The present relates to a novel structure of light emitting device, particularly to a structure consisting of nanoparticles embedded in active layer, and manufacturing process thereof. The structure is useful in the production of any optoelectronic semiconductor devices with hetero junctions.
According to the research about light sources in energy saving and environmental protection, light emitting diode has become particularly attractive due to its low power consumption.
In view of the current white light emitting diodes and manufacturing method, there are three main categories comprising: (1) complementary dichroism wherein white light is hybridized by triggering yellow phosphor particles with blue light form light emitting diode; (2) UV-LED pumping phosphors wherein white light is hybridized by triggering RGB phosphor particles with UV light from light emitting diode; and (3) three primary color light hybridization wherein white light is hybridized by stacking light emitting diodes of red, green and blue colors.
The theoretical light emitting efficiency of complementary dichroism, is as high as 400 lm/W, calculated by MacAdam in 1950. However, the white light generated by complementary dichroism is not applicable for full color displaying of objects due to the poor color rendering. Therefore, it is applied outdoor and industrially rather than indoor lighting such as museum, office and desktop. Exemplary white light sources using complementary dichroic hybridization were disclosed in U.S. Pat. No. 5,998,925, U.S. Pat. No. 6,069,440 and TW 383,508 issued to Nichia, in which white light emitting diodes are made of yttrium aluminum garnet phosphor particles and nitride diodes, and blue light emitting diodes (460 nm InGaN) are used to trigger yellow YAG phosphor particles coated thereon, so that the emitted yellow light is complementary to the primary blue light to generate white light. Although white light emitting diodes made of blue chips and yellow phosphor particles are well developed currently, there are problems to be solved. Firstly, emitting wavelength shifting and intensity variation of blue chips and phosphor coating thickness influence the homogeneity of white light, since color combination is essentially dominated by blue light chips (which normally results in bluish in the center and yellowish in the periphery). In addition, problems relating to high color temperature and low color rendering cause international major manufacturers to develop other methods for manufacturing white light emitting diodes.
Method of hybridizing white light by triggering RGB phosphor particles with UV light from light emitting diode was proposed by Thornton in 1971, in which white light with high color rendering is generated with trichroic hybridization (450, 540 and 610 nm). High color rendering prevents color distortion of objects caused by the generated white light due to lack of some wavelength bands, therefore is suitable to both indoor and outdoor lighting. Further, General Electric proposed, in U.S. Pat. No. 6,522,065, that the color of the white light generated by UV-LED pumping phosphors is completely controlled by the phosphor particles with the use of A2−2xNa1+xExD2V3O12 as phosphor particles, wherein A is selected from any one of Ca, Ba, Sr, or the combination thereof, E is selected from any one of Eu, Dy, Sm, Tl, Er, or the combination thereof, and D is selected from either of Mg and Zn, or the combination thereof; the color is controlled by adjusting ratio of active agent.
The currently major developed method relates to white light emitting diodes consisting of UV LED pumping RGB phosphor particles. However, issues like effective promotion of light emitting efficiency of UV LED, development of UV resistant packing materials, combination of wavelength bands, and environmental contamination of the phosphors need to be solved for it future development.
According to the Opto-electronics Industry Association predicted that the luminous efficiency of white LED would be arrived at 200 lm/W in 2020. The electrical luminous efficacy for white LED εe,white[lm/We] can be represented by WPE(T, I)×{ηQD×ηphos(T)×εo,phos[lm/Wo]}×ηpkg where ηpkg is package efficiency, ηphos(T) is phosphor quantum efficiency, ηQD is quantum deficit in phosphor (Stokes' shift), εo,phos is optical luminous efficacy of phosphor/LED blend and WPE(T, I) is wallplug efficiency. Wallplug efficiency is the amount of light power produced compared to the electrical power applied. High wall-plug efficiency can be achieved by maximizing the total efficiency of the device. The total efficiency of the device is a product of the various efficiencies of the device including the internal quantum, injection, and light extraction efficiencies (i.e. WPE(T, I)=ηint×ηv×ηextract, wherein ηint indicates internal quantum efficiency, ηv indicates electrical efficiency and ηextract indicates extraction efficiency) The first two parameters depend on the material quality of the device (epitaxial growth and electronic band structure) while the light extraction efficiency depends on the geometry and all the light absorption present in the device.
Reference from Lumiled reports that to obtain the electrical luminous efficacy of 200 lm/W for white LED fabricated by blue LED+phosphors, assume the optical luminous efficacy εo,phos[lm/Wo]≈330 lm/W, when ηQD=80%, ηphos(25° C.)>95%. The WPE(T, I)×ηpkg must exceed 80% at appropriate temperature and drive. Otherwise, for the white LED fabricated from UV LED+RGB phosphors, assume εphos[lm/Wo]<300 lm/W, when ηQD=70% (380 nm), ηphos(25° C.)>95% (guess). The WPE(T, I)×ηpkg must exceed 100% at appropriate temperature and drive. However, for the white LED fabricated from three primary color chips, assume εo,phos[lm/Wo]<3000 lm/W, where ηQD=100%, ηphos(25° C.)=100%. The WPE(T, I)×ηpkg is only 67% at appropriate temperature and drive.
WPE(T, I)×ηpkg fitting into theoretical calculation used in the tri-chip primary color hybridization is 67%, which is easier to match the requirement of high light emitting efficiency comparing to 80% of directly triggering yellow phosphor particles with blue light from light emitting diode, and 100% of UV-LED pumping phosphors. The main reason that the WPE of these manufacturing processes of white light emitting diode differ is directed to energy transformation efficiency, i.e., Stoke's energy loss. It is not necessary to consider energy transformation efficiency, which is 80% for triggering yellow phosphor particles with blue light emitting diode and 70% for UV-LED pumping phosphors, in tri-chip primary color hybridization, thus high light emitting efficiency is easier to achieve. For example, it is mentioned in U.S. Pat. No. 6,686,691 issued to Lumileds that white light is hybridized with the primary color bulbs; and in U.S. Pat. No. 6,234,645 issued to Philips that white light is hybridized with three or more LEDs to achieve light emitting efficiency of 40 lm/W.
All the mentioned conventional manufacturing processes for white light emitting diodes relate to the structure using quantum well as active layer, as shown in
In order to effectively reduce non-radioactive recombination caused by dislocations inside quantum well, and to elevate light emitting efficiency of LED, the present invention provides a growing process of nanoparticle structure; in particular high density of nanoparticles, in multi-stacked active layer to effectively elevate light emitting efficiency of LED.
The reason for employing high density of mamoparticle structure in multi-stacked active layer is to increase the possibility of carriers to fall into nanoparticles and elevate radiactive recombination when the density of nanoparticle is higher than that of dislocation, i.e., the distance between nanoparticles is smaller than that between dislocations, so that light emitting efficiency of LED is effectively elevated.
In the multi-stacked active layer structure where above-described nanoparticles embedded, the quantum confinement effect are enhanced when atom quantity in the nanoparticles decreases to a specific amount, i.e., the size of nanoparticles are smaller than exciton Bohr radius, accordingly electron orbital energy levels are discontinuous, and their energy levels are blue shifted to higher energy levels, hence shorter wavelengths. Therefore, emitting wavelengths of nanoparticles can be controlled by arranging the geometric size of the nanoparticles. Due to the separation of energy levels, the carriers at different energy levels can recombine with each other to emit light with various wavelengths, so that single nanoparticle is capable of emitting one or more wavelengths.
An object of the present invention is to effectively elevate light emitting efficiency of LED by providing a structure with nanoparticles embedded in multi-stacked active layer, which obtains light with the red, green and blue, so called “three primary colors” from single LED by designing composition and size of nanoparticles in multi-stacked active layer of the single LED, accordingly white light emitting diodes are manufactured. The described white light emitting diodes manufactured with nanoparticle structure in multi-stacked active layer match the requirements of high light emitting efficiency, high color rendering and low cost.
In the nanoparticle-containing multi-stacked active layer structure of LED in the present invention, the elemental composition and geometric size thereof are directly controlled to modify emitting wavelengths so that white light is hybridized with the primary colors. Alternatively, phosphor is used additionally to modify emitting wavelengths to be suitable to hybridize white light with high color rendering.
Referring to
In the above-described structure as the multi-stacked active layer of LED in the present invention, the combination of the emitting wavelength of the nanoparticles in said multi-stacked active layer structure and phosphorescence from phosphor is suitable to hybridize white light, wherein the desired wavelength is obtained by controlling elemental composition or size of nanoparticles through adjustment of growing parameters. In addition, the emitting wavelength of the nanoparticles embedded in said multi-stacked active layer structure may be within UV region to trigger phosphor with complementary color property to hybridize white light. Further, the emitting wavelength of the nanoparticles in said multi-stacked active layer structure may be within UV region to trigger phosphor with the primary colors or multicolor phosphorescence wavelength to hybridize white light. Furthermore, the emitting wavelength of the nanoparticles in said multi-stacked active layer structure may be of one or more visible wavelengths to trigger phosphor with one or more phosphorescence wavelengths, wherein triggering wavelengths is capable of combining phosphorescence wavelengths to hybridize white light with complementary dichroism or the primary colors.
The above-described structure as the multi-stacked active layer of LED in the present invention is stacked layers partially (or completely) comprising nanoparticles and partially (or completely) not comprising nanoparticles. The multi-stacked active layer of complementary dichroism, wherein the desired complementary dichroism to hybridize white light is obtained by controlling elemental composition or size of well and nanoparticles without use of external phosphor.
Preferably, the above-described structure as the multi-stacked active layer of LED in the present invention is stacked layers partially (or completely) comprising nanoparticles and partially (or completely) not comprising nanoparticles. The multi-stacked active layer of LED with three or more kinds of emitting wavelengths, wherein the primary colors necessary to hybridize white light is obtained by controlling elemental composition or size of well and nanoparticles, or white light with continuous spectrum is hybridized with multichroism.
The materials useful in the multi-stacked active layer of LED in the present invention are selected from GaAs, InAs, InP, InSb, GaSb, InAGaN, InN, AlN, ZnSe, ZnTe, CdSe, CdTe, HgTe, HgSe, SiGe, SiC, InxGa1-xN, InxGa1-xP, InxGa1-xAs, AlxIn1-xN, AlxIn1-xP, AlxIn1-xAs, AlxGa1-xN, AlxGa1-xP, AlxGa1-xAs, ZnxCd1-xSe, ZnxCd1-xTe, (AlxGa1-x)yIn1-yN, (AlxGa1-x)yIn1-yP, wherein 0<x<1; 0<y<1. The thickness of the lower energy well layer of the multi-stacked structure active layer is 0.3 nm˜1 μm, and that of higher energy barrier layer is 1 nm˜1 μm. The density of the emitting nanoparticle in the active layer ranges 103˜1013 cm−2 or higher, the thickness thereof ranges 0.3˜100 nm, and the width thereof ranges 0.3˜500 nm.
In addition, the phosphor useful in said light emitting devices may be yellow: Y3Al5O12:Ce3+, yellow: Y3Al5O12:Eu2+, yellow: Y3Al15O12:Eu2+, red: SrSiAl2O3N2:Eu2+, red: SrS:Eu2+, red: Gd2O3S:Eu3+, red: SrS:Eu2+, green: SrAlSCISi:Eu, green: SrGa2S4:Eu2+, green: SrGa2S4:Eu2+, blue: SCAP, blue: BaMgAl10O17:Eu2+, etc.
Further, in the above-described multi-stacked active layer of LED in the present invention, trimmed reverse pyramid, surface roughing and flip-chip stacking are useful to elevate light emitting efficiency of the devices.
With the use of the multi-stacked active layer structure unity in the present invention, instead of three chips primary color LEDs, the requirements of high color rendering, high light emitting efficiency and low cost are matched by single LED. To hybridize white light with the primary colors improves low color rendering occurred in the white light generated by triggering yellow phosphor particles with blue light emitting diode. Besides, with the use of nanoparticle active layer structure, the non-radioactive recombination caused by dislocations inside quantum well is supressed, and the light emitting efficiency is elevated. An object of the present invention is to generate white light with single LED which is of nanoparticle structure as the multi-stacked active layer.
The manufacturing process of the above-described multi-stacked active layer structure of LED at least comprises: (1) providing a substrate 1; (2) growing n or p type buffer layer 2 on the substrate 1; (3) growing barrier layer 3; (4) growing nanoparticles with first emitting wavelength 5 on well layer 4 in the first quantum well; (5) growing another barrier layer 3; (6) growing nanoparticles with second emitting wavelength 6 on well layer 4 in the second quantum well; (7) growing another barrier layer 3; (8) growing nanoparticles with third emitting wavelength 7 on well layer 4 in the third quantum well; (9) growing another barrier layer 3; (10) finally, growing p or n type conductive layer 8 at elevating temperature. Further, the processing of steps (4) to (8) depends on the desired wavelength and combination of the type of multi-stacked active layer of multi-wavelength LED in the present invention. With the use of the manufacturing process of structure as active layer of LED in the present invention, a manufacturing process of phosphor emitting phosphorescence with one or more wavelengths is provided, which comprises a step of further growing phosphor subsequent to the above-described step (10).
Conventional growing process of nanoparticles hereto is based on SK mode, wherein lattice mismatch between buffer layer and epilayer must be larger than 2% to transform growing mode of nanoparticles in epilayer from two dimensionally planar to three dimensionally island-like (or pyramid type). This process for transforming growing mode has been widely used to nanoparticle for growing Group III-V or II-VI compound, such as InAs/GaAs, ZnTe/ZnSe, etc. semiconductors with lattice mismatch of 5˜7%. In addition, JP 10,289,996 and JP 9,283,737 issued to Nakada Yoshiaki et al. disclosed a SK mode based method for growing InAs nanoparticles on GaAs buffer layer. When nanoparticles are grown in multiple quantum wells active layer of LED with SK mode, they are only grown on higher energy barrier layer with lattice mismatch >2%. Therefore, the structure design of active layer is limited, and both the selection on materials of active layer and modification range of emitting wavelength of LED are reduced.
The growing method of nanoparticles may be a periodic flow rate modulation epitaxy process as described in U.S. patent application Ser. No. 11/005,547, filed on Jun. 12, 2004 by the present inventor, and related documents from the present inventor published in Japanese Journal of Applied Physic, Vol. 43, No. 6B, 2004, pp. L780˜783, June, 2004, Wei-Kuo Chen et al., “Formation of Self-organized GaN Dots on Al0.11Ga0.89N by Alternating Supply of Source Precursors”, wherein a process of growing nanoparticles as multiple quantum wells active layer structure of LED was disclosed. The process can be conducted on materials with low lattice constant mismatch and even with same lattice constant to grow nanoparticles, so that the selection on materials of multiple quantum wells active layer structure of LED is various to expand modification range of emitting wavelength. It is also possible to directly grow nanoparticle structure inside lower energy well layer 4 to elevate light emitting efficiency. Thereore, unexpected effects are obtained through use of the nanoparticle structure grown by the periodic flow rate modulation epitaxy process of the invention.
Therefore, in the prevent invention, a structure of multi-wavelength light emitting device, which comprises multi-stacked active layer structure and phosphors, and each stacked layer comprises lower energy bandgap well 4, higher energy bandgap barrier layer 3 and at least one stacked layer with nanoparticle structure capable of emitting single, dichroic or three or more color wavelengths, so that parts (or all) of the emitting wavelengths come from the stack layers containing nanoparticles, and parts (or all) of the emitting wavelengths come from the stack layers not containing nanoparticles; wherein some (or all) of the first emitting wavelengths of the multi-stacked active layer structure are used to trigger one or more phosphorescences from the phosphors called the second emitting wavelengths, thus the wavelengths of the light emitting device consist of wavelengths from the multi-stacked active layer themselves and phosphorescences from the phosphors.
0 denotes multiple quantum wells,
1 denotes substrate,
2 denotes n type buffer layer,
4 denotes barrier layer,
4 denotes well layer with emitting wavelength λ,
4
a denotes wetting layer,
5 denotes nanoparticles with first emitting wavelength,
6 denotes nanoparticles with second emitting wavelength,
7 denotes nanoparticles with third emitting wavelength,
8 denotes p type conducting layer,
8′ denotes n type conducting layer,
9 denotes nanoparticles with first and second emitting wavelengths,
10 denotes nanoparticles with first, second and third emitting wavelengths,
11 denotes nanoparticles with fourth emitting wavelength,
12 denotes nanoparticles with fifth emitting wavelength,
13 denotes nanoparticles with sixth emitting wavelength,
14 denotes nanoparticles with seventh emitting wavelength,
15 denotes phosphors with complementary dichoric wavelengths,
16 denotes phosphors with the primary color phosphorescence
17 denotes nanoparticles with first triggering wavelength,
18 denotes nanoparticles with second triggering wavelength,
19 denotes phosphors with first phosphorescence wavelength (λ1),
20 denotes phosphors with second and third phosphorescence wavelength (λ2 and λ3),
21 denotes emitting wavelength of ground state nanoparticles λ3-1,
22 denotes emitting wavelength of excited state nanoparticles λ3-2,
23 denotes emitting wavelength of wetting layer λ1-1,
24 denotes emitting wavelength of interface state λ1-2.
Firstly, GaN nanoparticles successfully grown on AlGaN buffer layer with low lattice mismatch of 0.25% by periodic flow rate modulation epitaxy process of the invention are described. However, the manufacturing process of nanoparticle structure as multiple quantum wells active layer described later is not limited thereto.
Emitting wavelengths of nanoparticles is obtained by controlling elemental composition thereof, in addition to geometric size. Referring to InxGa1-xN materials, for example, when In composition is changed from x=0 to x=1, the emitting wavelength expands from 362 nm UV to 1.6 μm far infrared. In Nichia's method in which light emitting diodes are made of GaN/InGaN multiple quantum wells, when InGaN is used as well layer material, the emitting wavelength of LED can be controlled by modification of In composition, and it was noted that In composition for emitting wavelength at 590 nm is 34%, for 525 nm is 29%, and for 450 nm is 17%. Therefore, in the present invention, emitting wavelengths of UV (<400 nm) to visible (400˜700 nm) to near infrared (0.7˜1.6 μm) are obtained by modifying in composition while growing nanoparticles with InGaN.
The technical content and process of the invention are described in the following embodiments.
As to growth of nanoparticles in MQWs active layer structure effectively, which can reduce non-radioactive recombination rate resulted from dislocation in current MQWs active layers of Group III nitride LEDs, the present invention provides a nanoparticle-containing MQWs structure with single wavelength as active layer, as shown in
b) shows related energy bands of the nanoparticle-containing MQWs active layer with single wavelength. Under applied forward bias, minority carriers injected into lower energy well layer and emit light through recombination. The emitting wavelength λ1 of the nanoparticles can be obtained by controlling the elemental composition and geometric size thereof.
It is known from the above that the emitting wavelengths of the nanoparticles can be obtained by controlling the elemental composition and geometric size thereof. Accordingly, nanoparticles with different elemental composition and geometric size can be grown on different layers inside the MQWs active layer structure, and light emitting diodes with various wavelengths are manufactured. With the emitting properties of the nanoparticle-containing MQWs active layer, it is advantageous to develop white light emitting diodes with practical uses in the lighting applications.
Therefore, various designs of nanoparticle-containing MQWs structure as active layer are provided in the present invention to hybridize white light. Firstly, a design called “Dichroic wavelengths LED using nanoparticle-containing active layer” is described. Complementary colors generating white light under irradiation of D65 standard light source with color temperature of 6500 K, according to CIE, 1964, are shown in Table 1.
The structure view and related energy bands of said “pn junction light emitting diode having nanoparticle-containing MQWs structure with complementary dichroic wavelengths as active layer” are shown in
Also, “Dichroic wavelengths LED using nanoparticle-containing active layer” is provided in the present invention. The structure view and related energy bands thereof are shown in
As white light hybridized through combination of the primary colors is of high color rendering, thus is advantageous, nanoparticle-containing MQWs structure with the primary color wavelengths as active layer is provided in the present invention, as shown in
The process of hybridizing white light as described in the present invention comprises steps of, controlling the elemental composition and geometric size of the nanoparticles in MQWs active layer to obtain wavelengths in red, green and blue regions, and combining these wavelengths. Only single light emitting diode is needed in the process to emit white light, therefore manufacturing cost is greatly reduced. Also, difficulty in achieving consistent color with three light emitting diodes, due to the different properties of each diode, is eliminated. Therefore, the present invention is novel and progressive in the manufacturing of white light emitting diodes.
Natural light and light from white heat bulb are of continuous spectrum. Current white light generated by triggering yellow phosphor particles with blue light emitting diode is based on full color presentation in complementary visible region, whose essential emitting wavelengths consist of blue and yellow band spectrum. Color distortion of objects occurs as said white light is lack of wavelengths in red region, so that color rendering of light source is even more important. For this reason, another process of hybridizing white light is provided in the present invention. That is, by controlling elemental composition or size, light emitting from nanoparticles in each quantum wells layer consist of three or more wavelengths including red, orange, yellow, green, cyan, blue, and violet (λ1, λ2, λ3, λ4, λ5, λ6, and λ7). Therefore, full color white light with continuous spectrum is hybridized.
a) shows the nanoparticle-containing MQWs active layer structure with multi-wavelengths as active layer in the present invention; and (b) shows related energy bands. Each quantum well layer comprises lower energy well layer 4 in which noparticles are mainly grown, and higher energy barrier layer 3. Also, nanoparticles with first wavelength (λ1) are grown in first well layer 4, nanoparticles with second wavelength (λ2) are grown in second well layer 4, nanoparticles with third wavelength (λ3) are grown in third well layer 4, nanoparticles with fourth wavelength (λ4) are grown in fourth well layer 4, nanoparticles with fifth wavelength (λ5) are grown in fifth well layer 4, nanoparticles with sixth wavelength (λ6) are grown in sixth well layer 4, and nanoparticles with seventh wavelength (λ7) are grown in seventh well layer 4. White light is hybridized through combination of wavelengths with λ1, λ2, λ3, λ4, λ5, λ6, and λ7. However, The sufficient number of color wavelength in the nanoparticle-containing MQWs active layer structure with multicolor wavelengths to hybridize white light is not limited to seven, as long as more than three.
Prior to reaching quantum effect size, the energy level of nanoparticles is continuous and emit only single wavelength as λ3 shown in
The present invention provides a multi-wavelength (including white light) light emitting device, comprising a UV light emitting component and phosphors capable of absorbing a part of light emitted by the UV light emitting component and emitting light of wavelength different from that of the absorbed light; wherein the active layer of LED contains nanoparticles.
The present invention provides a multi-wavelength (including white light) light emitting device, comprising a visible light emitting component and phosphors capable of absorbing a part of light emitted by the visible light emitting component and emitting light of wavelength different from that of the absorbed light; wherein the active layer of LED contains nanoparticles.
The present invention is disclosed above with reference to the preferable embodiments, however, the embodiments are not used as limitation of the present. It is appreciated to those in this field that the variation and modification directed to the present invention not apart from the spirit and scope thereof can be made, and the scope of the present invention is covered in the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
094139600 | Nov 2005 | TW | national |
Number | Date | Country | |
---|---|---|---|
Parent | 11442471 | May 2006 | US |
Child | 12455183 | US |