preferably, from about 500° C. to about 1,000° C. In one example, the metallic nanocrystalline layers (e.g., nanocrystal layers 220, 320, and 420) contain metallic nanocrystals (e.g., metallic nanocrystals 222, 322, and 422) having a nanocrystalline grain size within a range from about 0.5 nm to about 10 nm, preferably, from about 1 nm to about 5 nm, and more preferably, from about 2 nm to about 3 nm. In another example, the metallic nanocrystalline layers contain nanocrystals, such that about 80% by weight of the nanocrystals have a nanocrystalline grain size within a range from about 1 nm to about 5 nm, preferably, about 90% by weight of the nanocrystals have a nanocrystalline grain size within a range from about 1 nm to about 5 nm, more preferably, about 95% by weight of the nanocrystals have a nanocrystalline grain size within a range from about 1 nm to about 5 nm, and more preferably, about 97% by weight of the nanocrystals have a nanocrystalline grain size within a range from about 1 nm to about 5 nm, and more preferably, about 99% by weight of the nanocrystals have a nanocrystalline grain size within a range from about 1 nm to about 5 nm. In another embodiment, the metallic nanocrystal layers contain a nanocrystalline grain density distribution of about +/−3 grains per a gate area of about 35 nm by about 120 nm.
In one embodiment, the metallic nanocrystalline (MNC) layers (e.g., nanocrystal layers 220, 320, and 420) may contain about 100 nanocrystals (e.g., metallic nanocrystals 222, 322, and 422). The MNC layers may have a nanocrystalline density of about 1×1011 cm−2 or greater, preferably, about 1×1012 cm−2 or greater, and more preferably, about 5×1012 cm−2 or greater, and more preferably, about 1×1013 cm−2 or greater. In one example, the MNC layers contain platinum and has a nanocrystalline density of at least about 5×1012 cm−2, preferably, about 8×1012 cm−2 or greater. In another example, the MNC layers contain ruthenium and has a nanocrystalline density of at least about 5×1012 cm−2, preferably, about 8×1012 cm−2 or greater. In another example, the MNC layers contain and has a nanocrystalline density of at least about 5×1012 cm−2, preferably, about 8×1012 cm−2 or greater.
In one embodiment, nanocrystals or nano-dots are used to form a MNC cell for flash memory containing metallic nanocrystals 222, 322, and 422. In one example, the MNC cell may be formed by exposing a substrate to a pretreatment process, forming a first dielectric layer, exposing the substrate to post-deposition process, forming a metallic nanocrystalline layer, and depositing a dielectric capping layer. Examples provide that the substrate may be examined by various metrological processes.
In another embodiment, the surface treatment or pretreatment may include nucleation control (“seed” nucleation sites) to assist in achieving a uniform nanocrystalline density and a narrow nanocrystalline size distribution. Examples provide vapor exposure by ALD or CVD processes, P3i flooding, charge gun flooding (electrons, or ions), CNT or Si fill di-electron probe for surface mod (“Si grass”), touching, electron treatment, metal vapor, and NIL templates.
In an alternative embodiment, a CVD oxide deposition process may be used as a single step to produce nanocrystals combined within a dielectric layer, such as a silicon oxide. In one example, nanocrystals are combined or mixed into TEOS so they are embedded into the film during the deposition on top of dielectric tunnel layer (e.g., silicon oxide). In another embodiment, the substrate surface may be exposed to localized heating by use of a laser and grating or by NIL templates.
In another embodiment, the sacrificial layer may be converted into islands (e.g., 2-3 nm diameters) on the substrate heating (e.g., RTA) or exposing the substrate to other treatments to form a template. Thereafter, the template may be used during a temptation. In one example, atomic layer etching may be used to form a nanocrystalline material.
In another embodiment, nanocrystals or nano-dots are used to form a MNC cell for flash memory. In one example, the MNC cell contains at least one metallic nanocrystalline layer between two dielectric layers, such as a lower dielectric layer (e.g., tunnel dielectric) and an upper dielectric layer (e.g., capping dielectric layer, top dielectric, or intermediate dielectric layer). The metallic nanocrystalline layer contains nanocrystals (e.g., metallic nanocrystals 222, 322, and 422) containing at least one metal, such as platinum, palladium, nickel, iridium, ruthenium, cobalt, tungsten, tantalum, molybdenum, rhodium, gold, silicides thereof, nitrides thereof, carbides thereof, alloys thereof, or combinations thereof. In one example, a nanocrystalline material comprises platinum, nickel, ruthenium, platinum-nickel alloy, or combinations thereof. In another example, a nanocrystalline material comprises by weight about 5% of platinum and about 95% of nickel.
In another embodiment, the MNC cell contains at least two metallic nanocrystalline layers between separated by an intermediate dielectric layer, and having a lower dielectric layer (e.g., tunnel dielectric) and an upper dielectric layer (e.g., capping dielectric layer or top dielectric layer). In another embodiment, the MNC cell contains at least three metallic nanocrystalline layers, each separated by an intermediate dielectric layer, and having a lower dielectric layer (e.g., tunnel dielectric) and an upper dielectric layer (e.g., capping dielectric layer or top dielectric layer).
In other embodiments, a method for forming a multi-layered metallic nanocrystalline material on a substrate is provided which includes exposing the substrate to a pretreatment process, forming a tunnel dielectric layer on the substrate, forming a plurality of bi-layers on the substrate, wherein each of the bi-layers comprises an intermediate dielectric layer deposited on a metallic nanocrystalline layer, and forming a dielectric capping layer on the plurality of bi-layers. In one example, the plurality of bi-layers may contain at least 10 metallic nanocrystalline layers and at least 10 intermediate dielectric layers. In another example, the plurality of bi-layers may contain at least 50 metallic nanocrystalline layers and at least 50 intermediate dielectric layers. In another example, the plurality of bi-layers may contain at least 100 metallic nanocrystalline layers and at least 100 intermediate dielectric layers.
In one example, a metallic nanocrystalline material is provided which includes a tunnel dielectric layer disposed on a substrate, a first metallic nanocrystalline layer disposed on the tunnel dielectric layer, a first intermediate dielectric layer disposed on the first metallic nanocrystalline layer, a second metallic nanocrystalline layer disposed on the first intermediate dielectric layer, a second intermediate dielectric layer disposed on the second metallic nanocrystalline layer, a third metallic nanocrystalline layer disposed on the second intermediate dielectric layer, and a dielectric capping layer disposed on the third metallic nanocrystalline layer.
In some embodiments, a lower dielectric layer (e.g., tunnel dielectric or bottom electrode) contains a dielectric material, such as silicon, silicon oxide, or derivatives thereof and an upper dielectric layer (e.g., capping dielectric layer, top dielectric, top electrode, or intermediate dielectric layer) contains a dielectric material, such as silicon, silicon nitride, silicon oxide, aluminum oxide, hafnium oxide, aluminum silicate, hafnium silicates, or derivatives thereof. In one embodiment, top dielectric layer 230 or intermediate dielectric layers 330 and 430 contains a dielectric material, such as silicon, silicon nitride, silicon oxide, silicon oxynitride, aluminum oxide, hafnium oxide, aluminum silicate, hafnium silicate, hafnium silicon oxynitride, zirconium oxide, zirconium silicate, derivatives thereof, or combinations thereof. In one example, a dielectric material, such as a gate oxide dielectric material, may be formed by an in-situ steam generation (ISSG) process, a water vapor generation (WVG) process, or a rapid thermal oxide (RTO) process.
Apparatuses and processes, including the ISSG, WVG, and RTO processes, that may be used to form the dielectric layers and materials are further described in commonly assigned U.S. Ser. No. 11/127,767, filed May 12, 2005, and published as US 2005-0271813, U.S. Ser. No. 10/851,514, filed May 21, 2004, and published as US 2005-0260357, U.S. Ser. No. 11/223,896, filed Sep. 9, 2005, and published as US 2006-0062917, U.S. Ser. No. 10/851,561, filed May 21, 2004, and published as US 2005-0260347, and commonly assigned U.S. Pat. Nos. 6,846,516, 6,858,547, 7,067,439, 6,620,670, 6,869,838, 6,825,134, 6,905,939, and 6,924,191, which are herein incorporated by reference in their entirety.
In one embodiment, metallic nanocrystalline layers containing nanocrystals (e.g., metallic nanocrystals 222, 322, and 422) may be formed by depositing at least one metal layer onto a substrate and exposing the substrate to an annealing process to form nanocrystals containing at least one metal from the metal layer. The metal layer may be formed or deposited by a PVD process, an ALD process, a CVD process, an electroless deposition process, an ECP process, or combinations thereof. The metal layer may be deposited to a thickness of about 100 Å or less, such as within a range from about 3 Å to about 50 Å, preferably, from about 4 Å to about 30 Å, and more preferably, from about 5 Å to about 20 Å. Examples of annealing processes include RTP, flash annealing, and laser annealing.
In one embodiment, the substrate (e.g., substrate 202, 302, and 402) may be positioned into an annealing chamber and exposed to a post deposition annealing (PDA) process. The CENTURA® RADIANCE® RTP chamber, available from Applied Materials, Inc., located in Santa Clara, Calif., is an annealing chamber that may be used during the PDA process. The substrate may be heated to a temperature within a range from about 300° C. to about 1,250° C., or from about 400° C. to about 1,100° C., or from about 500° C. to about 1,000° C., for example, about 1,100° C.
In another embodiment, metallic nanocrystalline layers containing nanocrystals (e.g., metallic nanocrystals 222, 322, and 422) may be formed by depositing, forming, or distributing satellite metallic nano-dots onto the substrate. The substrate may be pre-heated to a predetermined temperature, such as to a temperature within a range from about 300° C. to about 1,250° C., or from about 400° C. to about 1,100° C., or from about 500° C. to about 1,000° C. The metallic nano-dots may be preformed and deposited or distributed onto the substrate by evaporating a liquid suspension of the metallic nano-dots. The metallic nano-dots may be crystalline or amorphous, but will be recrystallized by the pre-heated substrate to form metallic nanocrystals within a metallic nanocrystalline layer.
The metallic nanocrystalline layers (e.g., nanocrystal layers 220, 320, and 420) contain nanocrystals (e.g., metallic nanocrystals 222, 322, and 422) which contain at least one metal, such as platinum, palladium, nickel, iridium, ruthenium, cobalt, tungsten, tantalum, molybdenum, rhodium, gold, silicides thereof, nitrides thereof, carbides thereof, alloys thereof, or combinations thereof. In one example, the nanocrystalline material contains platinum, nickel, ruthenium, platinum-nickel alloy, or combinations thereof. In another example, the nanocrystalline material contains ruthenium or ruthenium alloys. In another example, the nanocrystalline material contains platinum or platinum alloys.
Apparatuses and processes that may be used to form the metal layers and materials are further described in commonly assigned U.S. Ser. No. 10/443,648, filed May 22, 2003, and published as US 2005-0220998, U.S. Ser. No. 10/634,662, filed Aug. 4, 2003, and published as US 2004-0105934, U.S. Ser. No. 10/811,230, filed Mar. 26, 2004, and published as US 2004-0241321, U.S. Ser. No. 60/714580, filed Sep. 6, 2005, and in commonly assigned U.S. Pat. Nos. 6,936,538, 6,620,723, 6,551,929, 6,855,368, 6,797,340, 6,951,804, 6,939,801, 6,972,267, 6,596,643, 6,849,545, 6,607,976, 6,702,027, 6,916,398, 6,878,206, and 6,936,906, which are herein incorporated by reference in their entirety.
In other embodiments, besides flash memory applications, nanocrystals or nano-dots are used as catalysts for fuel cells, batteries, or polymerization reactions and within catalytic converters, photovoltaic cells, light emitting devices, or energy scavenger devices.
While the foregoing is directed to embodiments of the invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims benefit of U.S. Ser. No. 60/806,446 (APPM/11087L), filed Jun. 30, 2006, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60806446 | Jun 2006 | US |