Nanopore arrays

Information

  • Patent Grant
  • 10012637
  • Patent Number
    10,012,637
  • Date Filed
    Friday, March 17, 2017
    8 years ago
  • Date Issued
    Tuesday, July 3, 2018
    7 years ago
Abstract
A method of analyzing molecules using a nanopore array including a plurality of cells included on a chip is disclosed. Nanopores are caused to be formed in at least a portion of the plurality of the cells. A first physical measurement of the nanopores is evaluated. It is determined whether to cause the molecules to interact with the nanopores. At least a portion of the nanopores is caused to interact with the molecules. A second physical measurement of the nanopores that indicates a property of the molecules is evaluated. It is determined whether to cause the nanopores to be reformed so that the cells may be reused to interact with additional molecules.
Description
BACKGROUND OF THE INVENTION

Advances in micro-miniaturization within the semiconductor industry in recent years have enabled biotechnologists to begin packing their traditionally bulky sensing tools into smaller and smaller form factors, onto so-called biochips. It would be desirable to develop techniques for biochips that make them more robust, efficient, and cost-effective.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings.



FIG. 1 is a block diagram illustrating an embodiment of a system 100 for analyzing molecules using nanopore devices.



FIG. 2 is a block diagram illustrating an embodiment for applying a voltage stimulus to a cell in nanopore array 102.



FIG. 3 is a diagram illustrating an embodiment of a nanopore device 300 within a cell of nanopore array 102.



FIG. 4A is a diagram illustrating that nanopore device 300 is in a state in which a lipid bilayer has not yet been formed.



FIG. 4B is a diagram illustrating that nanopore device 300 is in a state in which a lipid bilayer 302 has been formed.



FIG. 4C is a diagram illustrating that nanopore device 300 is in a state in which a nanopore structure 308 with a nanopore 310 has been inserted into lipid bilayer 302.



FIG. 5 is a flow diagram illustrating an embodiment of a process 500 for analyzing molecules using nanopore devices.





DETAILED DESCRIPTION

The invention can be implemented in numerous ways, including as a process; an apparatus; a system; a composition of matter; a computer program product embodied on a computer readable storage medium; and/or a processor, such as a processor configured to execute instructions stored on and/or provided by a memory coupled to the processor. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention. Unless stated otherwise, a component such as a processor or a memory described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits, and/or processing cores configured to process data, such as computer program instructions.


In various embodiments, the techniques described herein are implemented in a variety of systems or forms. In some embodiments, the techniques are implemented in hardware as an application-specific integrated circuit (ASIC) or a field-programmable gate array (FPGA). In some embodiments, a processor (e.g., an embedded one such as an ARM core) is used where the processor is provided or loaded with instructions to perform the techniques described herein. In some embodiments, the technique is implemented as a computer program product which is embodied in a computer readable storage medium and comprises computer instructions.


A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.


Advances in micro-miniaturization within the semiconductor industry in recent years have enabled biotechnologists to begin packing their traditionally bulky sensing tools into smaller and smaller form factors, onto so-called biochips. These chips are essentially miniaturized laboratories that can perform hundreds or thousands of simultaneous biochemical reactions. Biochips enable researchers to quickly screen large numbers of biological analytes for a variety of purposes, from disease diagnosis to detection of bioterrorism agents.


Typically, a biochip includes a large array of cells. For example, a biochip for nucleotide sequencing may contain thousands or millions of single cells in an array. Each cell includes a molecular complex composed of monomers that make up an oligomeric nanopore. Each cell may further include a single strand of DNA, and anything bound to that single strand of DNA. The nanopore is a small hole in an electrically insulating membrane that can be used as a single-molecule detector. A nanopore may be formed using a biological material, such as α-hemolysin or MspA. A nanopore may be formed using a solid-state material, such as a semiconductor material. When a small voltage is applied across a molecular complex containing a nanopore, an ionic current through the molecular complex can be measured to provide information about the structure of a molecule transiting the molecular complex. In a single cell of the array, an electrical circuit may be used for controlling the electrical stimulus applied across a lipid bilayer which contains a nanopore, and for detecting and analyzing the electrical patterns, or signatures, of a molecule passing through the nanopore.



FIG. 1 is a block diagram illustrating an embodiment of a system 100 for analyzing molecules using nanopore devices. System 100 includes a nanopore array 102, a master controller 104, a temperature controller 106, a fluidic system 108, a storage device 110 for storing extracted results, and a memory 112. In some embodiments, some of the modules may be combined together as a single module, and some of the modules may be optional. In some embodiments, the cells of nanopore array 102 and the nanopore devices within the cells are individually controllable and individually addressable by other modules of system 100, including by master controller 104, temperature controller 106, and fluidic system 108. In some embodiments, performance data or other data corresponding to each of the cells may be sent from nanopore array 102 to other modules in system 100. Control, address, performance, or other data signals may be communicated between nanopore array 102 and other modules in system 100 via signal lines 114, 116, and 118A, respectively.


In some embodiments, the cells of nanopore array 102 and the nanopore devices within the cells are individually controllable and individually addressable by master controller 104. This allows master controller 104 to control each of the cells or each group of cells in nanopore array 102 such that the particular cell or particular group of cells performs different functions or transits through different states independently, without affecting the functioning or progress of other cells or other groups of cells in nanopore array 102. In one example, a mal-functioning cell in nanopore array 102 may be put in a state (e.g., disabled state) by master controller 104 such that the mal-functioning cell does not affect the functioning of other cells in nanopore array 102. For example, if a lipid bilayer fails to form in a particular cell, the cell may be disabled such that no electrical stimulus is applied to the cell; otherwise, the cell may draw a large current, which may affect the performance of other cells in nanopore array 102.


In another example, master controller 104 may send control signals to nanopore array 102 such that different stimuli are applied to different cells or groups of cells. For example, a first stimulus (e.g., a voltage) is applied to a first group of cells and a second stimulus is applied to a second group of cells at time t1. The first stimulus may be a stimulus corresponding to a particular state of a cell, and the second stimulus may be a stimulus corresponding to a different state of a cell. The stimulus that is applied to the first group of cells may vary over time, as the first group of cells transits from one state to another. FIG. 2 is a block diagram illustrating an embodiment for applying a voltage stimulus to a cell in nanopore array 102. As shown in FIG. 2, control signals from master controller 104 may be used as input to a multiplexer 202 to select one of two voltages that can be applied to a cell in nanopore array 102.


In some embodiments, performance or other data corresponding to each of the cells may be received by master controller 104. By monitoring the performance or other data of the cells, master controller 104 may determine any state transitions of the cells. The state information of the cells may be stored in memory 112 by master controller 104. In addition, if the overall performance of nanopore array 102 falls below a certain threshold, master controller 104 may reset and re-initialize nanopore array 102 such that any processes running on nanopore array 102 may be terminated or restarted again. In some embodiments, nanopore array 102 may also be reused multiple times. For example, nanopore array 102 may be used for analyzing different types of samples during different runs. In another example, nanopore array 102 may be reused for analyzing a single type of samples over multiple runs. In some embodiments, nanopore array 102 may be reused after the contents in nanopore array 102 have been flushed out or rinsed out by master controller 104 and fluidic system 108.


In some embodiments, the cells of nanopore array 102 are individually controllable and individually addressable by temperature controller 106 via signal line 116. Temperature or other data corresponding to a cell may be received by temperature controller 106 via signal line 116. Depending on the state or condition of a particular cell or a group of cells, different temperature stimuli may be applied to the cell or group of cells by temperature controller 106. In some embodiments, temperature controller 106 receives state information of the cells via signal line 120 and applies the appropriate temperature stimuli to the cells in nanopore array 102 at least in part based on the state information. In some embodiments, temperature controller 106 receives control signal via signal line 120 from master controller 104, and then temperature controller 106 applies the appropriate temperature stimuli to the cells in nanopore array 102 based on the received control signal.


In some embodiments, the cells of nanopore array 102 are individually controllable and individually addressable by fluidic system 108. The control and address information is communicated between nanopore array 102 and fluidic system 108 via signal lines 118A. Different contents may be delivered in and out of the individual cells of nanopore array 102 via channels 118B. The contents may be any fluids or reagents that are used for the operations within the cells of nanopore array 102, including saline solution for rinsing, samples to be analyzed by nanopore array 102, lipid bilayer forming reagent, nanopore forming reagent, gas catalyst, and the like. The contents delivered out of nanopore array 102 may be any molecules that are extracted from the samples that have been analyzed by nanopore array 102, and the extracted molecules may be further delivered to a storage device 110 by fluidic system 108. The contents may be in any form, including liquid or gas. Depending on the state or condition of a particular cell or a group of cells, different fluids may be delivered to or from the cell or group of cells by fluidic system 108. In some embodiments, fluidic system 108 receives state information of the cells via signal line 122 and delivers the appropriate fluid to or from the cells in nanopore array 102 at least in part based on the state information. In some embodiments, fluidic system 108 receives control signal via signal line 122 from master controller 104, and then fluidic system 108 delivers the appropriate fluid to or from the cells in nanopore array 102 based on the received control signal. In some embodiments, nanopore array 102 may be reused after the contents in nanopore array 102 have been flushed out or rinsed out by master controller 104 and fluidic system 108.


Nanopore array 102 includes a large array of cells. Each cell includes a nanopore device for analyzing and characterizing molecules. Within a nanopore device, a lipid bilayer is formed, and a nanopore structure is then formed on the lipid bilayer. The nanopore structure has a nanopore that is large enough for enclosing at least a portion of a molecule that is being analyzed or passing at least a portion of the molecule between the two sides of the lipid bilayer. The nanopore device also includes a sample chamber for holding a solution of the analyzed molecules. The solution may be provided over the lipid bilayer for introducing the analyzed molecules for characterization. The nanopore device further includes means for providing electrical stimulus, sensing electrical characteristics, detecting and processing signal of the nanopore device.



FIG. 3 is a diagram illustrating an embodiment of a nanopore device 300 within a cell of nanopore array 102. Nanopore device 300 includes a lipid bilayer 302 formed on a lipid bilayer compatible surface 304 of a conductive solid substrate 306. Lipid bilayer compatible surface 304 may be isolated by lipid bilayer incompatible surfaces 305, and conductive solid substrate 306 may be electrically isolated by insulating materials 307. Lipid bilayer 302 may be surrounded by an amorphous lipid 303 formed on lipid bilayer incompatible surfaces 305.


In some embodiments, lipid bilayer 302 is embedded with a single nanopore structure 308 having a nanopore 310 large enough for passing at least a portion of a molecule 312 being characterized and/or small ions (e.g., Na+, K+, Ca2+, Cl) between the two sides of lipid bilayer 302. A layer of water molecules 314 (also referred to as an aqueous film 314) may be adsorbed on lipid bilayer compatible surface 304 and sandwiched between lipid bilayer 302 and lipid bilayer compatible surface 304. Aqueous film 314 adsorbed on the hydrophilic lipid bilayer compatible surface 304 may promote the ordering of lipid molecules and facilitate the formation of lipid bilayer 302 on lipid bilayer compatible surface 304.


A sample chamber 316 may be provided over lipid bilayer 302 for introducing a sample for characterization. The sample may be a solution of molecule 312 that is being characterized. The solution may be an aqueous solution containing electrolytes and buffered to an optimum ion concentration and maintained at an optimum pH to keep nanopore 310 open. In some embodiments, sample chamber 316 receives the sample from fluidic system 108. The sample may also be flushed out of nanopore device 300 by fluidic system 108 after the characterization of the sample has been performed. Sample chamber 316 may also be rinsed with saline solution by fluidic system 108 such that nanopore device 300 may be reused again.


Nanopore device 300 includes a pair of electrodes 318 (including a negative node 318a and a positive node 318b) coupled to a variable voltage source 320 for providing electrical stimulus (e.g., voltage bias) across the lipid bilayer 302 and for sensing the electrical characteristics of the lipid bilayer 302 (e.g., resistance, capacitance, and ionic current flow). The surface of the negative positive electrode 318b is or forms a part of the lipid bilayer compatible surface 304. The conductive solid substrate 306 may be coupled to or forms a part of one of the electrodes 318. Nanopore device 300 may also include an electrical circuit 322 for controlling electrical stimulation and for processing the signal detected. In some embodiments, the variable voltage source 320 is included as a part of the electrical circuit 322. The electrical circuitry 322 may include amplifiers, integrators, noise filters, feedback control logic, and/or various other components. In some embodiments, the electrical circuitry 322 may be an integrated electrical circuitry integrated within a silicon substrate 328 and may be further coupled to a computer processor 324 coupled to a memory 326. For example, computer processor 324 may be a portion of master controller 104, and memory 326 may be memory 112 that is coupled to master controller 104. Master controller 104 may control the various components of nanopore device 300 via electrical circuit 322. Master controller 104 may also receive data collected by nanopore device 300 via electrical circuit 322.


The lipid bilayer compatible surface 304 can be formed from various materials that are suitable for ion transduction and gas formation to facilitate lipid bilayer formation. In some embodiments, conductive or semi-conductive hydrophilic materials as opposed to insulating hydrophilic materials are preferred because they may allow better detection of a change in the lipid bilayer electrical characteristics. Example materials include Ag—AgCl, Ag—Au alloy, Ag—Pt alloy, or doped silicon or other semiconductor materials.


The lipid bilayer incompatible surface 305 can be formed from various materials that are not suitable for lipid bilayer formation and they are typically hydrophobic. In some embodiments, a non-conductive hydrophobic material is preferred, since it electrically insulates the lipid bilayer regions in addition to separating the lipid bilayer regions from each other. Example lipid bilayer incompatible materials include silicon nitride (e.g., Si3N4) and Teflon.


In one particular example, nanopore device 300 of FIG. 3 is a alpha hemolysin (αHL) nanopore device having a single αHL protein embedded in a diphytanoylphosphatidylcholine (DPhPC) lipid bilayer 302 formed over a lipid bilayer compatible silver-gold alloy surface 304 coated on a copper material 306. The lipid bilayer compatible silver-gold alloy surface 304 is isolated by lipid bilayer incompatible silicon nitride surfaces 305, and the copper material 306 is electrically insulated by silicon nitride materials 307. The copper 306 is coupled to electrical circuitry 322 that is integrated in a silicon substrate 328. A silver-silver chloride electrode placed on-chip or extending down from a cover plate contacts an aqueous solution containing dsDNA molecules.


The αHL nanopore is an assembly of seven individual peptides. The entrance or vestible of the αHL nanopore is approximately 26 Å in diameter, which is wide enough to accommodate a portion of a dsDNA molecule. From the vestible, the αHL nanopore first widens and then narrows to a barrel having a diameter of approximately 15 Å, which is wide enough to allow a single ssDNA molecule to pass through but not wide enough to allow a dsDNA molecule to pass through. At a given time, approximately 1-20 DNA bases can occupy the barrel of the αHL nanopore.


In addition to DPhPC, the lipid bilayer of the nanopore device can be assembled from various other suitable amphiphilic materials, selected based on various considerations, such as the type of nanopore used, the type of molecule being characterized, and various physical, chemical and/or electrical characteristics of the lipid bilayer formed, such as stability and permeability, resistance, and capacitance of the lipid bilayer formed. Example amphiphilic materials include various phospholipids such as palmitoyl-oleoyl-phosphatidyl-choline (POPC) and dioleoyl-phosphatidyl-methylester (DOPME), diphytanoylphosphatidylcholine (DPhPC) dipalmitoylphosphatidylcholine (DPPC), phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid, phosphatidylinositol, phosphatidylglycerol, and sphingomyelin.


In addition to the αHL nanopore shown above, the nanopore may be one of various other types of nanopores; examples include γ-hemolysin, leukocidin, melittin, and various other naturally occurring, modified natural, and synthetic nanopores. A suitable nanopore may be selected based on various characteristics of the analyte molecule, such as the size of the analyte molecule in relation to the pore size of the nanopore. For example, the αHL nanopore is a nanopore that has a restrictive pore size of approximately 15 Å. It is suitable for analyzing DNA molecules since it allows a single strand DNA (ssDNA) to pass through while restricting a double strand DNA (dsDNA).



FIGS. 4A-4C illustrate three different states of nanopore device 300. FIG. 4A is a diagram illustrating that nanopore device 300 is in a state in which a lipid bilayer has not yet been formed. FIG. 4B is a diagram illustrating that nanopore device 300 is in a state in which a lipid bilayer 302 has been formed. FIG. 4C is a diagram illustrating that nanopore device 300 is in a state in which a nanopore structure 308 with a nanopore 310 has been inserted into lipid bilayer 302.



FIG. 5 is a flow diagram illustrating an embodiment of a process 500 for analyzing molecules using nanopore devices. In some embodiments, process 500 is a process that is performed by system 100 of FIG. 1.


At 502, various functionalities of system 100 are verified. In some embodiments, master controller 104 may send test signals to the modules of system 100, including nanopore array 102, temperature controller 106, and fluidic system 108. In response, each module may perform verification steps at the module. For example, nanopore array 102 may measure the current flowing in a particular nanopore device. After the verification steps are performed at the modules, each of the modules may send a response back to master controller 104 for verification purposes. Depending on the responses received from the various modules, master controller 104 may determine whether further verifications are needed. In some embodiments, the verification results may be stored in a log file. In some embodiments, if master controller 104 has detected any errors, then an alarm may be triggered or process 500 may be terminated.


In some embodiments, verification of the different modules may be performed at different levels, and the levels may be configurable. For example, master controller 104 may verify the functionalities of nanopore array 102 at the printed circuit board level or at the semiconductor chip level. In some embodiments, master controller 104 may verify the functionalities of a group of cells. If the number of cells within the group that are functioning properly falls below a certain threshold, then master controller 104 may determine that the group of cells is mal-functioning and that the group of cells should be disabled.


At 504, lipid bilayers are assembled. In some embodiments, master controller 104 may cause fluidic system 108 to deliver a lipid forming reagent to the cells of nanopore array 102. The lipid forming reagent is then deposited on lipid bilayer compatible surface 304 within a cell. As discussed above, the lipid bilayer may be formed using different materials, including different amphiphilic materials. Depending on the type of lipid bilayers to be formed, master controller 104 may cause different stimuli (e.g., electrical, temperature, chemical, or gas) to be applied to the cells to facilitate the assembling of the lipid bilayers.


At 506, it is determined whether the lipid bilayers are properly formed. Depending on the type of lipid bilayers to be formed, different physical or electrical property measurements (e.g., resistance, current, or capacitance measurements) may be made at the cells and then sent to master controller 104 via signal lines 114 for determining whether lipid bilayers are properly assembled. In some embodiments, steps 504 and 506 are repeated until master controller 104 has determined that lipid bilayers have been properly assembled in a minimum number of cells in nanopore array 102. In some embodiments, if the number of cells with lipid bilayers properly assembled falls below a certain threshold after a fixed period of time, master controller 104 may terminate process 500. In addition, an alarm may be triggered or an error message may be written to the log file. In some embodiments, if the number of cells with lipid bilayers properly assembled is above a certain threshold, master controller 104 may cause system 100 to proceed to step 508.


At 508, nanopore structures with nanopores are inserted. In some embodiments, master controller 104 may cause fluidic system 108 to deliver a nanopore forming reagent (e.g., a solution containing α-hemolysin) to the cells of nanopore array 102. Master controller 104 may cause different stimuli (e.g., electrical, temperature, chemical, or gas) to be applied to the cells to facilitate the insertion of the nanopore structures into the lipid bilayers.


At 510, it is determined whether the nanopore structures are properly formed. Depending on the type of nanopores to be formed, different measurements (e.g., resistance, current, or capacitance measurements) may be made at the cells and then sent to master controller 104 via signal lines 114 for determining whether nanopores are properly inserted. In some embodiments, steps 508 and 510 are repeated until master controller 104 has determined that nanopores have been properly inserted in a minimum number of cells in nanopore array 102. In some embodiments, if the number of cells with nanopores properly inserted falls below a certain threshold after a fixed period of time, master controller 104 may terminate process 500. In addition, an alarm may be triggered or an error message may be written to the log file. In some embodiments, if the number of cells with nanopores properly inserted is above a certain threshold, master controller 104 may cause system 100 to proceed to step 512.


At 512, samples are analyzed using the nanopores in nanopore array 102. In some embodiments, master controller 104 may cause fluidic system 108 to deliver samples to the sample chambers 316 in nanopore array 102. Depending on different factors, including the type of samples that are being analyzed and the type of nanopores formed, master controller 104 may cause different stimuli (e.g., electrical, temperature, chemical, or gas) to be applied to the cells to facilitate the manipulating, detecting, correlating, characterizing, analyzing and/or sequencing of molecules in the nanopores. Different measurements (e.g., resistance, current, or capacitance measurements) may be made at the cells and then sent to master controller 104 via signal lines 114. Master controller 104 may use the received measurements to detect, correlate, determine, characterize, sequence and/or discriminate various structural and chemical features of a molecule as the molecule stays inside the nanopore, traverses through the nanopore, or interacts with the nanopore.


At 514, nanopore array is reset and re-initialized for repeated uses. In some embodiments, nanopore array 102 may be reused multiple times. For example, nanopore array 102 may be used for analyzing different types of samples during different runs. In another example, nanopore array 102 may be reused for analyzing a single type of samples over multiple runs. New nanopores may be reformed in nanopore array 102 such that nanopore array 102 may be reused. New nanopores may be reformed in nanopore array 102 after the contents (e.g., lipid bilayers with nanopores inserted, lipid bilayers without nanopores inserted, and samples) in nanopore array 102 have been flushed out or rinsed out (e.g., using saline solution) by master controller 104 and fluidic system 108.


In some embodiments, master controller 104 may detect and determine whether there are any molecules or other contents of interest remaining in the cells of nanopore array 102. Master controller 104 and fluidic system 108 may selectively rinse out the contents (e.g., lipid bilayers) within cells in which no molecules or other contents of interest are found. The molecules or other contents of interest in the remaining cells may be retrieved. In one example, the molecules may be retrieved manually. In another example, master controller 104 and fluidic system 108 may deliver the molecules or other contents of interest to storage device 110 before the remaining contents are rinsed out. After 514, nanopore array 102 is ready for repeated uses again, and process 500 may be restarted at 502. In some embodiments, step 514 is performed before a nanopore array 102 is used for the first time. For example, nanopore array 102 is rinsed with saline solution before the functionalities of system 100 is checked at 502.


Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.

Claims
  • 1. A system for analyzing molecules using a chip comprising a nanopore array comprising a plurality of cells, comprising: a processor configured to: cause one nanopore to be formed in each of at least a portion of the plurality of the cells;receive a first electrical measurement from each of the plurality of the cells, wherein the first electrical measurement is sensed by an electrical circuit in the particular cell; anddetermine formation of one nanopore in each of at least a threshold number of cells based at least in part on the sensed first electrical measurements, wherein the threshold number of cells comprise a portion of the plurality of the cells, and in the event that formation of one nanopore in each of at least the threshold number of cells is determined within a fixed period, begin to cause the molecules to interact with the formed nanopores, comprising:disabling the cells that have been determined as not having one formed nanopore, comprising disabling each of the disabled cells from drawing a current to the particular disabled cell;causing the molecules to interact with the formed nanopores in the cells that are not disabled; andreceiving from each of the cells that have been determined as having one formed nanopore a second electrical measurement, wherein the second electrical measurement is sensed by the electrical circuit in the particular cell, and determining a property of the molecules based at least in part on the second electrical measurement; anda memory coupled to the processor and configured to provide the processor with instructions.
  • 2. The system of claim 1, wherein causing the molecules to interact with the formed nanopores in the cells that are not disabled comprises sending signals by the processor to the chip.
  • 3. The system of claim 1, wherein causing one nanopore to be formed in each of at least a portion of the plurality of the cells comprises: causing lipid bilayers to be formed;receiving a third electrical measurement from each of the plurality of the cells, wherein the third electrical measurement is sensed by the electrical circuit in the particular cell;determining whether to begin to cause the nanopores to be formed, wherein the nanopores are formed in at least a portion of the lipid bilayers.
  • 4. The system of claim 3, wherein causing lipid bilayers to be formed comprises causing a lipid bilayer forming reagent to be deposited within the plurality of cells.
  • 5. The system of claim 3, wherein determining whether to begin to cause the nanopores to be formed comprises determining formation of one lipid bilayer in each of at least a second threshold number of cells based at least in part on the sensed third electrical measurements.
  • 6. The system of claim 1, wherein the processor is further configured to determine a state for each cell.
  • 7. The system of claim 6, wherein a state for each cell includes one of the following: a lipid bilayer is not formed, a lipid bilayer is formed, and a nanopore is formed.
  • 8. The system of claim 6, wherein the determining of the state for each cell is based at least in part on a measurement received from the nanopore array.
  • 9. The system of claim 1, wherein the processor is further configured to: determine that a particular cell is mal-functioning; andcause the cell to be disabled and at least some other cells to remain enabled.
  • 10. The system of claim 1, wherein the processor is further configured to cause a first stimulus to be applied to a first group of cells and cause a second stimulus to be applied to a second group of cells.
  • 11. The system of claim 1, wherein causing one nanopore to be formed in each of at least a portion of the plurality of the cells comprises causing a nanopore forming reagent to be deposited within the plurality of cells.
  • 12. The system of claim 1, wherein causing the molecules to interact with the formed nanopores comprises causing the molecules to be deposited within the plurality of cells.
  • 13. The system of claim 1, wherein the processor is further configured to determine whether to begin to cause the nanopores to be reformed so that the cells with the reformed nanopores may be reused to interact with additional molecules.
  • 14. The system of claim 13, wherein causing the nanopores to be reformed comprises causing contents in one or more cells to be flushed out of the cells.
  • 15. The system of claim 13, wherein causing the nanopores to be reformed comprises causing one or more cells to be rinsed.
  • 16. The system of claim 13, wherein the processor is further configured to cause a detection of any contents of interest in the cells.
  • 17. The system of claim 16, wherein the processor is further configured to cause the detected contents of interest to be extracted from the cells.
CROSS REFERENCE TO OTHER APPLICATIONS

This application is a continuation of co-pending U.S. patent application No. Ser. No. 13/759,701 entitled NANOPORE ARRAYS filed Feb. 5, 2013 which is incorporated herein by reference for all purposes.

US Referenced Citations (240)
Number Name Date Kind
2656508 Coulter Oct 1953 A
3638120 Jost Jan 1972 A
4121192 Wilson Oct 1978 A
4713347 Mitchell Dec 1987 A
4859945 Stokar Aug 1989 A
5021692 Hughes Jun 1991 A
5198543 Blanco Mar 1993 A
5235267 Schoneberg Aug 1993 A
5260663 Blades Nov 1993 A
5302509 Cheeseman Apr 1994 A
5308539 Koden May 1994 A
5457342 Herbst, II Oct 1995 A
5541851 Sato Jul 1996 A
5569950 Lewis Oct 1996 A
5576204 Blanco Nov 1996 A
5747805 Youngquist May 1998 A
5756355 Lang May 1998 A
5770367 Southern Jun 1998 A
5795782 Church Aug 1998 A
5804386 Ju Sep 1998 A
5814454 Ju Sep 1998 A
5869244 Martin et al. Feb 1999 A
5876936 Ju Mar 1999 A
5912155 Chatterjee Jun 1999 A
5939301 Hughes, Jr. Aug 1999 A
5952180 Ju Sep 1999 A
5981733 Gamble Nov 1999 A
6012291 Ema Jan 2000 A
6014213 Waterhouse Jan 2000 A
6015714 Baldarelli Jan 2000 A
6046005 Ju Apr 2000 A
6082115 Strnad Jul 2000 A
6210896 Chan Apr 2001 B1
6217731 Kane Apr 2001 B1
6232103 Short May 2001 B1
6255083 Williams Jul 2001 B1
6261797 Sorge Jul 2001 B1
6265193 Brandis Jul 2001 B1
6321101 Holmström Nov 2001 B1
6362002 Denison Mar 2002 B1
6383749 Bochkariov May 2002 B2
6399320 Markau Jun 2002 B1
6399335 Kao Jun 2002 B1
6413792 Sauer Jul 2002 B1
6485703 Cote Nov 2002 B1
6607883 Frey Aug 2003 B1
6616895 Dugas Sep 2003 B2
6627748 Ju Sep 2003 B1
6664079 Ju Dec 2003 B2
6673615 Denison Jan 2004 B2
6686997 Allen Feb 2004 B1
6699719 Yamazaki Mar 2004 B2
6723513 Lexow Apr 2004 B2
6746594 Akeson Jun 2004 B2
6762048 Williams Jul 2004 B2
6794177 Markau Sep 2004 B2
6800933 Mathews Oct 2004 B1
6824659 Bayley Nov 2004 B2
6880346 Tseng Apr 2005 B1
6891278 Muller May 2005 B2
6916665 Bayley Jul 2005 B2
6952651 Su Oct 2005 B2
7033762 Nelson Apr 2006 B2
7041812 Kumar May 2006 B2
7052839 Nelson May 2006 B2
7057026 Barnes Jun 2006 B2
7074597 Ju Jul 2006 B2
7153672 Eickbush Dec 2006 B1
7189503 Akeson Mar 2007 B2
7223541 Fuller May 2007 B2
7229799 Williams Jun 2007 B2
7238485 Akeson Jul 2007 B2
7244602 Frey Jul 2007 B2
7279337 Zhu Oct 2007 B2
7321329 Tooyama Jan 2008 B2
7368668 Ren May 2008 B2
7405281 Xu Jul 2008 B2
7410564 Flory Aug 2008 B2
7446017 Liu Nov 2008 B2
7452698 Sood Nov 2008 B2
7468271 Golovchenko Dec 2008 B2
7572624 Gumbrecht Aug 2009 B2
7622934 Hibbs Nov 2009 B2
7625701 Williams Dec 2009 B2
7626379 Peters Dec 2009 B2
7710479 Nitta May 2010 B2
7727722 Nelson Jun 2010 B2
7745116 Williams Jun 2010 B2
7777013 Xu Aug 2010 B2
7777505 White Aug 2010 B2
7871777 Schneider Jan 2011 B2
7897738 Brandis Mar 2011 B2
7906371 Kim Mar 2011 B2
7924335 Itakura Apr 2011 B2
7939259 Kokoris May 2011 B2
7939270 Holden May 2011 B2
7947454 Akeson May 2011 B2
7948015 Rothberg May 2011 B2
7973146 Shen Jul 2011 B2
7989928 Liao Aug 2011 B2
8022511 Chiu Sep 2011 B2
8058030 Smith Nov 2011 B2
8058031 Xu Nov 2011 B2
8133672 Bjornson Mar 2012 B2
8137569 Harnack Mar 2012 B2
8148516 Williams Apr 2012 B2
8192961 Williams Jun 2012 B2
8252911 Bjornson Aug 2012 B2
8257954 Clark Sep 2012 B2
8324914 Chen Dec 2012 B2
8461854 Chen Jun 2013 B2
8828208 Canas Sep 2014 B2
8962242 Chen Feb 2015 B2
9605307 Chen Mar 2017 B2
9869655 Chen Jan 2018 B2
20020039743 Hashimoto Apr 2002 A1
20030027140 Ju Feb 2003 A1
20030054360 Gold Mar 2003 A1
20030080042 Barth May 2003 A1
20030101006 Mansky May 2003 A1
20030102263 Lopez Jun 2003 A1
20030166282 Brown Sep 2003 A1
20030198982 Seela Oct 2003 A1
20040053337 Yamazaki Mar 2004 A1
20040122335 Sackellares Jun 2004 A1
20040144658 Flory Jul 2004 A1
20040185466 Ju Sep 2004 A1
20040262636 Yang Dec 2004 A1
20050032081 Ju Feb 2005 A1
20050091989 Leija May 2005 A1
20050127035 Ling Jun 2005 A1
20050136408 Tom-Moy Jun 2005 A1
20050164286 O'uchi Jul 2005 A1
20050186576 Chan Aug 2005 A1
20050208574 Bayley Sep 2005 A1
20050221351 Ryu Oct 2005 A1
20050239134 Gorenstein Oct 2005 A1
20060057565 Ju Mar 2006 A1
20060057585 McAllister Mar 2006 A1
20060105373 Pourmand May 2006 A1
20060105461 Tom-Moy May 2006 A1
20060246497 Huang Nov 2006 A1
20060252038 Ju Nov 2006 A1
20060278992 Trezza Dec 2006 A1
20070173731 Meka Jul 2007 A1
20070190542 Ling Aug 2007 A1
20070191015 Hwang Aug 2007 A1
20070196846 Hanzel Aug 2007 A1
20070275387 Ju Nov 2007 A1
20080094076 Hibbs Apr 2008 A1
20080101988 Kang May 2008 A1
20080108082 Rank May 2008 A1
20080171316 Golovchenko Jul 2008 A1
20080199932 Hanzel Aug 2008 A1
20080217546 Steadman Sep 2008 A1
20080218184 White Sep 2008 A1
20080254995 Kim Oct 2008 A1
20080286768 Lexow Nov 2008 A1
20080318245 Smirnov Dec 2008 A1
20090029477 Meller Jan 2009 A1
20090066315 Hu Mar 2009 A1
20090073293 Yaffe Mar 2009 A1
20090087834 Lexow Apr 2009 A1
20090099786 Oliver Apr 2009 A1
20090102534 Schmid Apr 2009 A1
20090136958 Gershow May 2009 A1
20090167288 Reid Jul 2009 A1
20090215050 Jenison Aug 2009 A1
20090233280 Nomoto Sep 2009 A1
20090269759 Menchen, Jr. Oct 2009 A1
20090298072 Ju Dec 2009 A1
20100025238 Gottlieb Feb 2010 A1
20100025249 Polonsky Feb 2010 A1
20100035260 Olasagasti Feb 2010 A1
20100047802 Bjorson Feb 2010 A1
20100072080 Karhanek Mar 2010 A1
20100075328 Bjornson Mar 2010 A1
20100075332 Patel Mar 2010 A1
20100078325 Oliver Apr 2010 A1
20100078777 Barth Apr 2010 A1
20100084276 Lindsay Apr 2010 A1
20100092952 Ju Apr 2010 A1
20100093555 Bjornson Apr 2010 A1
20100121582 Pan May 2010 A1
20100122907 Stanford May 2010 A1
20100148126 Guan Jun 2010 A1
20100196203 Sanghera Aug 2010 A1
20100243449 Oliver Sep 2010 A1
20100261247 Hanzel Oct 2010 A1
20100261287 Holt Oct 2010 A1
20100292101 So Nov 2010 A1
20100297644 Kokoris Nov 2010 A1
20100301398 Rothberg Dec 2010 A1
20100320094 White Dec 2010 A1
20100331194 Turner Dec 2010 A1
20110005918 Akeson Jan 2011 A1
20110008775 Gao Jan 2011 A1
20110050200 Tartagni Mar 2011 A1
20110053284 Meller Mar 2011 A1
20110059505 Hanzel Mar 2011 A1
20110165652 Hardin Jul 2011 A1
20110168551 White Jul 2011 A1
20110168968 Yang Jul 2011 A1
20110174625 Akeson Jul 2011 A1
20110189659 Clark Aug 2011 A1
20110192723 Chen Aug 2011 A1
20110193249 Chen Aug 2011 A1
20110193570 Chen Aug 2011 A1
20110218414 Kamath Sep 2011 A1
20110226623 Timp Sep 2011 A1
20110244447 Korlach Oct 2011 A1
20110287414 Chen Nov 2011 A1
20120034602 Emig Feb 2012 A1
20120040343 Timp Feb 2012 A1
20120040869 Meller Feb 2012 A1
20120052188 Chen Mar 2012 A1
20120094278 Akeson Apr 2012 A1
20120094332 Lee Apr 2012 A1
20120115736 Bjornson May 2012 A1
20120133354 Canas May 2012 A1
20120149021 Yung Jun 2012 A1
20120160681 Davis Jun 2012 A1
20120160687 Akeson Jun 2012 A1
20120160688 Davis Jun 2012 A1
20120187963 Chen Jul 2012 A1
20120188092 Chen Jul 2012 A1
20120196759 Chen Aug 2012 A1
20120261261 Huber Oct 2012 A1
20120322679 Brown Dec 2012 A1
20130015068 Chen Jan 2013 A1
20130071837 Winters-Hilt Mar 2013 A1
20130118902 Akeson May 2013 A1
20130207205 Chen Aug 2013 A1
20130244340 Davis Sep 2013 A1
20130263946 Afzali-Ardakani Oct 2013 A1
20130327644 Turner Dec 2013 A1
20140034497 Davis Feb 2014 A1
20140296083 Brown Oct 2014 A1
20140329693 Reid Nov 2014 A1
20140346059 Akeson Nov 2014 A1
Foreign Referenced Citations (52)
Number Date Country
101421616 Apr 2009 CN
1236807 Sep 2002 EP
1712891 Oct 2006 EP
2004205495 Jul 2004 JP
2004333485 Nov 2004 JP
2005538377 Dec 2005 JP
2008507703 Mar 2008 JP
2010502936 Jan 2010 JP
2010524436 Jul 2010 JP
2011506994 Mar 2011 JP
2012026986 Feb 2012 JP
2013512447 Apr 2013 JP
9106678 May 1991 WO
9321340 Oct 1993 WO
9732999 Sep 1997 WO
9746704 Dec 1997 WO
2002022883 Mar 2002 WO
2002029003 Apr 2002 WO
02079519 Oct 2002 WO
2004007773 Jan 2004 WO
2004055160 Jul 2004 WO
2005084367 Sep 2005 WO
2006020775 Feb 2006 WO
2007002204 Jan 2007 WO
2007053702 May 2007 WO
2007053719 May 2007 WO
2007062105 May 2007 WO
WO-2007115694 Oct 2007 WO
2007127327 Nov 2007 WO
2007146158 Dec 2007 WO
2008034602 Mar 2008 WO
2008069973 Jun 2008 WO
2008071982 Jun 2008 WO
WO-2008079169 Jul 2008 WO
2008102120 Aug 2008 WO
2008124107 Oct 2008 WO
WO-2009006647 Jan 2009 WO
2009051807 Apr 2009 WO
WO-2009047703 Apr 2009 WO
WO-2009077734 Jun 2009 WO
2009138760 Nov 2009 WO
WO-2010044932 Apr 2010 WO
2010122293 Oct 2010 WO
2011097028 Aug 2011 WO
2011103424 Aug 2011 WO
2011106459 Sep 2011 WO
2012009578 Jan 2012 WO
2012088339 Jun 2012 WO
2012088341 Jun 2012 WO
2012121756 Sep 2012 WO
2013011879 Jan 2013 WO
2013082619 Jun 2013 WO
Non-Patent Literature Citations (168)
Entry
Schuster et al., Self-Assembled α-Hemolysin Pores in an S-Layer-Supported Lipid Bilayer, Biochimica et Biophysica Acta 1370, (1998) 280-288.
Thei et al., Parallel Recording of Single Ion Channels: A Heterogeneous System Approach, IEEE Transactions on Nanotechnology, vol. 9, No. 3, May 2010.
Akeson. et al. Microsecond time-scale discrimination among polycylidylic acid, polyadenylic acid, and plolytiridylic acid as homopolymers or a s segments within single RNA molecules. Biophys J. Dec. 1999; 77(6):3227-33.
Aksimentiev, et al. Microscopic Kinetics of DNA Translocation through synthetic nanopores. Biophys J. Sep. 2004;87(3):2086-97.
Anderson, Olaf Sparre. “Sequencing and the single channel.” Biophysical journal 77.6 (1999):2899.
Ashkenasy, et al. Recognizing a single base in an individual DNA strand: a step toward DNA sequencing in nanopores. Angew Chem Int Ed Engl. Feb. 18, 2005:44(9)1401-4.
Atanasov, et al. Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces. Biophys J. Sep. 2005;89(3):1780-8.
Baaken, et al. Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents. Lab Chip. Jun. 2008;8(6):938-44. Epub Apr. 16, 2008.
Bai, et al. Design and synthesis of a photocleavable biotinylated nucleotide for DNA analysis by mass spectrometry. Nucleic Acids Res. Jan. 26, 2004;32(2):535-41. Print 2004.
Benner et al., “Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore,” Nature Nanotechnology (Nov. 2007), pp. 718-724, vol. 2.
Bezrukov, et al, Counting polymers moving through a single ion channel. Nature. Jul. 28, 1994;370(6487):279-81.
Bezrukov, et al. Dynamic partitioning of neutral polymers into a single ion channel. In NATO Advanced Research Workshop: Structure and dynamics of confined polymers. Kulwer Press. 2002; 117-130.
Bezrukov, et al. Dynamics and free energy of polymers partitioning into a nanoscale pore. Macromolecules. 1996; 29:8517-8522.
Bezrukov, et al. Neutral polymers in the nanopores of alamethicin and alpha-hemolysin. Biologicheskie Membrany 2001, 18, 451-455.
Bureau, et al. Unique supramolecular assembly of a redox protein with nucleic acids onto hybrid bilayer towards a dynamic DNA chip. Biosens Bioelectron. Feb. 15, 2005;20(8):1631-7.
Bokhari, et al. A parallel graph decomposition algorithm for DNA sequencing with nanopores. Bioinformatics. Apr. 1, 2005;21(7):889-96. Epub Nov. 11, 2004.
Buchmann, et al. Electrochemical release from goid-thiolate electrodes for controlled insertion of ion channels into bilayer membranes. Bioarg Med Chem. Mar. 15, 2004;12(6)1315-24.
Butler et al. Determination of RNA orientation during translocation through a biological nanopore. Biophys J. Jan. 1, 2006;90(1):190-9. Epub Oct. 7, 2005.
Butler et al. Single-molecule DNA detection with an engineered MspA protein nanopore. Proc Natl Acad Sci U S A. Dec. 30, 2008;105(52):20647-52. Epub Dec. 19, 2008.
Butler, et al. Ionic current blockades from DNA and RNA molecules in the alphahemolysis nanopore. Biophys J. Nov. 1, 2007;93(9):3229-40. Epub Aug. 3, 2007.
Chandler, et al. Membrane surface dynamics of DNA-threaded nanopores revealed by simultaneous single-molecule optical and ensemble electrical recording, Langmuir. Feb. 3, 2004;20(3):898-905.
Chen et al. (Nano Lett, 2004, 4(11), pp. 2293-2298).
Churbanov, et al. Duration learning for analysis of nanopore ionic current blockades. BMC Bioinformatics. Nov. 1, 2007;8 Suppl 7:S14.
Clarke, et al. Continuous base identification for single-molecule nanpore DNA sequencing. Nat Nanotechnol. Apr. 2009;4(4):265-70. Epub Feb. 22, 2009.
Cockroft, et al. A single-molecule nanpore device detects DNA polymerase activity with single-nucleotide resolution. J am Chem Soc. Jan. 23, 2008;130(3):818-20. Epub Jan. 1, 2008.
Danelon, et al. Cell membranes suspended across nanoaperture arrays. Langmuir. Jan. 3, 2006;22(1):22-5.
Deamer, et al. Characterization of nucleic acids by nanopore analysis. Acc Chem Res. Oct. 2002;35(10):817-25.
Derrington, et al. Nanopore DNA sequencing with MspA. Proc Natl Acad Sci U S A. Sep. 14, 2010;107(37)16060-5. Epub Aug. 26, 2010.
Einstein. Investigations on the theory of Brownian movement. Dover, New York. 1956.
Ervin, et al. Simultaneous alternating and direct current readout of protein ion channel blocking events using glass nanopore membranes. Anal Chem. Mar. 15, 2008;80(6):2069-76. Epub Feb. 23, 2008.
Flusberg, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods. Jun. 2010;7(6):461-5. Epub May 9, 2010.
Fologea, et al. Detecting single stranded Dna with a solid state nanopore. Nano Lett. Oct. 2005;5(10):1905-9.
Fologea, et al. Slowing DNA translocation in a solid-state nanopore. Nano Lett. Sep. 2005;5(9):1734-7.
Gu, et al. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature. Apr. 22, 1999;398(6729):686-90.
Haas, et al. Improvement of the quality of self assembled bilayer lipid membrances by using a negative potential. Bioelectrochemistry. Aug. 2001;54(1):1-10.
Halverson, et al. Anthrax biosensor, protective antigen ion channel asymmetric blockade. J Biol Chem. Oct. 7, 2005;280(40):34056-62. Epub Aug. 8, 2005.
Harlepp, et al. Probing complex RNA structures by mechanical force. Eur Phys J E Soft Matter. Dec. 2003;12(4):605-15.
Heins, et al. Detecting single porphyrin molecules in a conically shaped synthetic nanopore. Nano Lett. Sep. 2005;5(9):1824-9.
Heng, et al. Stretching DNA using the electric field in a synthetic nanopore. Nano Lett. Oct. 2005;5(10):1883-8.
Heng, et al. The electromechanics of DNA in a synthetic nanopore. Biophys J. Feb. 1, 2006;90(3):1098-106. Epub Nov. 11, 2005.
Henrickson, et al. Driven DNA transport into an asymmetric nanometer-scale pore. Phys Rev Lett. Oct. 2, 2000;85(14):3057-60.
Henrickson, et al. Probing single nanometer-scale pores with polymeric molecular rulers. J Chem Phys. Apr. 7, 2010;132(13):135101. doi: 10.1063/1.3328875.
Holden, et al. Direct introduction of single protein channels and pores into lipid bilayers. J Am Chem Soc. May 11, 2005;127(18):6502-3.
Holden, et al. Direct transfer of membrane proteins from bacteria to planar bilayers for rapid screening by single-channel recording. Nat Chem Biol. Jun. 2006;2(6):314-8. Epub May 7, 2006.
Hromada, et al. Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip. Lab Chip. Apr. 2008;8(4):602-8. Epub Feb. 29, 2008.
International Preliminary Report on Patentability dated Dec. 24, 2008 in connection with International Application No. PCT/US2007/013559.
International Search Report and Written Opinion dated Aug. 28, 2012 for PCT/US2011/066627.
International Search Report and Written Opinion dated Aug. 28, 2012 for PCT/US2011/066632.
International Search Report and Written Opinion dated Jun. 2, 2013 for PCT/US2013/022273.
International Search Report and Written Opinion dated Mar. 18, 2013 for PCT/US2012/063099.
International Search Report and Written Opinion dated May 16, 2013 for PCT/US2013/026514.
International Search Report and Written Opinion dated May 3, 2012 for PCT/US2012/020827.
International Search Report and Written Opinion dated May 9, 2013 for PCT/US2013/028058.
International Search Report and Written Opinion dated Nov. 5, 2012 for PCT/US2011/064490.
International Search Report and Written Opinion dated Oct. 29, 2007 for PCT/US2007/013559.
International Search Report dated Feb. 24, 2013 for PCT/US2011/065640.
Ito, et el. Simultaneous determination of the size and surface charge of individual nanoparticies using a carbon nanotube-based Coulter counter. Anal Chem. May 15, 2003;75(10):2399-406.
Jetha et al. Forming an α-Hemolysin Nanopore for Single-Molecule Analysis. Micro and Nano Technologies in Bioanalysis. Humana Press, 2009. 113-127.
Jiang et al. Passive and Electrically Actuated Solid-State Nanopores for Sensing and Manipulating DNA.€Nanopore-Based Technology. Humana Press, 2012. 241-264.
Ju, et al. Cassette labeling for facile construction of energy transfer fluorescent primers. Nucleic Acids Res. Mar. 15, 1996;24(6):1144-8.
Ju, et al. Energy transfer primers: a new fluorescence labeling paradigm for DNA sequencing and analysis. Nat Med. Feb. 1996;2(2):246-9.
Ju, et al. Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis. Proc Natl Aced Sci U S A. May 9, 1995;92(10):4347-51.
Ju, et al. Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc Natl Acad Sci U S A. Dec. 26, 2006;103(52):19635-40. Epub Dec. 14, 2006.
Jurak, et al. Wettability and topography of phospholipid DPPC rnultilayers deposited by spin-coating on glass, silicon and mica slides. Langmuir. Sep. 25, 2007;23(20):10156-63. Epub Aug. 28, 2007.
Kang, et al. A storable encapsulated bilayer chip containing a single protein nanopore. J Am Chem Soc. Apr. 18, 2007;129(15):4701-5. Epub Mar. 22, 2007.
Kasianowicz, et al. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A. Nov. 26, 1996;93(24):13770-3.
Kasianowicz, et al. Physics of DNA threading through a nanometer pore and applications to simultaneous muitianalyte sesnsing. In NATO Advanced Research Workshop; Structure and dynamics of confined polymers. Kluwer Press. 2002; 141-163.
Kasianowicz, et al. Simultaneous multianalysis detection with a nanopore. Anal. Chem 2001;73:2268-2272.
Kasianowicz. Nanometer-scale pores: potential applications for analyte detection and DNA characterization. Dis Markers. 2002;18(4):185-91.
Kasianowicz. Nanopores: flossing with DNA. Nat Mater. Jun. 2004;3(6):355-6.
Kawano, at. al. Controlling the translocation of single-stranded DNA through alphahemolysin ion channels using viscosity. Langmuir. Jan. 20, 2009;25(2)1233-7. m.
Kim et al. Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis.€Advanced Materials€18.23 (2006):3149-3153.
Krasilnikov, et al. A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. FEMS Microbial immunol. Sep. 1992:5(1-3):93-100.
Krasilnikov, et al. Single polymer molecules in a protein nanopore in the limit of a strong polymer-pore attraction. Phys Rev Lett. Jul. 7, 2006;97(1):018301. Epub Jul 5, 2006.
Krasilnikov, et al. Sizing channels with neutral polymers. In NATO Advanced Research Workshop: Structure and dynamics of confined polymers. Kluwer Press. 2002; 97-116.
Kullman, et al. Transport of maltodextrins through maltoporin: a single-channel study. Biophys J. Feb. 2002;82(2):803-12.
Kumar, et al. PEG-labeled nucleotides and nanopore detection for single molecule DNA sequencing by synthesis. Sci Rep. 2012;2:684. Epub Sep. 21, 2012.
Kutik, et al. Dissecting membrane insertion of mitochondrial beta-barrel proteins. Cell. Mar. 21, 2008;132(6):1011-24.
Lee, et al. Enhancing the catalytic repertoire of nucleic acids: a systematic study of linker length and rigidity. Nucleic Acids Res. Apr. 1, 2001;29(7):1565-73.
Li, et al. A photocleavable fluorescent nucleotide for DNA sequencing and analysis. Proc Natl Acad Sci U S A, Jan. 21, 2003;100(2):414-9. Epub Jan. 6, 2003.
Li, et al. Ion-beam sculpting at nanornetre length scales. Nature, Jul. 12, 2001;412(6843):166-9.
Linear Technology, High Efficiency Thermoelectric Cooler Controller, 2001.
Low Noise, Dual Switched Integrator, Burr-Brown Corporation, Sep. 1994.
Lundquist, et al. A new tri-orthogonal strategy for peptide cyclization. Org Lett. Sep. 19, 2002;4(19):3219-21.
Madampage, et al. Nanopore detection of antibody prion interactions. Anal Biochem. Jan. 1, 2010;396(1):36-41. Epub Aug. 21, 2009.
Mager et al., “Lipid bilayer deposition and patterning via air bubble collapse.” Langmuir 23.18 (2007):9369-9377.
Mathe, et al. Nanopore unzipping of individual DNA hairpin molecules. Biophys J. Nov. 2004;87(5):3205-12. Epub Sep. 3, 2004.
Mathe, et al. Orientation discrimination of single-stranded DNA inside the alpha-hemolysin rnembrance channel. Proc Natl Acad Sci U S A. Aug. 30, 2005;102(35):12377-82. Epub Aug. 19, 2005.
Maurer, et al. Reconstitution of ion channels in agarose-supported silicon orifices. Biosens Bioelectron. May 15, 2007;22(11):2577-84. Epub Nov. 13, 2006.
McNally, et al. Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett. Jun. 9, 2010;10(6)2237-44.
Meller, et al. Rapid nanopore discrimination between single polynucleotide molecules. Proc Natl Acad Sci U S A. Feb. 1, 2000;97(3):1079-84.
Meller, et al. Single molecule measurements of DNA transport through a nanopore. Electrophoresis. Aug. 2002;23(16):2583-91.
Mohammad, et al. Controlling a single protein in a nanopore through electrostatic traps. J Am Chem Soc. Mar. 26, 2008;130(12)4081-8. Epub Mar. 6, 2008.
Mollazadeh et al. “Micropower CMOS integrated low-noise amplification, filtering, and digitization of multimodal neuropotentials.” Biomedical Circuits and Systems, IEEE Transactions on 3.1 (2009):1-10.
Molloy et al. “Automation of biochip array technology for quality results.” Clinical Chemical Laboratory Medicine 43.12 (2005):1303-1313.
Mosquera et al. Thermal decomposition and fractal properties of sputter-deposited platinum oxide thin films.€Journal of Materials Research 27.05 (2012):829-836.
Movileanu, et al. Partitioning of a polymer into a nanoscopic protein pore obeys a simple scaling law. Proc Natl Acad Sci U S A. Aug. 28, 2001;98(18)10137-41. Epub Aug. 14, 2001.
Movileanu, et al. Partitioning of individual flexible polymers into a nanoscopic protein pore. Biophys J. Aug. 2003;85(2):897-910.
Nakane et al. “Nanopore sensors for nucleic acid analysis.” Journal of Physics: Condensed Matter 15.32 (2003):R1365.
Nakane, et al. A Nanosensor for Transmembrane Capture and Identification of Single Nucleic Acid Molecules, Biophysical Journal, vol. 87, Issue 1, Jul. 2004, pp. 615-621, ISSN 0006-3495.
Office action dated Feb. 25, 2013 for U.S. Appl. No. 13/396,522.
Office action dated Apr. 11, 2013 for U.S. Appl. No. 12/658,603.
Office action dated Apr. 26, 2012 for U.S. Appl. No. 12/658,591.
Office action dated Apr. 26, 2012 for U.S. Appl. No. 12/658,601.
Office action dated Jun. 15, 2012 for U.S. Appl. No. 12/658,604.
Office action dated Jun. 28, 2012 for U.S. Appl. No. 12/308,091.
Office action dated Aug. 3, 2012 for U.S. Appl. No. 12/658,602.
Office action dated Oct. 2, 2012 for U.S. Appl. No. 12/658,603.
Office action dated Oct. 16, 2012 for U.S. Appl. No. 12/658,601.
Office action dated Oct. 25, 2012 for U.S. Appl. No. 12/658,591.
Office action dated Nov. 29, 2011 for U.S. Appl. No. 12/308,091.
Office action dated Dec. 17, 2012 for U.S. Appl. No. 13/620,973.
Osaki et al. Analytical Chemistry, Multichannel Simultaneous Measurements of Single-Molecule Translocation in a-Hemolysin Nanopore Array, 2009, 81, pp. 9866-9870.
Oxford Nanopore Technologies, Sensor Array Chip, Jul. 14, 2011.
Park, et al. DNA hybridization sensors based on electrochemical impedance spectroscopy as a detection tool. Sensors (Basel). 2009;9(12):9513-32. Epub Nov. 2009.
Perkins, et al. Relaxation of a single DNA molecule observed by optical microscopy. Science. May 6, 1994;264(5160):822-6.
Pourmand, et al. Multiplex Pyrosequencing. Acids Res. Apr. 1, 2002;30(7):e31.
Purnell, et al. Discrimination of single base substitutions in a DNA strand immobilized in a biological nanopore. ACS Nano. Sep. 22, 2009;3(9):2533-8.
Reiner, et al. Temperature sculpting in yoctoliter volumes. J Am Chem Soc. Feb. 27, 2013;135(8):3087-94. doi: 10.1021/ja309892e. Epub Feb. 14, 2013.
Reiner. et al. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. Proc Natl Acad Sci U S A. Jul. 6, 2010;107(27):12080-5. doi: 10.1073/pnas.1002194107. Epub Jun. 21, 2010.
Rief, et al. Sequence-dependent mechanics of single DNA molecules. Nat Struct Biol. Apr. 1999;6(4):346-9.
Robertson, et al. Single-molecule mass spectrometry in solution using a solitary nanopore. Proc Natl Acad Sci U S A. May 15, 2007;104(20):8207-11. Epub May 9, 2007.
Rosenblum, et al. New dye-labeled terminators for improved DNA sequencing patterns. Nucleic Acids Res. Nov. 15, 1997;25(22):4500-4.
Rosentein et al. “Nanopore DNA sensors in CMOS with on-chip low-noise preamplifiers.” Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS). 2011 16th International. IEEE, 2011.
Rostovtsev, et al. A stepwise huisgen cycloaddition process: copper(l)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed Engl. Jul. 15, 2002;41(14)2596-9.
Rotem et al., Temperature Measurement in the Intel Core Duo Processor, 2007.
Saleh, et al. Direct detection of antibody-antigen binding using an on-chip artificial pore. Proc Nat! Acad Sci U S A. Feb. 4, 2003;100(3):820-4. Epub Jan. 27, 2003.
Sanchez-Magraner, et al. Membrane insertion of Escherichia coil alphahemolysin is independent from membrane lysis. J Biol Chem. Mar. 3, 2006;281(9).5461-7. Epub Dec. 22, 2005.
Sauer-Budge, et al. Unzipping kinetics of double-stranded DNA in a nanopore. Phys Rev Lett. Jun. 13, 2003;90(23)238101. Epub Jun. 9, 2003.
Schneider et al. “DNA sequencing with nanopores. ”Nature biotechnology€30.4 (2012): 326-328.
Seo, et al. Photocleavable fluorescent nucleotides for DNA sequencing on a chip constructed by site-specific coupling chemistry. Proc Natl Acad Sci U S A. Apr. 13, 2004;101(15):5488-93. Epub Apr. 2, 2004. mi.
Shim, et al. Encapsulating a single G-quadruplex aptamer in a protein nanocavity. J Phys Chem B. Jul. 17, 2008;112(28):8354-60. Epub Jun. 19, 2008.
Simon, et al. Formation and stability of a suspended biomimetic lipid bilayer on silicon submicrometer-sized pores. J Colliod Interface Sci. Apr. 15, 2007;308(2):337-43. Epub Jan. 31, 2007.
Singer et al., Nanopore Based Sequence Specific Detection of Duplex DNA for Genornic Profiling, Jan. 8, 2010, published Jan. 20, 2010, pgs. 738-743.
Singh, et al. Synthesis of natural flutimide and analogous fully substituted pyrazine-2,6-diones, endonuclease inhibitors of influenza virus. J Org Chem. Aug. 10, 2001;66(16):5504-16.
Smith, et al. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. Feb. 9, 1996:271(5250):795-9.
Stanford, at al. Transport of DNA through a single nanometer-scale pore: evolution of signal structure. IEEE Workshop on Genomic Signal Processing and Statistics. Baltimore, MD. May 26, 2004.
Stanford, et al. Using HMMs to Quantify Signals from DNA Driven Through a Nanometer-Scale Pore. IEEE Workshop on Genomic Signal Processing and Statistics. Raleigh, NC. Oct. 2002; 11-13.
Stefureac, et al. Nanopore analysis of the interaction of metal ions with prion proteins and peptides. Biochem Cell Biol. Apr. 2010;88(2):347-58.
Stefureac, et al. Transport of alpha-helical peptides through alpha-hemolysin and aerolysis pores, Biochemistry. Aug. 1, 2006;45(30):9172-9.
Stoddart, et al, Nucleobase recognition in ssDNA at the central constriction of the alpha-hemolysin pore. Nano Lett. Sep. 8, 2010;10(9):3633-7.
Stoddart, et al. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc Natl Acad Sci U S A. May 12, 2009;106(19):7702-7. doi: 10.1073/pnas.0901054106. Epub Apr. 20, 2009.
Storm, et al. Translocation of double-strand DNA through a silicon oxide nanopore. Phys Rev E Stat Nonlin Soft Matter Phys. May 2005;71(5 Pt 1):051903. Epub May 6, 2005.
Streater, et al. Novel 3-hydroxy-2(1H)-pyridinones. Synthesis, iron(Ill)-chelating properties, and biological activity. J Med Chem. Jun. 1990;33(6):1749-55.
Studer, et al. Formation of individual protein channels in lipid bilayers suspended in nanopores. Colloids Surf B Biointerfaces. Oct. 15, 2009;73(2):325-31. Epub Jun. 10, 2009.
Suzuki, et al. Highly reproducible method of planar lipid bilayer reconstitution in polymethyl methacrylate chip. Langmuir. Feb. 14, 2006;22(4):1937-42.
Thomson et al. Preliminary nanopore cheminformatics analysis of aptamer-target binding strength. BMC Bioinformatics. Nov. 1, 2007;8 Suppl 7:S11.
Timp et al. “Nanopore sequencing: electrical measurements of the code of life.” Nanotechnology, IEEE Transactions on 9.3 (2010): 281-294.
U.S. Appl. No. 13/918,626, filed Jun. 14, 2013 (published as US20140034497A1 on Feb. 6, 2014).
U.S. Appl. No. 61/170,729, filed Apr. 20, 2009.
UK search and examination report dated Feb. 25, 2013 for GB Application No. 1216656.7.
UK search and examination report dated May 1, 2013 for GB Application No. 1216026.3.
Venkatesan et al. “Nanopore sensors for nucleic acid analysis.” Nature nanotechnology 6.10 (2011): 615-624.
Vercoutere et al., “Discrimination among individual Watson-Crick base pairs at the termini of single DNA hairpin molecules,” Nucleic Acids Research (2003), pp. 1311-1318, vol. 31.
Vercoutere et al., “Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel,” Nature Biotechnology (Mar. 2001) pp. 248-252, vol. 19.
Viasnoff, et al, Probing DNA base pairing energy profiles using a nanopore. Eur Biophys J. Feb. 2009;38(2):263-9. Epub Oct. 3, 2008.
Wang, et al. DNA heterogeneity and phosphorylation unveiled by single-molecule electrophoresis. Proc Natl Acad Sci U S A. Sep. 14, 2004;101(37)13472-7. Epub Sep. 1, 2004.
Wanunu, et al. DNA profiling using solid-state nanopores: detection of DNA-binding molecules. Nano Lett. Oct. 2009;9(10):3498-502.
Weng, et al. Fluid biomembranes supported on nanoporous aerogel/xerogel substrates. Langmuir. Aug. 17, 2004;20(17):7232-9.
Wilson, et al. Electronic control of DNA polymerase binding and unbinding to single DNA molecules. ACS Nan. Apr. 28, 2009;3(4):995-1003.
Wilson, et al. Feedback control of a DNA molecule tethered in a nanopore to repeatedly probe DNA-binding enzymes. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:5745-8.
Winters-Hilt, et al. Nanopore-based kinetics analysis of individual antibody-channel and antibody-antigen interactions, BMC Bioinformatics. Nov. 1, 2007;8 Suppl 7:S20.
Woodside, et al. Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid. Science. Nov. 10, 2006;314(5801):1001-4.
Woodside, et al. Nenornechanical measurements of the sequence-depepndent folding landscapes of single nucleic acid hairpins. Proc Natl Acad Sci U S A. Apr. 18, 2006;103(16):6190-5. Epub Apr. 10, 2006.
WP Thompson Letter May 28, 2013.
Wu, et al. Single-molecule detection of nitrogen mustards by covalent reaction within a protein nanopore. J Am Chem Soc. May 28, 2008;130(21):6813-9. Epub Apr. 30, 2008.
Zeineldin, et al. Using bicellar mixtures to form supported and suspended lipid bilayers on silicon chips. Langmuir. Sep. 12, 2006;22(19):8163-8.
Zwolak, et al. Electronic signature of DNA nucleotides via transverse transport. Nano Letters. Mar. 2005;5(3):421-4.
Related Publications (1)
Number Date Country
20170254797 A1 Sep 2017 US
Continuations (1)
Number Date Country
Parent 13759701 Feb 2013 US
Child 15462483 US