The present invention is directed generally to nanometer-sized quantum structures, and more particularly to such structures that can be selectively activated to perform a desired function, for example, apply a voltage to biological cells in proximity thereof or attached thereto.
Nanometer-sized or micrometer-sized semiconductor structures can be employed in a variety of applications, such as light-emitting devices and photodetectors. Despite the recent rapid developments in designing novel nanometer-sized and micrometer-sized quantum structures, and incorporating them into a variety of systems, a need still exists for improved nanometer-sized and micrometer-sizes structures that can reliably perform selected functions in response to specific stimuli.
In one aspect, the present invention provides a nanophotovoltaic device, herein also referred to as an active nanoparticle or simply a nanoparticle, that includes a semiconductor structure and a metallic layer disposed on at least a portion of the semiconductor structure to form a junction (e.g., a Schottky barrier junction) therewith such that the junction generates a space charge region. The photovoltaic device can have a size in a range of about 50 nm to about 5 microns, and preferably in a range of about 100 nm to 1000 nm.
Exposure of the nanoparticle to radiation having a selected wavelength can cause generation of electron-hole pairs therein. The space charge region associated with the semiconductor/metal junction supports an electric field that can cause separation of these electron-hole pairs to facilitate generation of a voltage across the device.
In another aspect, the semiconductor structure can be suitably doped silicon or germanium. For example, the semiconductor structure can include p-type or n-type silicon with a doping level in a range of about 1015 to about 1020 cm−3. Alternatively, the semiconductor structure can include a Group III-V semiconductor compound, such as, GaAs and GaN. Preferably, the semiconductor structure is formed of a biocompatible material.
More generally, semiconductors useful in producing the nanophotovoltaic devices of the present invention can include Group II-VI, III-V and group IV semiconductors. (Alternatively, using the new IUPAC system for numbering element groups, suitable semiconductor materials include, but not limited to, the following: materials composed of a first element selected from Group II of the Periodic Table of the Elements and a second element selected from Group 2 or 12 of the Periodic Table of Elements and a second element selected from Group 16 (e.g., ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, and the like); materials composed of a first element selected from Group 13 of the Periodic Table of the Elements and a second element selected from Group 15 (GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlS, AlP, AlAs, AlSb, and the like); materials composed of a Group 14 element (Ge, Si, and the like); Group IV-VI materials such as PbS, PbSe and the like; and alloys and mixtures (including ternary and quaternary mixtures) thereof.
In a related aspect, the metallic layer can comprise any suitable metal, and preferably, a metal that is biocompatible. Some examples of metals suitable for forming the metallic layer include, without limitation, gold, silver, platinum, titanium, palladium, and alloys thereof.
In yet another aspect, the semiconductor structure of the nanoparticle can exhibit a bandgap with a bandgap energy in a range of about 0.5 eV to about 2 eV. Such a nanoparticle can be exposed to radiation with one or more wavelength components that substantially correspond to the bandgap energy to excite electrons from the semiconductor's valence band to its conduction band, thereby generating a plurality of electron-hole pairs. Preferably, the activating radiation can include wavelength components in a range of about 400 nm to about 2000 nm. Preferably, the wavelength components lie in the infrared portion of the electromagnetic spectrum, for example, in a range of about 600 nm to about 1100 nm, that can pass through a patient's skin and/or other tissue to activate nanoparticles previously administered to the patient, as discussed in more detail below.
In another aspect, an electrically insulating layer having a thickness in a range of about 5 angstroms to about 500 angstroms, and more preferably in a range of about 50 to about 100 angstroms, can coat at least a portion of the nanoparticle's semiconductor structure. For example, when the nanostructure comprises silicon, a thin layer of silicon oxide (SiO2) having a thickness in a range of about 5 to about 10 nanometers can coat the circumferential surface of the semiconductor structure (i.e., the surface extending between the metallic layers) so as to passivate that surface.
In further aspects, a plurality of ligands can be coupled to at least a portion of the nanoparticle's surface, for example, by forming covalent bonds therewith. For example, the ligands can be attached to the nanoparticle's surface via linker compounds previously coupled to that surface. The ligands can have affinity for certain biological cells, for example, certain cancer cells, to allow the associated nanoparticles to attach to those cells. For example, the ligands can include an antibody that can attach to selected trans-membrane receptor proteins of a cell type of interest, such as, a particular tumor cell, thereby anchoring the corresponding nanoparticles to these cells.
The nanoparticles are preferably biocompatible and can be injected into a selected tissue, e.g., cancerous tissue, and activated, for example, by irradiation at a suitable wavelength, to cause generation of a voltage across them. An electric field associated with the induced voltage can be experienced by tissue cells in vicinity of the nanoparticles or attached thereto. The applied electric field can be sufficiently high so as to disrupt functioning of the cells or cause their death.
In another aspect, the invention provides a nanophotovoltaic device having a semiconductor structure that comprises a p-n junction formed by adjacent semiconductor p-doped and n-doped portions. The p-n junction can provide a space charge region that can facilitate separation of electron-hole pairs generated in the nanoparticle, in response to exposure to a radiation having a suitable wavelength, so as to generate a voltage across the nanoparticle. The semiconductor structure can have a size in a range of about 50 nm to about 5 microns, and preferably in a range of about 100 nm to about 1000 nm. The nanoparticle can further include a pair of metallic layers, each disposed on a portion of the semiconductor structure to form an ohmic contact therewith. In some embodiments, at least one ligand, which has affinity for cells of a selected type, can be coupled to an external surface of the nanoparticle.
In a related aspect, the semiconductor structure can include, without limitation, silicon, germanium or a Group III-V semiconductor compound, or any of the other semiconductor compounds recited above. Further, each of the p-doped portion and the n-doped portion can have a doping level in a range of about 1015 to about 1020 cm−3, and more preferably in a range of about 1017 to about 1019 cm−3.
In a related aspect, the metallic layers can be formed of any suitable metal, such as, gold, silver, platinum, titanium, palladium, tungsten or alloys thereof. Further, the metallic layers can have a thickness in a range of about 100 angstroms to about 1 micron, and more preferably in a range of about 100 angstroms to about 500 angstroms.
An electrically insulating coating having a thickness in a range of about 5 to about 10 nm, can cover at least a portion of an external surface of the nanoparticle. For example, the insulating layer can extend from one metallic layer to the other so as to coat an external circumferential surface of the nanoparticle, or a portion thereof. For example, when the semiconductor structure comprises silicon, a coating of silicon oxide can cover at least a portion of its circumferential surface. The nanoparticle can be irradiated with radiation having a wavelength that substantially corresponds to a bandgap of the semiconductor portion so as to generate electron-hole pairs. Without limitation, some suitable wavelengths can lie in a range of about 400 nm to about 2000 nm, or preferably in a range of about 600 nm to about 1100 nm.
In yet another aspect, the invention provides a semiconductor nanoparticle that includes an n-doped semiconductor portion having a largest dimension in a range of about 50 nm to about 5 microns, and a p-doped semiconductor portion, also having a largest dimension in a range of about 50 nanometers to about 5 microns, that is disposed adjacent to the n-doped portion so as to generate a p-n junction therewith. The n-doped and the p-doped portions can be formed of silicon, germanium, or a any other suitable semiconductor compound, such as those recited above.
The present invention is directed generally to nanophotovoltaic devices, herein also referred to as active nanoparticles or simply nanoparticles, that can exhibit a desired effect in response to activation. For example, a voltage can be induced across the nanoparticles by irradiating them with radiation having suitable wavelength components. For example, radiation with wavelength components in a range of about 400 nm to about 2000 nm can be employed. In some embodiments, the nanoparticles include ligands that allow them to couple to a cell type of interest. The attached nanoparticles can be activated to apply a voltage across the cells to which they are anchored so as to cause a desired therapeutic effect.
The nanoparticles described in the following embodiments of the invention can be classified broadly as belonging to two categories. In one category, the nanoparticles include a semiconductor core and two metallic layers disposed on selected portions of the core such that one metallic layer forms a Schottky barrier junction with the underlying semiconductor core and the other forms an ohmic contact therewith. In the other category, the nanoparticles include a semiconductor core comprising a p-n junction and two metallic layers that are disposed on the semiconductor core to form ohmic contacts therewith. In both cases, the junctions (a Schottky barrier junction or p-n junction) can be characterized by an internal electric field in proximity thereof that can facilitate separation of electron-hole pairs generated in response to exposure of the core to activating radiation having suitable wavelength components.
By way of example,
The semiconductor core 12 can have p-type or n-type doping with a doping level in a range of about 1015 to about 1020 cm−3, and more preferably in a range of about 1017 to about 1019 cm−3. For example, the core can be formed of n-type silicon (e.g., silicon doped with phosphorous) or p-type silicon (e.g., silicon doped with boron). The semiconductor core can have any suitable shape, such as, cylindrical, cubic, box-like, or spherical.
In this embodiment, the semiconductor core has a cylindrical shape having two opposed, and substantially flat, surfaces 14 and 16 that are separated by a curved circumferential surface 18. Two metallic layers 20 and 22 are disposed, respectively, on the surfaces 14 and 16 such that one of the metallic layers, e.g., the layer 20, forms a barrier junction characterized by a space charge region (e.g., a Schottky barrier junction) with the underlying semiconductor surface, and the other metallic layer, e.g., layer 22, forms an ohmic contact with its respective underlying semiconductor surface. The metallic layers, which are preferably biocompatible, can include, for example, gold (Au), silver (Ag), platinum (Pt), titanium (Ti) and palladium-gold (Pd—Au) alloy.
As discussed in more detail below, the space charge region associated with the barrier junction can facilitate separation of electron-hole pairs that can be generated by exposing the nanoparticle to radiation having selected wavelength components.
In this embodiment, a protective insulating layer 24, which can have a thickness in a range of about 5 nm to about 10 nm, circumferentially surrounds the core 12. For example, when the core 12 is formed of silicon, the protective oxide layer can be SiO2.
The exemplary nanophotovoltaic device 10 can have a height H in a range of about 50 nm to about 5 microns, and more preferably in a range of about 100 nm to about 1 micron, and a diameter D in a range of about 50 nm to about 5 microns, and more preferably in a range of about 100 nm to about 1 micron.
As noted above, another class of nanophotovoltaic devices according to the teachings of the invention include a semiconductor portion that comprises a p-n junction. For example,
The semiconductor portions can be formed, for example, of silicon (Si), germanium (Ge), a Group III-V semiconductor compound or any suitable semiconductor material, such as those listed above. For example, the n-doped portion can be formed of silicon that is doped with a donor (e.g., phosphorus) having a concentration, for example, in a range of about 1015 to about 1020, and preferably in a range of about 1017 to about 1019 cm−3. And the p-doped portion can be formed of silicon that is doped with an acceptor (e.g., boron) having a concentration, for example, in a range of about 1015 to about 1020 cm−3, and preferably in a range of about 1017 to about 1019 cm−3. The metallic layers can be formed of any suitable metal—preferably biocompatible—that can generate a reliable ohmic contact with the underlying semiconductor surface. For example, titanium (Ti), palladium (Pd), gold (Au), silver (Ag) or alloys thereof (e.g., Ti—Pd—Au alloy) can be employed for forming the metallic layers.
Similar to the previous embodiment, a passivating insulating layer 34, e.g., a layer of SiO2, can circumferentially surround the semiconductor core structure 28. This coating layer can have a thickness in a range of about 5 angstroms to about 500 angstroms, or preferably in a range of about 50 angstroms to about 100 angstroms.
With reference to a flow chart 36 of
For fabricating a nanoparticle having a p-n junction, in step 2, a p-n junction is formed in the upper silicon portion 40a of the SIMOX wafer by utilizing known techniques, such as ion implantation, or known epitaxial growth techniques. For example, donor ions (such as phosphorous) can be implanted in the upper silicon portion of a p-doped SIMOX wafer to generate an n-doped layer 44 adjacent a p-doped layer 46 within a section of the upper silicon layer, as shown schematically in
With continued reference to the flow chart 36, in step 3, a thin metallic layer 48, having a thickness in a range of about 100 angstroms to about 1 micron, and more preferably in a range of about 100 angstroms to about 500 angstroms is deposited over a top surface of the silicon segment comprising the p-n junction to form an ohmic contact layer therewith, as shown schematically in
Referring again to the flow chart 36, for fabricating nanoparticles having Schottky barrier junctions, in step 4, the metallic layer 48 (
As fabrication of nanoparticles having p-n junctions and those having Schottky barrier junctions have the following remaining processing steps in common, these steps will be described below without regard to the presence or absence of a p-n junction in the upper silicon segment of the SIMOX wafer.
More specifically, referring again to the flow chart 36, subsequent to deposition of the thin metallic layer to form an ohmic contact or a Schottky barrier junction, in step 5, the silicon substrate is mounted upside down, via the deposited metallic layer, on a silicon support wafer 50 by employing a dissolvable adhesive layer 50a, such as epoxy, as shown schematically in
Subsequently, in step 7, the silicon dioxide layer can be etched away by employing dry etching techniques or other suitable techniques, such as etching in BHF, so as to expose a surface 52 of the upper silicon portion 40, as shown schematically in
Subsequently, in step 9, a relief pattern 56, shown schematically in
In step 10, the exposed portions of the semiconductor structure and the metallic layers, i.e., the portions not masked by the relief pattern can be, removed, e.g., via etching, as shown schematically in
Subsequently, the remaining portions of the resist layer can be removed (step 11), for example, by dissolution in an appropriate solvent, to generate individual nanophotovoltaic devices (or nanoparticles) 58 anchored to the support wafer, as shown schematically in
In some embodiments of the invention, the nanoparticles are then oxidized to form a circumferential oxide layer, having a thickness in a range of about 5 angstroms to about 50 nm, or preferably in a range of about 5 nm to about 10 nm, that passivates the particles' exposed semiconductor surfaces. For example, in the present embodiment, the particles released from the support wafer can be placed in an oxidizing solution, for example, a peroxide solution, to cause a portion, and preferably substantially all, of the exposed circumferential semiconductor surface to oxidize, thereby forming a silicon oxide (SiO2) layer. Alternatively, the nanoparticles can be exposed, e.g., while attached to the support 50, to a high temperature oxidizing environment to cause their exposed semiconductor surfaces to oxidize.
The nanophotovoltaic devices formed according to the above embodiment of the invention, such as the above nanophotovoltaic devices 10 and 26, can find a variety of applications. For example, as shown schematically in
In one application, the nanophotovoltaic devices of the invention, which can be biocompatible, can be injected into a diseased tissue, e.g., cancerous tissue, and be activated, via suitable radiation, to generate electric fields within that tissue for causing disruption of functioning of the tissue cells. In such applications, the activating radiation is preferably selected to penetrate the tissue. For example, radiation with wavelength components in a range of about 600 nm to about 1100 nm can be employed.
In another application, the nanophotovoltaic devices of the invention can be functionalized to attach to particular cell types to perform a variety of therapeutic actions. For example, in one embodiment, linking reactive groups can be attached to the particles' external surfaces to facilitate their coupling to a particular type of cancer cells in a human patient. The functionalized particles can be introduced into the patient to seek out and attach to the cancer cells. An external radiation source can then be utilized to irradiate the particles with radiation that passes through the patient's skin and can also generate electron-hole pairs in the nanoparticles. For example, radiation with wavelength components in a range of about 400 nm to 2000 nm, and preferably in a range of 600 nm to about 1100 nm, can be employed for this purpose. The space charge regions associated with the p-n or Schottky barrier junctions of the nanoparticles can facilitate separation of the electron-hole pairs, thereby generating a voltage across the particle that is applied to an attached cell. This applied voltage can disrupt functioning of the cell or cause its death.
By the example,
As shown schematically in
A variety of ligands can be attached to the nano-particles, and a variety of techniques can be utilized for their attachment. While in some embodiments ligands of interest are directly coupled to a portion of the particle's surface, in other embodiments the ligands can be coupled to the particle's surface via linker molecules providing a biocompatible coating of the surface. Further, in some embodiments, at least a portion of the particle's external surface, e.g., the circumferential portion, can be activated to facilitate coupling of the linker molecules and/or the ligands thereto. Such surface activation can lead to modification of one or more surface characteristics, e.g., it may render the surface more hydrophilic or more hydrophobic, so as to facilitate its subsequent functionalization. One example of surface activation includes forming an oxide layer over at least a part of the particle's semiconductor circumferential surface. Exemplary methods for forming such an oxide layer were described above. Other suitable methods of surface activation, such as, exposure to an ECR plasma or ion implantation, are described in a commonly owned co-pending patent application entitled “Surface Activation of Semiconductor Nanostructures for Biological Applications,” which is herein incorporated by reference in its entirety.
The coupling of the biological ligands and/or the linker molecules to a nanophotovoltaic device formed in accordance with the teachings of the invention can be achieved, for example, via formation of a covalent or a non-covalent bond (e.g., an ionic bond) as well as van der Walls interactions, or other interactions known in the art.
Some exemplary biological ligands suitable for coupling to photovoltaic particles formed in accordance with the teachings of the invention can include, without limitation, proteins, peptides, nucleic acids, polysaccarides, antibodies or antibody fragments, and antigens. In some embodiments, the nanoparticles are immersed in a solution containing a selected quantity of ligand molecules of interest so as to cause coupling of the ligand molecules to the particles' surfaces.
In some embodiments of the invention, the ligands coupled to the photovoltaic particles include antibodies, or antibody fragments, that can selectively attach to a cell type of interest. By way of example, such antibodies, or antibody fragments and constructs, can target tumor-associated antigens of a particular cancer type.
Those having ordinary skill in the art will appreciate that various modifications can be made to the above embodiments without departing from the scope of the invention.
The present application is a divisional application of U.S. patent application Ser. No. 12/851,893, filed on Aug. 6, 2010, which in turn is a continuation application of U.S. patent application Ser. No. 12/388,895, filed on Feb. 19, 2009, now U.S. Pat. No. 7,772,612, which is in turn a divisional application of U.S. patent application Ser. No. 11/002,850, filed on Nov. 30, 2004, now U.S. Pat. No. 7,514,725, all of which are herein incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4118485 | Eriksson et al. | Oct 1978 | A |
4423547 | Farrar et al. | Jan 1984 | A |
4673584 | Nygren et al. | Jun 1987 | A |
5057313 | Shih et al. | Oct 1991 | A |
5142385 | Anderson et al. | Aug 1992 | A |
5155051 | Noguchi et al. | Oct 1992 | A |
5335186 | Tarrant | Aug 1994 | A |
5372675 | Wakabayashi et al. | Dec 1994 | A |
5427648 | Pamulapati et al. | Jun 1995 | A |
5525158 | Tsukazaki et al. | Jun 1996 | A |
5782908 | Cahalan et al. | Jul 1998 | A |
5795819 | Motsiff et al. | Aug 1998 | A |
5805442 | Crater et al. | Sep 1998 | A |
5814194 | Deguchi et al. | Sep 1998 | A |
5956487 | Venkatraman et al. | Sep 1999 | A |
5985762 | Geffken et al. | Nov 1999 | A |
6037245 | Matsuda | Mar 2000 | A |
6066204 | Haven | May 2000 | A |
6080928 | Nakagawa | Jun 2000 | A |
6084175 | Perry et al. | Jul 2000 | A |
6138174 | Keeley | Oct 2000 | A |
6150723 | Harper et al. | Nov 2000 | A |
6235618 | Jeong-Sook et al. | May 2001 | B1 |
6287765 | Cubicciotti | Sep 2001 | B1 |
6300236 | Harper et al. | Oct 2001 | B1 |
6319738 | Yamashita | Nov 2001 | B1 |
6327511 | Naismith et al. | Dec 2001 | B1 |
6331227 | Dykstra et al. | Dec 2001 | B1 |
6399177 | Fonash et al. | Jun 2002 | B1 |
6406745 | Talton | Jun 2002 | B1 |
6426249 | Geffken et al. | Jul 2002 | B1 |
6426304 | Chien et al. | Jul 2002 | B1 |
6426558 | Chapple-Sokol et al. | Jul 2002 | B1 |
6444143 | Bawendi et al. | Sep 2002 | B2 |
6444897 | Luque-Lopez et al. | Sep 2002 | B1 |
6452251 | Bernstein et al. | Sep 2002 | B1 |
6486478 | Libby et al. | Nov 2002 | B1 |
6503827 | Bombardier et al. | Jan 2003 | B1 |
6514772 | Siiman et al. | Feb 2003 | B2 |
6548264 | Tan et al. | Apr 2003 | B1 |
6566595 | Suzuki et al. | May 2003 | B2 |
6584130 | Hanke | Jun 2003 | B2 |
6585947 | Nayfeh et al. | Jul 2003 | B1 |
6623559 | Huang | Sep 2003 | B2 |
6632694 | Torvik | Oct 2003 | B2 |
6649138 | Adams et al. | Nov 2003 | B2 |
6689338 | Kotov | Feb 2004 | B2 |
6750016 | Mirkin et al. | Jun 2004 | B2 |
6756477 | Jiang et al. | Jun 2004 | B1 |
6774300 | McFarland | Aug 2004 | B2 |
6788980 | Johnson | Sep 2004 | B1 |
6812147 | Skinner et al. | Nov 2004 | B2 |
6863786 | Blinn et al. | Mar 2005 | B2 |
6952024 | Edmond et al. | Oct 2005 | B2 |
7071126 | Johnston et al. | Jul 2006 | B2 |
7122734 | Fetzer et al. | Oct 2006 | B2 |
7227066 | Roscheisen et al. | Jun 2007 | B1 |
7306963 | Linden | Dec 2007 | B2 |
7514725 | Wojtczuk et al. | Apr 2009 | B2 |
7524776 | Kalkhoran et al. | Apr 2009 | B2 |
7687256 | Little | Mar 2010 | B2 |
7759257 | Linden | Jul 2010 | B2 |
7772612 | Wojtczuk et al. | Aug 2010 | B2 |
7955965 | Wojtczuk et al. | Jun 2011 | B2 |
8003551 | Kalkhoran et al. | Aug 2011 | B2 |
20020031906 | Jiang et al. | Mar 2002 | A1 |
20020036055 | Yoshimura et al. | Mar 2002 | A1 |
20020132101 | Fonash et al. | Sep 2002 | A1 |
20030010973 | Lorin et al. | Jan 2003 | A1 |
20040000721 | Cooney et al. | Jan 2004 | A1 |
20040018714 | Cooney et al. | Jan 2004 | A1 |
20040051108 | Nortrup | Mar 2004 | A1 |
20040069410 | Moghadam et al. | Apr 2004 | A1 |
20040075083 | Li et al. | Apr 2004 | A1 |
20040101822 | Wiesner et al. | May 2004 | A1 |
20040137733 | Hautala | Jul 2004 | A1 |
20040154657 | McFarland | Aug 2004 | A1 |
20040159842 | Edmond et al. | Aug 2004 | A1 |
20040160700 | Kagami et al. | Aug 2004 | A1 |
20040229447 | Swihart et al. | Nov 2004 | A1 |
20040229452 | Johnston et al. | Nov 2004 | A1 |
20050000565 | Zeng | Jan 2005 | A1 |
20050042800 | Yamada et al. | Feb 2005 | A1 |
20050087224 | McFarland | Apr 2005 | A1 |
20050145596 | Metz et al. | Jul 2005 | A1 |
20050161662 | Majumdar et al. | Jul 2005 | A1 |
20050184397 | Gates et al. | Aug 2005 | A1 |
20050233487 | Liu et al. | Oct 2005 | A1 |
20050239278 | Li et al. | Oct 2005 | A1 |
20060030068 | Ashton et al. | Feb 2006 | A1 |
20060102227 | McFarland | May 2006 | A1 |
20060116002 | Kalkhoran et al. | Jun 2006 | A1 |
20090224216 | Kalkhoran et al. | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
07014504 | Jan 1995 | JP |
03087291 | Oct 2003 | WO |
2004053945 | Jun 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20110237015 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12851893 | Aug 2010 | US |
Child | 13152977 | US | |
Parent | 11002850 | Nov 2004 | US |
Child | 12388895 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12388895 | Feb 2009 | US |
Child | 12851893 | US |