The present invention relates to the field of biological fluid sensors, and more particularly to sweat or biomarker secretion sensors.
Sweating is primarily used to regulate body temperature by cooling the body down with secretion of water. The inability of human body to sweat properly is potentially harmful, and a complete absence of sweating (anhidrosis) or sweating less than normal (hypohidrosis) is an abnormal lack of sweat in response to heat, which is also one of the symptoms of some genetic diseases. As such, monitoring of the moisture levels from perspiration provides useful information for assessing the physical conditions, especially for people exposed to high temperature or experiencing long time exercise who face the risk of dehydration. The fact that sweat contains abundant information of medical significance has been an important driving force for the increasing interests in developing wearable sweat sensors. In addition to moisture, sweat is also rich with ions such as sodium, potassium and chlorine ranging from 10 to 80 mM. Monitoring the saltiness thus provides further useful information. Moreover, sweat may also contain biomarkers related to metabolites of the human body, e.g., glucose, lactate, and uric acid. While some progress has been made in developing sweat sensors, key challenges remain, including lack of multifunctionality, biocompatibility, and flexibility in some monitoring conditions, high cost in manufacturing, and insufficient sensitivity and selectivity, calling for breakthroughs in materials design and fabrication.
See, U.S. Pat. Nos. 5,729,203; 6,198,953; 6,882,940; 7,109,933; 7,187,960; 7,383,072; 8,032,199; 8,328,420; 8,527,028; 8,560,044; 8,721,562; 8,834,020; 8,849,379; 9,011,349; 9,028,405; 9,198,605; 9,198,617; 9,204,808; 9,254,437; 9,277,867; 9,301,719; 9,398,856; 9,408,572; 9,449,084; 9,510,784; 9,545,221; 9,563,995; 9,579,024; 9,579,040; 9,603,560; 9,622,725; 9,636,061; 9,645,133; 9,686,499; 9,704,205; 9,713,447; 9,717,455; 20020106709; 20040059212; 20040242976; 20050119540; 20050194012; 20050195118; 20060253011; 20070173886; 20070197878; 20070219434; 20080027679; 20080081963; 20080091097; 20080287769; 20080287770; 20080294058; 20090018412; 20090105605; 20090269003; 20090312615; 20100099957; 20100240962; 20120020033; 20120157793; 20120215076; 20120229661; 20130057720; 20130066168; 20130096396; 20130124039; 20130197319; 20130234724; 20130245388; 20130288777; 20140012145; 20140031705; 20140106816; 20140200432; 20140206948; 20140249763; 20140275828; 20140275838; 20140275840; 20140277649; 20140347187; 20150038874; 20150093725; 20150094914; 20150112164; 20150112165; 20150145676; 20150148628; 20150148681; 20150150453; 20150150467; 20150164238; 20150164409; 20150216479; 20150248651; 20150301594; 20150320588; 20160038082; 20160117029; 20160174892; 20160232625; 20160262666; 20160262667; 20160270239; 20160270726; 20160278700; 20160287148; 20160290952; 20160302730; 20160310011; 20160331235; 20160349790; 20160371372; 20160374598; 20170065183; 20170079574; 20170094216; 20170095183; 20170095184; 20170095233; 20170100035; 20170100071; 20170100072; 20170100076; 20170100102; 20170103166; 20170105104; 20170105646; 20170105662; 20170116879; 20170119311; 20170135633; 20170136264; 20170136265; 20170140626; 20170156641; 20170156662; 20170157430; 20170157431; 20170164865; 20170164866; 20170164876; 20170164878; 20170172470; 20170172484; 20170181659; and 20170181684.
Sensors formed using gold nanoparticles are known: see, U.S. Pat. Nos. 6,361,944; 6,417,340; 6,495,324; 6,506,564; 6,541,617; 6,582,921; 6,610,491; 6,645,721; 6,673,548; 6,677,122; 6,682,895; 6,709,825; 6,720,147; 6,720,411; 6,730,269; 6,740,491; 6,750,016; 6,759,199; 6,767,702; 6,773,884; 6,777,186; 6,812,334; 6,818,753; 6,828,432; 6,861,221; 6,878,814; 6,902,895; 6,903,207; 6,962,786; 6,969,761; 6,984,491; 6,986,989; 7,052,854; 7,098,320; 7,169,556; 7,195,780; 7,208,587; 7,250,499; 7,259,252; 7,267,948; 7,435,386; 7,485,419; 7,534,560; 7,569,354; 7,611,628; 7,612,185; 7,695,738; 7,799,554; 7,816,491; 7,863,376; 7,985,424; 8,012,743; 8,067,393; 8,216,854; 8,282,967; 8,283,414; 8,323,694; 8,323,888; 8,376,013; 8,383,415; 8,389,958; 8,426,214; 8,486,720; 8,501,921; 8,507,200; 8,524,457; 8,598,046; 8,618,509; 8,652,778; 8,666,471; 8,679,859; 8,703,439; 8,717,558; 8,758,772; 8,770,203; 8,883,964; 8,906,831; 8,920,971; 8,927,615; 8,945,943; 8,951,561; 8,956,658; 8,956,863; 8,962,029; 8,962,912; 8,993,349; 8,999,947; 9,000,137; 9,004,131; 9,012,156; 9,067,181; 9,102,520; 9,114,107; 9,157,109; 9,174,190; 9,174,873; 9,201,071; 9,216,155; 9,222,884; 9,242,857; 9,243,128; 9,246,122; 9,250,238; 9,274,108; 9,276,238; 9,283,275; 9,290,799; 9,302,116; 9,310,372; 9,315,942; 9,316,645; 9,320,813; 9,321,030; 9,333,163; 9,340,416; 9,376,690; 9,393,396; 9,403,851; 9,403,852; 9,410,949; 9,416,493; 9,437,628; 9,439,868; 9,440,195; 9,446,150; 9,447,129; 9,486,512; 9,494,524; 9,506,056; 9,508,956; 9,511,329; 9,526,913; 9,526,914; 9,532,956; 9,534,024; 9,540,422; 9,555,392; 9,556,473; 9,557,340; 9,567,645; 9,567,646; 9,579,523; 9,581,590; 9,592,198; 9,598,544; 9,598,736; 9,604,168; 9,623,352; 9,623,381; 9,624,275; 9,630,022; 9,637,380; 9,637,799; 9,637,830; 9,649,391; 9,662,299; 9,662,388; 9,662,389; 9,664,674; 9,688,750; 9,691,873; 9,701,784; 9,709,559; 9,717,685; 9,719,089; 20020127574; 20020137058; 20020137070; 20020137071; 20020137072; 20020146720; 20020155442; 20020155458; 20020155459; 20020155461; 20020155462; 20020160381; 20020164605; 20020172953; 20020182611; 20020182613; 20030022169; 20030044805; 20030049630; 20030049631; 20030054358; 20030059777; 20030059820; 20030068622; 20030087242; 20030124528; 20030143538; 20030148282; 20030180783; 20030198956; 20030207296; 20030215903; 20040018587; 20040072231; 20040076681; 20040110220; 20040219520; 20050037374; 20050059030; 20050059031; 20050130174; 20050130240; 20050176029; 20050250094; 20050272114; 20050287552; 20060014172; 20060040318; 20060057613; 20060068378; 20060257883; 20070059763; 20070087383; 20070087400; 20070122829; 20070125181; 20070127164; 20070154903; 20070258894; 20070269821; 20070298006; 20080146701; 20080226995; 20080241071; 20080241964; 20080279946; 20080287342; 20090042200; 20090042739; 20090130773; 20090214618; 20090246142; 20090294692; 20090325215; 20090325812; 20100003316; 20100009872; 20100016568; 20100016569; 20100016783; 20100018862; 20100021933; 20100028559; 20100062232; 20100069621; 20100196920; 20100234579; 20100261263; 20100290992; 20110012096; 20110021970; 20110065807; 20110098197; 20110114244; 20110114511; 20110129537; 20110136139; 20110171749; 20110176130; 20110206740; 20110263920; 20120021055; 20120034169; 20120064134; 20120070376; 20120087949; 20120135437; 20120156135; 20120263648; 20120263793; 20120315322; 20130023714; 20130034599; 20130034915; 20130095499; 20130116405; 20130140649; 20130156905; 20130171060; 20130177598; 20130183243; 20130196872; 20130203073; 20130210023; 20130240758; 20130252843; 20130252848; 20130261010; 20130295688; 20140005426; 20140024026; 20140050793; 20140058124; 20140120534; 20140163303; 20140222117; 20140243934; 20140273029; 20140294927; 20140322823; 20140335154; 20140343479; 20140363833; 20140364332; 20140378676; 20150005188; 20150017258; 20150031571; 20150056627; 20150093774; 20150111308; 20150141266; 20150164117; 20150182543; 20150198606; 20150202304; 20150202351; 20150211134; 20150231635; 20150251016; 20150253317; 20150253318; 20150265706; 20150265725; 20150299784; 20150330025; 20160005503; 20160010136; 20160010151; 20160022976; 20160025634; 20160033861; 20160054310; 20160060279; 20160074511; 20160130056; 20160130335; 20160130370; 20160131615; 20160145683; 20160146799; 20160161472; 20160175251; 20160184226; 20160185814; 20160228574; 20160238591; 20160243235; 20160258012; 20160263393; 20160265069; 20160274086; 20160325111; 20160334398; 20160351874; 20170014511; 20170021040; 20170043178; 20170050046; 20170065636; 20170067021; 20170088875; 20170119820; 20170121472; 20170121708; 20170130200; 20170131291; 20170151339; 20170166760; 20170173350; 20170184574; 20170189481; 20170196977; 20170210115; and 20170214020.
Various chemiresistor technologies, and applications thereof, are known: see, U.S. Pat. Nos. 4,636,767; 4,759,210; 4,847,594; 4,886,625; 4,900,817; 4,992,244; 5,045,285; 5,071,770; 5,089,294; 5,210,217; 5,224,972; 5,238,729; 5,279,795; 5,280,183; 5,302,935; 5,321,146; 5,387,462; 5,433,971; 5,469,369; 5,498,323; 5,512,882; 5,536,473; 5,550,062; 5,571,401; 5,589,396; 5,629,435; 5,674,752; 5,698,083; 5,698,089; 5,788,833; 5,858,186; 5,891,398; 5,911,872; 5,951,846; 5,959,191; 5,976,466; 6,004,494; 6,010,616; 6,013,229; 6,015,869; 6,017,440; 6,085,576; 6,093,308; 6,170,318; 6,221,673; 6,238,085; 6,244,096; 6,290,911; 6,319,724; 6,331,244; 6,350,369; 6,359,444; 6,387,329; 6,397,661; 6,408,250; 6,418,783; 6,421,588; 6,422,061; 6,458,327; 7,122,152; 7,136,716; 7,138,090; 7,144,553; 7,144,949; 7,168,294; 7,175,885; 7,179,421; 7,189,353; 7,189,360; 7,189,867; 7,191,805; 7,201,035; 7,211,439; 7,211,637; 7,226,530; 7,229,593; 7,233,781; 7,242,310; 7,253,004; 7,265,560; 7,272,530; 7,288,415; 7,313,447; 7,340,941; 7,342,479; 7,347,974; 7,356,420; 7,359,802; 7,387,010; 7,395,693; 7,397,072; 7,404,928; 7,421,883; 7,438,079; 7,449,050; 7,471,185; 7,477,994; 7,489,252; 7,501,091; 7,527,821; 7,531,136; 7,531,137; 7,538,538; 7,550,310; 7,556,775; 7,595,023; 7,595,734; 7,645,422; 7,708,947; 7,726,175; 7,737,322; 7,760,101; 7,793,675; 7,799,276; 7,801,687; 7,840,359; 7,880,026; 7,889,954; 7,911,010; 7,912,561; 7,927,558; 7,939,130; 7,950,271; 7,955,561; 7,966,132; 7,998,415; 7,998,416; 8,000,903; 8,012,326; 8,012,420; 8,030,100; 8,087,283; 8,088,341; 8,105,538; 8,123,834; 8,123,841; 8,152,908; 8,153,439; 8,168,438; 8,178,045; 8,187,887; 8,231,746; 8,246,910; 8,268,630; 8,269,029; 8,272,250; 8,285,493; 8,309,028; 8,310,016; 8,336,402; 8,352,049; 8,366,630; 8,394,330; 8,409,510; 8,412,147; 8,426,208; 8,426,932; 8,441,081; 8,448,532; 8,449,824; 8,461,354; 8,481,324; 8,497,130; 8,519,726; 8,562,878; 8,567,232; 8,569,691; 8,618,330; 8,691,390; 8,694,267; 8,695,401; 8,703,500; 8,707,760; 8,736,287; 8,771,613; 8,790,400; 8,795,359; 8,808,373; 8,816,116; 8,828,733; 8,846,406; 8,877,636; 8,884,382; 8,889,420; 8,900,516; 8,903,661; 8,904,849; 8,920,731; 8,940,092; 8,951,473; 8,957,253; 8,978,444; 8,986,615; 8,989,053; 8,999,244; 8,999,245; 9,017,773; 9,034,266; 9,034,275; 9,034,659; 9,067,070; 9,080,942; 9,120,677; 9,144,488; 9,144,489; 9,147,338; 9,157,842; 9,182,231; 9,182,232; 9,211,185; 9,212,055; 9,217,722; 9,234,757; 9,254,099; 9,260,683; 9,267,908; 9,267,964; 9,315,848; 9,326,730; 9,333,071; 9,339,372; 9,360,509; 9,377,426; 9,402,242; 9,429,536; 9,442,100; 9,448,219; 9,453,811; 9,459,222; 9,459,223; 9,476,862; 9,494,541; 9,510,316; 9,514,632; 9,518,956; 9,529,385; 9,536,122; 9,536,449; 9,538,657; 9,563,833; 9,567,225; 9,582,035; 9,589,686; 9,591,607; 9,598,282; 9,598,785; 9,606,245; 9,613,521; 9,625,341; 9,632,050; 9,638,653; 9,658,178; 9,658,196; 9,674,812; 9,678,059; 9,683,974; 9,689,826; 9,696,311; 9,714,370; 20010029774; 20010041366; 20020002414; 20020004995; 20020005580; 20020014415; 20020017125; 20020045274; 20020045275; 20020081232; 20020081397; 20020098119; 20020110901; 20020131901; 20020132361; 20020141901; 20020142477; 20020149466; 20020164643; 20020178789; 20020197390; 20020198574; 20030010097; 20030024814; 20030069002; 20030083756; 20030109056; 20030109951; 20030136960; 20030144746; 20030159927; 20030165882; 20030165987; 20040018633; 20040018642; 20040029288; 20040033165; 20040042933; 20040147038; 20040192072; 20040194534; 20040200722; 20040202856; 20040204920; 20040211243; 20040215402; 20040223876; 20040237631; 20050000830; 20050016276; 20050022581; 20050048414; 20050065230; 20050072213; 20050090015; 20050121999; 20050126909; 20050131139; 20050150778; 20050159922; 20050177317; 20050202358; 20050216114; 20050241935; 20050244978; 20050263394; 20050272881; 20050280814; 20060034731; 20060053871; 20060057597; 20060099113; 20060099715; 20060124195; 20060124448; 20060144123; 20060174941; 20060208254; 20060244618; 20060249385; 20060259163; 20060275720; 20060282225; 20060292033; 20070018779; 20070095678; 20070114138; 20070117207; 20070119236; 20070126061; 20070131021; 20070142799; 20070151449; 20070180892; 20070187239; 20070229294; 20070231947; 20070235348; 20070252710; 20070252711; 20070275690; 20080003530; 20080017507; 20080025876; 20080054382; 20080077331; 20080101994; 20080103751; 20080236251; 20080245675; 20080262743; 20080278140; 20080278181; 20080319682; 20090004612; 20090007636; 20090007777; 20090049890; 20090084162; 20090090168; 20090130421; 20090148690; 20090196796; 20090201120; 20090214762; 20090216461; 20090227059; 20090234587; 20090256215; 20090260423; 20090261987; 20090263287; 20090273354; 20090309614; 20090315728; 20100001211; 20100008619; 20100060465; 20100073016; 20100102975; 20100132547; 20100140597; 20100188110; 20100191474; 20100203648; 20100204676; 20100209301; 20100225337; 20100229658; 20100272612; 20100273665; 20100276302; 20110010107; 20110015872; 20110054202; 20110081724; 20110089051; 20110098591; 20110125409; 20110127446; 20110171137; 20110184649; 20110244584; 20110246086; 20110269632; 20110286889; 20110300637; 20110320136; 20120041574; 20120050038; 20120056632; 20120071362; 20120071737; 20120090378; 20120097917; 20120143515; 20120156099; 20120165623; 20120186987; 20120212242; 20120270205; 20120282594; 20120295360; 20120301360; 20130022755; 20130040399; 20130046485; 20130059758; 20130065319; 20130126363; 20130143247; 20130158881; 20130162403; 20130171733; 20130183766; 20130210679; 20130236980; 20130236981; 20130241726; 20130259749; 20130311108; 20130315816; 20130330231; 20130338768; 20130338769; 20130338770; 20130338771; 20130338772; 20130338773; 20140015548; 20140022058; 20140083869; 20140107362; 20140127822; 20140145736; 20140151631; 20140193925; 20140208828; 20140220703; 20140242237; 20140274804; 20140275716; 20140288647; 20140296663; 20140296978; 20140318990; 20140330043; 20140347491; 20140349256; 20140349257; 20140371105; 20150076007; 20150079697; 20150082920; 20150087935; 20150101392; 20150116093; 20150126873; 20150132857; 20150168365; 20150232598; 20150268207; 20150272105; 20150273521; 20150276516; 20150276635; 20150276643; 20150276644; 20150276648; 20150276656; 20150301021; 20150309535; 20150313496; 20150320588; 20150325100; 20150327989; 20150366504; 20150370320; 20160008182; 20160011135; 20160012749; 20160018350; 20160073886; 20160095731; 20160103104; 20160110991; 20160112684; 20160140870; 20160169810; 20160195486; 20160195504; 20160209420; 20160231267; 20160232811; 20160282302; 20160290980; 20160317060; 20160349790; 20160366065; 20160370310; 20170023509; 20170038326; 20170093981; 20170110678; 20170124110; 20170135633; 20170160252; 20170162023; 20170164878; 20170167934; and 20170173262.
Each reference cited herein is expressly incorporated herein by reference in its entirety.
The ability to tune the sensing properties with nanostructured materials in a flexible scaffold is essential for constructing highly sensitive and wearable sensors or biosensors, especially for secretions, e.g., from skin or mucous membranes. Flexibility provides an ability to conform to the surface, which is important in some applications. Dynamic flexibility can also be important. Typically, the sensor should remain in close contact with the source of the secretion, for example to avoid void space, to speed response, and assure measurement of the secretion itself. It is noted that the sensors provided herein are not limited to biological secretions from skin and mucous membranes, and the form factor of the sensor may be provided based on its application. For example, the sensor may be provided as an implant or intravascular device, in which case the sensor would measure the surrounding medium.
The assembly of functional nanoparticles into nanofibrous membranes represents a new strategy for constructing flexible composite materials with multifunctional and tunable properties. Examples of the scaffold papers or membranes include Whatman filter paper or membrane filter, Minipore filter paper, Fisherbrand paper, Ivory Linen paper, etc. Generally, a suitable paper is chemically pulped cellulose fiber, with no additives or finishes. Commercially-available technical papers may therefore be suitable. One implementation provides a nanocomposite scaffold derived from assembling gold nanoparticles (Au NPs) in a multi-layered nanofibrous membrane through controllable interactions with molecular linking and polymeric electrostatic binding.
A preferred embodiment includes a 3-layer structured membrane consisting of cellulose nanofibers (CN), cross-linked polyethylene glycol diacrylate (PEGDA) and nonwoven polyethylene terephthalate (PET) layers, utilized in combination with either 11-mercaptoundecanoic acid (MUA) as a molecular linker with hydrogen-bonding groups for interlinking alkanethiolate-capped Au NPs or poly(diallyl ammonium) (PDA) as a matrix with positively-changed groups for anchoring negative-charge capped Au NPs.
In one embodiment, gold nanoparticles (Au NPs) are provided in a multilayered fibrous membrane consisting of cellulose nanofiber (CN) top layer (fiber diameter 5 nm), electrospun polyacrylonitrile (PAN) nanofibrous midlayer (fiber diameter 150 nm), and nonwoven polyethyleneterephthalate (PET) fibrous support layer (fiber diameter 20 μm) through interparticle molecular/polymeric linkages and nanoparticle-nanofibrous interactions. 11-mercaptoundecanoic acid (MUA) may be used as a molecular linker having hydrogen-bonding groups for interlinking alkanethiolate-capped Au NPs. Poly(diallyldimethylammonium) (PDA) may be used as a matrix with positively changed groups for anchoring negative-charge capped Au NPs.
Impedance measurements of the nanocomposite membrane (Au NPs/CN/PAN/PET) as a scaffold on chemiresistor-type platforms demonstrate the viability of detecting ionic species in solutions with dissolved salts with different cations and changes of relative humidity in gas phase.
The sensor may be made specific for particular ions, solutes, reagents, or conditions by control over the nanoparticles, the fibers themselves and the arrangement of fiber layers, the environment of use, chemispecific reagents, etc.
This type of nanoparticle-nanofibrous scaffold is further demonstrated as a flexible sensor strip for detecting changes in sweating and perspiration for volunteers before and after exercise. The sensitivity of the electrical responses in this case depends on the nature of molecular interactions in the nanocomposite materials.
In comparison with existing sensor or biosensor thin film technologies, the new type of nanocomposite scaffolds enables tunable sensitivity and selectivity, controllable permeation of water, device flexibility and wearability, and low-cost manufacturing capability.
In comparison with traditional 2D sensing materials in most previous studies of sweat sensors, a 3D scaffold offers intriguing opportunities to address some of the current challenges. Specifically, the incorporation of assemblies of functional nanoparticles into flexible paper or membrane such as nanofibrous membranes represents a new pathway for constructing flexible sensors with tunable and multifunctional properties.
This new technology features new nanocomposite types of scaffolds consisting of functionalized gold nanoparticles and fibrous scaffolds. These types of nanocomposite are demonstrated to function as sensitive materials on a flexible platform for sensor and biosensor applications. The flexible and printable characteristics of nanocomposite scaffolds also feature device flexibility and wearability, and low-cost manufacturing capability.
The nanoparticles may be selectively deposited on the membrane using an additive manufacturing process (e.g., pad printing, mask printing, 3D printing), to pattern the sensor. On the other hand, in some cases, a homogeneous distribution of nanoparticles may be altered after deposition by a selective poisoning, disruption or inactivation, to provide a physical pattern. For example, there the functioning of the sensor is dependent on characteristics of an organic linker or ligand, the organic linker or ligand may be of a type which is degraded by UV light, and thus susceptible to mask-illumination patterning. Further, the hydrophilicity of the fiber matrix surrounding the nanoparticles may be important, and the hydrophilicity/hydrophobicity of one or more of the fiber layers may be controlled or modified before or after the nanoparticles are deposited, e.g., by deposition of a hydrophobicity modulating agent, oxidation or surface modification of the fibers, etc. One reason for patterning the sensor is to control the impedance and sensitivity. In a large area sensor, the output tends to be the average response across the area. On the other hand, a patterned sensor may place regions of the sensor in series with one another, resulting in a long effective sensing distance, and increased sensitivity to regional effects. Another practical reason for patterning is to facilitate electrical connection of the sensor. Another reason is to provide separate sensing channels for different analytes. For example, the patterning may include a gradation of a physical, chemical, or biological property, so that an array of sensor elements is provided with a range of sensing characteristics.
Impedance measurements of the nanocomposite membrane (AuNPs/CN/PEGDA/PET) as a scaffold of chemiresistor platform demonstrated the viability of detecting ionic species in solutions with dissolved salts (e.g., NaCl and KCl) and changes of relative humidity in the atmosphere. This nanoparticle-nanofiber sensor platform is further demonstrated as a flexible sensor strip for detecting changes in sweating and perspiration for individuals before and after excises. These are, of course, prototype applications, and the sensor is not limited to these examples.
A nanocomposite scaffold is fabricated by the assembly of functionalized gold nanoparticles (Au NPs) in a layered nanofibrous membrane through controlled molecular linking and polymeric electrostatic binding interactions. This technology features the nanomaterials of functionalized gold nanoparticles and their assemblies through controlled molecular linking and polymeric electrostatic binding interactions, and the thin-film nanofibrous-cellulose composite membranes with controllable porosity and high permeation flux of water. It is noted that gold nanoparticles are environmentally stable, and thus provide a basis for a durable sensor. However, other types of nanoparticles may be employed, subject to their chemical biolochemical reactivity as a possible advantage or disadvantage.
A preferred class of nanofibrous membranes consists of three-layered structures including a cellulose nanofiber (CN) top layer (fiber diameter around 5 nm), electrospun polyacrylonitrile (PAN) midlayer (fiber diameter around 150 nm), and nonwoven polyethylene terephthalate (PET) substrate layer (fiber diameter around 20 μm), featuring a combination of nano- and microporosities with extremely high surface to volume ratio. Cross-linked polyethylene glycol diacrylate (PEGDA) may be used in place of PAN. To impart electrically responsive function to the nanofibrous membrane toward chemical or biosensing sensing, molecularly mediated nanoparticles assembled in a thin film offer highly tunable molecular interactions and electrical properties.
The present technology provides nanocomposite scaffolds structured by assembling gold nanoparticles (Au NPs) in a flexible multilayered nanofibrous membrane through interactions involving molecular linkage and electrostatic binding.
In one exemplary embodiment, 11-mercaptoundecanoic acid (MUA) was used as a molecular linker with hydrogen-bonding groups for interlinking alkanethiolate-capped Au NPs. In another exemplary embodiment, poly(diallyl ammonium) (PDA) was used as positively-charged matrix for anchoring negative-charge capped Au NPs. The derivatized nanoparticles have an affinity for the fibers, and can be used to assemble a three-layer structured membrane consisting of cellulose nanofiber (CN), cross-linked polyethylene glycol diacrylate (PEGDA) and nonwoven (PET) layers. The resulting membranes were demonstrated as sensitive scaffolds on sensor and biosensor devices for detection of humidity, ionic or biologically-relevant chemical species. The materials have been demonstrated for applications in water contaminants monitoring, sweat monitoring, etc. One example involves using the nanocomposite membrane as a scaffold for detecting ionic species in solutions and changes of relative humidity in the atmosphere. It functions as a sweat sensor strip for detecting changes in sweating and perspiration to provide diagnostic information.
In one embodiment, a CN (thickness <2 μm)/PAN (thickness 40 μm)/PET (thickness 100 μm) three-layer membrane was utilized in combination with assemblies of Au NPs, with different nanoparticle-nanofibrous interactions. One involves 11-mercaptoundecanoic acid (MUA) as a molecular linker having hydrogen-bonding groups for interlinking alkanethiolate-capped Au NPs. Another features poly-(diallyldimethylammonium) (PDA) as a matrix with positively charged groups for anchoring negative-charge capped Au NPs.
These sensors are effective for detection of chemical species relevant to sweating or perspiration, such as moisture and ionic species, demonstrating the viability of potential applications of a new class of nanoparticle-nanofibrous membranes in wearable sweat sensors.
It is an object to provide a sensor, comprising a nanofibrous layer having nanofibers coated with adherent nanoparticles which are derivatized to specifically interact an analyte, to produce an electronic or optical response. The response of the nanoparticles to the analyte is qualitatively different from freely suspended nanoparticles as a result of local interaction with the nanofibers, and is dependent on the derivatization. The nanofibers may also be derivatized to tune the response.
It is an object to provide a chemical sensor, comprising: a sensing medium, comprising a nanofibrous layer and a plurality of nanoparticles, coating nanofibers within the nanofibrous layer, the plurality of nanoparticles being derivatized to interact with the nanofibrous layer and an analyte in a medium, based on at least one of electronic charge, ligand coordination, hydrogen bonding, van der Waals force, polarity, hydrophilicity, and hydrophobicity; and an electrode, configured to sense a state of the sensing medium in response to the analyte in the medium, and to produce an electrical signal output corresponding to the state.
The nanofibrous layer may comprise nanofibrous cellulose. The nanofibrous layer may comprise a porosity of between 10-99%.
The nanofibrous layer may be supported on a permeable layer, e.g., an electrospun fiber layer. The nanofibrous layer may be supported on at least one of a permeable crosslinked polyacrylonitrile (PAN) layer and a permeable crosslinked polyethylene glycol diacrylate (PEGDA) layer. The chemical sensor may further comprise an electrospun fiber permeable layer supporting the nanofibrous layer. The permeable layer may be a crosslinked polyacrylonitrile (PAN) layer or crosslinked polyethylene glycol diacrylate (PEGDA) layer supporting the nanofibrous layer. The permeable layer may be supported on non-woven layer. The nanofibrous layer may be cast from a slurry on an electrospun layer formed on a nonwoven layer.
The sensing medium may comprise the nanofibrous layer having a fiber diameter of less than about 15 nm, supported on a fibrous intervening layer having a fiber diameter of less than about 250 nm, on a flexible support layer.
The nanoparticles may be gold or other metallic nanoparticles. The derivatized nanoparticles may be charged. The plurality of nanoparticles may be at least one of: linked to a thiolate; hydrogen bonded to 11-mercaptoundecanoic acid (MUA) within the nanofibrous layer; linked to a carboxylic acid; and electrostatically bound to poly(diallyl) ammonium) within the nanofibrous layer. The thiolate may be an organic thiolate, such as an alkane thiolate.
The electrical signal output may be selectively responsive to moisture, water, solute concentration, ions, monovalent cations, polyvalent cations, or other organic or inorganic analytes.
The electrode may comprise a printed or otherwise deposited or formed conductive element or patter, for example a pair of interdigitated conductive traces spaced across a gap to sense a change in conductivity or capacitance of the nanofibrous layer coated with the nanoparticles.
The electrical signal output may be fed to an electronic circuit receiving the electrical signal output, configured to determine a quantitative parameter of the analyte. The sensor may be resistive, voltometric; impedometric; amperometric; capacitive; potentiostatic or other 3-electrode configuration, enzymatic, redox, or the like. The sensor may have a measurable response to the analyze over a range from, e.g., 0 to 100 mM. The response may be linear, non-linear, logarithmic, or other response function.
It is also an object to provide a sensor, comprising: a sensing medium, comprising a fibrous layer and a plurality of nanoparticles, coating fibers within the fibrous layer, the plurality of nanoparticles being derivatized to interact with the fibrous layer and an analyte in a medium, based on at least one of electronic charge, ligand coordination, hydrogen bonding, van der Waals force, polarity, hydrophilicity, and hydrophobicity; and an electrode, configured to sense a state of the sensing medium in response to the analyte in the medium, and to produce an electrical signal output corresponding to the state. The fibrous layer may comprise nanofibers, e.g., nanofibrous cellulose. The fibrous layer may also comprise a natural cellulose fiber paper, such as a filter or membrane paper.
The sensor may comprise a permeable layer, and a non-woven layer, the permeable layer being supported on the nonwoven layer, and the fibrous layer being supported on the permeable layer, wherein permeable layer consists essentially of fibers having a diameter larger than a diameter of the fibers within the fibrous layer, and fibers of the nonwoven layer have a larger diameter than fibers of the permeable layer.
The sensor may have a monotonically increasing response to a concentration an ionic species within the analyte over a range from 0 to 100 mM.
It is also an object to provide a method of sensing an analyte, comprising: providing a sensor, comprising an electrode for sensing an electrical state of a sensing medium, and producing as an output an electrical signal corresponding to the state, the sensing medium comprising a fibrous layer and a plurality of nanoparticles, coating fibers of the fibrous layer, the plurality of nanoparticles being derivatized to interact with the nanofibrous layer alter the electrical state of the sensing medium in response to the analyte, based on at least one of an electronic charge, hydrogen bonding, van der Waals force, polarity, hydrophilicity, and hydrophobicity; exposing the sensor to the analyte; and producing the output, dependent on the electrical state of the sensing medium.
It is a further object to provide a method of manufacturing a sensing medium, comprising a nanofibrous layer and a plurality of nanoparticles supported on and embedded in the nanofibrous layer, comprising: providing derivatized insoluble conductive nanoparticles having a diameter less than about 150 nm, the derivatized insoluble conductive nanoparticles being derivatized with a ligand capable of at least one of ionic bonding, hydrogen bonding, and van der Waals bonding; providing organic nanofibers in an aqueous slurry, having a nanofiber diameter of less than about 15 nm, and having exposed groups capable of at least one of ionic bonding, hydrogen bonding, and van der Waals interaction with the derivatized insoluble conductive nanoparticles; providing a fibrous layer having a fiber diameter of between about 5-250 nm, deposited on a non-woven fibrous substrate; casting a layer of the organic nanofibers in the aqueous slurry onto the non-woven fibrous substrate, under conditions which cause the organic nanofibers in the aqueous slurry to gel and remain on a surface of the non-woven fibrous substrate or fibrous layer; and depositing a solution containing the nanoparticles on the layer of the organic nanofibers, to link the nanoparticles with nanofibers within the layer of the organic nanofibers, by at least one of electrostatic bonding, hydrogen bonding, and van der Waals interaction, to thereby produce the sensing medium, comprising a nanofibrous layer, on the non-woven fibrous substrate or the fibrous layer, and a plurality of nanoparticles, coating and interacting with nanofibers within the nanofibrous layer. The layer of organic nanofibers may be cast on the non-woven fibrous substrate as a gel which remains on a surface of the fibrous layer substantially without invading the interior of the non-woven fibrous substrate.
It is also an object to provide a method of sensing an analyte, comprising: providing a sensor, comprising an electrode for sensing an electrical state of a sensing medium, and producing as an output an electrical signal corresponding to the state, the sensing medium comprising a nanofibrous layer and a plurality of nanoparticles, supported on and embedded in the nanofibrous layer, and coating fibers of the nanofibrous layer, the plurality of nanoparticles being derivatized with at least one composition configured to interact with the nanofibrous layer and the analyte to alter the electrical state of the sensing medium, based on at least one of an electronic charge, hydrogen bonding, van der Waals force, polarity, hydrophilicity, and hydrophobicity; exposing the sensor to the analyte; and producing the output, dependent on the electrical state of the sensing medium.
It is an object to provide a chemical sensor, comprising: an electrode, configured to sense an electrical state of an adjacent sensing medium in response to a chemical in the surrounding environment, and to produce as an output an electrical signal corresponding to the state; and a sensing medium, comprising: a nanofibrous layer; and a plurality of nanoparticles, supported on and imbedded in the nanofibrous layer, and coating fibers of the nanofibrous layer, each nanoparticle being derivatized with at least one composition configured to interact with the nanofibrous layer and a chemical based on at least one of electronic charge, ligand coordination, hydrogen bonding, van der Waals force, polarity, hydrophilicity, and hydrophobicity.
It is another object to provide a method of sensing a chemical or biological agent, comprising: providing a sensor, comprising an electrode for sensing an electrical state of a sensing medium, and producing as an output an electrical signal corresponding to the state, and the sensing medium comprising a fibrous or nanofibrous layer and a plurality of nanoparticles, supported on and embedded in the nanofibrous layer, and coating fibers of the fibrous or nanofibrous layer, the plurality of nanoparticles being derivatized with at least one composition configured to interact with the fibrous or nanofibrous layer and the chemical to alter the electrical state of the sensing medium, based on at least one of an electronic charge, hydrogen bonding, van der Waals force, polarity, hydrophilicity, and hydrophobicity; inducing an electrical potential in the sensing medium; and producing the output, dependent on the electrical state of the sensing medium.
It is a further object to provide a method of manufacturing a sensing medium, comprising a nanofibrous layer and a plurality of nanoparticles supported on and embedded in the nanofibrous layer, comprising: providing insoluble conductive nanoparticles derivatized with an organic ligand, capable of at least one of ionic bonding, hydrogen bonding, and van der Waals bonding, having a diameter less than about 150 nm; providing organic nanofibers in an aqueous slurry, having a nanofiber diameter of less than about 15 nm, and having exposed groups capable of at least one of ionic bonding, hydrogen bonding, and van der Waals interaction; providing a fibrous layer having a fiber diameter of between about 50-250 nm, deposited on a non-woven fibrous substrate; casting a layer of the organic nanofibers in the aqueous slurry onto the spun non-woven fiber layer, under chemical conditions which cause the organic nanofibers in the aqueous slurry to gel and remain on a surface of the spun non-woven fiber layer; and depositing a solution containing the nanoparticles on the layer of the organic nanofibers, to bond the nanoparticles with nanofibers within the layer of the organic nanofibers, by at least one of electrostatic bonding, hydrogen bonding, and van der Waals interaction.
The sensing medium may comprise the nanofibrous layer having a fiber diameter of less than about 15 nm, on a fibrous intervening layer having a fiber diameter of less than about 250 nm, on a flexible support layer. The electrode may be a printed electrode formed on the nanofibrous layer, the fibrous intervening layer, or the flexible support layer.
The output may be selectively responsive to moisture, humidity, monovalent cations, divalent cations, multivalent cations, sodium ions, and/or potassium ions. The output may form part of a chemiresistive or chemi-capacitive sensor. The nanoparticles and nanofibrous layer may selectively interact with a chemical based on a chemically charged species in the chemical.
The electrode may comprise a pair of interdigitated conductive traces spaced across a gap to sense a change in conductivity of the nanofibrous layer coated with the nanoparticles. The electrode may comprise a platinum interdigitated microsensor electrode. The electrode may comprise a printed ink, a printed carbon ink, graphite or a graphene ink.
The chemical sensor may be provided in combination with an electronic circuit configured to determine a qualitative parameter of the chemical, or an electronic circuit configured to determine a quantitative parameter of the chemical. The output may correspond to an amount of sweat or perspiration secreted from human skin adjacent to the sensing medium.
The chemical sensor may have a non-linear response of impedance to analyze a concentration of the chemical over a range from 0 to 100 mM, a linear response of impedance to analyze a concentration of the chemical over a range from 10 to 100 mM, and/or a sensitive response to a range of chemical concentration over a range from at least 20 mM to 60 mM.
The nanoparticles may be metallic nanoparticles, or gold nanoparticles, or metallic nanoparticles which are stable in an aqueous solution containing the chemical. The nanoparticles may be negatively charged or positively charged.
The insoluble conductive nanoparticles may comprise gold nanoparticles capped with decanethiolate shells, alkylthiolate shells, acrylate shells, or citrate shells. The nanoparticles may be gold or another metal, linked to an alkanethiolate, such as decanethiolate (DT). The plurality of nanoparticles may be hydrogen bonded to 11-mercaptoundecanoic acid (MUA) within the nanofibrous layer. The plurality of nanoparticles may be linked to a carboxylic acid. The plurality of nanoparticles may be electrostatically bound to poly(diallyl) ammonium) within the nanofibrous layer. The plurality of nanoparticles may be derivatized with at least one composition configured to interact with the nanofibrous layer and the chemical based on at least electronic charge, ligand coordination, hydrogen bonding, van der Waals force, polarity, hydrophilicity, and/or hydrophobicity.
The nanoparticles may be about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 20, 25, 30, 35, 40, 42, 45, 50, 55, 60, 65, 70, 75, 80, 90, 100, 110, 120, 125, 130, 140, 150, 160, 170, 180, 190, or 200 nm in diameter.
The insoluble conductive nanoparticles may have a size distribution of less than ±20%, ±17.5%, ±15%, +10%, ±7.5%, ±5%, ±3%, or ±2.5%.
The nanofibrous layer may comprise nanofibrous cellulose and/or oxidized cellulose nanofibers, e.g., having a fiber diameter of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 50, 70, 80, 90, 100, 125, 150, 200, 250, 300, 350 or 400 nm. The nanofibrous layer may comprise nanofibrous cellulose having a fiber diameter of between about 1 nm to 400 nm, about 1-100 nm, about 2-50 nm, or about 5-25 nm.
The nanofibrous layer may comprise nanofibrous cellulose having a controlled porosity. The nanofibrous layer may comprise a porosity of between 10-99%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, about 97%, about 99%, or about 60-90%.
The nanofibrous layer may be supported on a permeable layer. The permeable layer may be electrospun, and/or formed of crosslinked polyacrylonitrile (PAN) or crosslinked polyethylene glycol diacrylate (PEGDA). The permeable layer may be supported on a nonwoven layer. The nonwoven layer may comprise polyethylene terephthalate. The nonwoven layer may consist of nonwoven polyethylene terephthalate (PET). The nanofibrous layer may be supported on a crosslinked PAN or PEGDA permeable layer, and the permeable layer may be supported on a PET nonwoven layer.
The nanofibrous layer may be cast from a slurry on an electrospun layer formed on a nonwoven layer. The layer of organic nanofibers may be cast on the fibrous layer as a gel which remains on a surface of the layer of organic nanofibers substantially without invading the interior of the fibrous layer. The chemical conditions which cause the organic nanofibers in the aqueous slurry to gel and remain on a surface of the spun non-woven fiber layer may comprise a pH of less than 3, 2.5, or 2.
The solution deposited containing the nanoparticles on the layer of the organic nanofibers may comprise a molecular linker with hydrogen-bonding groups for interlinking the nanoparticles with the organic ligand. The solution deposited containing the nanoparticles on the layer of the organic nanofibers may comprise 11-mercaptoundecanoic acid (MUA). The solution deposited containing the nanoparticles on the layer of the organic nanofibers may comprise a molecular linker with positively charged groups for ionically interlinking nanoparticles with the organic ligand. The solution deposited containing the nanoparticles on the layer of the organic nanofibers may comprise poly(diallyl ammonium) (PDA).
Experimental Section
Chemicals and Synthesis of Gold Nanoparticles.
Hydrogen tetrachloroaurate trihydrate (99%), tetraoctylammonium bromide (99%), decanethiol (DT, 96%), sodium borohydride (99%), 11-mercaptoundecanoic acid (MUA, 95%), (poly)diallyldimethylammonium (PDA) (20%), sodium acrylate, sodium chloride (NaCl), potassium chloride (KCl), lithium chloride (LiCl), and graphite powders were purchased from Aldrich. Solvents included hexane (Hx, 99.9%) and toluene (Tl, 99%) from Fisher, and ethanol (99.9%) from Aldrich. Water was purified with a Millipore Milli-Q water system. 2,2,6,6-Tetramethylpiperidinooxy (TEMPO, 98%) was purchased from Acros. Sodium hypochlorite (NaClO solution, available chlorine 7-10%) was purchased from Sigma-Aldrich. Sodium bromide (NaBr) was obtained from Fisher Scientific Company. Polyacrylonitrile (PAN) having an average molecular weight (Mw) of 150 kDa was purchased from Sigma-Aldrich. Poly(ethylene terephthalate) nonwoven substrate (PET microfilter F02413 with an average fiber diameter of about 30 μm) for the membrane support was provided by Freudenberg Nonwovens (Hopkinsville, Ky.).
Gold nanoparticles of 2 nm (Au2 nm) capped with decanethiolate (DT) monolayer shells were synthesized by two-phase reduction of AuCl4—according to Brust's two-phase protocol and a synthetic modification. DT-capped gold nanoparticles of 7.1±1.0 nm diameter were synthesized from a thermally activated processing of Au2 nm nanoparticles (Maye, M. M.; Zheng, W.; Leibowitz, F. L.; Ly, N. K.; Zhong, C. J. Heating-induced evolution of thiolate-encapsulated gold nano-particles: a strategy for size and shape manipulation. Langmuir 2000, 16, 490-497.) Briefly, the solution containing the as-synthesized DT-Au2 nm nanoparticles was heated at 150° C. to produce larger-sized Au nanoparticles. (Maye, M. M.; Zheng, W.; Leibowitz, F. L.; Ly, N. K.; Zhong, C. J. Heating-induced evolution of thiolate-encapsulated gold nanoparticles: a strategy for size and shape manipulation. Langmuir 2000, 16, 490-497; Han, L.; Luo, J.; Kariuki, N. N.; Maye, M. M.; Jones, V. W.; Zhong, C. J. Novel interparticle spatial properties of hydrogen-bonding mediated nanoparticle assembly. Chem. Mater. 2003, 15, 29-37.) Acrylate-capped gold nanoparticles 42 nm (42.2±6.9 nm) and 70 nm (70.6±2.0 nm) were prepared by a seeded aggregative growth method. Briefly, the synthesis involves reacting mixture of Au seeds (30 nm) and HAuCl4 under controlled concentrations of the reducing and capping agents, which produced acrylate-capped Au NPs of >30 nm. (Njoki, P. N.; Lim, I. I. S.; Mott, D.; Park, H. Y.; Khan, B.; Mishra, S.; Sujakumar, R.; Luo, J.; Zhong, C. J. Size correlation of optical and spectroscopic properties for gold nanoparticles. J. Phys. Chem. C 2007, 111, 14664-14669.)
Preparation of Nanofibrous Membranes.
Ultrafine cellulose nanofibers were prepared by the following procedure. In brief, 10 g of wood pulps (Biofloc 96 supplied by the Tembec Tartas factory in France) was dispersed in 192 g of water. NaBr (0.2 g) and TEMPO (0.04 g) were subsequently dissolved in the suspension. Then 30 g of 10-15% NaClO aqueous solution was added to start this reaction. The pH value of the system was adjusted in the range of 10.0-10.3 by adding sodium hydroxide (NaOH) aqueous solution (0.5 mol/L). After 24 h, the reaction was stopped by adding ethanol (10 mL). The oxidized cellulose product was purified by dialysis process. The resulting cellulose slurry was dispersed in 100 g of water by using a homogenizer (Cole Parmer, VCX-400) for 5 min. The CN concentration was determined by using a Total Organic Carbon analyzer (TOC-500, Shi-madzu Corporation).
To prepare electrospun PAN/PET substrate, PAN was dissolved in DMF at 60° C. for 2 days until the mixture became a homogeneous solution (the solution concentration was 8 wt %). The homogeneous PAN solution was electrospun onto the nonwoven PET substrate under a high electrical voltage of 20 kV. The flow rate during this electrospinning operation was 16 μL/min and the inner diameter of the spinneret was 0.7 mm. The working distance between the spinneret and the collector was 10 cm. The average fiber diameter of the electrospun nanofiber estimated from the SEM image was 150±10 nm.
To complete the three-layered fibrous membrane containing the ultrafine cellulose nanofiber top layer, the electrospun PAN/PET substrate was first immersed in an acidic aqueous solution (pH=2). The cellulose nanofiber aqueous suspension (0.05 wt %) was subsequently cast on top of the electrospun PAN nanofibrous scaffold. The low pH value was used to gel the cellulose nanofiber suspension, thus preventing the penetration of cellulose nanofibers into the electrospun scaffold. The barrier layer thickness was controlled by the gap of the casting knife. After coating, the resulting membrane was dried at room temperature and forms a uniform coating layer of CN.
Preparation of Nanoparticle-Nanofibrous Membranes.
For the assembly of MUA-linked DT-capped Au NPs in NM (M-NPs/NM), typically a controlled volume (e.g., 2 μL) of MUA mediated Au NPs solution (7.1×1014 NPs/mL) was directly deposited in the nanofibrous membrane (NM). For the assembly of PDA-linked acrylate-capped Au NPs in the NM (P-NPs/NM), a controlled volume of 10× concentrated acrylate-capped 70 nm Au NPs (5.0×1011 NPs/mL), or 2× concentrated 42 nm NPs (2.7×1013 NPs/mL), was first mixed with PDA solution (0.4 M) by sonication for 10 min. A controlled volume (2 μL) of the solution was then deposited in the NM, followed by further annealing at room temperature for at least 1 h before use.
Instrumentation and Measurements.
Electrochemical impedance spectroscopic (EIS) measurements were performed on a SP-150 single-channel potentiostat (Biologic). The spectra were recorded at open circuit in a frequency range from 100 kHz to 0.1 Hz.
Transmission electron microscopy (TEM) was employed to determine the morphology of the nanoparticles. TEM was performed on a JEOL JEM-ARM200F instrument operated at 200 kV with a spherical aberration corrector. The nanoparticle samples were suspended in hexane or water before drop casting on a carbon-coated copper grid. The samples were then dried by evaporation in ambient atmosphere.
Scanning electron microscopy (SEM) images of the nanofibrous membrane and nanocomposite were performed with a LEO-1550 (Carl Zeiss) field emission scanning electron microscope. The membrane samples were mounted on a sample holder. It was then followed by carbon-coating with a sputter coater.
Results and Discussion
General Characteristics of Nanocomposite Membranes and Devices.
As illustrated in
Gold nanoparticles of different sizes and hydrophilicity characteristics were studied for their assembly in the nanofibrous membranes, including hydrophobic DT-capped Au NPs and hydrophilic acrylate-capped Au NPs (
The M-NPs/NM, i.e., MUA-AuNPs/CN/PAN/PET, features largely hydrophobic network with partial hydrophilic domains (i.e., the region of hydrogen-bonding of carboxylic acid groups). In contrast, the P-NPs/NM, i.e., PDA-AuNPs/CN/PAN/PET, features largely hydrophilic network with partial hydrophobic polymer backbone structure. Both nanocomposite membranes were studied as resistance- or conductance-responsive scaffolds on chemiresistor-type platform via two different approaches. The first involves placing the NPs/NM on top of a prefabricated Pt-interdigitated micro-electrode (Pt-IME) device (
Ideally, the above chemiresistor-type device can be represented by two equivalent circuit models featuring the nanoparticle—nanofibrous membrane with two-electrode configurations (see
Detection of Salts Dissolved in Water and from Sweat.
Detection of Salts in Water.
With a M-NPs/NM scaffold sensor device of M-AuNPs/CN/PAN/PET on Pt-IME (CN facing Pt-IME,
By extracting the impedance values (|Z|) from
These results indicate that the nanocomposite membrane functions as an ion sensitive and selective interfacial scaffold on the interdigitated microelectrode, which is consistent with the cation exchange membrane character of the MUA-Au NP films embedded in the nanofibrous membrane. In a typical cation-exchange membrane as stationary phase in chromatographic column, the relative affinities of different counterions in the mobile phase depend on the ionic charge, polarizability, and size of the solvated ion, and the type and interaction of the functional groups on the stationary phase. An increase of the charge-density (charge/solvated size) of the ion, or higher charge with smaller solvated ion radius, leads to higher electrostatic interactions with the stationary charges in the membrane (carboxylates), typically K+>Na+>Li+. In that case, the ionic conductance of the nanocomposite membranes (1/|Z|) would display the order K+<Na+<Li+, which is consistent with the experimental observation (
The same M-Au NPs/CN/PAN/PET scaffold is configured in between a pair of graphite printed electrodes on CN or PET sides of the membrane (
For the case of G-PE on the CN side in solutions containing Na+ with different concentrations, the |Z| vs frequency curves (
The P-NPs/NM scaffolds were also examined. For example, with PDA-Au NPs (42 nm)/CN/PAN/PET being configured in between a printed pair of graphite electrodes on CN or PET sides of the membrane (see
Detection of Sweat.
On the basis of the above data for the detection of salts in solutions, the viability of the MUA-AuNPs/CN/PAN/PET with G-PE on the PET side was further examined with normal volunteers before and after exercises. While sweat contains different chemical constituents with different concentrations, as stated earlier, the study described in this subsection focused on the salt and moisture detections to demonstrate the sensing properties of the as-prepared nano-particle-nanofibrous nanocomposites.
The detection of biological species (e.g., glucose, urea, or lactate) is possible by use of enzymatic or nonenzymatic modifications of the nanocomposite.
It is evident that the relative change for the individual before and after exercise (96%) is smaller than that for the control experiment using pure water (99%). This is expected because salts in the sweat greatly increase the conductivity in comparison with pure water.
Detection of Relative Humidity Changes in Air and from Perspiration.
Detection of Relative Humidity Changes in Air.
With devices of Au70 nm/CN/PAN/PET (with G-PE on CN side), the response characteristics between PDA-Au NPs (70 nm) and MUA-Au NPs (7 nm) in NM were first compared. The impedance data at different RH % were collected by flowing air or N2 from a water bubbler with a flow controller, at each flow rate the RH % were recorded by a commercial humidity meter.
Data were first obtained with a sensor device of MUA-Au NPs/CN/PAN/PET on G-PE in which the G-PE is on CN side. On the basis of impedance data extracted from Bode impedance plots, both 1/|Z| (
To manipulate the hydrophilicity, a highly hydrophilic polymer, PDA, was used for the assembly of Au NPs in the nanocomposite membrane. The membranes were fabricated by PDA mediated assembly of acrylate-capped Au NPs of different sizes (70 or 42 nm) in the nanofibrous membranes. Different concentration ratios of PDA vs Au NPs were studied for the assemblies. As shown in
To understand the composition effect of the nanocomposite on response characteristics, the nanocomposite membranes were examined with different ratios of Au NPs vs PDA, as well as different particle sizes using IME as the detection platform. With PDA-Au NPs (70 nm)/CN/PAN/PET on Pt-IME (
The particle size effect on the response sensitivity was also examined.
Detection of Perspiration.
The viability of PDA-AuNPs/CN/PAN/PET devices (with G-PE) for detection of perspiration was examined with normal individual volunteers before and after exercises.
Based on the relative changes of ΔZ/Zi values before and after the exercises, it is evident that the corresponding changes of RH % falls in between 50 and 72% (for #1) and 56-62% (for #2), as estimated from the calibration data shown in
Devices with G-PE on the PET side were also tested. For example, the response for PDA-AuNPs/CN/PAN/PET with G-PE on the PET side was found to be much smaller than that with G-PE on the CN side. This finding is indicative of the importance of the nanocomposite membrane-electrode configuration in the sensor response.
Conclusion
A novel class of nanocomposite membranes has been demonstrated for constructing moisture and chemi-sensitive scaffolds for potential applications, such as flexible sweat sensors. The nanocomposites are assembled by molecular or polymeric linkers that incorporate gold nanoparticles into a three-layer structured nanofibrous membrane. Impedance measurements of the nanocomposite membrane as a scaffold of chemiresistor-type platform have demonstrated the capabilities for ion detection in solutions with dissolved salts and changes of relative humidity in the atmosphere. This nanoparticle-nanofiber sensor platform is further demonstrated as a flexible sensor strip for detecting changes in sweating and perspiration of individuals before and after exercises, showing promising potentials for applications of the flexible nanocomposite scaffolds in wearable sweat sensors.
Various embodiments are shown and disclosed herein. The scope of the invention, while exemplified by the embodiments, is not limited thereby.
The word “about” means having a structure and function which is functionally similar with proportional changes in properties, dependent on quantitative changes. Typically, when the properties change linearly over a range, the word “about” may encompass a range of a factor of 2, i.e., 50% to 200%.
The nanofibrous paper chemiresistor sensors employ dendronized nanoparticles that exhibit structurally tunable and negative-going responses to human breathing and sweating processes. The device consists of multilayered fibrous paper as a low-cost biocompatible matrix and dendron coated gold nanoparticles as designated sensing elements with tunable sizes, shapes, and structures. The ability to control the interparticle spatial interactions [Edel et al. 2016, Scultz et al. 2013] in a fibrous membrane represents an important pathway to utilize their unique electrical and optical properties for constructing the 3D sensing interfaces. The multilayered fibrous membrane consists of a cellulose nanofiber (CN) and an electrospun poly(acrylonitrile) (PAN), nanofibrous layer, sup-ported on a nonwoven poly(ethylene terephthalate) (PET), film.[Mat et al 2010] The membrane paper features an extremely high surface to volume ratio and nanofiltration capability. With metal nanoparticles, which are widely exploited as sensing or biosensing materials, different molecules or biomolecules have been utilized as interparticle linkers ranging from alkyl dithiols or functionalized thiols to polymers or biopolymers [Ahmad et al. 2015, Lim et al 2007]. In comparison to traditional linkers, dendrimers represent a class of macromolecules with well-defined 3D branched structure exhibiting a high degree of functionality and versatility. Dendrimers featuring multiple “wedges” and dendrons featuring single “wedge” are not only well defined as structural building blocks, but also have controllable sizes ranging from 1 to 30 nm depending on their generation.[Kaga et al. 2016, Albrecht et al. 2016] In particular, dendrimer-nanoparticle conjugates have been attracting considerable interest in medicine [Caminade et al. 2015, Parat et al 2010], drug delivery [Mullen et al. 2010], vapor sorption [Krasteva et al 2007], diagnostics [Astruc 2012] and electrochemical biosensors for enzyme immobilization [Hasanzadeh et al. 2014]. The exploration of size- and structure-tunable dendrons as interparticle linkers for the assembly of gold nanoparticles and the embedding of them in the flexible and nanofibrous membrane paper represent a pathway for design of highly sensitive interfacial materials for addressing some of challenges in wearable sensors and biosensors.
Dendrons or dendrimers are utilized for the coating of gold nanoparticles (Au NPs). The process involves thiolate binding of dendrons on the surface of gold nanoparticles and subsequent interparticle linkage via interactions of the immobilized dendrons. The dependence of the interparticle interactions on both the size and structure of dendrons and nanoparticles leads to intriguing optical and electrical properties of the resulting materials. The optical properties facilitate the assessment of the interparticle interactions and arrangements. The electrical properties of the nanofibrous membrane matrix with dendronized nanoparticles are harnessed for exploring the multiple hydrophilic/hydrogen-bonding sites in a 3D structural interface for sensing applications in moisture-dominant environment such as human breathing and sweating. The structurally tunable negative-going response characteristics, in contrast to the positive-going response characteristics for most chemiresistors, provides a new sensor design strategy for constructing sensor arrays for complex sensing environment. In addition, these low-cost sensing materials are highly versatile in various types of noninvasive and disposable applications due to the high surface area to volume ratio of the fibrous paper and the printable microelectrodes with minimum use of the dendronized nanoparticles. For example, the paper devices can be formatted as strips of different sizes or shapes with embedded electrical plug-in module, and an individual can place such a strip in a premade mask for breath monitoring or in a premade bandage for sweat monitoring.
Experimental Section
Synthesis of Dendrons: LG-N3 dendron was synthesized according to previously published procedure [Wang et al. 2014], and then coupled with lipoic propargyl ester, which upon deprotection of the peripheral OH groups yielded deLG-SS. SG-N3 dendron and the final deSG-SS fragment were synthesized in a similar fashion.
Synthesis and Assembly of gold nanoparticles having dendrons (AuNPs@Dendrons): The synthesis of gold nanoparticles involved the use of acrylate as both reducing and capping agent in an aqueous solution of HAuCl4 [Njoki et al. 2007]. For example, in the synthesis of 30 nm nanoparticle seeds, an aqueous solution of HAuCl4 (2.0×10−4 M) was mixed with sodium acrylate (12.0×10−3 M) and the mixture was stirred at controlled room temperature. Gold nanoparticles with diameters larger than the seeds were prepared by seeded growth via reduction of AuCl4 in the presence of pre-synthesized Au seeds. Briefly, the seeds underwent a seeded aggregative growth reaction in the presence of HAuCl4 under a range of controlled concentrations of the reducing and capping agents (sodium citrates) to form large-sized Au nanoparticles. The particle size was controlled by varying the concentration of the seeds and the concentration of AuCl4. Then Au NPs (0.73×10−12 M) with different sizes (30, 47, and 58 nm) were resuspended into methanol solution or doubly distilled H2O followed by drop by drop addition of the dendrons in methanol solution. The disulfide functional group of dendrons serves as an anchoring group to gold surface through gold-thiolate binding upon breaking down the disulfide linkage. The concentrations of the gold nanoparticles and the dendrons are precisely controlled so that the relative rates of the dendron-citrate exchange reaction and the dendron-dendron linking reaction can be controlled to achieve the desired interparticle spatial properties. The dendronized nanoparticles were incorporated into the paper by pipetting and casting the solution with controlled concentration and volume, or inkjet printing of the nanoink with a controlled concentration and speed. UV-vis spectra were acquired with an HP 8453 spectrophotometer. Spectra were collected over the range of 200-1100 nm. TEM analysis was performed using an FEI Tecnai T12 Spirit Twin TEM/scanning electron microscopy (SEM) electron microscope (120 kV).
Sensor Measurements: Computer-interfaced multichannel Keithley (Model 2700) instrument was used to measure the lateral resistance of the nanostructured thin films on the laser-written devices, which were housed in a Teflon chamber with tubing connections to vapor and N2 sources (at 22±1° C.). The concentration was controlled by bubbling dry N2 gas through the solvent using a calibrated Aalborg mass-flow controller (AFC-2600). The vapor generating system consisted of multichannel module linked to different vapor sources.
Results and Discussion
The dendronized Au NPs, along with their interparticle linkages, are embedded in the fibrous membranes such as nanofibrous membrane-type paper, forming a physically flexible and chemically tunable nanocomposite scaffold. In the scaffold, the distance between the nanoparticles is well-defined due to the semi-rigid character of the dendrons and lack of in-depth interpenetration among the dendron shells. In other words, the interparticle forces involve a combination of hydrogen-bonding and van der Waals interactions between the partially interpenetrating dendrons.
The structural and spatial characteristics defined by the multiple hydrogen-bonding and van der Waals interactions between the individually dendronized nanoparticles constitute the basis for harnessing the structurally and spatially tunable interparticle properties. To exploit such interparticle properties, the AuNP@dendrons are incorporated into a multilayered fibrous membrane-type paper with printed electrodes as an electrically responsive sensing scaffold. The interparticle properties of this type of 3D nanocomposite scaffold are expected to be sensitive to perturbation by molecular adsorption, leading to a change in the electrical properties. As shown in
The change in electrical properties as a result of the adsorption of volatile organic compounds (VOCs) in the above nanocomposite can be detected by the printed microelectrodes, which has important applications for environmental monitoring of VOC pollution in air, and of great interest for human breath sensing of VOC biomarkers from various diseases (e.g., acetone as breath biomarker associated with diabetes). As shown in
In general, the increase in the amount of AuNPs@deSG-SS assemblies in the fibrous membrane is found to lead to a larger response, which is consistent with the electrical characteristics of the nanoparticle assemblies. Note that the responses to other alcohol vapors such as methanol and propanol also display negative-going response profiles. These response profiles exhibit a remarkable contrast to most of the traditional chemiresistors assembled by polymers or nanoparticles with molecular linkers (alkyl dithiols and alkyl dicarboxylic acid) on flexible or rigid substrates (PET and glass), which exhibited often positively going response characteristics in terms of ΔR/Ri,[Wang et al 2007, Wang et al. 2010, Yin et al. 2011, Shan et al. 2014, Zhao et al. 2015, Olichwer et al. 2016, Ghosh et al. 2017, Segev-Bar et al. 2017] but less often negative-going responses depending on the interparticle dielectric medium properties [Wang et al. 2010, Yin et al. 2011, Kim et al. 2014, Ibanez et al 2012]. In the assembly of the dendronized Au NPs, the persistence of the negative-going response profiles observed in this work is indicative of a significant impact of an increase of the interparticle dielectric medium constant as a result of the highly branched dendrons with both hydrophilic and hydrophobic structures in the 3D matrix on the electrical conductivity. Such an impact imparts a unique response characteristic to the nanofibrous membrane paper embedded with dendronized nanoparticles as novel sensing interface.
It is evident that the magnitude of the negative-going response scales with the vapor concentration. With the same amount of AuNPs@deSG-SS assemblies in the fibrous membrane devices, the response sensitivity (
The AuNPs@deSG-SS embedded membrane paper sensor is further tested as a flexible device for detecting human breathing and sweating. Such tests are significant considering the facts that human breathing relates the physical conditions or performances, and that the human breath exhale contain various volatiles (e.g., under normal conditions, 5% H2O vapor, a few ppm (V) of H2, CO2, and NH3, and ≈1 ppm (V) of acetone, methanol, ethanol, and other VOCs) [Vaks et al. 2014] which can be used to diagnose some conditions related to human health, such as lung cancer and diabetes [Zhao et al. 2016]. The pattern of exhale breath is either a strong predictor of diseases such as colorectal cancer and gastric cancer, or used as a unique breath print for illnesses such as chronic obstructive pulmonary disease, pneumonia, and asthma [Nakhleh et al. 2016].
To test the viability of the membrane-type paper device as a breath sensor in terms of inhale and exhale cycles, which are the more accessible and useful source for monitoring disorders and health of the human body than blood tests, response profiles of the device to breathing, perspiration, and sweating are measured.
As shown by a typical set of chemiresistive sensing data for moisture exposure of the nanocomposite membrane paper device (
The flexible nanocomposite membrane sensor devices were also tested for monitoring human sweating process. Sweat analysis is known to contain physiologically and metabolically rich information that can be retrieved noninvasively, which is used for applications such as disease diagnosis, drug abuse detection, and athletic performance optimization [Gao et al. 2016, Koh et al. 2016, Kang et al. 2016].
To monitor perspiration, a stopped air-flow manifold with the nanocomposite sensor device being embedded inside was placed on the palm. When the air-flow system was turned off (stopped), the response signal came from sweating. The sensing mechanism takes advantage of the reversible moisture response characteristics of the sensor device, as shown by a typical set of impedance response data as a function of RH % (
Conclusions
A membrane-type composite sensing interface consisting of multilayered fibrous paper and dendronized gold nanoparticles with tunable sizes, shapes, and structures has been demonstrated to enable 3D sensitive interface with structural tunability and molecular sensitivity for wearable physiological monitoring. This type of tunability by a combination of nanoparticles, dendrons, and membrane-type 3D scaffold with controllable sizes and structures is to our knowledge the first example in constructing sensing interfaces. Dendrons with tunable molecular sizes, structures, and multiple hydrogenbonding sites function as an interparticle linkage of gold nanoparticles, leading to well-defined interparticle spatial, optical, and electrical properties. The interparticle interactions are shown to be tunable by both dendron size and nanoparticle size, as evidenced by the size dependencies of the red shift of the surface plasmon resonance band of gold nanoparticles and the different kinetics of the assembly processes. The interparticle spacing is characterized by a certain degree of inter interpenetration between deSG-SS and deLG-SS dendron shells immobilized on the nanoparticle surface to maximize the hydrogen-bonding on multiple dendron sites or van der Waals interactions. Theoretical simulation of the SP band spectral evolution shows a good agreement with the experimentally observed SP band, providing insights into the size- and structure-dependent interparticle interactions. The embedding of the sensing nanostructures in the 3D fibrous membrane paper constitutes a promising strategy for the creation of highly sensitive interfaces under conformal conditions to the human body for wearable human performance monitoring and point-of-care sensing applications.
Embedding the dendronized nanoparticle assemblies in a multilayer nanofibrous membrane serves as a nanocomposite scaffold, which was demonstrated as a structurally tunable chemiresistor featuring all negative-going response characteristics, in contrast to most conventional chemiresistive sensing profiles. The electrical properties of the nanofibrous membrane-type paper as a breath and sweat sensing scaffold have shown tunability in terms of sensitivity through manipulating an array of structural parameters including the generation and functional groups for the dendrons, the particle size, and their relative compositions.
Each patent and publication cited herein is expressly incorporated herein by reference in its entirety.
Technologies for integration of the present sensor into a system are known from the following, each of which is expressly incorporated herein by reference in its entirety: U.S. Pat. Nos. 6,607,484; 6,819,247; 6,893,396; 6,942,615; 6,985,078; 7,029,852; 7,034,677; 7,044,908; 7,128,716; 7,171,312; 7,171,331; 7,174,277; 7,285,090; 7,353,136; 7,353,137; 7,407,484; 7,440,844; 7,463,142; 7,486,979; 7,552,031; 7,555,327; 7,559,902; 7,574,244; 7,574,245; 7,590,439; 7,598,878; 7,620,520; 7,627,451; 7,647,084; 7,650,177; 7,657,294; 7,657,295; 7,657,296; 7,658,612; 7,673,528; 7,684,843; 7,693,559; 7,701,332; 7,711,506; 7,731,517; 7,738,937; 7,753,685; 7,811,234; 7,825,815; 7,827,011; 7,856,339; 7,860,725; 7,869,850; 7,881,762; 7,881,862; 7,904,285; 7,959,567; 8,036,842; 8,060,171; 8,063,307; 8,070,508; 8,071,935; 8,094,009; 8,097,926; 8,107,920; 8,125,331; 8,126,675; 8,157,730; 8,157,731; 8,175,671; 8,190,224; 8,190,225; 8,195,264; 8,199,007; 8,204,786; 8,219,170; 8,228,188; 8,251,903; 8,275,635; 8,280,469; 8,280,681; 8,280,682; 8,284,046; 8,285,560; 8,308,489; 8,311,602; 8,315,685; 8,323,188; 8,323,982; 8,352,010; 8,352,172; 8,358,214; 8,369,936; 8,374,825; 8,382,590; 8,386,002; 8,396,527; 8,396,687; 8,398,546; 8,426,932; 8,428,675; 8,428,904; 8,449,471; 8,452,366; 8,467,133; 8,472,120; 8,477,425; 8,482,859; 8,488,246; 8,498,811; 8,512,242; 8,515,515; 8,515,537; 8,527,213; 8,528,185; 8,536,667; 8,553,223; 8,571,620; 8,579,834; 8,636,670; 8,638,228; 8,641,612; 8,652,409; 8,655,441; 8,660,814; 8,665,087; 8,684,900; 8,688,406; 8,690,799; 8,696,616; 8,702,607; 8,702,627; 8,708,904; 8,714,983; 8,715,206; 8,731,512; 8,744,783; 8,755,535; 8,759,791; 8,764,657; 8,781,548; 8,788,002; 8,795,173; 8,798,702; 8,805,465; 8,812,130; 8,844,057; 8,852,098; 8,870,766; 8,888,701; 8,929,963; 8,929,965; 8,935,195; 8,942,776; 8,961,414; 8,961,415; 8,964,298; 8,965,473; 8,968,196; 8,984,954; 9,020,752; 9,028,405; 9,033,876; 9,042,596; 9,044,180; 9,050,471; 9,058,703; 9,060,714; 9,072,941; 9,078,610; 9,097,890; 9,097,891; 9,119,533; 9,125,625; 9,128,281; 9,129,295; 9,132,217; 9,134,534; 9,141,994; 9,147,144; 9,162,063; 9,165,117; 9,174,055; 9,182,596; 9,186,060; 9,186,098; 9,215,992; 9,216,528; 9,223,134; 9,229,227; 9,254,099; 9,254,383; 9,256,906; 9,258,350; 9,262,772; 9,265,453; 9,265,949; 9,267,793; 9,269,000; 9,270,627; 9,272,091; 9,282,574; 9,285,589; 9,289,175; 9,301,092; 9,301,719; 9,320,842; 9,326,731; 9,341,843; 9,349,234; 9,351,669; 9,366,862; 9,384,609; 9,389,260; 9,396,486; 9,398,856; 9,408,572; 9,412,273; 9,415,125; 9,426,433; 9,439,566; 9,439,567; 9,439,797; 9,442,070; 9,442,100; 9,445,720; 9,445,767; 9,453,774; 9,456,755; 9,462,979; 9,504,423; 9,514,278; 9,515,417; 9,521,962; 9,522,317; 9,524,597; 9,529,385; 9,532,737; 9,536,449; 9,538,921; 9,538,980; 9,572,647; 9,582,035; 9,582,072; 9,582,080; 9,582,833; 9,590,438; 9,592,007; 9,594,402; 9,597,004; 9,598,282; 9,613,659; 9,615,798; 9,619,213; 9,620,000; 9,625,330; 9,630,011; 9,636,992; 9,636,993; 9,643,091; 9,654,200; 9,662,069; 9,669,699; 9,669,700; 9,687,183; 9,691,428; 9,696,833; 9,701,190; 9,703,751; 9,707,466; 9,717,455; RE44,408; RE45,766; 20010049471; 20020028988; 20020120203; 20030076968; 20030163287; 20030181795; 20030194205; 20030195398; 20030204132; 20040029183; 20040133081; 20040135684; 20040152956; 20040152957; 20040158194; 20040204915; 20050080322; 20050080566; 20050148828; 20060052983; 20060143645; 20060252999; 20060254369; 20060293714; 20070016096; 20070063850; 20070100666; 20070106138; 20070111753; 20070112542; 20070118328; 20070152811; 20070197881; 20070208542; 20070255176; 20070270672; 20080030330; 20080077440; 20080146334; 20080146892; 20080161654; 20080161655; 20080162088; 20080167535; 20080167536; 20080167537; 20080167538; 20080167539; 20080171919; 20080171920; 20080171921; 20080171922; 20080220535; 20080246629; 20080262376; 20080275309; 20080306357; 20080318678; 20080319781; 20080319786; 20080319787; 20080319796; 20080319855; 20080320029; 20080320030; 20090006457; 20090006458; 20090093985; 20090112071; 20090171166; 20090174547; 20090177068; 20090212941; 20090322513; 20100076692; 20100081895; 20100121227; 20100122832; 20100152621; 20100176952; 20100217099; 20100241464; 20100241465; 20100249557; 20100286532; 20110003610; 20110004072; 20110034912; 20110035190; 20110054359; 20110070835; 20110082484; 20110092825; 20110098112; 20110106627; 20110145162; 20110191044; 20110213225; 20110213271; 20110213272; 20110213273; 20110213274; 20110223583; 20110282828; 20110288574; 20110298613; 20110319729; 20120010642; 20120050038; 20120075168; 20120095352; 20120123232; 20120123960; 20120143495; 20120143514; 20120146784; 20120149996; 20120150483; 20120165617; 20120172783; 20120172792; 20120190941; 20120190942; 20120190943; 20120190951; 20120194418; 20120194419; 20120194420; 20120194549; 20120194550; 20120194551; 20120194552; 20120194553; 20120197093; 20120197098; 20120197222; 20120197737; 20120200488; 20120200499; 20120200601; 20120203081; 20120203453; 20120203491; 20120203511; 20120206322; 20120206323; 20120206334; 20120206335; 20120206485; 20120209088; 20120212398; 20120212399; 20120212400; 20120212406; 20120212414; 20120212484; 20120212499; 20120218172; 20120218301; 20120226111; 20120226112; 20120226130; 20120235883; 20120235884; 20120235885; 20120235886; 20120235887; 20120235900; 20120236030; 20120236031; 20120242678; 20120242697; 20120242698; 20120244807; 20120245439; 20120245447; 20120246788; 20120249797; 20120265296; 20120265477; 20120273354; 20120277546; 20120283577; 20120283578; 20120296175; 20120296184; 20120296191; 20130013333; 20130030711; 20130059396; 20130060480; 20130066395; 20130096466; 20130103416; 20130127980; 20130131519; 20130144564; 20130151699; 20130172691; 20130211788; 20130216989; 20130238276; 20130245486; 20130274642; 20130278631; 20130311084; 20130314303; 20130338470; 20130346148; 20140012105; 20140018638; 20140039290; 20140051946; 20140052567; 20140058272; 20140063054; 20140063055; 20140081175; 20140081578; 20140081667; 20140088442; 20140091811; 20140094136; 20140095102; 20140107495; 20140107498; 20140107932; 20140114699; 20140115008; 20140122496; 20140122536; 20140122537; 20140143064; 20140156698; 20140172358; 20140180018; 20140180024; 20140180025; 20140180598; 20140180720; 20140180993; 20140181108; 20140187872; 20140187873; 20140188874; 20140197947; 20140200426; 20140202264; 20140203797; 20140203972; 20140206955; 20140213854; 20140213855; 20140213856; 20140213857; 20140213938; 20140214552; 20140214836; 20140214873; 20140214874; 20140214903; 20140220525; 20140221730; 20140221769; 20140221770; 20140221773; 20140221774; 20140221775; 20140221776; 20140221849; 20140221850; 20140222174; 20140222732; 20140222733; 20140222734; 20140222735; 20140222804; 20140222847; 20140222848; 20140222849; 20140222850; 20140222851; 20140223406; 20140223407; 20140223421; 20140232516; 20140249381; 20140267299; 20140274216; 20140275824; 20140275855; 20140275898; 20140285402; 20140287833; 20140288394; 20140288396; 20140303452; 20140303508; 20140303520; 20140306814; 20140306834; 20140306835; 20140308636; 20140308639; 20140308902; 20140309838; 20140309919; 20140309930; 20140309939; 20140309940; 20140310105; 20140310223; 20140310274; 20140310275; 20140310276; 20140310284; 20140310294; 20140310295; 20140310296; 20140310297; 20140310298; 20140310379; 20140310702; 20140316229; 20140316885; 20140317039; 20140317042; 20140317119; 20140317135; 20140343370; 20140343371; 20140343380; 20140344208; 20140344282; 20140347491; 20140349256; 20140349257; 20140350883; 20140368643; 20140378853; 20150005680; 20150025338; 20150031967; 20150032505; 20150047091; 20150054628; 20150057512; 20150057516; 20150058110; 20150058133; 20150061895; 20150063202; 20150078140; 20150080741; 20150080746; 20150088007; 20150102208; 20150111088; 20150119657; 20150123641; 20150126824; 20150126873; 20150140397; 20150141772; 20150148623; 20150148624; 20150148625; 20150148632; 20150148635; 20150148636; 20150157220; 20150164404; 20150168365; 20150170540; 20150173674; 20150178915; 20150181840; 20150182322; 20150182843; 20150185088; 20150199010; 20150216484; 20150245797; 20150248833; 20150254724; 20150254964; 20150259110; 20150261254; 20150265214; 20150265217; 20150269369; 20150271164; 20150272494; 20150276396; 20150281424; 20150281811; 20150282767; 20150305682; 20150306505; 20150309316; 20150309535; 20150309563; 20150312712; 20150316419; 20150320588; 20150331512; 20150331997; 20150335283; 20150335284; 20150339570; 20150340891; 20150350752; 20150351655; 20150351670; 20150351671; 20150351672; 20150351673; 20150355045; 20150356093; 20150359457; 20150359489; 20150363563; 20150370320; 20150374289; 20150379238; 20160007933; 20160009169; 20160009179; 20160009181; 20160009223; 20160009293; 20160009334; 20160009335; 20160009336; 20160009337; 20160009338; 20160009339; 20160011003; 20160011598; 20160011599; 20160012545; 20160012652; 20160012721; 20160012723; 20160012749; 20160014205; 20160014252; 20160015267; 20160015268; 20160015280; 20160015299; 20160015303; 20160015972; 20160018257; 20160019813; 20160022210; 20160030078; 20160030809; 20160034663; 20160034764; 20160040998; 20160041820; 20160042534; 20160045162; 20160045654; 20160051184; 20160051185; 20160051806; 20160058328; 20160058378; 20160058380; 20160062333; 20160066716; 20160066894; 20160067494; 20160073886; 20160074276; 20160074661; 20160075175; 20160075177; 20160075226; 20160082772; 20160086193; 20160089089; 20160112684; 20160112775; 20160113503; 20160117937; 20160118640; 20160120433; 20160120434; 20160128615; 20160128638; 20160129280; 20160134642; 20160140870; 20160141718; 20160143547; 20160148103; 20160148215; 20160148531; 20160148597; 20160151628; 20160157779; 20160165852; 20160165853; 20160166203; 20160166786; 20160166930; 20160169930; 20160171623; 20160171846; 20160174039; 20160174099; 20160174857; 20160174891; 20160174903; 20160178392; 20160180222; 20160182625; 20160184703; 20160187654; 20160189534; 20160195566; 20160199249; 20160202755; 20160205450; 20160206232; 20160209648; 20160210416; 20160217259; 20160222539; 20160228640; 20160232811; 20160233469; 20160233946; 20160234176; 20160242646; 20160243927; 20160245686; 20160249832; 20160249853; 20160258758; 20160267238; 20160269692; 20160270126; 20160270671; 20160270700; 20160274048; 20160277528; 20160278647; 20160280069; 20160287089; 20160287164; 20160287166; 20160296839; 20160301581; 20160307284; 20160313798; 20160314564; 20160317049; 20160317060; 20160321677; 20160322744; 20160324478; 20160338626; 20160338627; 20160338644; 20160338646; 20160339428; 20160342744; 20160349090; 20160349305; 20160349790; 20160351045; 20160354543; 20160360153; 20160361014; 20160367151; 20160367202; 20160374577; 20160374621; 20160375308; 20160376650; 20170000359; 20170000936; 20170005958; 20170010658; 20170010664; 20170010665; 20170010667; 20170010672; 20170011182; 20170011602; 20170014067; 20170020390; 20170020391; 20170020417; 20170020431; 20170020440; 20170020441; 20170020442; 20170023509; 20170024530; 20170024535; 20170024555; 20170024771; 20170026790; 20170027511; 20170030877; 20170032258; 20170046740; 20170048257; 20170055851; 20170055882; 20170055887; 20170055896; 20170068790; 20170078223; 20170079594; 20170080346; 20170086291; 20170086709; 20170087363; 20170090466; 20170091412; 20170091426; 20170091498; 20170095153; 20170095233; 20170095670; 20170095721; 20170100064; 20170105622; 20170109829; 20170112379; 20170112422; 20170112447; 20170112671; 20170113641; 20170113702; 20170118551; 20170119255; 20170120052; 20170120107; 20170124110; 20170124276; 20170127957; 20170131163; 20170133873; 20170136264; 20170136265; 20170140482; 20170142023; 20170142113; 20170156635; 20170156662; 20170164876; 20170164878; 20170168566; 20170172424; 20170172463; 20170172470; 20170177025; 20170181711; 20170185731; 20170185743; 20170185745; 20170188872; 20170189751; 20170193395; 20170199979; 20170200296; 20170200898; 20170205221; 20170206721; 20170209095; 20170214963; 20170215742; 20170215745; 20170216671; 20170216672; 20170216673; and 20170220772.
The present application is a non-provisional of, and claims benefit of priority under 35 U.S.C. § 119(e) from, U.S. Provisional Patent Application 62/542,067, filed Aug. 7, 2017, the entirety of which is expressly incorporated herein by reference.
This invention was made with government support under IIP-1640669, awarded by the National Science Foundation. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
4636767 | Barger et al. | Jan 1987 | A |
4759210 | Wohltjen | Jul 1988 | A |
4847594 | Stetter | Jul 1989 | A |
4886625 | Albarella et al. | Dec 1989 | A |
4900817 | Batzel et al. | Feb 1990 | A |
4992244 | Grate | Feb 1991 | A |
5045285 | Kolesar, Jr. | Sep 1991 | A |
5071770 | Kolesar, Jr. | Dec 1991 | A |
5089294 | Ratcliffe | Feb 1992 | A |
5210217 | Albarella et al. | May 1993 | A |
5224972 | Frye et al. | Jul 1993 | A |
5238729 | Debe | Aug 1993 | A |
5279795 | Hughes et al. | Jan 1994 | A |
5280183 | Batzel et al. | Jan 1994 | A |
5302935 | Chatterjee | Apr 1994 | A |
5321146 | Royster, Jr. et al. | Jun 1994 | A |
5387462 | Debe | Feb 1995 | A |
5433971 | Royster, Jr. et al. | Jul 1995 | A |
5469369 | Rose-Pehrsson et al. | Nov 1995 | A |
5498323 | Lewenstam et al. | Mar 1996 | A |
5512882 | Stetter et al. | Apr 1996 | A |
5536473 | Monkman et al. | Jul 1996 | A |
5550062 | Wohltjen et al. | Aug 1996 | A |
5571401 | Lewis et al. | Nov 1996 | A |
5589396 | Frye et al. | Dec 1996 | A |
5629435 | Royster, Jr. et al. | May 1997 | A |
5674752 | Buckley et al. | Oct 1997 | A |
5698083 | Glass | Dec 1997 | A |
5698089 | Lewis et al. | Dec 1997 | A |
5729203 | Oka et al. | Mar 1998 | A |
5788833 | Lewis et al. | Aug 1998 | A |
5858186 | Glass | Jan 1999 | A |
5891398 | Lewis et al. | Apr 1999 | A |
5911872 | Lewis et al. | Jun 1999 | A |
5951846 | Lewis et al. | Sep 1999 | A |
5959191 | Lewis et al. | Sep 1999 | A |
5976466 | Ratner et al. | Nov 1999 | A |
6004494 | Debe | Dec 1999 | A |
6010616 | Lewis et al. | Jan 2000 | A |
6013229 | Lewis et al. | Jan 2000 | A |
6015869 | Grate et al. | Jan 2000 | A |
6017440 | Lewis et al. | Jan 2000 | A |
6085576 | Sunshine et al. | Jul 2000 | A |
6093308 | Lewis et al. | Jul 2000 | A |
6170318 | Lewis | Jan 2001 | B1 |
6198953 | Webster et al. | Mar 2001 | B1 |
6221673 | Snow et al. | Apr 2001 | B1 |
6238085 | Higashi et al. | May 2001 | B1 |
6244096 | Lewis et al. | Jun 2001 | B1 |
6290911 | Lewis et al. | Sep 2001 | B1 |
6319724 | Lewis et al. | Nov 2001 | B1 |
6331244 | Lewis et al. | Dec 2001 | B1 |
6350369 | Lewis et al. | Feb 2002 | B1 |
6359444 | Grimes | Mar 2002 | B1 |
6361944 | Mirkin et al. | Mar 2002 | B1 |
6387329 | Lewis et al. | May 2002 | B1 |
6397661 | Grimes et al. | Jun 2002 | B1 |
6408250 | Grate et al. | Jun 2002 | B1 |
6417340 | Mirkin et al. | Jul 2002 | B1 |
6418783 | Sunshine et al. | Jul 2002 | B2 |
6421588 | Janata | Jul 2002 | B1 |
6422061 | Sunshine et al. | Jul 2002 | B1 |
6458327 | Vossmeyer | Oct 2002 | B1 |
6495324 | Mirkin et al. | Dec 2002 | B1 |
6506564 | Mirkin et al. | Jan 2003 | B1 |
6541617 | Bamdad et al. | Apr 2003 | B1 |
6582921 | Mirkin et al. | Jun 2003 | B2 |
6607484 | Suzuki et al. | Aug 2003 | B2 |
6610491 | Mirkin et al. | Aug 2003 | B2 |
6613660 | Kahlert et al. | Sep 2003 | B2 |
6645721 | Mirkin et al. | Nov 2003 | B2 |
6673548 | Mirkin et al. | Jan 2004 | B2 |
6677122 | Mirkin et al. | Jan 2004 | B2 |
6682895 | Mirkin et al. | Jan 2004 | B2 |
6709825 | Mirkin et al. | Mar 2004 | B2 |
6720147 | Mirkin et al. | Apr 2004 | B2 |
6720411 | Mirkin et al. | Apr 2004 | B2 |
6730269 | Mirkin et al. | May 2004 | B2 |
6740491 | Mirkin et al. | May 2004 | B2 |
6750016 | Mirkin et al. | Jun 2004 | B2 |
6759199 | Mirkin et al. | Jul 2004 | B2 |
6767702 | Mirkin et al. | Jul 2004 | B2 |
6773884 | Mirkin et al. | Aug 2004 | B2 |
6777186 | Mirkin et al. | Aug 2004 | B2 |
6812334 | Mirkin et al. | Nov 2004 | B1 |
6818753 | Mirkin et al. | Nov 2004 | B2 |
6819247 | Birnbach et al. | Nov 2004 | B2 |
6828432 | Mirkin et al. | Dec 2004 | B2 |
6861221 | Mirkin et al. | Mar 2005 | B2 |
6878814 | Mirkin et al. | Apr 2005 | B2 |
6882940 | Potts et al. | Apr 2005 | B2 |
6893396 | Schulze et al. | May 2005 | B2 |
6902895 | Mirkin et al. | Jun 2005 | B2 |
6903207 | Mirkin et al. | Jun 2005 | B2 |
6942615 | Suzuki et al. | Sep 2005 | B2 |
6962786 | Mirkin et al. | Nov 2005 | B2 |
6969761 | Mirkin et al. | Nov 2005 | B2 |
6984491 | Mirkin et al. | Jan 2006 | B2 |
6985078 | Suzuki et al. | Jan 2006 | B2 |
6986989 | Mirkin et al. | Jan 2006 | B2 |
7029852 | Liebholz et al. | Apr 2006 | B2 |
7034677 | Steinthal et al. | Apr 2006 | B2 |
7044908 | Montalbo et al. | May 2006 | B1 |
7052854 | Melker et al. | May 2006 | B2 |
7098320 | Mirkin et al. | Aug 2006 | B1 |
7109933 | Ito et al. | Sep 2006 | B2 |
7122152 | Lewis et al. | Oct 2006 | B2 |
7128716 | Higurashi et al. | Oct 2006 | B2 |
7136716 | Hsiung et al. | Nov 2006 | B2 |
7138090 | Blok | Nov 2006 | B2 |
7144553 | Lewis et al. | Dec 2006 | B2 |
7144949 | Kaner et al. | Dec 2006 | B2 |
7168294 | Porter et al. | Jan 2007 | B2 |
7169556 | Park et al. | Jan 2007 | B2 |
7171312 | Steinthal et al. | Jan 2007 | B2 |
7171331 | Vock et al. | Jan 2007 | B2 |
7174277 | Vock et al. | Feb 2007 | B2 |
7175885 | Lewis et al. | Feb 2007 | B2 |
7179421 | Ho | Feb 2007 | B1 |
7187960 | Abreu | Mar 2007 | B2 |
7189353 | Lewis et al. | Mar 2007 | B2 |
7189360 | Ho | Mar 2007 | B1 |
7189867 | Wynne et al. | Mar 2007 | B1 |
7191805 | Cohen et al. | Mar 2007 | B2 |
7195780 | Dennis et al. | Mar 2007 | B2 |
7201035 | Sunshine | Apr 2007 | B2 |
7208587 | Mirkin et al. | Apr 2007 | B2 |
7211439 | Vossmeyer et al. | May 2007 | B2 |
7211637 | Blok | May 2007 | B2 |
7226530 | Weiller et al. | Jun 2007 | B2 |
7229593 | Ho | Jun 2007 | B1 |
7233781 | Hunter et al. | Jun 2007 | B2 |
7242310 | Hotton et al. | Jul 2007 | B2 |
7250499 | Mirkin et al. | Jul 2007 | B2 |
7253004 | Vossmeyer et al. | Aug 2007 | B2 |
7259252 | Mirkin et al. | Aug 2007 | B2 |
7265560 | West et al. | Sep 2007 | B2 |
7267948 | Vo-Dinh | Sep 2007 | B2 |
7272530 | Hsiung et al. | Sep 2007 | B2 |
7285090 | Stivoric et al. | Oct 2007 | B2 |
7288415 | Huang | Oct 2007 | B2 |
7313447 | Hsiung et al. | Dec 2007 | B2 |
7340941 | Fruhberger et al. | Mar 2008 | B1 |
7342479 | Glatkowski et al. | Mar 2008 | B2 |
7347974 | Snow et al. | Mar 2008 | B1 |
7353136 | Vock et al. | Apr 2008 | B2 |
7353137 | Vock et al. | Apr 2008 | B2 |
7356420 | Vilanova et al. | Apr 2008 | B2 |
7359802 | Lewis et al. | Apr 2008 | B1 |
7383072 | Edmonson et al. | Jun 2008 | B2 |
7387010 | Sunshine | Jun 2008 | B2 |
7395693 | Porter et al. | Jul 2008 | B2 |
7397072 | Dodabalapur et al. | Jul 2008 | B2 |
7404928 | Foos et al. | Jul 2008 | B2 |
7407484 | Korman | Aug 2008 | B2 |
7421883 | Khadkikar et al. | Sep 2008 | B2 |
7435386 | Medintz et al. | Oct 2008 | B2 |
7438079 | Cohen et al. | Oct 2008 | B2 |
7440844 | Barta et al. | Oct 2008 | B2 |
7449050 | Wohltjen et al. | Nov 2008 | B2 |
7463142 | Lindsay | Dec 2008 | B2 |
7471185 | Sunshine et al. | Dec 2008 | B2 |
7477994 | Sunshine et al. | Jan 2009 | B2 |
7485419 | Lu et al. | Feb 2009 | B2 |
7486979 | Matlock | Feb 2009 | B2 |
7489252 | Long et al. | Feb 2009 | B2 |
7501091 | Munoz et al. | Mar 2009 | B2 |
7527821 | Nakayama et al. | May 2009 | B2 |
7531136 | Besnard et al. | May 2009 | B2 |
7531137 | Uluyol | May 2009 | B2 |
7534560 | Lu et al. | May 2009 | B2 |
7538538 | Dodabalapur et al. | May 2009 | B2 |
7550310 | Goodman et al. | Jun 2009 | B2 |
7552031 | Vock et al. | Jun 2009 | B2 |
7555327 | Matlock | Jun 2009 | B2 |
7556775 | McGill et al. | Jul 2009 | B2 |
7559902 | Ting et al. | Jul 2009 | B2 |
7569354 | Okano et al. | Aug 2009 | B2 |
7574244 | Eghbal et al. | Aug 2009 | B2 |
7574245 | Arizaga Ballesteros | Aug 2009 | B2 |
7590439 | Raridan et al. | Sep 2009 | B2 |
7595023 | Lewis et al. | Sep 2009 | B2 |
7595734 | Long et al. | Sep 2009 | B2 |
7598878 | Goldreich | Oct 2009 | B2 |
7611628 | Hinds, III | Nov 2009 | B1 |
7612185 | Lu et al. | Nov 2009 | B2 |
7620520 | Vock et al. | Nov 2009 | B2 |
7627451 | Vock et al. | Dec 2009 | B2 |
7645422 | Blok et al. | Jan 2010 | B2 |
7647084 | Eghbal et al. | Jan 2010 | B2 |
7650177 | Hoarau et al. | Jan 2010 | B2 |
7657294 | Eghbal et al. | Feb 2010 | B2 |
7657295 | Coakley et al. | Feb 2010 | B2 |
7657296 | Raridan et al. | Feb 2010 | B2 |
7658612 | Lee et al. | Feb 2010 | B2 |
7673528 | Yoon et al. | Mar 2010 | B2 |
7684843 | Coakley et al. | Mar 2010 | B2 |
7693559 | Raridan et al. | Apr 2010 | B2 |
7695738 | Lin et al. | Apr 2010 | B2 |
7701332 | Anderson | Apr 2010 | B2 |
7708947 | West et al. | May 2010 | B2 |
7711506 | Burdett et al. | May 2010 | B2 |
7726175 | Porter et al. | Jun 2010 | B2 |
7731517 | Lee et al. | Jun 2010 | B2 |
7737322 | Ales, III et al. | Jun 2010 | B2 |
7738937 | Coakley et al. | Jun 2010 | B2 |
7753685 | Lee et al. | Jul 2010 | B2 |
7760101 | Ales, III et al. | Jul 2010 | B2 |
7793675 | Cohen et al. | Sep 2010 | B2 |
7799276 | Hartmann-Thompson | Sep 2010 | B2 |
7799554 | Mazumdar et al. | Sep 2010 | B2 |
7801687 | Li et al. | Sep 2010 | B1 |
7811234 | McGrath | Oct 2010 | B2 |
7816491 | Trent et al. | Oct 2010 | B2 |
7825815 | Shears et al. | Nov 2010 | B2 |
7827011 | DeVaul et al. | Nov 2010 | B2 |
7840359 | Hsiung et al. | Nov 2010 | B2 |
7856339 | Vock et al. | Dec 2010 | B2 |
7860725 | Gopinathan et al. | Dec 2010 | B2 |
7863376 | Costanzo et al. | Jan 2011 | B2 |
7869850 | Hoarau et al. | Jan 2011 | B2 |
7880026 | Ni et al. | Feb 2011 | B2 |
7881762 | Kling et al. | Feb 2011 | B2 |
7881862 | Pei et al. | Feb 2011 | B2 |
7889954 | Sailor et al. | Feb 2011 | B2 |
7904285 | McNabb | Mar 2011 | B2 |
7911010 | Stetter | Mar 2011 | B2 |
7912561 | Hsiung et al. | Mar 2011 | B2 |
7927558 | Kirollos et al. | Apr 2011 | B2 |
7939130 | Joseph et al. | May 2011 | B2 |
7950271 | Novak et al. | May 2011 | B2 |
7955561 | Lewis et al. | Jun 2011 | B2 |
7959567 | Stivoric et al. | Jun 2011 | B2 |
7966132 | Lewis et al. | Jun 2011 | B2 |
7985424 | Tomalia et al. | Jul 2011 | B2 |
7998415 | Hartmann-Thompson | Aug 2011 | B2 |
7998416 | Hartmann-Thompson | Aug 2011 | B2 |
8000903 | Li | Aug 2011 | B1 |
8012326 | Weiller et al. | Sep 2011 | B2 |
8012420 | Ramamurthy et al. | Sep 2011 | B2 |
8012743 | Bamdad et al. | Sep 2011 | B2 |
8030100 | Besnard et al. | Oct 2011 | B2 |
8032199 | Linti et al. | Oct 2011 | B2 |
8036842 | DeVaul et al. | Oct 2011 | B2 |
8060171 | Hoarau et al. | Nov 2011 | B2 |
8063307 | Bukshpun et al. | Nov 2011 | B2 |
8067393 | Suda et al. | Nov 2011 | B2 |
8070508 | Flagler | Dec 2011 | B2 |
8071935 | Besko et al. | Dec 2011 | B2 |
8087283 | Wang et al. | Jan 2012 | B2 |
8088341 | Martin | Jan 2012 | B2 |
8094009 | Allen et al. | Jan 2012 | B2 |
8097926 | De Graff et al. | Jan 2012 | B2 |
8105538 | Ramamurthy et al. | Jan 2012 | B2 |
8107920 | Ben Ayed | Jan 2012 | B2 |
8123834 | Masel et al. | Feb 2012 | B2 |
8123841 | Masel et al. | Feb 2012 | B2 |
8125331 | Allen et al. | Feb 2012 | B2 |
8126675 | Vock et al. | Feb 2012 | B2 |
8152908 | Masel et al. | Apr 2012 | B2 |
8153439 | Zamborini et al. | Apr 2012 | B2 |
8157730 | LeBoeuf et al. | Apr 2012 | B2 |
8157731 | Teller et al. | Apr 2012 | B2 |
8168438 | Zamborini et al. | May 2012 | B2 |
8175671 | Hoarau | May 2012 | B2 |
8178045 | Cambron et al. | May 2012 | B2 |
8187887 | Swager et al. | May 2012 | B2 |
8190224 | Hoarau | May 2012 | B2 |
8190225 | Hoarau | May 2012 | B2 |
8195264 | Hoarau | Jun 2012 | B2 |
8199007 | Coakley et al. | Jun 2012 | B2 |
8204786 | LeBoeuf et al. | Jun 2012 | B2 |
8216854 | Ballerstadt et al. | Jul 2012 | B2 |
8219170 | Hausmann et al. | Jul 2012 | B2 |
8228188 | Key et al. | Jul 2012 | B2 |
8231746 | Bellitto | Jul 2012 | B1 |
8246910 | Dhirani et al. | Aug 2012 | B2 |
8251903 | LeBoeuf et al. | Aug 2012 | B2 |
8268630 | Fedder et al. | Sep 2012 | B2 |
8269029 | Masel et al. | Sep 2012 | B2 |
8272250 | Wang et al. | Sep 2012 | B2 |
8275635 | Stivoric et al. | Sep 2012 | B2 |
8280469 | Baker, Jr. | Oct 2012 | B2 |
8280681 | Vock et al. | Oct 2012 | B2 |
8280682 | Vock et al. | Oct 2012 | B2 |
8282967 | Schoenfisch et al. | Oct 2012 | B2 |
8283414 | Yu et al. | Oct 2012 | B2 |
8284046 | Allen et al. | Oct 2012 | B2 |
8285493 | Sunshine et al. | Oct 2012 | B2 |
8285560 | Gopinathan et al. | Oct 2012 | B2 |
8308489 | Lee et al. | Nov 2012 | B2 |
8309028 | Raguse et al. | Nov 2012 | B2 |
8310016 | Stetter | Nov 2012 | B2 |
8311602 | Eghbal et al. | Nov 2012 | B2 |
8315685 | Arizaga Ballesteros | Nov 2012 | B2 |
8323188 | Tran | Dec 2012 | B2 |
8323694 | Hainfeld | Dec 2012 | B2 |
8323888 | Mirkin et al. | Dec 2012 | B2 |
8323982 | LeBoeuf et al. | Dec 2012 | B2 |
8328420 | Abreu | Dec 2012 | B2 |
8336402 | Glezer et al. | Dec 2012 | B2 |
8352010 | Matlock | Jan 2013 | B2 |
8352049 | Hsiung et al. | Jan 2013 | B2 |
8352172 | Pei et al. | Jan 2013 | B2 |
8358214 | Amigo et al. | Jan 2013 | B2 |
8366630 | Haick et al. | Feb 2013 | B2 |
8369936 | Farringdon et al. | Feb 2013 | B2 |
8374825 | Vock et al. | Feb 2013 | B2 |
8376013 | Bourke, Jr. et al. | Feb 2013 | B2 |
8382590 | Stivoric et al. | Feb 2013 | B2 |
8383415 | Ayi et al. | Feb 2013 | B2 |
8386002 | Matlock | Feb 2013 | B2 |
8389958 | Vo-Dinh et al. | Mar 2013 | B2 |
8394330 | Lewis et al. | Mar 2013 | B1 |
8396527 | Hoarau | Mar 2013 | B2 |
8396687 | Vock et al. | Mar 2013 | B2 |
8398546 | Pacione et al. | Mar 2013 | B2 |
8409510 | McGill et al. | Apr 2013 | B2 |
8412147 | Hunter et al. | Apr 2013 | B2 |
8426208 | Swager et al. | Apr 2013 | B2 |
8426214 | Stayton et al. | Apr 2013 | B2 |
8426932 | Stetter | Apr 2013 | B2 |
8428675 | McKenna | Apr 2013 | B2 |
8428904 | Vock et al. | Apr 2013 | B2 |
8441081 | Arora et al. | May 2013 | B2 |
8448532 | Martin et al. | May 2013 | B2 |
8449471 | Tran | May 2013 | B2 |
8449824 | Sun | May 2013 | B2 |
8452366 | Gilland | May 2013 | B2 |
8461354 | Babudri et al. | Jun 2013 | B2 |
8467133 | Miller | Jun 2013 | B2 |
8472120 | Border et al. | Jun 2013 | B2 |
8477425 | Border et al. | Jul 2013 | B2 |
8481324 | Haick et al. | Jul 2013 | B2 |
8482859 | Border et al. | Jul 2013 | B2 |
8486720 | Banerjee et al. | Jul 2013 | B2 |
8488246 | Border et al. | Jul 2013 | B2 |
8497130 | Raguse et al. | Jul 2013 | B2 |
8498811 | Lundquist et al. | Jul 2013 | B2 |
RE44408 | Lindsay | Aug 2013 | E |
8501921 | Bamdad et al. | Aug 2013 | B2 |
8507200 | Mirkin et al. | Aug 2013 | B2 |
8512242 | LeBoeuf et al. | Aug 2013 | B2 |
8515515 | McKenna et al. | Aug 2013 | B2 |
8515537 | Cinbis et al. | Aug 2013 | B2 |
8519726 | Sun | Aug 2013 | B2 |
8524457 | Patterson | Sep 2013 | B2 |
8527028 | Kurzweil et al. | Sep 2013 | B2 |
8527213 | Kailas et al. | Sep 2013 | B2 |
8528185 | Raridan et al. | Sep 2013 | B2 |
8536667 | de Graff et al. | Sep 2013 | B2 |
8553223 | McKenna | Oct 2013 | B2 |
8560044 | Kurzweil et al. | Oct 2013 | B2 |
8562878 | Martin et al. | Oct 2013 | B1 |
8567232 | Ackley et al. | Oct 2013 | B2 |
8569691 | Cambron et al. | Oct 2013 | B2 |
8571620 | Cinbis et al. | Oct 2013 | B2 |
8579834 | Davis et al. | Nov 2013 | B2 |
8598046 | Pachauri et al. | Dec 2013 | B2 |
8618330 | Snow | Dec 2013 | B2 |
8618509 | Vo-Dinh et al. | Dec 2013 | B2 |
8636670 | Ferren et al. | Jan 2014 | B2 |
8638228 | Amigo et al. | Jan 2014 | B2 |
8641612 | Teller et al. | Feb 2014 | B2 |
8652409 | LeBoeuf et al. | Feb 2014 | B2 |
8652778 | Bowman et al. | Feb 2014 | B2 |
8655441 | Fletcher et al. | Feb 2014 | B2 |
8660814 | Vock et al. | Feb 2014 | B2 |
8665087 | Greene et al. | Mar 2014 | B2 |
8666471 | Rogers et al. | Mar 2014 | B2 |
8679859 | Yan et al. | Mar 2014 | B2 |
8684900 | Tran | Apr 2014 | B2 |
8688406 | Vock et al. | Apr 2014 | B2 |
8690799 | Telfort et al. | Apr 2014 | B2 |
8691390 | Ramamurthy | Apr 2014 | B2 |
8694267 | Sunshine et al. | Apr 2014 | B2 |
8695401 | Wang et al. | Apr 2014 | B2 |
8696616 | Baynham et al. | Apr 2014 | B2 |
8702607 | LeBoeuf et al. | Apr 2014 | B2 |
8702627 | Telfort et al. | Apr 2014 | B2 |
8703439 | Lester | Apr 2014 | B1 |
8703500 | Zang et al. | Apr 2014 | B2 |
8707760 | Chou et al. | Apr 2014 | B2 |
8708904 | Stivoric et al. | Apr 2014 | B2 |
8714983 | Kil | May 2014 | B2 |
8715206 | Telfort et al. | May 2014 | B2 |
8717558 | Gu et al. | May 2014 | B2 |
8721562 | Abreu | May 2014 | B2 |
8731512 | Borras et al. | May 2014 | B2 |
8736287 | Dhirani et al. | May 2014 | B2 |
8744783 | Templeman | Jun 2014 | B2 |
8755535 | Telfort et al. | Jun 2014 | B2 |
8758772 | Mehra et al. | Jun 2014 | B2 |
8759791 | Hug et al. | Jun 2014 | B1 |
8764657 | Curry et al. | Jul 2014 | B2 |
8770203 | Bourke, Jr. et al. | Jul 2014 | B2 |
8771613 | Martin et al. | Jul 2014 | B2 |
8781548 | Besko et al. | Jul 2014 | B2 |
8788002 | LeBoeuf et al. | Jul 2014 | B2 |
8790400 | Boyden et al. | Jul 2014 | B2 |
8795173 | Poh et al. | Aug 2014 | B2 |
8795359 | Boyden et al. | Aug 2014 | B2 |
8798702 | Trumble | Aug 2014 | B2 |
8805465 | Hodge et al. | Aug 2014 | B2 |
8808373 | Boyden et al. | Aug 2014 | B2 |
8812130 | Stahmann et al. | Aug 2014 | B2 |
8816116 | Snow | Aug 2014 | B2 |
8828733 | Porter et al. | Sep 2014 | B2 |
8834020 | Abreu | Sep 2014 | B2 |
8844057 | Root et al. | Sep 2014 | B2 |
8846406 | Martin et al. | Sep 2014 | B1 |
8849379 | Abreu | Sep 2014 | B2 |
8852098 | Teller et al. | Oct 2014 | B2 |
8870766 | Stivoric et al. | Oct 2014 | B2 |
8877636 | Hunter et al. | Nov 2014 | B1 |
8883964 | Yu et al. | Nov 2014 | B2 |
8884382 | Stetter et al. | Nov 2014 | B2 |
8888701 | LeBoeuf et al. | Nov 2014 | B2 |
8889420 | Zang et al. | Nov 2014 | B2 |
8900516 | Joseph et al. | Dec 2014 | B2 |
8903661 | Haick et al. | Dec 2014 | B2 |
8904849 | Norman et al. | Dec 2014 | B2 |
8906831 | Eid et al. | Dec 2014 | B2 |
8920731 | Nhan et al. | Dec 2014 | B2 |
8920971 | Stromme et al. | Dec 2014 | B2 |
8927615 | Bourke, Jr. et al. | Jan 2015 | B2 |
8929963 | Lisogurski | Jan 2015 | B2 |
8929965 | LeBoeuf et al. | Jan 2015 | B2 |
8935195 | Precup et al. | Jan 2015 | B2 |
8940092 | Yeo et al. | Jan 2015 | B1 |
8942776 | LeBoeuf et al. | Jan 2015 | B2 |
8945943 | Lu et al. | Feb 2015 | B2 |
8951473 | Wang et al. | Feb 2015 | B2 |
8951561 | Vo-Dinh et al. | Feb 2015 | B2 |
8956658 | Schoenfisch et al. | Feb 2015 | B2 |
8956863 | Karp et al. | Feb 2015 | B2 |
8957253 | Snow | Feb 2015 | B2 |
8961414 | Teller et al. | Feb 2015 | B2 |
8961415 | LeBoeuf et al. | Feb 2015 | B2 |
8962029 | Schoenfisch et al. | Feb 2015 | B2 |
8962912 | Sasgary et al. | Feb 2015 | B2 |
8964298 | Haddick et al. | Feb 2015 | B2 |
8965473 | Hoarau et al. | Feb 2015 | B2 |
8968196 | Teller et al. | Mar 2015 | B2 |
8978444 | Chou et al. | Mar 2015 | B2 |
8984954 | Merrell et al. | Mar 2015 | B2 |
8986615 | Ancona et al. | Mar 2015 | B1 |
8989053 | Skaaksrud et al. | Mar 2015 | B1 |
8993349 | Bruchez et al. | Mar 2015 | B2 |
8999244 | Haick et al. | Apr 2015 | B2 |
8999245 | Wang et al. | Apr 2015 | B2 |
8999947 | Mirkin et al. | Apr 2015 | B2 |
9000137 | Tanner et al. | Apr 2015 | B2 |
9004131 | Bourke, Jr. et al. | Apr 2015 | B2 |
9011349 | Abreu | Apr 2015 | B2 |
9012156 | Patterson | Apr 2015 | B2 |
9017773 | D'Arcy et al. | Apr 2015 | B2 |
9020752 | Lundquist et al. | Apr 2015 | B2 |
9028405 | Tran | May 2015 | B2 |
9033876 | Teller et al. | May 2015 | B2 |
9034266 | Virji et al. | May 2015 | B2 |
9034275 | Lee et al. | May 2015 | B2 |
9034659 | Bhattacharyya et al. | May 2015 | B2 |
9042596 | Connor | May 2015 | B2 |
9044180 | LeBoeuf et al. | Jun 2015 | B2 |
9050471 | Skelton et al. | Jun 2015 | B2 |
9058703 | Ricci | Jun 2015 | B2 |
9060714 | Bajcsy et al. | Jun 2015 | B2 |
9067070 | Connor | Jun 2015 | B2 |
9067181 | Rybtchinski et al. | Jun 2015 | B2 |
9072941 | Duda et al. | Jul 2015 | B2 |
9078610 | McKenna | Jul 2015 | B2 |
9080942 | Zhong et al. | Jul 2015 | B2 |
9097890 | Miller et al. | Aug 2015 | B2 |
9097891 | Border et al. | Aug 2015 | B2 |
9102520 | Han et al. | Aug 2015 | B2 |
9114107 | Chaiken et al. | Aug 2015 | B2 |
9119533 | Ghaffari | Sep 2015 | B2 |
9120677 | Watson et al. | Sep 2015 | B2 |
9125625 | Wang et al. | Sep 2015 | B2 |
9128281 | Osterhout et al. | Sep 2015 | B2 |
9129295 | Border et al. | Sep 2015 | B2 |
9132217 | Soykan et al. | Sep 2015 | B2 |
9134534 | Border et al. | Sep 2015 | B2 |
9141994 | Amigo et al. | Sep 2015 | B2 |
9144488 | Boyden et al. | Sep 2015 | B2 |
9144489 | Boyden et al. | Sep 2015 | B2 |
9147144 | Potyrailo et al. | Sep 2015 | B2 |
9147338 | Hunter et al. | Sep 2015 | B2 |
RE45766 | Lindsay | Oct 2015 | E |
9157109 | Brennan et al. | Oct 2015 | B2 |
9157842 | Ancona et al. | Oct 2015 | B1 |
9162063 | Stahmann et al. | Oct 2015 | B2 |
9165117 | Teller et al. | Oct 2015 | B2 |
9174055 | Davis et al. | Nov 2015 | B2 |
9174190 | Bourke, Jr. et al. | Nov 2015 | B2 |
9174873 | Laukkanen et al. | Nov 2015 | B2 |
9182231 | Skaaksrud | Nov 2015 | B2 |
9182232 | Skaaksrud et al. | Nov 2015 | B2 |
9182596 | Border et al. | Nov 2015 | B2 |
9186060 | De Graff et al. | Nov 2015 | B2 |
9186098 | Lee et al. | Nov 2015 | B2 |
9198605 | Contant | Dec 2015 | B2 |
9198617 | Kurzweil et al. | Dec 2015 | B2 |
9201071 | Mehra et al. | Dec 2015 | B2 |
9204808 | Riedel | Dec 2015 | B2 |
9211185 | Boyden et al. | Dec 2015 | B2 |
9212055 | Zhou et al. | Dec 2015 | B2 |
9215992 | Donnay et al. | Dec 2015 | B2 |
9216155 | Thaxton et al. | Dec 2015 | B2 |
9216528 | Raridan et al. | Dec 2015 | B2 |
9217722 | Mirsky et al. | Dec 2015 | B2 |
9222884 | Im et al. | Dec 2015 | B2 |
9223134 | Miller et al. | Dec 2015 | B2 |
9229227 | Border et al. | Jan 2016 | B2 |
9234757 | Skaaksrud et al. | Jan 2016 | B2 |
9242857 | Ostroff et al. | Jan 2016 | B2 |
9243128 | Kumamoto et al. | Jan 2016 | B2 |
9246122 | Shinotsuka et al. | Jan 2016 | B2 |
9250238 | Low et al. | Feb 2016 | B2 |
9254099 | Connor | Feb 2016 | B2 |
9254383 | Simon et al. | Feb 2016 | B2 |
9254437 | Short et al. | Feb 2016 | B2 |
9256906 | Amigo et al. | Feb 2016 | B2 |
9258350 | Root et al. | Feb 2016 | B2 |
9260683 | Belbruno et al. | Feb 2016 | B2 |
9262772 | Stivoric et al. | Feb 2016 | B2 |
9265453 | Curry et al. | Feb 2016 | B2 |
9265949 | Salo et al. | Feb 2016 | B2 |
9267793 | Vock et al. | Feb 2016 | B2 |
9267908 | Wang et al. | Feb 2016 | B2 |
9267964 | Flanders et al. | Feb 2016 | B2 |
9269000 | Korhonen et al. | Feb 2016 | B2 |
9270627 | Koo | Feb 2016 | B1 |
9272091 | Skelton et al. | Mar 2016 | B2 |
9274108 | Yoo et al. | Mar 2016 | B2 |
9276238 | Shinotsuka et al. | Mar 2016 | B2 |
9277867 | Kurzweil et al. | Mar 2016 | B2 |
9282574 | Kuroda | Mar 2016 | B2 |
9283275 | Vo-Dinh et al. | Mar 2016 | B2 |
9285589 | Osterhout et al. | Mar 2016 | B2 |
9289175 | LeBoeuf et al. | Mar 2016 | B2 |
9290799 | Chen et al. | Mar 2016 | B2 |
9301092 | Huang | Mar 2016 | B2 |
9301719 | Abreu | Apr 2016 | B2 |
9302116 | Vo-Dinh et al. | Apr 2016 | B2 |
9310372 | Patterson | Apr 2016 | B2 |
9315848 | Haick et al. | Apr 2016 | B2 |
9315942 | Nuopponen et al. | Apr 2016 | B2 |
9316645 | Rose-Petruck et al. | Apr 2016 | B2 |
9320813 | Peyman | Apr 2016 | B2 |
9320842 | Orhan et al. | Apr 2016 | B2 |
9321030 | Sukhishvili et al. | Apr 2016 | B2 |
9326730 | Boyden et al. | May 2016 | B2 |
9326731 | Naing et al. | May 2016 | B2 |
9333071 | Boyden et al. | May 2016 | B2 |
9333163 | Farokhzad et al. | May 2016 | B2 |
9339372 | Boyden et al. | May 2016 | B2 |
9340416 | Maune et al. | May 2016 | B2 |
9341843 | Border et al. | May 2016 | B2 |
9349234 | Ricci | May 2016 | B2 |
9351669 | Stafford | May 2016 | B2 |
9360509 | Naughton et al. | Jun 2016 | B2 |
9366862 | Haddick et al. | Jun 2016 | B2 |
9376690 | Mirkin et al. | Jun 2016 | B2 |
9377426 | Myung et al. | Jun 2016 | B2 |
9384609 | Ricci | Jul 2016 | B2 |
9389260 | Potyrailo et al. | Jul 2016 | B2 |
9393396 | Peyman | Jul 2016 | B2 |
9396486 | Stivoric et al. | Jul 2016 | B2 |
9398856 | Abreu | Jul 2016 | B2 |
9402242 | Skaaksrud et al. | Jul 2016 | B2 |
9403851 | Schoenfisch et al. | Aug 2016 | B2 |
9403852 | Schoenfisch et al. | Aug 2016 | B2 |
9408572 | Abreu | Aug 2016 | B2 |
9410949 | Singamaneni et al. | Aug 2016 | B2 |
9412273 | Ricci | Aug 2016 | B2 |
9415125 | Chen et al. | Aug 2016 | B2 |
9416493 | Hillebrand et al. | Aug 2016 | B2 |
9426433 | Mazzarella et al. | Aug 2016 | B1 |
9429536 | BelBruno et al. | Aug 2016 | B2 |
9437628 | Ma et al. | Sep 2016 | B1 |
9439566 | Arne et al. | Sep 2016 | B2 |
9439567 | Carter et al. | Sep 2016 | B2 |
9439797 | Baym et al. | Sep 2016 | B2 |
9439868 | Scherman et al. | Sep 2016 | B2 |
9440195 | Montemagno | Sep 2016 | B2 |
9442070 | Hug et al. | Sep 2016 | B1 |
9442100 | Connor | Sep 2016 | B2 |
9445720 | Janna et al. | Sep 2016 | B2 |
9445767 | Abreu | Sep 2016 | B2 |
9446150 | Lanza et al. | Sep 2016 | B2 |
9447129 | Johnson et al. | Sep 2016 | B2 |
9448219 | Arora et al. | Sep 2016 | B2 |
9449084 | Chong et al. | Sep 2016 | B2 |
9453774 | Bao et al. | Sep 2016 | B2 |
9453811 | Duesberg et al. | Sep 2016 | B2 |
9456755 | Soykan et al. | Oct 2016 | B2 |
9459222 | Swager et al. | Oct 2016 | B2 |
9459223 | Alqahtani et al. | Oct 2016 | B1 |
9462979 | Lisogurski et al. | Oct 2016 | B2 |
9476862 | Motayed et al. | Oct 2016 | B2 |
9486512 | Kim et al. | Nov 2016 | B2 |
9494524 | Mager et al. | Nov 2016 | B2 |
9494541 | Potyrailo et al. | Nov 2016 | B2 |
9504423 | Bardy et al. | Nov 2016 | B1 |
9506056 | Mirkin et al. | Nov 2016 | B2 |
9508956 | Shinotsuka et al. | Nov 2016 | B2 |
9510316 | Skaaksrud | Nov 2016 | B2 |
9510784 | Benson et al. | Dec 2016 | B2 |
9511329 | Chu et al. | Dec 2016 | B2 |
9514278 | Bahorich | Dec 2016 | B2 |
9514632 | Hunter et al. | Dec 2016 | B2 |
9515417 | Fries et al. | Dec 2016 | B2 |
9518956 | Chung et al. | Dec 2016 | B2 |
9521962 | LeBoeuf | Dec 2016 | B2 |
9522317 | Bleich et al. | Dec 2016 | B2 |
9524597 | Ricci | Dec 2016 | B2 |
9526913 | Vo-Dinh et al. | Dec 2016 | B2 |
9526914 | Vo-Dinh et al. | Dec 2016 | B2 |
9529385 | Connor | Dec 2016 | B2 |
9532737 | Karan et al. | Jan 2017 | B2 |
9532956 | Radovic-Moreno et al. | Jan 2017 | B2 |
9534024 | Gundlach et al. | Jan 2017 | B2 |
9536122 | Potyrailo | Jan 2017 | B2 |
9536449 | Connor | Jan 2017 | B2 |
9538657 | Potyrailo et al. | Jan 2017 | B2 |
9538921 | LeBoeuf et al. | Jan 2017 | B2 |
9538980 | Telfort et al. | Jan 2017 | B2 |
9540422 | Gundlach et al. | Jan 2017 | B2 |
9545221 | Adhikari et al. | Jan 2017 | B2 |
9555392 | Thomas et al. | Jan 2017 | B2 |
9556473 | Bernitz et al. | Jan 2017 | B2 |
9557340 | Foehr et al. | Jan 2017 | B2 |
9563833 | Swager et al. | Feb 2017 | B2 |
9563995 | Freathy | Feb 2017 | B2 |
9567225 | Lin et al. | Feb 2017 | B2 |
9567645 | Fan et al. | Feb 2017 | B2 |
9567646 | Fan et al. | Feb 2017 | B2 |
9572647 | Couse et al. | Feb 2017 | B2 |
9579024 | Nyberg et al. | Feb 2017 | B2 |
9579040 | Rafferty et al. | Feb 2017 | B2 |
9579523 | Bourke, Jr. et al. | Feb 2017 | B2 |
9581590 | Alocilja et al. | Feb 2017 | B2 |
9582035 | Connor | Feb 2017 | B2 |
9582072 | Connor | Feb 2017 | B2 |
9582080 | Tilton et al. | Feb 2017 | B1 |
9582833 | Amigo et al. | Feb 2017 | B2 |
9589686 | Potyrailo et al. | Mar 2017 | B2 |
9590438 | Dalton et al. | Mar 2017 | B2 |
9591607 | Skaaksrud | Mar 2017 | B2 |
9592007 | Nuovo et al. | Mar 2017 | B2 |
9592198 | Hood et al. | Mar 2017 | B2 |
9594402 | Hiroki et al. | Mar 2017 | B2 |
9597004 | Hughes et al. | Mar 2017 | B2 |
9598282 | Han et al. | Mar 2017 | B2 |
9598544 | Jiang et al. | Mar 2017 | B2 |
9598736 | Fan et al. | Mar 2017 | B2 |
9598785 | Patolsky et al. | Mar 2017 | B2 |
9603560 | Monty et al. | Mar 2017 | B2 |
9604168 | Menkhaus et al. | Mar 2017 | B2 |
9606245 | Czarnecki et al. | Mar 2017 | B1 |
9613521 | Hunter et al. | Apr 2017 | B2 |
9613659 | Maser et al. | Apr 2017 | B2 |
9615798 | Kasahara et al. | Apr 2017 | B2 |
9619213 | Gupta et al. | Apr 2017 | B2 |
9620000 | Wang et al. | Apr 2017 | B2 |
9622725 | Pizer et al. | Apr 2017 | B2 |
9623352 | Kas et al. | Apr 2017 | B2 |
9623381 | Rybtchinski et al. | Apr 2017 | B2 |
9624275 | Gundlach et al. | Apr 2017 | B2 |
9625330 | Park et al. | Apr 2017 | B2 |
9625341 | Haick et al. | Apr 2017 | B2 |
9630011 | Lipani | Apr 2017 | B2 |
9630022 | Bourke, Jr. et al. | Apr 2017 | B2 |
9632050 | Zhong et al. | Apr 2017 | B2 |
9636061 | Nyberg et al. | May 2017 | B2 |
9636992 | Biderman et al. | May 2017 | B2 |
9636993 | Biderman | May 2017 | B2 |
9637380 | Turner et al. | May 2017 | B2 |
9637799 | Fan et al. | May 2017 | B2 |
9637830 | Wang et al. | May 2017 | B2 |
9638653 | Potyrailo et al. | May 2017 | B2 |
9643091 | Vock et al. | May 2017 | B2 |
9645133 | Pizer et al. | May 2017 | B2 |
9649391 | Farokhzad et al. | May 2017 | B2 |
9654200 | Mazzarella et al. | May 2017 | B2 |
9658178 | Surman et al. | May 2017 | B2 |
9658196 | Chou et al. | May 2017 | B2 |
9662069 | De Graff et al. | May 2017 | B2 |
9662299 | Ostroff et al. | May 2017 | B2 |
9662388 | Vo-Dinh et al. | May 2017 | B2 |
9662389 | Vo-Dinh et al. | May 2017 | B2 |
9664674 | Taslim et al. | May 2017 | B2 |
9669699 | Biderman et al. | Jun 2017 | B2 |
9669700 | Biderman et al. | Jun 2017 | B2 |
9674812 | Skaaksrud et al. | Jun 2017 | B2 |
9678059 | Haick et al. | Jun 2017 | B2 |
9683974 | Wang et al. | Jun 2017 | B2 |
9686499 | Ekambaram et al. | Jun 2017 | B2 |
9687183 | Donnay et al. | Jun 2017 | B2 |
9688750 | Ruvo et al. | Jun 2017 | B2 |
9689826 | Haick et al. | Jun 2017 | B2 |
9691428 | Maser et al. | Jun 2017 | B2 |
9691873 | Rogers et al. | Jun 2017 | B2 |
9696311 | Haick et al. | Jul 2017 | B2 |
9696833 | McMillen | Jul 2017 | B2 |
9701190 | Biderman et al. | Jul 2017 | B2 |
9701784 | Rybtchinski et al. | Jul 2017 | B2 |
9703751 | White et al. | Jul 2017 | B2 |
9704205 | Akutagawa et al. | Jul 2017 | B2 |
9707466 | Bleich et al. | Jul 2017 | B2 |
9709559 | Banerjee et al. | Jul 2017 | B2 |
9713447 | Caduff et al. | Jul 2017 | B2 |
9714370 | Mrozek et al. | Jul 2017 | B2 |
9717455 | Manion et al. | Aug 2017 | B2 |
9717685 | Shih et al. | Aug 2017 | B2 |
9719089 | Mirkin et al. | Aug 2017 | B2 |
20010029774 | Grate et al. | Oct 2001 | A1 |
20010041366 | Lewis et al. | Nov 2001 | A1 |
20010049471 | Suzuki et al. | Dec 2001 | A1 |
20020002414 | Hsiung et al. | Jan 2002 | A1 |
20020004995 | France et al. | Jan 2002 | A1 |
20020005580 | Goodman et al. | Jan 2002 | A1 |
20020014415 | Nakayama et al. | Feb 2002 | A1 |
20020017125 | Lewis et al. | Feb 2002 | A1 |
20020028988 | Suzuki et al. | Mar 2002 | A1 |
20020045274 | Huang | Apr 2002 | A1 |
20020045275 | Huang | Apr 2002 | A1 |
20020081232 | Lewis et al. | Jun 2002 | A1 |
20020081397 | McGill et al. | Jun 2002 | A1 |
20020098119 | Goodman | Jul 2002 | A1 |
20020106709 | Potts et al. | Aug 2002 | A1 |
20020110901 | Huang | Aug 2002 | A1 |
20020120203 | Higurashi et al. | Aug 2002 | A1 |
20020127574 | Mirkin et al. | Sep 2002 | A1 |
20020131901 | Monkman et al. | Sep 2002 | A1 |
20020132361 | Vossmeyer et al. | Sep 2002 | A1 |
20020137058 | Mirkin et al. | Sep 2002 | A1 |
20020137070 | Mirkin et al. | Sep 2002 | A1 |
20020137071 | Mirkin et al. | Sep 2002 | A1 |
20020137072 | Mirkin et al. | Sep 2002 | A1 |
20020141901 | Lewis et al. | Oct 2002 | A1 |
20020142477 | Lewis et al. | Oct 2002 | A1 |
20020146720 | Mirkin et al. | Oct 2002 | A1 |
20020149466 | Sunshine et al. | Oct 2002 | A1 |
20020155442 | Mirkin et al. | Oct 2002 | A1 |
20020155458 | Mirkin et al. | Oct 2002 | A1 |
20020155459 | Mirkin et al. | Oct 2002 | A1 |
20020155461 | Mirkin et al. | Oct 2002 | A1 |
20020155462 | Mirkin et al. | Oct 2002 | A1 |
20020160381 | Mirkin et al. | Oct 2002 | A1 |
20020164605 | Mirkin et al. | Nov 2002 | A1 |
20020164643 | Huang | Nov 2002 | A1 |
20020172953 | Mirkin et al. | Nov 2002 | A1 |
20020178789 | Sunshine et al. | Dec 2002 | A1 |
20020182611 | Mirkin et al. | Dec 2002 | A1 |
20020182613 | Mirkin et al. | Dec 2002 | A1 |
20020197390 | Lewis et al. | Dec 2002 | A1 |
20020198574 | Gumpert | Dec 2002 | A1 |
20030010097 | Porter et al. | Jan 2003 | A1 |
20030022169 | Mirkin et al. | Jan 2003 | A1 |
20030024814 | Stetter | Feb 2003 | A1 |
20030044805 | Mirkin et al. | Mar 2003 | A1 |
20030049630 | Mirkin et al. | Mar 2003 | A1 |
20030049631 | Mirkin et al. | Mar 2003 | A1 |
20030054358 | Mirkin et al. | Mar 2003 | A1 |
20030059777 | Mirkin et al. | Mar 2003 | A1 |
20030059820 | Vo-Dinh | Mar 2003 | A1 |
20030068622 | Mirkin et al. | Apr 2003 | A1 |
20030069002 | Hunter et al. | Apr 2003 | A1 |
20030076968 | Rast | Apr 2003 | A1 |
20030083756 | Hsiung et al. | May 2003 | A1 |
20030087242 | Mirkin et al. | May 2003 | A1 |
20030109056 | Vossmeyer et al. | Jun 2003 | A1 |
20030109951 | Hsiung et al. | Jun 2003 | A1 |
20030124528 | Mirkin et al. | Jul 2003 | A1 |
20030136960 | Goodman et al. | Jul 2003 | A1 |
20030143538 | Mirkin et al. | Jul 2003 | A1 |
20030144746 | Hsiung et al. | Jul 2003 | A1 |
20030148282 | Mirkin et al. | Aug 2003 | A1 |
20030159927 | Lewis et al. | Aug 2003 | A1 |
20030163287 | Vock et al. | Aug 2003 | A1 |
20030165882 | Huang et al. | Sep 2003 | A1 |
20030165987 | Huang | Sep 2003 | A1 |
20030180783 | Mirkin et al. | Sep 2003 | A1 |
20030181795 | Suzuki et al. | Sep 2003 | A1 |
20030194205 | Suzuki et al. | Oct 2003 | A1 |
20030195398 | Suzuki et al. | Oct 2003 | A1 |
20030198956 | Makowski et al. | Oct 2003 | A1 |
20030204132 | Suzuki et al. | Oct 2003 | A1 |
20030207296 | Park et al. | Nov 2003 | A1 |
20030215903 | Hyman et al. | Nov 2003 | A1 |
20040018587 | Makowski et al. | Jan 2004 | A1 |
20040018633 | Foos et al. | Jan 2004 | A1 |
20040018642 | Huang | Jan 2004 | A1 |
20040029183 | Liebholz et al. | Feb 2004 | A1 |
20040029288 | Snow et al. | Feb 2004 | A1 |
20040033165 | Lewis et al. | Feb 2004 | A1 |
20040042933 | Lewis et al. | Mar 2004 | A1 |
20040059212 | Abreu | Mar 2004 | A1 |
20040072231 | Mirkin et al. | Apr 2004 | A1 |
20040076681 | Dennis et al. | Apr 2004 | A1 |
20040110220 | Mirkin et al. | Jun 2004 | A1 |
20040133081 | Teller et al. | Jul 2004 | A1 |
20040135684 | Steinthal et al. | Jul 2004 | A1 |
20040147038 | Lewis et al. | Jul 2004 | A1 |
20040152956 | Korman | Aug 2004 | A1 |
20040152957 | Stivoric et al. | Aug 2004 | A1 |
20040158194 | Wolff et al. | Aug 2004 | A1 |
20040192072 | Snow et al. | Sep 2004 | A1 |
20040194534 | Porter et al. | Oct 2004 | A1 |
20040200722 | Starling et al. | Oct 2004 | A1 |
20040202856 | Blok | Oct 2004 | A1 |
20040204915 | Steinthal et al. | Oct 2004 | A1 |
20040204920 | Zimmermann et al. | Oct 2004 | A1 |
20040211243 | Porter et al. | Oct 2004 | A1 |
20040215402 | Hsiung et al. | Oct 2004 | A1 |
20040219520 | Mirkin et al. | Nov 2004 | A1 |
20040223876 | Kirollos et al. | Nov 2004 | A1 |
20040237631 | Cohen et al. | Dec 2004 | A1 |
20040242976 | Abreu | Dec 2004 | A1 |
20050000830 | Glatkowski et al. | Jan 2005 | A1 |
20050016276 | Guan et al. | Jan 2005 | A1 |
20050022581 | Sunshine | Feb 2005 | A1 |
20050037374 | Melker et al. | Feb 2005 | A1 |
20050048414 | Harnack et al. | Mar 2005 | A1 |
20050059030 | Bao et al. | Mar 2005 | A1 |
20050059031 | Bruchez et al. | Mar 2005 | A1 |
20050065230 | Huang | Mar 2005 | A1 |
20050072213 | Besnard et al. | Apr 2005 | A1 |
20050080322 | Korman | Apr 2005 | A1 |
20050080566 | Vock et al. | Apr 2005 | A1 |
20050090015 | Hartmann-Thompson | Apr 2005 | A1 |
20050119540 | Potts et al. | Jun 2005 | A1 |
20050121999 | Edmonson et al. | Jun 2005 | A1 |
20050126909 | Weiller et al. | Jun 2005 | A1 |
20050130174 | Bao et al. | Jun 2005 | A1 |
20050130240 | Lin et al. | Jun 2005 | A1 |
20050131139 | Kaner et al. | Jun 2005 | A1 |
20050148828 | Lindsay | Jul 2005 | A1 |
20050150778 | Lewis et al. | Jul 2005 | A1 |
20050159922 | Hsiung et al. | Jul 2005 | A1 |
20050176029 | Heller et al. | Aug 2005 | A1 |
20050177317 | Hsiung et al. | Aug 2005 | A1 |
20050194012 | Ito et al. | Sep 2005 | A1 |
20050195118 | Ito et al. | Sep 2005 | A1 |
20050202358 | Donnelly | Sep 2005 | A1 |
20050216114 | Hsiung et al. | Sep 2005 | A1 |
20050241935 | Lewis et al. | Nov 2005 | A1 |
20050244978 | Uluyol | Nov 2005 | A1 |
20050250094 | Storhoff et al. | Nov 2005 | A1 |
20050263394 | Lewis et al. | Dec 2005 | A1 |
20050272114 | Darzins et al. | Dec 2005 | A1 |
20050272881 | Blok | Dec 2005 | A1 |
20050280814 | Iuliano | Dec 2005 | A1 |
20050287552 | Lin et al. | Dec 2005 | A1 |
20060014172 | Muller et al. | Jan 2006 | A1 |
20060034731 | Lewis et al. | Feb 2006 | A1 |
20060040318 | Melker et al. | Feb 2006 | A1 |
20060052983 | Vock et al. | Mar 2006 | A1 |
20060053871 | Porter et al. | Mar 2006 | A1 |
20060057597 | Tai et al. | Mar 2006 | A1 |
20060057613 | Ramakrishnan et al. | Mar 2006 | A1 |
20060068378 | Mirkin et al. | Mar 2006 | A1 |
20060099113 | Lewis et al. | May 2006 | A1 |
20060099715 | Munoz et al. | May 2006 | A1 |
20060124195 | Cohen et al. | Jun 2006 | A1 |
20060124448 | Jayaraman et al. | Jun 2006 | A1 |
20060143645 | Vock et al. | Jun 2006 | A1 |
20060144123 | Sunshine | Jul 2006 | A1 |
20060174941 | Cohen et al. | Aug 2006 | A1 |
20060208254 | Goodman et al. | Sep 2006 | A1 |
20060244618 | Hotton et al. | Nov 2006 | A1 |
20060249385 | Stetter | Nov 2006 | A1 |
20060252999 | Devaul et al. | Nov 2006 | A1 |
20060253011 | Edmonson et al. | Nov 2006 | A1 |
20060254369 | Yoon et al. | Nov 2006 | A1 |
20060257883 | Bjoraker et al. | Nov 2006 | A1 |
20060259163 | Hsiung et al. | Nov 2006 | A1 |
20060270922 | Brauker | Nov 2006 | A1 |
20060275720 | Hotton et al. | Dec 2006 | A1 |
20060282225 | Sunshine et al. | Dec 2006 | A1 |
20060292033 | Blok et al. | Dec 2006 | A1 |
20060293714 | Salo et al. | Dec 2006 | A1 |
20070016096 | McNabb | Jan 2007 | A1 |
20070018779 | Sunshine et al. | Jan 2007 | A1 |
20070059763 | Okano et al. | Mar 2007 | A1 |
20070063850 | Devaul et al. | Mar 2007 | A1 |
20070087383 | Wu et al. | Apr 2007 | A1 |
20070087400 | Darzins et al. | Apr 2007 | A1 |
20070095678 | West et al. | May 2007 | A1 |
20070100666 | Stivoric et al. | May 2007 | A1 |
20070106138 | Beiski et al. | May 2007 | A1 |
20070111753 | Vock et al. | May 2007 | A1 |
20070112542 | Vock et al. | May 2007 | A1 |
20070114138 | Krasteva et al. | May 2007 | A1 |
20070117207 | West et al. | May 2007 | A1 |
20070118328 | Vock et al. | May 2007 | A1 |
20070119236 | Porter et al. | May 2007 | A1 |
20070122829 | Ballerstadt et al. | May 2007 | A1 |
20070125181 | Ofek et al. | Jun 2007 | A1 |
20070126061 | Dodabalapur et al. | Jun 2007 | A1 |
20070127164 | Ofek et al. | Jun 2007 | A1 |
20070131021 | Khadkikar et al. | Jun 2007 | A1 |
20070142799 | Ales et al. | Jun 2007 | A1 |
20070151449 | Wohltjen et al. | Jul 2007 | A1 |
20070152811 | Anderson | Jul 2007 | A1 |
20070154903 | Marla et al. | Jul 2007 | A1 |
20070173886 | Rousso et al. | Jul 2007 | A1 |
20070180892 | Sunshine | Aug 2007 | A1 |
20070187239 | Weiller et al. | Aug 2007 | A1 |
20070197878 | Shklarski | Aug 2007 | A1 |
20070197881 | Wolf et al. | Aug 2007 | A1 |
20070208542 | Vock et al. | Sep 2007 | A1 |
20070219434 | Abreu | Sep 2007 | A1 |
20070229294 | Vossmeyer et al. | Oct 2007 | A1 |
20070231947 | Joseph et al. | Oct 2007 | A1 |
20070235348 | Nagahara et al. | Oct 2007 | A1 |
20070252710 | Long et al. | Nov 2007 | A1 |
20070252711 | Long et al. | Nov 2007 | A1 |
20070255176 | Rondoni et al. | Nov 2007 | A1 |
20070258894 | Melker et al. | Nov 2007 | A1 |
20070269821 | Mazumdar et al. | Nov 2007 | A1 |
20070270672 | Hayter | Nov 2007 | A1 |
20070275690 | Hunter et al. | Nov 2007 | A1 |
20070298006 | Tomalia et al. | Dec 2007 | A1 |
20080003530 | Donnelly et al. | Jan 2008 | A1 |
20080017507 | Ramamurthy et al. | Jan 2008 | A1 |
20080025876 | Ramamurthy | Jan 2008 | A1 |
20080027679 | Shklarski | Jan 2008 | A1 |
20080030330 | Vock et al. | Feb 2008 | A1 |
20080054382 | Stetter | Mar 2008 | A1 |
20080077331 | Lewis et al. | Mar 2008 | A1 |
20080077440 | Doron | Mar 2008 | A1 |
20080081963 | Naghavi et al. | Apr 2008 | A1 |
20080091097 | Linti et al. | Apr 2008 | A1 |
20080101994 | Virji et al. | May 2008 | A1 |
20080103751 | Hsiung et al. | May 2008 | A1 |
20080146334 | Kil | Jun 2008 | A1 |
20080146701 | Sain et al. | Jun 2008 | A1 |
20080146892 | LeBoeuf et al. | Jun 2008 | A1 |
20080161654 | Teller et al. | Jul 2008 | A1 |
20080161655 | Teller et al. | Jul 2008 | A1 |
20080162088 | DeVaul et al. | Jul 2008 | A1 |
20080167535 | Stivoric et al. | Jul 2008 | A1 |
20080167536 | Teller et al. | Jul 2008 | A1 |
20080167537 | Teller et al. | Jul 2008 | A1 |
20080167538 | Teller et al. | Jul 2008 | A1 |
20080167539 | Teller et al. | Jul 2008 | A1 |
20080171919 | Stivoric et al. | Jul 2008 | A1 |
20080171920 | Teller et al. | Jul 2008 | A1 |
20080171921 | Teller et al. | Jul 2008 | A1 |
20080171922 | Teller et al. | Jul 2008 | A1 |
20080220535 | LeBoeuf et al. | Sep 2008 | A1 |
20080226995 | Costanzo et al. | Sep 2008 | A1 |
20080236251 | Tepper et al. | Oct 2008 | A1 |
20080241071 | West et al. | Oct 2008 | A1 |
20080241964 | Kaieda et al. | Oct 2008 | A1 |
20080245675 | Joseph et al. | Oct 2008 | A1 |
20080246629 | Tsui et al. | Oct 2008 | A1 |
20080262376 | Price | Oct 2008 | A1 |
20080262743 | Lewis et al. | Oct 2008 | A1 |
20080275309 | Stivoric et al. | Nov 2008 | A1 |
20080278140 | Dodabalapur et al. | Nov 2008 | A1 |
20080278181 | Zhong et al. | Nov 2008 | A1 |
20080279946 | Hainfeld | Nov 2008 | A1 |
20080287342 | Yu et al. | Nov 2008 | A1 |
20080287769 | Kurzweil et al. | Nov 2008 | A1 |
20080287770 | Kurzweil et al. | Nov 2008 | A1 |
20080294058 | Shklarski | Nov 2008 | A1 |
20080306357 | Korman | Dec 2008 | A1 |
20080318678 | Stivoric et al. | Dec 2008 | A1 |
20080319682 | Holland et al. | Dec 2008 | A1 |
20080319781 | Stivoric et al. | Dec 2008 | A1 |
20080319786 | Stivoric et al. | Dec 2008 | A1 |
20080319787 | Stivoric et al. | Dec 2008 | A1 |
20080319796 | Stivoric et al. | Dec 2008 | A1 |
20080319855 | Stivoric et al. | Dec 2008 | A1 |
20080320029 | Stivoric et al. | Dec 2008 | A1 |
20080320030 | Stivoric et al. | Dec 2008 | A1 |
20090004612 | West | Jan 2009 | A1 |
20090006457 | Stivoric et al. | Jan 2009 | A1 |
20090006458 | Stivoric et al. | Jan 2009 | A1 |
20090007636 | Starling | Jan 2009 | A1 |
20090007777 | Cohen et al. | Jan 2009 | A1 |
20090018412 | Schmitt | Jan 2009 | A1 |
20090042200 | Okano et al. | Feb 2009 | A1 |
20090042739 | Okano et al. | Feb 2009 | A1 |
20090049890 | Zhong et al. | Feb 2009 | A1 |
20090084162 | Besnard et al. | Apr 2009 | A1 |
20090090168 | Porter et al. | Apr 2009 | A1 |
20090093985 | Burdett et al. | Apr 2009 | A1 |
20090105605 | Abreu | Apr 2009 | A1 |
20090112071 | LeBoeuf et al. | Apr 2009 | A1 |
20090130421 | Ramamurthy | May 2009 | A1 |
20090130773 | Ayi et al. | May 2009 | A1 |
20090148690 | Krasteva et al. | Jun 2009 | A1 |
20090171166 | Amundson et al. | Jul 2009 | A1 |
20090174547 | Greene et al. | Jul 2009 | A1 |
20090177068 | Stivoric et al. | Jul 2009 | A1 |
20090196796 | Landini et al. | Aug 2009 | A1 |
20090201120 | Sunshine et al. | Aug 2009 | A1 |
20090212941 | Vock et al. | Aug 2009 | A1 |
20090214618 | Schoenfisch et al. | Aug 2009 | A1 |
20090214762 | Lewis et al. | Aug 2009 | A1 |
20090216461 | Sunshine et al. | Aug 2009 | A1 |
20090227059 | Besnard et al. | Sep 2009 | A1 |
20090234587 | Hsiung et al. | Sep 2009 | A1 |
20090246142 | Bhatia et al. | Oct 2009 | A1 |
20090256215 | Novak et al. | Oct 2009 | A1 |
20090260423 | Munoz et al. | Oct 2009 | A1 |
20090261987 | Sun | Oct 2009 | A1 |
20090263287 | Hartmann-Thompson | Oct 2009 | A1 |
20090269003 | Scully et al. | Oct 2009 | A1 |
20090273354 | Dhirani et al. | Nov 2009 | A1 |
20090294692 | Bourke, Jr. et al. | Dec 2009 | A1 |
20090309614 | Goodman et al. | Dec 2009 | A1 |
20090312615 | Caduff et al. | Dec 2009 | A1 |
20090315728 | Michael et al. | Dec 2009 | A1 |
20090322513 | Hwang et al. | Dec 2009 | A1 |
20090325215 | Okano et al. | Dec 2009 | A1 |
20090325812 | Mirkin et al. | Dec 2009 | A1 |
20100001211 | Huang et al. | Jan 2010 | A1 |
20100003316 | Vo Dinh et al. | Jan 2010 | A1 |
20100008619 | Sailor | Jan 2010 | A1 |
20100009872 | Eid et al. | Jan 2010 | A1 |
20100016568 | Okano et al. | Jan 2010 | A1 |
20100016569 | Okano et al. | Jan 2010 | A1 |
20100016783 | Bourke, Jr. et al. | Jan 2010 | A1 |
20100018862 | Okano et al. | Jan 2010 | A1 |
20100021933 | Okano et al. | Jan 2010 | A1 |
20100028559 | Yan et al. | Feb 2010 | A1 |
20100060465 | Stetter | Mar 2010 | A1 |
20100062232 | Schauer et al. | Mar 2010 | A1 |
20100069621 | Maune et al. | Mar 2010 | A1 |
20100073016 | Arora et al. | Mar 2010 | A1 |
20100076692 | Vock et al. | Mar 2010 | A1 |
20100081895 | Zand | Apr 2010 | A1 |
20100099957 | Wang | Apr 2010 | A1 |
20100102975 | Vossmeyer et al. | Apr 2010 | A1 |
20100121227 | Stirling et al. | May 2010 | A1 |
20100122832 | Bukshpun et al. | May 2010 | A1 |
20100132547 | Masel et al. | Jun 2010 | A1 |
20100140597 | Babudri et al. | Jun 2010 | A1 |
20100152621 | Janna et al. | Jun 2010 | A1 |
20100176952 | Bajcsy et al. | Jul 2010 | A1 |
20100188110 | Sun | Jul 2010 | A1 |
20100191474 | Haick | Jul 2010 | A1 |
20100196920 | Lee et al. | Aug 2010 | A1 |
20100203648 | Porter et al. | Aug 2010 | A1 |
20100204676 | Cardullo | Aug 2010 | A1 |
20100209301 | Hartmann-Thompson | Aug 2010 | A1 |
20100217099 | LeBoeuf et al. | Aug 2010 | A1 |
20100225337 | Zamborini et al. | Sep 2010 | A1 |
20100229658 | Glezer et al. | Sep 2010 | A1 |
20100234579 | Mirkin et al. | Sep 2010 | A1 |
20100240962 | Contant | Sep 2010 | A1 |
20100241464 | Amigo et al. | Sep 2010 | A1 |
20100241465 | Amigo et al. | Sep 2010 | A1 |
20100249557 | Besko et al. | Sep 2010 | A1 |
20100261263 | Vo-Dinh et al. | Oct 2010 | A1 |
20100272612 | Ramamurthy | Oct 2010 | A1 |
20100273665 | Haick et al. | Oct 2010 | A1 |
20100276302 | Raguse et al. | Nov 2010 | A1 |
20100286532 | Farringdon et al. | Nov 2010 | A1 |
20100290992 | Seela et al. | Nov 2010 | A1 |
20110003610 | Key et al. | Jan 2011 | A1 |
20110004072 | Fletcher et al. | Jan 2011 | A1 |
20110010107 | Fedder et al. | Jan 2011 | A1 |
20110012096 | Carmeli et al. | Jan 2011 | A1 |
20110015872 | Haick et al. | Jan 2011 | A1 |
20110021970 | Vo-Dinh et al. | Jan 2011 | A1 |
20110034912 | De Graff et al. | Feb 2011 | A1 |
20110035190 | DeVaul et al. | Feb 2011 | A1 |
20110054202 | Snow | Mar 2011 | A1 |
20110054359 | Sazonov et al. | Mar 2011 | A1 |
20110065807 | Radovic-Moreno et al. | Mar 2011 | A1 |
20110070835 | Borras et al. | Mar 2011 | A1 |
20110081724 | Swager et al. | Apr 2011 | A1 |
20110082484 | Saravia et al. | Apr 2011 | A1 |
20110089051 | Wang et al. | Apr 2011 | A1 |
20110092825 | Gopinathan et al. | Apr 2011 | A1 |
20110098112 | LeBoeuf et al. | Apr 2011 | A1 |
20110098197 | Chung et al. | Apr 2011 | A1 |
20110098591 | Haick et al. | Apr 2011 | A1 |
20110106627 | LeBoeuf et al. | May 2011 | A1 |
20110114244 | Yoo et al. | May 2011 | A1 |
20110114511 | Sjong | May 2011 | A1 |
20110125409 | Hsiung et al. | May 2011 | A1 |
20110127446 | Star et al. | Jun 2011 | A1 |
20110129537 | Vo-Dinh et al. | Jun 2011 | A1 |
20110136139 | Bruchez et al. | Jun 2011 | A1 |
20110145162 | Vock et al. | Jun 2011 | A1 |
20110171137 | Patolsky et al. | Jul 2011 | A1 |
20110171749 | Alocilja et al. | Jul 2011 | A1 |
20110176130 | Gu et al. | Jul 2011 | A1 |
20110184649 | Ofek | Jul 2011 | A1 |
20110191044 | Stafford | Aug 2011 | A1 |
20110206740 | Karp et al. | Aug 2011 | A1 |
20110213225 | Bernstein et al. | Sep 2011 | A1 |
20110213271 | Telfort et al. | Sep 2011 | A1 |
20110213272 | Telfort et al. | Sep 2011 | A1 |
20110213273 | Telfort et al. | Sep 2011 | A1 |
20110213274 | Telfort et al. | Sep 2011 | A1 |
20110223583 | Gordon et al. | Sep 2011 | A1 |
20110244584 | Haick et al. | Oct 2011 | A1 |
20110246086 | Huang et al. | Oct 2011 | A1 |
20110263920 | Bourke, Jr. et al. | Oct 2011 | A1 |
20110269632 | Haick et al. | Nov 2011 | A1 |
20110282828 | Precup et al. | Nov 2011 | A1 |
20110286889 | Ramamurthy et al. | Nov 2011 | A1 |
20110288574 | Curry et al. | Nov 2011 | A1 |
20110298613 | Ben Ayed | Dec 2011 | A1 |
20110300637 | Virji et al. | Dec 2011 | A1 |
20110319729 | Donnay et al. | Dec 2011 | A1 |
20110320136 | Sunshine et al. | Dec 2011 | A1 |
20120010642 | Lee et al. | Jan 2012 | A1 |
20120020033 | Pilditch et al. | Jan 2012 | A1 |
20120021055 | Schoenfisch et al. | Jan 2012 | A1 |
20120034169 | Schoenfisch et al. | Feb 2012 | A1 |
20120041574 | Hsiung et al. | Feb 2012 | A1 |
20120050038 | Stetter | Mar 2012 | A1 |
20120056632 | Dhirani et al. | Mar 2012 | A1 |
20120064134 | Bourke, Jr. et al. | Mar 2012 | A1 |
20120070376 | Ostroff et al. | Mar 2012 | A1 |
20120071362 | Nhan et al. | Mar 2012 | A1 |
20120071737 | Landini et al. | Mar 2012 | A1 |
20120075168 | Osterhout et al. | Mar 2012 | A1 |
20120087949 | Tan et al. | Apr 2012 | A1 |
20120090378 | Wang et al. | Apr 2012 | A1 |
20120095352 | Tran | Apr 2012 | A1 |
20120097917 | Zhou et al. | Apr 2012 | A1 |
20120123232 | Najarian et al. | May 2012 | A1 |
20120123960 | Vock et al. | May 2012 | A1 |
20120135437 | Brennan et al. | May 2012 | A1 |
20120143495 | Dantu | Jun 2012 | A1 |
20120143514 | Vock et al. | Jun 2012 | A1 |
20120143515 | Norman et al. | Jun 2012 | A1 |
20120146784 | Hines et al. | Jun 2012 | A1 |
20120149996 | Stivoric et al. | Jun 2012 | A1 |
20120150483 | Vock et al. | Jun 2012 | A1 |
20120156099 | Zhong et al. | Jun 2012 | A1 |
20120156135 | Farokhzad et al. | Jun 2012 | A1 |
20120157793 | MacDonald | Jun 2012 | A1 |
20120165617 | Vesto et al. | Jun 2012 | A1 |
20120165623 | Lynn et al. | Jun 2012 | A1 |
20120172783 | Harris et al. | Jul 2012 | A1 |
20120172792 | Baynham et al. | Jul 2012 | A1 |
20120186987 | Mirsky et al. | Jul 2012 | A1 |
20120190941 | Donnay et al. | Jul 2012 | A1 |
20120190942 | Donnay et al. | Jul 2012 | A1 |
20120190943 | Donnay et al. | Jul 2012 | A1 |
20120190951 | Curry et al. | Jul 2012 | A1 |
20120194418 | Osterhout et al. | Aug 2012 | A1 |
20120194419 | Osterhout et al. | Aug 2012 | A1 |
20120194420 | Osterhout et al. | Aug 2012 | A1 |
20120194549 | Osterhout et al. | Aug 2012 | A1 |
20120194550 | Osterhout et al. | Aug 2012 | A1 |
20120194551 | Osterhout et al. | Aug 2012 | A1 |
20120194552 | Osterhout et al. | Aug 2012 | A1 |
20120194553 | Osterhout et al. | Aug 2012 | A1 |
20120197093 | LeBoeuf et al. | Aug 2012 | A1 |
20120197098 | Donnay et al. | Aug 2012 | A1 |
20120197222 | Donnay et al. | Aug 2012 | A1 |
20120197737 | LeBoeuf et al. | Aug 2012 | A1 |
20120200488 | Osterhout et al. | Aug 2012 | A1 |
20120200499 | Osterhout et al. | Aug 2012 | A1 |
20120200601 | Osterhout et al. | Aug 2012 | A1 |
20120203081 | LeBoeuf et al. | Aug 2012 | A1 |
20120203453 | Lundquist et al. | Aug 2012 | A1 |
20120203491 | Sun et al. | Aug 2012 | A1 |
20120203511 | DeVaul et al. | Aug 2012 | A1 |
20120206322 | Osterhout et al. | Aug 2012 | A1 |
20120206323 | Osterhout et al. | Aug 2012 | A1 |
20120206334 | Osterhout et al. | Aug 2012 | A1 |
20120206335 | Osterhout et al. | Aug 2012 | A1 |
20120206485 | Osterhout et al. | Aug 2012 | A1 |
20120209088 | Romem | Aug 2012 | A1 |
20120212242 | Masel et al. | Aug 2012 | A1 |
20120212398 | Border et al. | Aug 2012 | A1 |
20120212399 | Border et al. | Aug 2012 | A1 |
20120212400 | Border et al. | Aug 2012 | A1 |
20120212406 | Osterhout et al. | Aug 2012 | A1 |
20120212414 | Osterhout et al. | Aug 2012 | A1 |
20120212484 | Haddick et al. | Aug 2012 | A1 |
20120212499 | Haddick et al. | Aug 2012 | A1 |
20120215076 | Yang et al. | Aug 2012 | A1 |
20120218172 | Border et al. | Aug 2012 | A1 |
20120218301 | Miller | Aug 2012 | A1 |
20120226111 | LeBoeuf et al. | Sep 2012 | A1 |
20120226112 | LeBoeuf et al. | Sep 2012 | A1 |
20120226130 | De Graff et al. | Sep 2012 | A1 |
20120229661 | Sekiguchi et al. | Sep 2012 | A1 |
20120235883 | Border et al. | Sep 2012 | A1 |
20120235884 | Miller et al. | Sep 2012 | A1 |
20120235885 | Miller et al. | Sep 2012 | A1 |
20120235886 | Border et al. | Sep 2012 | A1 |
20120235887 | Border et al. | Sep 2012 | A1 |
20120235900 | Border et al. | Sep 2012 | A1 |
20120236030 | Border et al. | Sep 2012 | A1 |
20120236031 | Haddick et al. | Sep 2012 | A1 |
20120242678 | Border et al. | Sep 2012 | A1 |
20120242697 | Border et al. | Sep 2012 | A1 |
20120242698 | Haddick et al. | Sep 2012 | A1 |
20120244807 | Kuroda | Sep 2012 | A1 |
20120245439 | Andre et al. | Sep 2012 | A1 |
20120245447 | Karan et al. | Sep 2012 | A1 |
20120246788 | Harrell et al. | Oct 2012 | A1 |
20120249797 | Haddick et al. | Oct 2012 | A1 |
20120263648 | Shapiro et al. | Oct 2012 | A1 |
20120263793 | Vitaliano | Oct 2012 | A1 |
20120265296 | McNamara et al. | Oct 2012 | A1 |
20120265477 | Vock et al. | Oct 2012 | A1 |
20120270205 | Patel et al. | Oct 2012 | A1 |
20120273354 | Orhan et al. | Nov 2012 | A1 |
20120277546 | Soykan et al. | Nov 2012 | A1 |
20120282594 | Chen et al. | Nov 2012 | A1 |
20120283577 | LeBoeuf et al. | Nov 2012 | A1 |
20120283578 | LeBoeuf et al. | Nov 2012 | A1 |
20120295360 | Swager et al. | Nov 2012 | A1 |
20120296175 | Poh et al. | Nov 2012 | A1 |
20120296184 | LeBoeuf et al. | Nov 2012 | A1 |
20120296191 | McGrath et al. | Nov 2012 | A1 |
20120301360 | Meinhold et al. | Nov 2012 | A1 |
20120315322 | Chakravarthy et al. | Dec 2012 | A1 |
20130013333 | Gopinathan et al. | Jan 2013 | A1 |
20130022755 | D'Arcy | Jan 2013 | A1 |
20130023714 | Johnston et al. | Jan 2013 | A1 |
20130030711 | Korhonen | Jan 2013 | A1 |
20130034599 | Thaxton et al. | Feb 2013 | A1 |
20130034915 | Ballerstadt et al. | Feb 2013 | A1 |
20130040399 | BelBruno et al. | Feb 2013 | A1 |
20130046485 | Norman et al. | Feb 2013 | A1 |
20130057720 | Kawaji et al. | Mar 2013 | A1 |
20130059396 | LeBoeuf et al. | Mar 2013 | A1 |
20130059758 | Haick et al. | Mar 2013 | A1 |
20130060480 | Korhonen et al. | Mar 2013 | A1 |
20130065319 | Zang et al. | Mar 2013 | A1 |
20130066168 | Yang et al. | Mar 2013 | A1 |
20130066395 | Simon et al. | Mar 2013 | A1 |
20130095499 | Rose-Petruck et al. | Apr 2013 | A1 |
20130096396 | Riedel | Apr 2013 | A1 |
20130096466 | Sarrafzadeh et al. | Apr 2013 | A1 |
20130103416 | Amigo et al. | Apr 2013 | A1 |
20130116405 | Yu et al. | May 2013 | A1 |
20130124039 | Abreu | May 2013 | A1 |
20130126363 | Raguse et al. | May 2013 | A1 |
20130127980 | Haddick et al. | May 2013 | A1 |
20130131519 | LeBoeuf et al. | May 2013 | A1 |
20130140649 | Rogers et al. | Jun 2013 | A1 |
20130143247 | Haick et al. | Jun 2013 | A1 |
20130144564 | DeVaul et al. | Jun 2013 | A1 |
20130151699 | Vock et al. | Jun 2013 | A1 |
20130156905 | Bourke, Jr. et al. | Jun 2013 | A1 |
20130158881 | Sunshine et al. | Jun 2013 | A1 |
20130162403 | Striemer et al. | Jun 2013 | A1 |
20130171060 | Vo-Dinh et al. | Jul 2013 | A1 |
20130171733 | Haick et al. | Jul 2013 | A1 |
20130172691 | Tran | Jul 2013 | A1 |
20130177598 | Desimone et al. | Jul 2013 | A1 |
20130183243 | LaBelle et al. | Jul 2013 | A1 |
20130183766 | Zang et al. | Jul 2013 | A1 |
20130196872 | Low et al. | Aug 2013 | A1 |
20130197319 | Monty et al. | Aug 2013 | A1 |
20130203073 | Mager et al. | Aug 2013 | A1 |
20130210023 | Tanner et al. | Aug 2013 | A1 |
20130210679 | Joseph et al. | Aug 2013 | A1 |
20130211788 | Sicurello et al. | Aug 2013 | A1 |
20130216989 | Cuthbert | Aug 2013 | A1 |
20130234724 | Kabasawa et al. | Sep 2013 | A1 |
20130236980 | Moretti et al. | Sep 2013 | A1 |
20130236981 | Haick et al. | Sep 2013 | A1 |
20130238276 | Vock et al. | Sep 2013 | A1 |
20130240758 | Bourke, Jr. et al. | Sep 2013 | A1 |
20130241726 | Hunter et al. | Sep 2013 | A1 |
20130245388 | Rafferty et al. | Sep 2013 | A1 |
20130245486 | Simon et al. | Sep 2013 | A1 |
20130252843 | Yan et al. | Sep 2013 | A1 |
20130252848 | Okano et al. | Sep 2013 | A1 |
20130259749 | Moretti et al. | Oct 2013 | A1 |
20130261010 | Bailey et al. | Oct 2013 | A1 |
20130274642 | Soykan et al. | Oct 2013 | A1 |
20130278631 | Border et al. | Oct 2013 | A1 |
20130288777 | Short et al. | Oct 2013 | A1 |
20130295688 | Bailey et al. | Nov 2013 | A1 |
20130311084 | Lundquist et al. | Nov 2013 | A1 |
20130311108 | Stetter et al. | Nov 2013 | A1 |
20130314303 | Osterhout et al. | Nov 2013 | A1 |
20130315816 | Watson et al. | Nov 2013 | A1 |
20130330231 | Swager et al. | Dec 2013 | A1 |
20130338470 | Ouwerkerk | Dec 2013 | A1 |
20130338768 | Boyden et al. | Dec 2013 | A1 |
20130338769 | Boyden et al. | Dec 2013 | A1 |
20130338770 | Boyden et al. | Dec 2013 | A1 |
20130338771 | Boyden et al. | Dec 2013 | A1 |
20130338772 | Boyden et al. | Dec 2013 | A1 |
20130338773 | Boyden et al. | Dec 2013 | A1 |
20130346148 | Roth et al. | Dec 2013 | A1 |
20140005426 | Schoenfisch et al. | Jan 2014 | A1 |
20140012105 | LeBoeuf et al. | Jan 2014 | A1 |
20140012145 | Kurzweil et al. | Jan 2014 | A1 |
20140015548 | Naughton et al. | Jan 2014 | A1 |
20140018638 | Chatterjee | Jan 2014 | A1 |
20140022058 | Striemer et al. | Jan 2014 | A1 |
20140024026 | Alocilja et al. | Jan 2014 | A1 |
20140031705 | Kurzweil et al. | Jan 2014 | A1 |
20140039290 | Graff et al. | Feb 2014 | A1 |
20140050793 | Chaiken et al. | Feb 2014 | A1 |
20140051946 | Arne et al. | Feb 2014 | A1 |
20140052567 | Bhardwaj et al. | Feb 2014 | A1 |
20140058124 | Schoenfisch et al. | Feb 2014 | A1 |
20140058272 | Naing et al. | Feb 2014 | A1 |
20140063054 | Osterhout et al. | Mar 2014 | A1 |
20140063055 | Osterhout et al. | Mar 2014 | A1 |
20140081175 | Telfort | Mar 2014 | A1 |
20140081578 | Connor | Mar 2014 | A1 |
20140081667 | Joao | Mar 2014 | A1 |
20140083869 | Manohar et al. | Mar 2014 | A1 |
20140088442 | Soykan et al. | Mar 2014 | A1 |
20140091811 | Potyrailo et al. | Apr 2014 | A1 |
20140094136 | Huang | Apr 2014 | A1 |
20140095102 | Potyrailo et al. | Apr 2014 | A1 |
20140106816 | Shimuta | Apr 2014 | A1 |
20140107362 | Snow | Apr 2014 | A1 |
20140107495 | Marinelli et al. | Apr 2014 | A1 |
20140107498 | Bower et al. | Apr 2014 | A1 |
20140107932 | Luna | Apr 2014 | A1 |
20140114699 | Amigo et al. | Apr 2014 | A1 |
20140115008 | Stivoric et al. | Apr 2014 | A1 |
20140120534 | Bernitz et al. | May 2014 | A1 |
20140122496 | Stivoric et al. | May 2014 | A1 |
20140122536 | Stivoric et al. | May 2014 | A1 |
20140122537 | Stivoric et al. | May 2014 | A1 |
20140127822 | Arora et al. | May 2014 | A1 |
20140143064 | Tran | May 2014 | A1 |
20140145736 | Myung et al. | May 2014 | A1 |
20140151631 | Duesberg et al. | Jun 2014 | A1 |
20140156698 | Stivoric et al. | Jun 2014 | A1 |
20140163303 | Bourke, Jr. et al. | Jun 2014 | A1 |
20140172358 | Vock et al. | Jun 2014 | A1 |
20140180018 | Stivoric et al. | Jun 2014 | A1 |
20140180024 | Stivoric et al. | Jun 2014 | A1 |
20140180025 | Stivoric et al. | Jun 2014 | A1 |
20140180598 | Stivoric et al. | Jun 2014 | A1 |
20140180720 | Stivoric et al. | Jun 2014 | A1 |
20140180993 | Stivoric et al. | Jun 2014 | A1 |
20140181108 | Stivoric et al. | Jun 2014 | A1 |
20140187872 | Stivoric et al. | Jul 2014 | A1 |
20140187873 | Stivoric et al. | Jul 2014 | A1 |
20140188874 | Stivoric et al. | Jul 2014 | A1 |
20140193925 | Bhattacharyya et al. | Jul 2014 | A1 |
20140197947 | Bahorich | Jul 2014 | A1 |
20140200426 | Taub et al. | Jul 2014 | A1 |
20140200432 | Banerji et al. | Jul 2014 | A1 |
20140202264 | Vock et al. | Jul 2014 | A1 |
20140203797 | Stivoric et al. | Jul 2014 | A1 |
20140203972 | Vock et al. | Jul 2014 | A1 |
20140206948 | Romem | Jul 2014 | A1 |
20140206955 | Stivoric et al. | Jul 2014 | A1 |
20140208828 | Von Waldkirch | Jul 2014 | A1 |
20140213854 | Stivoric et al. | Jul 2014 | A1 |
20140213855 | Teller et al. | Jul 2014 | A1 |
20140213856 | Teller et al. | Jul 2014 | A1 |
20140213857 | Teller et al. | Jul 2014 | A1 |
20140213938 | Stivoric et al. | Jul 2014 | A1 |
20140214552 | Stivoric et al. | Jul 2014 | A1 |
20140214836 | Stivoric et al. | Jul 2014 | A1 |
20140214873 | Stivoric et al. | Jul 2014 | A1 |
20140214874 | Stivoric et al. | Jul 2014 | A1 |
20140214903 | Stivoric et al. | Jul 2014 | A1 |
20140220525 | Stivoric et al. | Aug 2014 | A1 |
20140220703 | Patel et al. | Aug 2014 | A1 |
20140221730 | Stivoric et al. | Aug 2014 | A1 |
20140221769 | Teller et al. | Aug 2014 | A1 |
20140221770 | Teller et al. | Aug 2014 | A1 |
20140221773 | Stivoric et al. | Aug 2014 | A1 |
20140221774 | Teller et al. | Aug 2014 | A1 |
20140221775 | Stivoric et al. | Aug 2014 | A1 |
20140221776 | Stivoric et al. | Aug 2014 | A1 |
20140221849 | Farringdon et al. | Aug 2014 | A1 |
20140221850 | Farringdon et al. | Aug 2014 | A1 |
20140222117 | Bourke, Jr. et al. | Aug 2014 | A1 |
20140222174 | Teller et al. | Aug 2014 | A1 |
20140222732 | Stivoric et al. | Aug 2014 | A1 |
20140222733 | Stivoric et al. | Aug 2014 | A1 |
20140222734 | Stivoric et al. | Aug 2014 | A1 |
20140222735 | Stivoric et al. | Aug 2014 | A1 |
20140222804 | Stivoric et al. | Aug 2014 | A1 |
20140222847 | Stivoric et al. | Aug 2014 | A1 |
20140222848 | Stivoric et al. | Aug 2014 | A1 |
20140222849 | Stivoric et al. | Aug 2014 | A1 |
20140222850 | Stivoric et al. | Aug 2014 | A1 |
20140222851 | Stivoric et al. | Aug 2014 | A1 |
20140223406 | Teller et al. | Aug 2014 | A1 |
20140223407 | Teller et al. | Aug 2014 | A1 |
20140223421 | Carter et al. | Aug 2014 | A1 |
20140232516 | Stivoric et al. | Aug 2014 | A1 |
20140242237 | Belbruno et al. | Aug 2014 | A1 |
20140243934 | Vo-Dinh et al. | Aug 2014 | A1 |
20140249381 | LeBoeuf et al. | Sep 2014 | A1 |
20140249763 | Shimuta | Sep 2014 | A1 |
20140267299 | Couse | Sep 2014 | A1 |
20140273029 | Bailey et al. | Sep 2014 | A1 |
20140274216 | Olodort | Sep 2014 | A1 |
20140274804 | Thomas et al. | Sep 2014 | A1 |
20140275716 | Connor | Sep 2014 | A1 |
20140275824 | Couse | Sep 2014 | A1 |
20140275828 | Osorio | Sep 2014 | A1 |
20140275838 | Osorio | Sep 2014 | A1 |
20140275840 | Osorio | Sep 2014 | A1 |
20140275855 | LeBoeuf et al. | Sep 2014 | A1 |
20140275898 | Taub et al. | Sep 2014 | A1 |
20140277649 | Chong et al. | Sep 2014 | A1 |
20140285402 | Rahman et al. | Sep 2014 | A1 |
20140287833 | LeBoeuf et al. | Sep 2014 | A1 |
20140288394 | LeBoeuf et al. | Sep 2014 | A1 |
20140288396 | LeBoeuf et al. | Sep 2014 | A1 |
20140288647 | Boyden et al. | Sep 2014 | A1 |
20140294927 | Thaxton et al. | Oct 2014 | A1 |
20140296663 | Boyden et al. | Oct 2014 | A1 |
20140296978 | Boyden et al. | Oct 2014 | A1 |
20140303452 | Ghaffari | Oct 2014 | A1 |
20140303508 | Plotnik-Peleg et al. | Oct 2014 | A1 |
20140303520 | Telfort et al. | Oct 2014 | A1 |
20140306814 | Ricci | Oct 2014 | A1 |
20140306834 | Ricci | Oct 2014 | A1 |
20140306835 | Ricci | Oct 2014 | A1 |
20140308636 | Stivoric et al. | Oct 2014 | A1 |
20140308639 | Stivoric et al. | Oct 2014 | A1 |
20140308902 | Ricci | Oct 2014 | A1 |
20140309838 | Ricci | Oct 2014 | A1 |
20140309919 | Ricci | Oct 2014 | A1 |
20140309930 | Ricci | Oct 2014 | A1 |
20140309939 | Stivoric et al. | Oct 2014 | A1 |
20140309940 | Stivoric et al. | Oct 2014 | A1 |
20140310105 | Stivoric et al. | Oct 2014 | A1 |
20140310223 | Stivoric et al. | Oct 2014 | A1 |
20140310274 | Stivoric et al. | Oct 2014 | A1 |
20140310275 | Stivoric et al. | Oct 2014 | A1 |
20140310276 | Stivoric et al. | Oct 2014 | A1 |
20140310284 | Stivoric et al. | Oct 2014 | A1 |
20140310294 | Stivoric et al. | Oct 2014 | A1 |
20140310295 | Stivoric et al. | Oct 2014 | A1 |
20140310296 | Stivoric et al. | Oct 2014 | A1 |
20140310297 | Stivoric et al. | Oct 2014 | A1 |
20140310298 | Stivoric et al. | Oct 2014 | A1 |
20140310379 | Ricci et al. | Oct 2014 | A1 |
20140310702 | Ricci et al. | Oct 2014 | A1 |
20140316229 | Tognetti et al. | Oct 2014 | A1 |
20140316885 | Stivoric et al. | Oct 2014 | A1 |
20140317039 | Stivoric et al. | Oct 2014 | A1 |
20140317042 | Stivoric et al. | Oct 2014 | A1 |
20140317119 | Stivoric et al. | Oct 2014 | A1 |
20140317135 | Stivoric et al. | Oct 2014 | A1 |
20140318990 | Star | Oct 2014 | A1 |
20140322823 | Alocilja et al. | Oct 2014 | A1 |
20140330043 | Snow | Nov 2014 | A1 |
20140335154 | Bot | Nov 2014 | A1 |
20140343370 | Stivoric et al. | Nov 2014 | A1 |
20140343371 | Skerik et al. | Nov 2014 | A1 |
20140343380 | Carter et al. | Nov 2014 | A1 |
20140343479 | Bourke et al. | Nov 2014 | A1 |
20140344208 | Ghasemzadeh et al. | Nov 2014 | A1 |
20140344282 | Stivoric et al. | Nov 2014 | A1 |
20140347187 | Freathey | Nov 2014 | A1 |
20140347491 | Connor | Nov 2014 | A1 |
20140349256 | Connor | Nov 2014 | A1 |
20140349257 | Connor | Nov 2014 | A1 |
20140350883 | Carter et al. | Nov 2014 | A1 |
20140363833 | Bhatia et al. | Dec 2014 | A1 |
20140364332 | Mehra et al. | Dec 2014 | A1 |
20140368643 | Siegel et al. | Dec 2014 | A1 |
20140371105 | Thomas et al. | Dec 2014 | A1 |
20140378676 | Lauraeus et al. | Dec 2014 | A1 |
20140378853 | McKinney et al. | Dec 2014 | A1 |
20150005188 | Levner et al. | Jan 2015 | A1 |
20150005680 | Lipani | Jan 2015 | A1 |
20150017258 | Azzazy et al. | Jan 2015 | A1 |
20150025338 | Lee et al. | Jan 2015 | A1 |
20150031571 | Wu et al. | Jan 2015 | A1 |
20150031967 | LeBoeuf et al. | Jan 2015 | A1 |
20150032505 | Kusukame et al. | Jan 2015 | A1 |
20150038874 | Abreu | Feb 2015 | A1 |
20150047091 | Fournier et al. | Feb 2015 | A1 |
20150054628 | Roth | Feb 2015 | A1 |
20150056627 | Karkkainen et al. | Feb 2015 | A1 |
20150057512 | Kapoor | Feb 2015 | A1 |
20150057515 | Hagen | Feb 2015 | A1 |
20150057516 | Mujeeb-U-Rahman et al. | Feb 2015 | A1 |
20150058110 | Roth | Feb 2015 | A1 |
20150058133 | Roth et al. | Feb 2015 | A1 |
20150061895 | Ricci | Mar 2015 | A1 |
20150063202 | Mazzarella et al. | Mar 2015 | A1 |
20150076007 | Compton et al. | Mar 2015 | A1 |
20150078140 | Riobo Aboy et al. | Mar 2015 | A1 |
20150079697 | Belbruno et al. | Mar 2015 | A1 |
20150080741 | LeBoeuf et al. | Mar 2015 | A1 |
20150080746 | Bleich et al. | Mar 2015 | A1 |
20150082920 | Haick et al. | Mar 2015 | A1 |
20150087935 | Davis et al. | Mar 2015 | A1 |
20150088007 | Bardy et al. | Mar 2015 | A1 |
20150093725 | Baarman et al. | Apr 2015 | A1 |
20150093774 | Tore et al. | Apr 2015 | A1 |
20150094914 | Abreu | Apr 2015 | A1 |
20150101392 | Foote | Apr 2015 | A1 |
20150102208 | Appelboom et al. | Apr 2015 | A1 |
20150111088 | Hiroki et al. | Apr 2015 | A1 |
20150111308 | Yu et al. | Apr 2015 | A1 |
20150112164 | Heikenfeld et al. | Apr 2015 | A1 |
20150112165 | Heikenfeld | Apr 2015 | A1 |
20150116093 | Swager et al. | Apr 2015 | A1 |
20150119657 | LeBoeuf et al. | Apr 2015 | A1 |
20150123641 | Dalton et al. | May 2015 | A1 |
20150126824 | LeBoeuf et al. | May 2015 | A1 |
20150126873 | Connor | May 2015 | A1 |
20150132857 | Belbruno et al. | May 2015 | A1 |
20150140397 | Tajima et al. | May 2015 | A1 |
20150141266 | Turner et al. | May 2015 | A1 |
20150141772 | LeBoeuf et al. | May 2015 | A1 |
20150145676 | Adhikari et al. | May 2015 | A1 |
20150148623 | Benaron | May 2015 | A1 |
20150148624 | Benaron | May 2015 | A1 |
20150148625 | Benaron | May 2015 | A1 |
20150148628 | Abreu | May 2015 | A1 |
20150148632 | Benaron | May 2015 | A1 |
20150148635 | Benaron | May 2015 | A1 |
20150148636 | Benaron | May 2015 | A1 |
20150148681 | Abreu | May 2015 | A1 |
20150150453 | Abreu | Jun 2015 | A1 |
20150150467 | Abreu | Jun 2015 | A1 |
20150157220 | Fish et al. | Jun 2015 | A1 |
20150164117 | Kaplan et al. | Jun 2015 | A1 |
20150164238 | Benson et al. | Jun 2015 | A1 |
20150164404 | Euliano et al. | Jun 2015 | A1 |
20150164409 | Benson et al. | Jun 2015 | A1 |
20150168365 | Connor | Jun 2015 | A1 |
20150170540 | Ford | Jun 2015 | A1 |
20150173674 | Hayes et al. | Jun 2015 | A1 |
20150178915 | Chatterjee et al. | Jun 2015 | A1 |
20150181840 | Tupin, Jr. et al. | Jul 2015 | A1 |
20150182322 | Couse et al. | Jul 2015 | A1 |
20150182543 | Schoenfisch et al. | Jul 2015 | A1 |
20150182843 | Esposito et al. | Jul 2015 | A1 |
20150185088 | Rabieirad et al. | Jul 2015 | A1 |
20150198606 | Bruchez et al. | Jul 2015 | A1 |
20150199010 | Coleman et al. | Jul 2015 | A1 |
20150202304 | Kaplan et al. | Jul 2015 | A1 |
20150202351 | Kaplan et al. | Jul 2015 | A1 |
20150211134 | Wang et al. | Jul 2015 | A1 |
20150216479 | Abreu | Aug 2015 | A1 |
20150216484 | Kasahara et al. | Aug 2015 | A1 |
20150231635 | Okano et al. | Aug 2015 | A1 |
20150232598 | Belbruno | Aug 2015 | A1 |
20150245797 | Teller et al. | Sep 2015 | A1 |
20150248651 | Akutagawa et al. | Sep 2015 | A1 |
20150248833 | Arne et al. | Sep 2015 | A1 |
20150251016 | Vo-Dinh et al. | Sep 2015 | A1 |
20150253317 | Singamaneni et al. | Sep 2015 | A1 |
20150253318 | Singamaneni et al. | Sep 2015 | A1 |
20150254724 | Kusukame et al. | Sep 2015 | A1 |
20150254964 | Raichman et al. | Sep 2015 | A1 |
20150259110 | Blackburn | Sep 2015 | A1 |
20150261254 | Hiroki et al. | Sep 2015 | A1 |
20150265214 | De Kok et al. | Sep 2015 | A1 |
20150265217 | Penders et al. | Sep 2015 | A1 |
20150265706 | Vo-Dinh et al. | Sep 2015 | A1 |
20150265725 | Peyman | Sep 2015 | A1 |
20150268207 | Motayed et al. | Sep 2015 | A1 |
20150269369 | Hamid | Sep 2015 | A1 |
20150271164 | Hamid | Sep 2015 | A1 |
20150272105 | Peterson | Oct 2015 | A1 |
20150272494 | Fuerst | Oct 2015 | A1 |
20150273521 | D'Arcy et al. | Oct 2015 | A1 |
20150276396 | Vock et al. | Oct 2015 | A1 |
20150276516 | Striemer | Oct 2015 | A1 |
20150276635 | Striemer | Oct 2015 | A1 |
20150276643 | Striemer | Oct 2015 | A1 |
20150276644 | Striemer | Oct 2015 | A1 |
20150276648 | Striemer | Oct 2015 | A1 |
20150276656 | Striemer | Oct 2015 | A1 |
20150281424 | Vock et al. | Oct 2015 | A1 |
20150281811 | Vock et al. | Oct 2015 | A1 |
20150282767 | Stivoric et al. | Oct 2015 | A1 |
20150299784 | Fan et al. | Oct 2015 | A1 |
20150301021 | Haick et al. | Oct 2015 | A1 |
20150301594 | Kitazawa et al. | Oct 2015 | A1 |
20150305682 | LeBoeuf et al. | Oct 2015 | A1 |
20150306505 | Vock et al. | Oct 2015 | A1 |
20150309316 | Osterhout et al. | Oct 2015 | A1 |
20150309535 | Connor | Oct 2015 | A1 |
20150309563 | Connor | Oct 2015 | A1 |
20150312712 | Vock et al. | Oct 2015 | A1 |
20150313496 | Connor | Nov 2015 | A1 |
20150316419 | Punnakkal | Nov 2015 | A1 |
20150320588 | Connor | Nov 2015 | A1 |
20150325100 | Hunter et al. | Nov 2015 | A1 |
20150327989 | Boyden et al. | Nov 2015 | A1 |
20150330025 | Marroquin et al. | Nov 2015 | A1 |
20150331512 | McMillen | Nov 2015 | A1 |
20150331997 | Joao | Nov 2015 | A1 |
20150335283 | Fish et al. | Nov 2015 | A1 |
20150335284 | Nuovo et al. | Nov 2015 | A1 |
20150339570 | Scheffler | Nov 2015 | A1 |
20150340891 | Fish et al. | Nov 2015 | A1 |
20150350752 | Solomon et al. | Dec 2015 | A1 |
20150351655 | Coleman | Dec 2015 | A1 |
20150351670 | Vanslyke et al. | Dec 2015 | A1 |
20150351671 | Vanslyke et al. | Dec 2015 | A1 |
20150351672 | Vanslyke et al. | Dec 2015 | A1 |
20150351673 | Vanslyke et al. | Dec 2015 | A1 |
20150355045 | Solomon et al. | Dec 2015 | A1 |
20150356093 | Abbas | Dec 2015 | A1 |
20150359457 | Blumenthal et al. | Dec 2015 | A1 |
20150359489 | Baudenbacher et al. | Dec 2015 | A1 |
20150363563 | Hallwachs | Dec 2015 | A1 |
20150366504 | Connor | Dec 2015 | A1 |
20150370320 | Connor | Dec 2015 | A1 |
20150374289 | Teller et al. | Dec 2015 | A1 |
20150379238 | Connor | Dec 2015 | A1 |
20160005503 | Bourke, Jr. et al. | Jan 2016 | A1 |
20160007933 | Duddy et al. | Jan 2016 | A1 |
20160008182 | Prokopuk et al. | Jan 2016 | A1 |
20160009169 | Biderman et al. | Jan 2016 | A1 |
20160009179 | Biderman et al. | Jan 2016 | A1 |
20160009181 | Biderman et al. | Jan 2016 | A1 |
20160009223 | Biderman et al. | Jan 2016 | A1 |
20160009293 | Biderman et al. | Jan 2016 | A1 |
20160009334 | Biderman et al. | Jan 2016 | A1 |
20160009335 | Biderman et al. | Jan 2016 | A1 |
20160009336 | Biderman et al. | Jan 2016 | A1 |
20160009337 | Biderman et al. | Jan 2016 | A1 |
20160009338 | Biderman | Jan 2016 | A1 |
20160009339 | Biderman et al. | Jan 2016 | A1 |
20160010136 | Nassar | Jan 2016 | A1 |
20160010151 | Fan et al. | Jan 2016 | A1 |
20160011003 | Biderman et al. | Jan 2016 | A1 |
20160011135 | Wang et al. | Jan 2016 | A1 |
20160011598 | Biderman et al. | Jan 2016 | A1 |
20160011599 | Biderman et al. | Jan 2016 | A1 |
20160012545 | Amigo et al. | Jan 2016 | A1 |
20160012652 | Biderman et al. | Jan 2016 | A1 |
20160012721 | Biderman et al. | Jan 2016 | A1 |
20160012723 | Biderman et al. | Jan 2016 | A1 |
20160012749 | Connor | Jan 2016 | A1 |
20160014205 | Biderman et al. | Jan 2016 | A1 |
20160014252 | Biderman et al. | Jan 2016 | A1 |
20160015267 | Bernstein et al. | Jan 2016 | A1 |
20160015268 | Bernstein et al. | Jan 2016 | A1 |
20160015280 | Hyde et al. | Jan 2016 | A1 |
20160015299 | Chan et al. | Jan 2016 | A1 |
20160015303 | Bernstein et al. | Jan 2016 | A1 |
20160015972 | Hyde et al. | Jan 2016 | A1 |
20160018257 | Mirov et al. | Jan 2016 | A1 |
20160018350 | Zhong et al. | Jan 2016 | A1 |
20160019813 | Mullen | Jan 2016 | A1 |
20160022210 | Nuovo et al. | Jan 2016 | A1 |
20160022976 | Peyman | Jan 2016 | A1 |
20160025634 | Chou et al. | Jan 2016 | A1 |
20160030078 | Lee et al. | Feb 2016 | A1 |
20160030809 | Wisbey et al. | Feb 2016 | A1 |
20160033861 | Omenetto et al. | Feb 2016 | A1 |
20160034663 | Nino et al. | Feb 2016 | A1 |
20160034764 | Connor | Feb 2016 | A1 |
20160038082 | Contant | Feb 2016 | A1 |
20160040998 | Ricci | Feb 2016 | A1 |
20160041820 | Ricci et al. | Feb 2016 | A1 |
20160042534 | Tremblay et al. | Feb 2016 | A1 |
20160045162 | De Graff et al. | Feb 2016 | A1 |
20160045654 | Connor | Feb 2016 | A1 |
20160051184 | Wisbey et al. | Feb 2016 | A1 |
20160051185 | Wisbey et al. | Feb 2016 | A1 |
20160051806 | Goldsmith | Feb 2016 | A1 |
20160054310 | Brennan et al. | Feb 2016 | A1 |
20160058328 | Hotta et al. | Mar 2016 | A1 |
20160058378 | Wisbey et al. | Mar 2016 | A1 |
20160058380 | Lee et al. | Mar 2016 | A1 |
20160060279 | Schoenfisch et al. | Mar 2016 | A1 |
20160062333 | Jayaraman | Mar 2016 | A1 |
20160066716 | Rao | Mar 2016 | A1 |
20160066894 | Barton-Sweeney | Mar 2016 | A1 |
20160067494 | Lipani | Mar 2016 | A1 |
20160073886 | Connor | Mar 2016 | A1 |
20160074276 | Scheuring et al. | Mar 2016 | A1 |
20160074511 | Lee et al. | Mar 2016 | A1 |
20160074661 | Lipani | Mar 2016 | A1 |
20160075175 | Biderman et al. | Mar 2016 | A1 |
20160075177 | Biderman et al. | Mar 2016 | A1 |
20160075226 | Biderman et al. | Mar 2016 | A1 |
20160082772 | Biderman et al. | Mar 2016 | A1 |
20160086193 | Hulaj | Mar 2016 | A1 |
20160089089 | Kakkar et al. | Mar 2016 | A1 |
20160095731 | Connor | Apr 2016 | A1 |
20160103104 | Gianchandani et al. | Apr 2016 | A1 |
20160110991 | Hunter et al. | Apr 2016 | A1 |
20160112684 | Connor | Apr 2016 | A1 |
20160112775 | Kim et al. | Apr 2016 | A1 |
20160113503 | Benaron | Apr 2016 | A1 |
20160117029 | Short et al. | Apr 2016 | A1 |
20160117937 | Penders et al. | Apr 2016 | A1 |
20160118640 | Miyake | Apr 2016 | A1 |
20160120433 | Hughes et al. | May 2016 | A1 |
20160120434 | Park et al. | May 2016 | A1 |
20160128615 | Curry et al. | May 2016 | A1 |
20160128638 | Altini et al. | May 2016 | A1 |
20160129280 | Douglas | May 2016 | A1 |
20160130056 | Nishijima et al. | May 2016 | A1 |
20160130335 | Ruvo et al. | May 2016 | A1 |
20160130370 | Carson et al. | May 2016 | A1 |
20160131615 | Sun et al. | May 2016 | A1 |
20160134642 | Hamid et al. | May 2016 | A1 |
20160140870 | Connor | May 2016 | A1 |
20160141718 | Ye et al. | May 2016 | A1 |
20160143547 | Benaron | May 2016 | A1 |
20160145683 | Fan et al. | May 2016 | A1 |
20160146799 | Robinson et al. | May 2016 | A1 |
20160148103 | Sarrafzadeh et al. | May 2016 | A1 |
20160148215 | Von Teichman et al. | May 2016 | A1 |
20160148531 | Bleich et al. | May 2016 | A1 |
20160148597 | Hamid et al. | May 2016 | A1 |
20160151628 | Simon et al. | Jun 2016 | A1 |
20160157779 | Baxi et al. | Jun 2016 | A1 |
20160161472 | Jungmann et al. | Jun 2016 | A1 |
20160165852 | Goldfain | Jun 2016 | A1 |
20160165853 | Goldfain | Jun 2016 | A1 |
20160166203 | Goldstein | Jun 2016 | A1 |
20160166786 | Kinzer | Jun 2016 | A1 |
20160166930 | Brav et al. | Jun 2016 | A1 |
20160169810 | Swager et al. | Jun 2016 | A1 |
20160169930 | Korhonen et al. | Jun 2016 | A1 |
20160171623 | Amigo et al. | Jun 2016 | A1 |
20160171846 | Brav et al. | Jun 2016 | A1 |
20160174039 | Huang | Jun 2016 | A1 |
20160174099 | Goldfain | Jun 2016 | A1 |
20160174857 | Eggers et al. | Jun 2016 | A1 |
20160174891 | Vilermo et al. | Jun 2016 | A1 |
20160174892 | Benson et al. | Jun 2016 | A1 |
20160174903 | Cutaia | Jun 2016 | A1 |
20160175251 | Ostroff et al. | Jun 2016 | A1 |
20160178392 | Goldfain | Jun 2016 | A1 |
20160180222 | Sierhuis et al. | Jun 2016 | A1 |
20160182625 | Trainin et al. | Jun 2016 | A1 |
20160184226 | Thaxton et al. | Jun 2016 | A1 |
20160184703 | Brav et al. | Jun 2016 | A1 |
20160185814 | Field et al. | Jun 2016 | A1 |
20160187654 | Border et al. | Jun 2016 | A1 |
20160189534 | Wang et al. | Jun 2016 | A1 |
20160195486 | Anvar et al. | Jul 2016 | A1 |
20160195504 | Swager et al. | Jul 2016 | A1 |
20160195566 | Vock et al. | Jul 2016 | A1 |
20160199249 | Dunham et al. | Jul 2016 | A1 |
20160202755 | Connor | Jul 2016 | A1 |
20160205450 | Gartseev et al. | Jul 2016 | A1 |
20160206232 | Bordelon | Jul 2016 | A1 |
20160209420 | Barnes et al. | Jul 2016 | A1 |
20160209648 | Haddick et al. | Jul 2016 | A1 |
20160210416 | Whitehurst | Jul 2016 | A1 |
20160217259 | Chan et al. | Jul 2016 | A1 |
20160222539 | Varadan et al. | Aug 2016 | A1 |
20160228574 | Farokhzad et al. | Aug 2016 | A1 |
20160228640 | Pindado et al. | Aug 2016 | A1 |
20160231267 | Swager et al. | Aug 2016 | A1 |
20160232625 | Akutagawa et al. | Aug 2016 | A1 |
20160232811 | Connor | Aug 2016 | A9 |
20160233469 | Kimura | Aug 2016 | A1 |
20160233946 | Wengrovitz et al. | Aug 2016 | A1 |
20160234176 | Chu et al. | Aug 2016 | A1 |
20160238591 | Deng et al. | Aug 2016 | A1 |
20160242646 | Obma | Aug 2016 | A1 |
20160243235 | Vo-Dinh et al. | Aug 2016 | A1 |
20160243927 | Biderman et al. | Aug 2016 | A1 |
20160245686 | Pal et al. | Aug 2016 | A1 |
20160249832 | Carter et al. | Sep 2016 | A1 |
20160249853 | Ricci | Sep 2016 | A1 |
20160258012 | Fan et al. | Sep 2016 | A2 |
20160258758 | Houston et al. | Sep 2016 | A1 |
20160262666 | Nyberg et al. | Sep 2016 | A1 |
20160262667 | Pizer et al. | Sep 2016 | A1 |
20160263393 | Vo-Dinh et al. | Sep 2016 | A1 |
20160265069 | Fan et al. | Sep 2016 | A1 |
20160267238 | Nag | Sep 2016 | A1 |
20160269692 | Mazzarella et al. | Sep 2016 | A1 |
20160270126 | Adams et al. | Sep 2016 | A1 |
20160270239 | Pizer et al. | Sep 2016 | A1 |
20160270671 | Madabushi et al. | Sep 2016 | A1 |
20160270700 | Baxi et al. | Sep 2016 | A1 |
20160270726 | Abreu | Sep 2016 | A1 |
20160274048 | Mehregany | Sep 2016 | A1 |
20160274086 | Rose-Petruck et al. | Sep 2016 | A1 |
20160277528 | Guilaume et al. | Sep 2016 | A1 |
20160278647 | Vogel et al. | Sep 2016 | A1 |
20160278700 | Lee et al. | Sep 2016 | A1 |
20160280069 | Laute et al. | Sep 2016 | A1 |
20160282302 | Raguse et al. | Sep 2016 | A1 |
20160287089 | Yi et al. | Oct 2016 | A1 |
20160287148 | Pizer et al. | Oct 2016 | A1 |
20160287164 | Manion et al. | Oct 2016 | A1 |
20160287166 | Tran | Oct 2016 | A1 |
20160290952 | Pizer et al. | Oct 2016 | A1 |
20160290980 | Swager et al. | Oct 2016 | A1 |
20160296839 | Brav et al. | Oct 2016 | A1 |
20160301581 | Carter et al. | Oct 2016 | A1 |
20160302730 | Odate | Oct 2016 | A1 |
20160307284 | Parsons | Oct 2016 | A1 |
20160310011 | Abreu | Oct 2016 | A1 |
20160313798 | Connor | Oct 2016 | A1 |
20160314564 | Jones et al. | Oct 2016 | A1 |
20160317049 | LeBoeuf et al. | Nov 2016 | A1 |
20160317060 | Connor | Nov 2016 | A1 |
20160321677 | Dobaj | Nov 2016 | A1 |
20160322744 | Murison | Nov 2016 | A1 |
20160324478 | Goldstein | Nov 2016 | A1 |
20160325111 | Bourke, Jr. et al. | Nov 2016 | A1 |
20160331235 | Nyberg et al. | Nov 2016 | A1 |
20160334398 | Weissleder et al. | Nov 2016 | A1 |
20160338626 | Wang et al. | Nov 2016 | A1 |
20160338627 | Lansdorp et al. | Nov 2016 | A1 |
20160338644 | Connor | Nov 2016 | A1 |
20160338646 | Lee et al. | Nov 2016 | A1 |
20160339428 | Kim et al. | Nov 2016 | A1 |
20160342744 | Joao | Nov 2016 | A1 |
20160349090 | Zevenbergen et al. | Dec 2016 | A1 |
20160349305 | Pal | Dec 2016 | A1 |
20160349790 | Connor | Dec 2016 | A1 |
20160351045 | Salter | Dec 2016 | A1 |
20160351874 | Kang et al. | Dec 2016 | A1 |
20160354543 | Cinar et al. | Dec 2016 | A1 |
20160360153 | Mazzarella et al. | Dec 2016 | A1 |
20160361014 | Kane et al. | Dec 2016 | A1 |
20160366065 | Kazanchian et al. | Dec 2016 | A1 |
20160367151 | Le et al. | Dec 2016 | A1 |
20160367202 | Carter et al. | Dec 2016 | A1 |
20160370310 | BelBruno et al. | Dec 2016 | A1 |
20160371372 | Chong et al. | Dec 2016 | A1 |
20160374577 | Baxi et al. | Dec 2016 | A1 |
20160374598 | Heikenfeld et al. | Dec 2016 | A1 |
20160374621 | LeBoeuf et al. | Dec 2016 | A1 |
20160375308 | Anderson | Dec 2016 | A1 |
20160376650 | Baranova et al. | Dec 2016 | A1 |
20170000359 | Kohli et al. | Jan 2017 | A1 |
20170000936 | Soykan et al. | Jan 2017 | A1 |
20170005958 | Frenkel et al. | Jan 2017 | A1 |
20170010658 | Tanaka et al. | Jan 2017 | A1 |
20170010664 | Tanaka et al. | Jan 2017 | A1 |
20170010665 | Tanaka et al. | Jan 2017 | A1 |
20170010667 | Tanaka et al. | Jan 2017 | A1 |
20170010672 | Tanaka et al. | Jan 2017 | A1 |
20170011182 | Whitehurst | Jan 2017 | A1 |
20170011602 | Brav et al. | Jan 2017 | A1 |
20170014067 | Peppou et al. | Jan 2017 | A1 |
20170014511 | Vitaliano et al. | Jan 2017 | A1 |
20170020390 | Flitsch et al. | Jan 2017 | A1 |
20170020391 | Flitsch et al. | Jan 2017 | A1 |
20170020417 | Stafford | Jan 2017 | A1 |
20170020431 | Flitsch et al. | Jan 2017 | A1 |
20170020440 | Flitsch et al. | Jan 2017 | A1 |
20170020441 | Flitsch et al. | Jan 2017 | A1 |
20170020442 | Flitsch et al. | Jan 2017 | A1 |
20170021040 | Vitaliano et al. | Jan 2017 | A1 |
20170023509 | Kim et al. | Jan 2017 | A1 |
20170024530 | Flitsch et al. | Jan 2017 | A1 |
20170024535 | Matz et al. | Jan 2017 | A1 |
20170024555 | Flitsch et al. | Jan 2017 | A1 |
20170024771 | Flitsch et al. | Jan 2017 | A1 |
20170026790 | Flitsch et al. | Jan 2017 | A1 |
20170027511 | Connor | Feb 2017 | A1 |
20170030877 | Miresmailli et al. | Feb 2017 | A1 |
20170032258 | Miresmailli et al. | Feb 2017 | A1 |
20170038326 | Motayed et al. | Feb 2017 | A1 |
20170043178 | Vo-Dinh et al. | Feb 2017 | A1 |
20170046740 | Abbas | Feb 2017 | A1 |
20170048257 | Hamid | Feb 2017 | A1 |
20170050046 | Walder et al. | Feb 2017 | A1 |
20170055851 | Al-Ali | Mar 2017 | A1 |
20170055882 | Al-Ali et al. | Mar 2017 | A1 |
20170055887 | Al-Ali | Mar 2017 | A1 |
20170055896 | Al-Ali et al. | Mar 2017 | A1 |
20170055906 | Bremer | Mar 2017 | A1 |
20170065183 | Abreu | Mar 2017 | A1 |
20170065636 | Moriarity et al. | Mar 2017 | A1 |
20170067021 | Moriarity et al. | Mar 2017 | A1 |
20170068790 | Fuerst | Mar 2017 | A1 |
20170078223 | Ricci et al. | Mar 2017 | A1 |
20170079574 | Rodriguez Restrepo et al. | Mar 2017 | A1 |
20170079594 | Telfort et al. | Mar 2017 | A1 |
20170080346 | Abbas | Mar 2017 | A1 |
20170086291 | Cotton et al. | Mar 2017 | A1 |
20170086709 | Khine et al. | Mar 2017 | A1 |
20170087363 | Costanzo et al. | Mar 2017 | A1 |
20170088875 | Li et al. | Mar 2017 | A1 |
20170090466 | Uomori | Mar 2017 | A1 |
20170091412 | Johnson | Mar 2017 | A1 |
20170091426 | Johnson | Mar 2017 | A1 |
20170091498 | Forster et al. | Mar 2017 | A1 |
20170093981 | Cameron | Mar 2017 | A1 |
20170094216 | Ekambaram et al. | Mar 2017 | A1 |
20170095153 | Bardy et al. | Apr 2017 | A1 |
20170095183 | Heikenfeld | Apr 2017 | A1 |
20170095184 | Heikenfeld | Apr 2017 | A1 |
20170095233 | Heikenfeld | Apr 2017 | A1 |
20170095670 | Ghaffari et al. | Apr 2017 | A1 |
20170095721 | Bleich et al. | Apr 2017 | A1 |
20170100035 | Heikenfeld | Apr 2017 | A1 |
20170100064 | Van Dorpe et al. | Apr 2017 | A1 |
20170100071 | Heikenfeld | Apr 2017 | A1 |
20170100072 | Heikenfeld | Apr 2017 | A1 |
20170100076 | Benson et al. | Apr 2017 | A1 |
20170100102 | Heikenfeld | Apr 2017 | A1 |
20170103166 | Oh et al. | Apr 2017 | A1 |
20170105104 | Ulmansky et al. | Apr 2017 | A1 |
20170105622 | Boesen et al. | Apr 2017 | A1 |
20170105646 | Bryenton et al. | Apr 2017 | A1 |
20170105662 | Silawan et al. | Apr 2017 | A1 |
20170109829 | Amigo et al. | Apr 2017 | A1 |
20170110678 | Zang et al. | Apr 2017 | A1 |
20170112379 | Swiston et al. | Apr 2017 | A1 |
20170112422 | Hatch | Apr 2017 | A1 |
20170112447 | Aumer et al. | Apr 2017 | A1 |
20170112671 | Goldstein | Apr 2017 | A1 |
20170113641 | Thieberger et al. | Apr 2017 | A1 |
20170113702 | Thieberger-Navon et al. | Apr 2017 | A1 |
20170116879 | Baarman et al. | Apr 2017 | A1 |
20170118551 | Wagner et al. | Apr 2017 | A1 |
20170119255 | Mahajan et al. | May 2017 | A1 |
20170119289 | Yoshioka | May 2017 | A1 |
20170119311 | Iwasaki et al. | May 2017 | A1 |
20170119820 | Moriarity et al. | May 2017 | A1 |
20170120052 | Simon et al. | May 2017 | A9 |
20170120107 | Wisbey | May 2017 | A1 |
20170121472 | Bourke, Jr. et al. | May 2017 | A1 |
20170121708 | Shapiro et al. | May 2017 | A1 |
20170124110 | Hajj et al. | May 2017 | A1 |
20170124276 | Tee | May 2017 | A1 |
20170127957 | Wisbey et al. | May 2017 | A1 |
20170130200 | Moriarity et al. | May 2017 | A1 |
20170131163 | LaBelle et al. | May 2017 | A1 |
20170131291 | Huang | May 2017 | A1 |
20170133873 | Dalton et al. | May 2017 | A1 |
20170135633 | Connor | May 2017 | A1 |
20170136264 | Hyde et al. | May 2017 | A1 |
20170136265 | Hyde et al. | May 2017 | A1 |
20170140482 | Salter | May 2017 | A1 |
20170140626 | Freathy | May 2017 | A1 |
20170142023 | Yadav et al. | May 2017 | A1 |
20170142113 | Bourgeois et al. | May 2017 | A1 |
20170151339 | White et al. | Jun 2017 | A1 |
20170156635 | Kuo et al. | Jun 2017 | A1 |
20170156641 | Nyberg et al. | Jun 2017 | A1 |
20170156662 | Goodall et al. | Jun 2017 | A1 |
20170157430 | Cheatham et al. | Jun 2017 | A1 |
20170157431 | Cheatham et al. | Jun 2017 | A1 |
20170160252 | Zang et al. | Jun 2017 | A1 |
20170162023 | Hunter et al. | Jun 2017 | A1 |
20170164865 | Rafferty et al. | Jun 2017 | A1 |
20170164866 | Rafferty et al. | Jun 2017 | A1 |
20170164876 | Hyde | Jun 2017 | A1 |
20170164878 | Connor | Jun 2017 | A1 |
20170166760 | Dietsch et al. | Jun 2017 | A1 |
20170167934 | Haick et al. | Jun 2017 | A1 |
20170168566 | Osterhout et al. | Jun 2017 | A1 |
20170172424 | Eggers et al. | Jun 2017 | A1 |
20170172463 | Papadopoulos et al. | Jun 2017 | A1 |
20170172470 | Begtrup et al. | Jun 2017 | A1 |
20170172484 | Sonner et al. | Jun 2017 | A1 |
20170173262 | Veltz | Jun 2017 | A1 |
20170173350 | Bourke, Jr. et al. | Jun 2017 | A1 |
20170177025 | Hiroki et al. | Jun 2017 | A1 |
20170181659 | Rafferty et al. | Jun 2017 | A1 |
20170181684 | Lian | Jun 2017 | A1 |
20170181711 | Cheng et al. | Jun 2017 | A1 |
20170184574 | Singaram et al. | Jun 2017 | A1 |
20170185731 | Ranieri et al. | Jun 2017 | A1 |
20170185743 | Moshkovitz et al. | Jun 2017 | A1 |
20170185745 | Wartski et al. | Jun 2017 | A1 |
20170188872 | Hughes et al. | Jul 2017 | A1 |
20170189481 | Kang et al. | Jul 2017 | A1 |
20170189751 | Knickerbocker et al. | Jul 2017 | A1 |
20170193395 | Limonad et al. | Jul 2017 | A1 |
20170196977 | Vo-Dinh et al. | Jul 2017 | A1 |
20170199979 | Reiner | Jul 2017 | A1 |
20170200296 | Jones et al. | Jul 2017 | A1 |
20170200898 | Noh | Jul 2017 | A1 |
20170205221 | Gong et al. | Jul 2017 | A1 |
20170206721 | Koo | Jul 2017 | A1 |
20170209095 | Wagner et al. | Jul 2017 | A1 |
20170210115 | Ohno et al. | Jul 2017 | A1 |
20170214020 | Yamaguchi et al. | Jul 2017 | A1 |
20170214963 | Di Franco et al. | Jul 2017 | A1 |
20170215742 | Wisbey et al. | Aug 2017 | A1 |
20170215745 | Felix et al. | Aug 2017 | A1 |
20170216671 | Wisbey et al. | Aug 2017 | A1 |
20170216672 | Wisbey et al. | Aug 2017 | A1 |
20170216673 | Armstrong et al. | Aug 2017 | A1 |
20170220772 | Vleugels et al. | Aug 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20190038190 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
62542067 | Aug 2017 | US |