The present invention relates to compositions comprising one or more Toll-like Receptor (TLR) agonists and one or more antigens adsorbed or attached to the same particles or to different particles. In one embodiment, the present invention relates to a vaccine composition in which an antigen and a TLR agonist have been adsorbed or attached to the same particle or different particles. Such compositions provide for improved vaccines with enhanced immunogenicity and/or reduced reactogenicity upon administration.
WO 2008/121926 describes pharmaceutical formulations containing particles comprised of hydrophobic organic material co-dissolved or co-dispersed with an active pharmaceutical ingredient.
U.S. Pat. No. 5,716,637 describes nanoemulsions of particles comprising a liquid core composed of a lipid which is solid or liquid at room temperature, which is stabilized by a phospholipid envelope.
WO 2004/069227 describes a process for the preparation of a stable dispersion of solid particles, in an aqueous medium comprising by combining a pyrrole carboxamide compound, a water-miscible organic solvent and an inhibitor with an aqueous phase comprising water and a stabilizer. Bodmeier et al. (J. Microencapsulation 9(1): 89-98 (1992)) describes forming microparticles by a melt dispersion technique, in which the drug-wax melt was emulsified into a heated aqueous phase followed by cooling to form the microparticles.
There exists a need to provide compositions and methods for delivering TLR agonist and antigen combinations wherein the ratio of TLR agonist and antigen can be altered to enhance antigen immunogenicity and/or reduce TLR agonist reactogenicity.
An aspect of the present invention relates to compositions and methods for producing and administering compositions comprising a ratio of TLR agonists and antigens which enhance or increase tolerability of the vaccine while retaining the TLR activation activity. Compositions and methods of present invention involve use of particles as a means for presenting antigens and TLR agonists in adjustable ratios which allow for optimization of immunogenicity to the antigen and/or reduction in reactogenicity to the TLR agonist. The use of particles in the compositions and methods of the present invention also permits non-proteinaceous antigens and existing purified vaccine antigen preparations to be combined with TLR agonists at ratios adjusted for optimization to optimize immunogenicity to the antigen and/or reduce in reactogenicity to the TLR agonist.
In one embodiment, the present invention relates to a composition comprising one or more TLR agonists and one or more antigens adsorbed or attached to the same particle.
In one embodiment, the present invention relates to a composition comprising one or more TLR agonists adsorbed or attached to a first plurality of particles and one or more antigens adsorbed or attached to a second plurality of particles.
Another aspect of the present invention relates to methods of manufacturing these particle compositions.
Yet another aspect of the present invention relates to methods of using these particle compositions to invoke, increase and/or enhance an immune response to the antigen.
The present invention provides particle compositions where one or more TLR agonists and one or more antigen are attached or adsorbed to the same particle or different particles in ratios adjustable to optimize immunogenicity to the antigen and/or reduce reactogenicity to the TLR agonist. Accordingly, particle compositions of the present invention allow for TLR agonist to antigen ratios that are adjustable and differ from the 1:1 ratios required by fusion of a TLR agonist with an antigen as in the previous art. In one embodiment of the present invention, the compositions comprise particles where the ratio of the one or more TLR agonists to one or more antigens is less than 1:1 or more than 1:1 on either a weight to weight basis or molecule to molecules basis. In another embodiment of the present invention, the composition comprises one or more TLR agonists and one or more antigens located on different pluralities of particles and the ratio of TLR agonist to antigen is different than 1:1 as in the case of fusions of TLR agonist with antigen. The particle compositions of the present invention include particles where the ratio of the TLR agonist to antigen is less than 1:1 or more than 1:1 on either a weight to weight basis or molecule to molecules basis.
By Toll-like Receptors or TLRs as used herein, it is meant to refer to the family of receptor proteins that are homologous to the Drosophila melanogaster Toll protein. TLRs are Type I transmembrane signaling receptor proteins characterized by an extracellular leucine-rich repeat domain and an intracellular domain homologous to an interleukin 1 receptor. TLRs include TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11 and TLR12.
By “TLR agonist” for purposes of the present invention, it is meant an agent that has an affinity for and stimulates physiologic activity of a TLR normally stimulated by naturally occurring substances. For TLR1, examples of agonists include, but are not limited to, triacyl lipopeptides, glycolipids, lipopeptides and lipoproteins. For TLR2, examples of agonists include, but are not limited to, lipoteichoic acid, HSP70, and zymosan. For TLR3, examples of agonists include, but are not limited to, double-stranded RNA, poly I:C lipopolysaccharide, fibrinogen and various heat shock proteins. For TLR4, examples of agonists include, but are not limited to, fragments of heparin sulfate and hyaluronic acid, nickel and various opioids. For TLR5, examples of agonists include, but are not limited to, flagellin. For TLR6, examples of agonists include, but are not limited to, various diacyl lipopeptides and imidazoquinoline. For TLR7, examples of agonists include, but are not limited to, guanosine analogues such as loxoribine, bropirimine and single-stranded RNA. For TLR8, examples of agonists include, but are not limited to, small synthetic compounds and single-stranded RNA. For TLR9, examples of agonists include, but are not limited to, unmethylated CpG oligodeoxynucleotide DNA. For TLR10, examples of agonists include, but are not limited to, profilin. In one embodiment of the present invention, the TLR agonist has an affinity for and stimulates physiologic activity of either TLR1, TLR2, TLR3, TLR4, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11 or TLR12. In one embodiment of the present invention, the TLR agonist has an affinity for and stimulates physiologic activity of TLR5.
Any antigen that will provoke an immune response in a human can be used in the particle compositions of the present invention in combination with a TLR agonist. By antigen, it is meant to include, but is not limited to protein, peptide, carbohydrate, glycoprotein, lipopeptide, and subunit antigens. Examples of antigens used in the compositions of the present invention include, but are not limited to, viral antigens such as influenza viral antigens (e.g. hemagglutinin (HA) protein from influenza A, B and/or C where the influenza viral hemagglutinin protein may be at least one member selected from the group consisting of H1, H2, H3, H5, H7 and H9, matrix 2 (M2) protein, neuraminidase), respiratory synctial virus (RSV) antigens (e.g. fusion protein, attachment glycoprotein), papillomaviral (e.g. human papilloma virus (HPV), such as an E6 protein, E7 protein, L1 protein and L2 protein), Herpes Simplex, rabies virus and flavivirus viral antigens (e.g. Dengue viral antigens, West Nile viral antigens), hepatitis viral antigens including antigens from HBV and HC. Antigens used in the compositions of the present invention also include, but are not limited to, bacterial antigens including those from Streptococcus pneumonia, Haemophilus influenza, Staphylococcus aureus, Clostridium difficile and enteric gram-negative pathogens including Escherichia, Salmonella, Shigella, Yersinia, Klebsiella, Pseudomonas, Enterobacter, Serratia, Proteus. Antigens used in the compositions of the present invention also include, but are not limited to fungal antigens including those from Candida spp., Aspergillus spp., Crytococcus neoformans, Coccidiodes spp., Histoplasma capsulatum, Pneumocystis carinii, Paracoccidioides brasiliensis, Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, and Plasmodium malariae. Antigens for HPV vaccines would include E1, E2, E3, E4, E5, E6, E7, and the N terminus of HPVL2 alone or in combination. Antigens for RSV vaccines include, but are not limited to, RSV F or G proteins, alone or in combination. Antigens for malaria vaccines include, but are not limited to, the CSP1 protein, other pre-erythrocytic stage antigens and transmission-blocking antigens (such as, Pfs25, Pfs48 and homologues) alone or in combination. Antigens used in the present invention also include tumor antigens and/or tumor associated antigens such as, but not limited to, PSA, CEA, Mart-1, gp100, TRP-1, MAGE, NY-ESO-1, PAP, Mucin-1 and PSMA. Embodiments of the present invention also include particles with a TLR agonist and dengue antigen(s) adsorbed thereto. The Dengue disease is caused by four mosquito-borne, serologically related flaviviruses know as DEN 1 (also referred herein as Den 1), DEN 2 (Den-2), DEN 3 (Den 3) or DEN 4 (Den 4). The compositions of the invention include antigens sequences such as those sequences disclosed in WO 2009/128949 (PCT/US2009/002427), Izquierdo et al., 2008-814669, Mota et al., 2005, Khanam et al., 2006, Pattnaik et al., 2007, Tripathi et al., 2008; A. Zulueta, et al., Virus Research 121 (2006) 65-73 herein incorporated by reference. In one embodiment the antigen is T1BT, a polyoxime, constructed by chemoselective ligation, via oxime bonds, of a tetrabranched core with a peptide module containing B cell epitopes and a universal T cell epitope of the Plasmodium falciparum circumsporozoite protein.
Various particles can be used in the particle compositions of the present invention.
In one embodiment, lipids are used to make the particles. Examples of lipids which can be used include, but are not limited to, carnauba wax, bees wax, behenyl alcohol (docosanol), cetyl alcohol, microcrystalline triglycerides such as dynasan 118 (glyceryl tristearate) and polyethylene wax. In one embodiment, the lipid is carnauba wax including a carnauba comprising aliphatic esters, diesters of 4-hydroxycinnamic acid, ω-hydroxycarboxylic acids and fatty acid alcohols.
However, as will be understood by the skilled artisan upon reading this disclosure, particles may be comprised of non-lipids as well.
In one embodiment, the particle compositions further comprise a surfactant. Surfactants that may be used in the particle compositions include cationic, anionic and non-ionic surfactants. Examples of surfactants include, but are not limited to, cetyl triammonium bromide (CTAB), N-[1-(2,3-Dioleoyloxy)]-N,N,N-trimethylammonium propane methylsulfate DOTAP, cetylpyridinium bromide (CPB), polysorbate surfactants such as Tween 20, Tween 80 (polyoxyethylene sorbitan monoloaurate), polyethylene stearyl ether such as Brij 70, sodium stearate, sodium myristate, sodium dodecyl sulfate, Dioctyl sodium sulfosuccinate such as AOT and combinations thereof. The surfactant may present in a level from about 0.01% to about 10%, or from about 0.05% to about 5% or from about 0.1% to about 2% or from about 0.5% to about 2% or from about 1.0% to about 2.0%.
In one embodiment, the surface charge on the particle is altered to optimize attachment of the TLR agonist and/or antigen by attaching charged moieties or adjusting the type of surfactant and/or matrix used in the production of the particles.
Particle size is preferably less than 1 μm with the particles ranging in size between about 10 nm to 1000 nm or between about 20 nm to about 900 nm or from about 30 nm to abut 800 nm or from about 40 nm to about 700 nm or from about 50 nm to about 650 nm or from about 100 nm to about 750 nm or from about 200 nm to about 750 nm or from about 300 nm to about 750 nm or from about 300 nm to about 650 nm or from about 400 nm to about 750 nm or from about 400 nm to about 660 nm or from about 500 nm to about 750 nm or from about 500 nm to about 650 nm. Particle shape may be, but is not limited to spheres, prolate and oblate spheroids, cylindrical, and irregular shapes.
Compositions of the present invention may further comprise a targeting moiety such as, but not limited to an antibody or Fabs. Such targeting moieties are also attached to the particle.
The invention further relates to methods of manufacturing these particle compositions.
In one embodiment, the method comprises a melt-emulsification-chill process in which a hot aqueous surfactant solution is added to a melted lipid. The mixture is then sonicated and cooled to produce solidified lipid particles. In one embodiment, the hot aqueous surfactant solution comprises a cationic surfactant solution which is added to melted wax comprised of aliphatic esters, diesters of 4-hydroxycinnamic acid, ω-hydroxycarboxylic acids and fatty acid alcohols. A nonlimiting example of a melted wax is Yellow Carnauba wax (YC) comprised of 40% aliphatic esters, 21% diesters of 4-hydroxycinnamic acid, 13% ω-hydroxycarboxylic acids and 12% fatty acid alcohols. This process produces a solidified lipid particle having surfactant molecules oriented such that their heads are on the outer surface of the particle while the hydrophilic tails are toward the interior of the particle.
The present invention further relates to methods of making immunologic formulations comprising preparing a hot aqueous surfactant solution, adding the hot surfactant to a molten lipid, adding this mixture to an aqueous phase, cooling the mixture and adding TLR agonist(s) and/or antigen(s).
In the particle compositions of the present invention, the antigen(s) and/or TLR agonist(s) are absorbed or attached to the particles by non-covalent interactions such as hydrophilic or electrostatic interactions.
The particle compositions of the invention provide immunologic compositions that are more potent than the antigen alone. The particle compositions of the invention may also provide immunologic compositions in which the TLR agonist provokes a TLR mediated response, but in which the reactogenicity of the TLR agonist is reduced compared to the TLR agonist in solution when administered.
The compositions and methods of the present invention employ any TLR agonist in combination with an antigen. In one embodiment, the TLR agonist is a TLR-5 agonist. In this embodiment, a preferred TLR-5 agonist is flagellin and in particular the type 2 flagellin of Salmonella typhimurium, however any of a variety of flagellins capable of binding and triggering TLR-5 may be used for this invention including engineered flagellins as described in WO 2009/128950 herein incorporated by reference.
Unlike the prior art methods of combining a TLR agonist with an antigen which required a one-to-one correspondence of agonist to antigen, the present invention relates to compositions that do not require a one-to-one correspondence of the agonist to antigen. In the present compositions, the TLR agonist may be present in lesser amount than the antigen when both the agonist and antigen are coupled to the particle. For example the ratio of TLR agonist to antigen may be less than about 1:2 or 1:3 or 1:4 or 1:5 or 1:6 or 1:7 or 1:8 or 1:9 or 1:10 or from about 1:20 or 1:30 or 1:50or 1:100 or 1:250 or 1:500 or 1:1000 or 1:10,000 as measured by the number of molecules of TLR agonist and the number of molecules of antigen. Also the ratio of TLR agonist to antigen may be less than about 1:2 or 1:3 or 1:4 or 1:5 or 1:6 or 1:7 or 1:8 or 1:9 or 1:10 or from about 1:20 or 1:30 or 1:50 or 1:100 or 1:250 or 1:500 or 1:1000 or 1:10,000 as measured by a weight to weight comparison of TLR agonist to the antigen. Conversely, the compositions of the present invention include those compositions where the antigen is present in an amount less than the TLR agonist. For example the ratio of antigen to the TLR agonist may be less than about 1:2 or 1:3 or 1:4 or 1:5 or 1:6 or 1:7 or 1:8 or 1:9 or 1:10 or from about 1:20 or 1:30 or 1:50 or 1:100 or 1:250 or 1:500 or 1:1000 or 1:10,000 as measured by the number of molecules of TLR agonist and the number of molecules of antigen. Also the ratio of antigen to TLR agonist may be less than about 1:2 or 1:3 or 1:4 or 1:5 or 1:6 or 1:7 or 1:8 or 1:9 or 1:10 or from about 1:20 or 1:30 or 1:50 or 1:100 or 1:250 or 1:500 or 1:1000 or 1:10,000 as measured by a weight to weight comparison of TLR agonist to the antigen. The compositions of the present invention may comprise more than one type of antigen whether the antigen is from the same organism or a different organism. The compositions of the present invention may comprise more than one type of TLR agonist such as more than one type of flagellin from the same organism or from different organisms.
The dose of TLR agonist and antigen may be selected to optimize the immunogenic response while attempting to keep reactogenicity low. At least one dose selected from the group consisting of a 0.1 μg, 0.5 μg, 1 μg dose, 2 μg dose, 3 μg dose, 4 μg dose, 5 μg dose, 6 μg dose, 7 μg dose, 8 μg dose, 9 μg dose, 10 μg dose, 15 μg dose, 20 μg dose, 25 μg dose and a 30 μg dose may be sufficient to induce an immune response in humans. The dose of the TLR agonist and antigen may be administered to the human within a range of doses including from about 0.1 μg to about 500 μg, 1 μg to about 100 μg, 1 μg to about 50 μg, from about 1 μg to about 30 μg, from about 1 μg to about 25 μg, from about 1 μg to about 20 μg, from about 1 μg to about 15 μg, from about 1 μg to about 10 μg, from about 2 μg to about 50 μg, 2 μg to about 30 μg, from about 2 μg to about 20 μg, from about 2 μg to about 10 μg, from about 2 μg to about 8 μg, from about 3 μg to about 50 μg, 3 μg to about 30 μg, from about 3 μg to about 20 μg, from about 3 μg to about 10 μg, from about 3 μg to about 8 μg, from about 3 μg to about 5 μg, from about 4 μg to about 50 μg, 4 μg to about 30 μg, from about 4 μg to about 20 μg, from about 4 μg to about 10 μg, from about 4 μg to about 8 μg, from about 5 μg to about 50 μg, 5 μg to about 30 μg, from about 5 μg to about 20 μg, from about 5 μg to about 10 μg, from about 5 μg to about 9 μg, and from about 5 μg to about 8 μg.
With respect to compositions comprising a TLR agonist and antigen, the dosage refers to the amount of total protein present in the vaccine given to the human wherein some of the protein quantity relates to the antigen and some of the protein quantity relates to the TLR agonist. The immunogenic compositions for use according to the present invention may be delivered as a standard 0.01-2.0 ml injectable dose and contain from about 0.1 μg to about 50 μg of antigen. In a preferred embodiment of the immunogenic compositions for use according to the present invention is a 0.1 ml injectable dose and contains about 1 μg of antigen, 1.4 μg of carnauba wax and 0.14 μg of surfactant. The vaccine volume may be between 0.05 and 1.0 ml or between about 0.05 and 0.5 ml or about 0.10 to about 0.25 ml. A vaccine dose according to the present invention may be provided in a smaller volume than conventional dosing. Low volume doses according to the present invention are suitably below 0.5 ml, typically below 0.3 ml and usually not less than 0.01 ml.
Thus, the present invention provides compositions and methods for optimizing the antigenicity (i.e. increasing the antigenicity) and/or the reactogenicity (i.e. decreasing the reactogenicity) of TLR agonist/antigen combinations either as composed on single particles or as composed on separate particles, including antigen/TLR agonist combinations that have been poorly immunogenic and/or highly reactogenic. The immunogenic particle compositions of the present invention comprising one or more TLR agonists and one or more antigens may be more immunogenic than the combination of TLR agonist and antigen as a fusion protein. For example, the immunogenicity of the antigen as measured by the antibody response to the antigen may be greater for the particle compositions of the present invention than the antigen alone in solution or as a TLR agonist-antigen fusion by greater than about 10% or greater than about 20% or greater than about 30% or greater than about 40% or greater than about 50% or greater than about 60% or greater than about 70% or greater than about 80% or greater than about 90% or greater than about 100% or greater than about 200% or greater than about 500% or greater than about 1000%. The immunogenic particle compositions comprising one or more TLR agonists and one or more antigens may be less reactogenic than the combination of TLR agonist and antigen as a fusion protein. For example, the reactogenicity to the TLR agonist as measured by the antibody response to the TLR agonist may be less for the particle compositions of the present invention than the antigen alone in solution or as a TLR agonist-antigen fusion by less than about 10% or less than about 20% or less than about 30% or less than about 40% or less than about 50% or less than about 60% or less than about 70% or less than about 80% or less than about 90% or less than about 100% or less than about 200% or less than about 500% or less than about 1000%. While the TLR agonist is less reactogenic in the compositions of the present invention, the particle compositions of the present invention still maintain the ability to trigger a TLR agonist response.
Accordingly, the compositions and methods of the present invention are useful in production of vaccine formulations to invoke an immune response in a human. Further, the compositions of the present invention are useful in increasing antibody response to an antigen, even a poorly antigenic antigen, in an animal in order to generate therapeutic and or diagnostic antibodies to be extracted and purified.
Ranges may be expressed herein as from about one particular value, and/or to about another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent about, it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. Where ranges are given herein, the endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or sub range within the stated ranges in different embodiments of the invention, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.
Within this disclosure, any indication that a feature is optional is intended provide adequate support (e.g., under 35 U.S.C. 112 or Art. 83 and 84 of EPC) for claims that include closed or exclusive or negative language with reference to the optional feature. Exclusive language specifically excludes the particular recited feature from including any additional subject matter. For example, if it is indicated that A can be drug X, such language is intended to provide support for a claim that explicitly specifies that A consists of X alone, or that A does not include any other drugs besides X. “Negative” language explicitly excludes the optional feature itself from the scope of the claims. For example, if it is indicated that element A can include X, such language is intended to provide support for a claim that explicitly specifies that A does not include X. Non-limiting examples of exclusive or negative terms include “only,” “solely,” “consisting of,” “consisting essentially of,” “alone,” “without”, “in the absence of (e.g., other items of the same type, structure and/or function)” “excluding,” “not including”, “not”, “cannot,” or any combination and/or variation of such language. Similarly, referents such as “a,” “an,” “said,” or “the,” are intended to support both single and/or plural occurrences unless the context indicates otherwise. For example “a dog” is intended to include support for one dog, no more than one dog, at least one dog, a plurality of dogs, etc. Non-limiting examples of qualifying terms that indicate singularity include “a single”, “one,” “alone”, “only one,” “not more than one”, etc. Non-limiting examples of qualifying terms that indicate (potential or actual) plurality include “at least one,” “one or more,” “more than one,” “two or more,” “a multiplicity,” “a plurality,” “any combination of,” “any permutation of,” “any one or more of,” etc. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context.
All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.
While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that the various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
Antigen A is selected from antigens for any of the infectious disease listed in Table 1 (also see en.wikipedia with the extension .org/wiki/List_of_infectious_diseases of the world wide web).
Acinetobacter infections
Acinetobacter baumannii
Actinomyces israelii, Actinomyces gerencseriae and
Propionibacterium propionicus
Trypanosoma brucei
Entamoeba histolytica
Anaplasma genus
Bacillus anthracis
Arcanobacterium haemolyticum infection
Arcanobacterium haemolyticum
Ascaris lumbricoides
Aspergillus genus
Astroviridae family
Babesia genus
Bacillus cereus infection
Bacillus cereus
Bacteroides infection
Bacteroides genus
Balantidium coli
Baylisascaris infection
Baylisascaris genus
Piedraia hortae
Blastocystis hominis infection
Blastocystis hominis
Blastomyces dermatitidis
Borrelia infection
Borrelia genus
Clostridium botulinum; Note: Botulism is not
Sabia
Brucella genus
Burkholderia infection
Mycobacterium ulcerans
Caliciviridae family
Campylobacter genus
Bartonella henselae
Trypanosoma cruzi
Haemophilus ducreyi
Chlamydia trachomatis
Chlamydophila pneumoniae infection
Chlamydophila pneumoniae
Vibrio cholerae
Clonorchis sinensis
Clostridium difficile infection
Clostridium difficile
Coccidioides immitis and Coccidioides posadasii
Cryptococcus neoformans
Cryptosporidium genus
Cyclospora cayetanensis
Taenia solium
Dientamoeba fragilis
Corynebacterium diphtheriae
Diphyllobothrium
Dracunculus medinensis
Echinococcus genus
Ehrlichia genus
Enterobius vermicularis
Enterococcus infection
Enterococcus genus
Enterovirus infection
Enterovirus genus
Rickettsia prowazekii
Fasciolopsis buski
Fasciola hepatica and Fasciola gigantica
Filarioidea superfamily
Clostridium perfringens
perfringens
Fusobacterium infection
Fusobacterium genus
Geotrichum candidum
Giardia intestinalis
Burkholderia mallei
Gnathostoma spinigerum and Gnathostoma hispidum
Neisseria gonorrhoeae
Klebsiella granulomatis
Streptococcus pyogenes
Streptococcus agalactiae
Haemophilus influenzae infection
Haemophilus influenzae
Helicobacter pylori infection
Helicobacter pylori
Escherichia coli O157:H7, O111 and O104:H4
Histoplasma capsulatum
Ancylostoma duodenale and Necator americanus
Ehrlichia ewingii
Anaplasma phagocytophilum
Ehrlichia chaffeensis
Hymenolepis nana and Hymenolepis diminuta
Isospora belli
Kingella kingae infection
Kingella kingae
Kuru
Kuru prion
Legionella pneumophila
Legionella pneumophila
Leishmania genus
Mycobacterium leprae and Mycobacterium lepromatosis
Leptospira genus
Listeria monocytogenes
Wuchereria bancrofti and Brugia malayi
Plasmodium genus
Burkholderia pseudomallei
Neisseria meningitidis
Microsporidia phylum
Rickettsia typhi
Mycoplasma pneumonia
Mycoplasma pneumoniae
gonorrhoeae
Onchocerca volvulus
Paracoccidioides brasiliensis
Pasteurella genus
Pediculus humanus capitis
Pediculus humanus corporis
Phthirus pubis
Bordetella pertussis
Yersinia pestis
Streptococcus pneumoniae
Pneumocystis jirovecii
Prevotella infection
Prevotella genus
Chlamydophila psittaci
Coxiella burnetii
Streptobacillus moniliformis and Spirillum minus
Rhinosporidium seeberi
Rickettsia genus
Rickettsia akari
Rickettsia rickettsii
Salmonella genus
Sarcoptes scabiei
Schistosoma genus
Shigella genus
Sporothrix schenckii
Staphylococcus genus
Staphylococcus genus
Strongyloides stercoralis
Treponema pallidum
Taenia genus
Clostridium tetani
rubrum, and Trichophyton mentagrophytes
Trichophyton rubrum
Malassezia genus
Toxocara canis or Toxocara cati
Toxocara canis or Toxocara cati
Toxoplasma gondii
Trichinella spiralis
Trichomonas vaginalis
Trichuris trichiura
Francisella tularensis
Ureaplasma urealyticum infection
Ureaplasma urealyticum
Trichosporon beigelii
Yersinia pseudotuberculosis infection
Yersinia pseudotuberculosis
Yersinia enterocolitica
TLR agonist B is selected from those listed in Table 2 (also see Zuany-Amorim et al. Nature Reviews Drug Discovery 2002 1: 797-807).
Stock cationic particles are prepared by a melt-emulsification-chill process as follows. Yellow Carnauba wax (YC), 10 grams, comprised of 40% aliphatic esters, 21% diesters of 4-hydroxycinnamic acid, 13% o-hydroxycarboxylic acids and 12% fatty acid alcohols is melted in a 250 mL glass beaker at 90° C. In a second 250 mL glass beaker, 90 mL of 1% cationic surfactant solution (either cetyl triammonium bromide (CTAB) or cetylpyridinium bromide (CPB)) is heated to 90° C. The hot aqueous surfactant solution is added to the molten YC wax with tip sonication for 3 minutes to form an emulsion. The emulsion is then rapidly cooled using an ice-bath with an overhead stirrer. A 1% w/w dispersion is prepared by diluting this emulsion stock with water.
The selected TLR Agonist B solution is prepared by dilution with water to achieve either 1 mg/mL or 10 mg/mL working solution.
The Antigen A solution is prepared in a 10% DMSO/water mixture and used immediately to avoid antigen degradation.
The required volumes of the TLR Agonist B solution and the Antigen A solution in order to achieve the desired final concentration are pipetted into a sterile 2 mL plastic vial, VIAL 1, and mixed by inversion. The required volume of 1% w/w cationic particle dispersion and the required volume of water consistent with the desired final concentration is pipetted into a separate sterile 2 mL plastic vial, VIAL 2, and mixed by inversion. Each final formulation is prepared by transferring by Eppendorf pipette, with drop-wise addition, all the solutions in VIAL 1 to VIAL 2. The final mixture in VIAL 2 is then inverted three times to yield the final Antigen A and TLR Agonist B Particle formulation ready for use.
This patent application claims the benefit of priority from U.S. Provisional Application Ser. No. 61/768,617 filed Feb. 25, 2013, the contents of which are herein incorporated by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US14/17935 | 2/24/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61768617 | Feb 2013 | US |