Nanostructured electrode for energy storage device

Information

  • Patent Grant
  • 11942271
  • Patent Number
    11,942,271
  • Date Filed
    Tuesday, April 25, 2023
    a year ago
  • Date Issued
    Tuesday, March 26, 2024
    a month ago
Abstract
Disclosed herein is electrode comprising a current collector comprising a conductor layer having at least a first surface; and elongated metal carbide nanostructures extending from the first surface; and a carbonaceous energy storage media disposed on the first surface and in contact with the elongated metal carbide nanostructures. Disclosed herein too is an ultracapacitor comprising at least one electrode comprising a current collector comprising a conductor layer having at least a first surface; and elongated metal carbide nanostructures extending from the first surface; and a carbonaceous energy storage media disposed on the first surface and in contact with the elongated metal carbide nanostructures.
Description
TECHNICAL FIELD

The present invention relates to producing electrodes comprising carbon nanotube aggregates for use in energy storage devices, including methods for producing such electrodes and energy storage devices that utilize such electrodes.


BACKGROUND

Carbon nanotubes (CNTs) are carbon structures that exhibit a variety of properties. Many of the properties suggest opportunities for improvements in a variety of technology areas. These technology areas include electronic device materials, optical materials as well as conducting and other materials. For example, CNTs are proving to be useful for energy storage in capacitors.


However, effective transfer of the CNTs onto a current collector for a capacitor has proven to be challenging. Further, techniques have not enabled transfer of CNTs in a form that will provide for desired performance capabilities, e.g., power density, energy density, maximum voltage rating, equivalent series resistance (ESR), frequency response, cycle efficiency, and stability/For example, a bonding layer is typically used to cause CNTs to adhere to the surface of a current collector. The bonding layer typically affects the performance of the resulting capacitor in a number of ways, including increasing the ESR and decreasing the energy density and power density.


Thus, what are needed are methods and apparatus for production of a high performance electrode based on carbon nanotubes. Preferably, the methods and apparatus are simple to perform and thus offer reduced cost of manufacture, as well as an improved rate of production.


BRIEF SUMMARY OF CERTAIN EMBODIMENTS

In one embodiment, an electrode is provided. The electrode includes a current collector comprising aluminum with an aluminum carbide layer on at least one surface, on which at least one layer of CNTs is disposed. The electrode may comprise vertically-aligned, horizontally-aligned, or nonaligned (e.g., tangled or clustered) CNTs. The electrode may comprise compressed CNTs. The electrode may comprise single-walled, double-walled, or multiwalled CNTs. The electrode may comprise multiple layers of CNTs.


In another embodiment, a method for fabricating an electrode is provided. The method comprises selecting a current collector with a layer of aluminum carbide on at least one surface of the current collector and disposing CNTs onto the aluminum carbide layer. Disposing CNTs onto the aluminum carbide layer may comprise disposing vertically-aligned, horizontally-aligned, or nonaligned (e.g., tangled or clustered) CNTs. The resulting electrode may comprise vertically-aligned, horizontally-aligned, or nonaligned (e.g., tangled or clustered) CNTs. Disposing CNTs onto the aluminum carbide layer may comprise disposing compressed CNTs and/or compressing the CNTs after they have been disposed on the aluminum carbide layer. The resulting electrode may comprise compressed CNTs. Disposing CNTs onto the aluminum carbide layer may comprise disposing single-walled, double-walled, or multiwalled CNTs. The resulting electrode may comprise single-walled, double-walled, or multiwalled CNTs. The method may further comprise disposing additional layers of CNTs onto the layer of CNT disposed onto the aluminum carbide layer, which additional layers of CNTs may be vertically-aligned, horizontally-aligned, or nonaligned (e.g., tangled or clustered) CNTs; compressed CNTs; or single-walled, double-walled, or multiwalled CNTs.


Disposing CNTs onto the aluminum carbide layer may comprise any variety of methods for creating a layer of CNTs on a surface, including transferring CNTs from a solution, transferring CNTs using any variety of dry transfer methods, growing CNTs directly on the aluminum carbide layer, and any combination of these methods. In certain embodiments, a layer of CNTs is grown directly on an aluminum current collector having an aluminum carbide layer on at least one surface. The layer may comprise single-walled, double-walled, or multiwalled CNTs. In certain embodiments, a layer of CNTs is transferred to the current collector using any variety of dry transfer methods, such as transfer tape, compression. In certain embodiments, a dry transfer method is used to add additional layers of CNTs onto a layer of CNTs that has been disposed onto an aluminum carbide layer of the current collector. In certain embodiments, a layer of CNTs is transferred to the current collector using any variety of wet, solvent-based transfer methods, including precipitation, evaporation, spray-drying,


In a further embodiment, an ultracapacitor is provided. The ultracapacitor includes at least one electrode of the type described herein.


The ultracapacitor may further comprise an electrolyte with certain desired properties in terms of the electrical performance and compatibility with the other materials of the ultracapacitor, e.g., the electrode or separator. In certain embodiments, the electrolyte is a solution comprising at least one inorganic or organic salt, such as an ionic liquid, and optionally further comprising at least one solvent. In certain embodiments, the electrolyte is a gel comprising at least one ionic liquid and at least one gelling agent, and optionally comprising other additives such as solvents, salts, and surfactants. In certain embodiments, the electrolyte is a solid polymer electrolyte comprising at least one inorganic or organic salt, such as an ionic liquid, and at least one polymeric material, such as a fluoropolymer (e.g., polytetrafluoroethylene (PTFE), polyether ether ketone (PEEK), polyvinylidene difluoride (PVDF), or co-polymers thereof) and optionally comprising other additives such as solvents, salts, and surfactants. In a particular embodiment, the electrolyte is substantially free of moisture and other contaminants that may adversely affect the performance of the ultracapacitor.


The ultracapacitor may further comprise a separator to provide electrical separation between a positive electrode and a negative electrode of the ultracapacitor, which separator has certain desired properties in terms of the electrical performance and compatibility with the other materials of the ultracapacitor, e.g., the electrode or electrolyte. In certain embodiments, the separator comprises a material selected from the group consisting of polyamide, PTFE, PEEK, PVDF, aluminum oxide (Al2O3), fiberglass, fiberglass reinforced plastic, or any combination thereof. In a particular embodiment, the separator is substantially free of moisture. In another particular embodiment, the separator is substantially hydrophobic.


In yet another embodiment, a method for fabricating an ultracapacitor is provided. The method includes selecting an electrode, which comprises a current collector with an aluminum carbide layer on at least one surface and CNTs disposed on the aluminum carbide layer, and including the electrode in an ultracapacitor. The method may further comprise selecting an electrolyte with certain desired properties in terms of the electrical performance and compatibility with the other materials of the ultracapacitor, e.g., the electrode or separator. The method may further comprise selecting a separator with certain desired properties in terms of the electrical performance and compatibility with the other materials of the ultracapacitor, e.g., the electrode or electrolyte.





BRIEF DESCRIPTION OF DRAWINGS

The foregoing and other features and advantages of the disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:



FIG. 1 is a block diagram depicting an embodiment of an electrode of the present disclosure;



FIG. 2A is a block diagram depicting an embodiment of the electrode of the present disclosure;



FIG. 2B is a block diagram depicting an embodiment of the electrode of the present disclosure;



FIG. 2C is a block diagram depicting an embodiment of the electrode of the present disclosure;



FIG. 2D is a block diagram depicting an embodiment of the electrode of the present disclosure;



FIG. 3 is a Nyquist plot for an ultracapacitor of the present disclosure;



FIG. 4A is a capacitance versus frequency plot for an ultracapacitor of the present disclosure;



FIG. 4B is a phase versus frequency plot for an ultracapacitor of the present disclosure;



FIG. 4C is a cyclic voltammetry plot for an ultracapacitor of the present disclosure;



FIG. 5A is a cyclic voltammetry plot for an ultracapacitor of the present disclosure with and without carbon nanotubes;



FIG. 5B is a detailed view of a portion of the plot of FIG. 5A;



FIG. 5C is a Nyquist plot for an ultracapacitor of the present disclosure with and without carbon nanotubes; and



FIG. 6 is a block diagrams depicting an embodiment of an ultracapacitor of the present disclosure.





DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

Disclosed are methods and apparatus for providing a high performance electrode for an energy storage device, e.g., an ultracapacitor, where the electrode includes an aluminum current collector with a layer of aluminum carbide on at least one surface and carbon nanotubes (CNTs) disposed on the aluminum carbide layer. Advantageously, the electrode may be fabricated from mass-produced materials, e.g., aluminum carbide coated current collectors and CNTs. Energy storage devices, such as ultracapacitors, that incorporate the presently disclosed electrode exhibit, among other things, higher performance than previously achievable, in terms of at least one of gravimetric power density (power as a function of weight), volumetric power density (power as a function of volume), gravimetric energy density (energy as a function of weight), volumetric energy density (energy as a function of volume), equivalent series resistance (ESR), frequency response, and maximum voltage.


In order to provide some context for the teachings herein, reference is first made to U.S. Pat. No. 7,897,209, entitled “Apparatus and Method for Producing Aligned Carbon Nanotube Aggregate.” This patent is incorporated herein by reference, in its entirety.


The foregoing patent (the “'209 patent”) teaches a process for producing aligned carbon nanotube aggregate.” Accordingly, the teachings of the '209 patent, which are but one example of techniques for producing aligned carbon nanotube aggregate, may be used to produce carbon nanotube aggregate (CNT) referred to herein.


One example of a device incorporating an electrode as provided herein is provided in U.S. Patent Application Publication No. 2007-0258192, entitled “Engineered Structure for Charge Storage and Method of Making,” also incorporated herein by reference, in its entirety. In general, methods and apparatus disclosed herein may be used to enhance an energy storage system, such as the embodiments disclosed in this publication. One embodiment of such energy storage is referred to as an “ultracapacitor.” However, it should be recognized that the teachings herein may be applicable to other embodiments of energy storage and are therefore not limited to practice with an ultracapacitor.


Electrodes for energy storage devices are disclosed herein. Referring to FIG. 1 in some embodiments, an electrode 100 includes a current collector 101 comprising a conductor layer 102 having at least a first surface 103. The conductor layer may be made of any suitable electrically conductive material, e.g., a metal such as aluminum. In some embodiments, the conductor layer may be rigid (e.g., a metal plate), or flexible (e.g., a metal foil).


In some embodiments, elongated metal carbide nanostructures 104 extend from the first surface 103. The structure of the metal carbide material on the surface 103 of the current collector 101 may vary. The structure of the metal carbide typically material depends on the method by which carbon is deposited on the current collector 101. The structure may depend, among other factors, on the type of metal or metal alloy used as a current collector and the source of carbon used to form the metal carbide layer.


One advantageous metal carbide structure is metal carbide “whiskers,” as shown. These whiskers are thin elongated structures (e.g., nanorods) that extend generally away from the surface 103 of the current collector 101. The whiskers may have a radial thickness of less than 100 nm, 50 nm, 25 nm, 10 nm, or less, e.g., in the range of 1 nm to 100 nm or any subrange thereof. The whiskers may have a longitudinal lengths that is several to many times the radial thickness, e.g., greater than 200 nm, 300 nm, 400 nm, 500 nm, 1 μm, 5 μm, 10 μm, or more, e.g., in the range of 100 nm to 100 μm or any subrange thereof.


PCT Publication No. WO WO/2000/044965, dated Aug. 3, 2000 and titled “Manufacture of transition metal carbide and carbonitride whiskers with low amounts of oxygen and residual oxide phases,” the entire disclosure of which is incorporated by reference, discloses transition metal carbide “whiskers” useful in certain embodiments of the present disclosure. Metal carbide whiskers of the present disclosure may comprise any metal, e.g., an alkali metal of Group 1, an alkaline earth metal of Group 2, a transition metal of Groups 3-12, or a post-transition metal of Group 13-15, provided the carbide is relatively stable and demonstrates acceptable electrical performance under the conditions in which an electrode comprising the carbide would be used. For example, metal carbide whiskers of the present disclosure may comprise magnesium carbide, aluminum carbide, titanium carbide, zirconium carbide, hafnium carbide, vanadium carbide, niobium carbide, tantalum carbide, chromium carbide, molybdenum carbide, tungsten carbide, or any mixed metal carbide (e.g., titanium-tantalum carbide, aluminum-titanium carbide, or metal-silicon carbide, such as nickel-silicon carbide). An exemplary current collector is the current collector available from Toyo Aluminum K.K. under the trade name TOYAL-CARBO®.


The metal carbide whiskers may be formed on a variety of metal substrates, which typically include the same metal as the metal carbide whiskers and may include additional metal-containing layers, e.g., layers containing other metals, metal alloys, or metal oxides or hydroxides. For example, as shown in FIG. 1, the current collector 101 includes a cover layer 105 (e.g., a metal oxide layer, such as an aluminum oxide layer) disposed on the first surface 103. In some embodiments this cover layer 105 may be thin, (e.g., 1 μm or less) such that and the elongated metal carbide nanostructures 104 extend through the cover layer 105.


In some embodiments, a carbonaceous energy storage media 106 is disposed on the first surface 103 or the current collector and in contact with the elongated metal carbide nanostructures 104. The interface between the nanostructures 104 and the media 106.


The media 106 may include one or more forms of carbon including activated carbon or nanoform carbon. The language “nanoform carbon” is used herein to describe the general class of allotropes of carbon, which, for example, include but are not limited to nanotubes (single or multi-walled, aligned or unaligned) nanohorns, nano-onions, carbon black, fullerene, graphene, and oxidized graphene. In certain embodiments of the invention the nanoform carbon is a nanotube, e.g., aligned carbon nanotubes.


In some embodiments, the media 106 may be monolithic. In other embodiments, the media 106 may have internal structure, e.g., a plurality of stacked layers.


As shown in FIG. 1, the carbonaceous energy storage media comprises a contact layer 106a that may include carbon nanotubes. The contact layer 106a is in contact with the elongated metal carbide nanostructures 104 extending from the first surface 103.


In some embodiments, the contact layer 106a may include a compressed layer of carbon nanotubes. For example, in some embodiments, the nanotubes (e.g., vertically aligned nanotubes) may be grown on a carrier substrate (not shown) and transferred onto the surface 103 using any suitable technique. Exemplary transfer techniques are disclosed in PCT Publication No. WO/2012/170749 published Dec. 13, 2012, and in U.S. Patent Publication No. 2013/0044405 published Feb. 21, 2013 and titled “High Power and High Energy Electrodes Using Carbon Nanotubes,” the entire contents of each of which are incorporated herein by reference. In some embodiments, pressure may be applied during the transfer process to compress the nanotubes. The compressed nanotubes may include physical defects, such as windows and cracks, generally provide more surface area for charge storage, while occupying a smaller volume than the uncompressed material.


In some embodiments, the nanotubes may be aligned in a direction transverse to the first surface 103 (e.g., substantially perpendicular to the surface). In some embodiments, the nanotubes may be aligned in a direction substantially parallel to the first surface 103. In still further embodiments, the nanotubes may be unaligned or in a combination of various configurations.


In some embodiments, the contact layer 106a comprises an aggregate of carbonaceous materials, e.g., including carbon nanotubes. In some embodiments, the aggregate may consist essentially of carbon nanotubes. In some embodiments, the aggregate may include carbon nanotubes mixed with a different form of carbonaceous material such as activated carbon or another nanoform carbon material. For example, in some embodiments, the carbon nanotubes may make up less than 90%, 80%, 70%, 60%, 50%, 40%, 30%, 10%, 5%, 2.5%, 1%, or less of the aggregate by weight. In some embodiments, the aggregate may be a dried aggregate, e.g., substantially free of any liquid such as solvents or moisture.


The aggregate may be formed using any suitable technique, such as those described in PCT Publication No. WO/2012/170749. For example, in some embodiments the aggregate may be formed as follows. A first solution (also referred to herein as a slurry) is provided that includes a solvent and a dispersion of carbon nanotubes, e.g., vertically aligned carbon nanotubes. A second solution (also referred to herein as a slurry) may be provided that includes a solvent with carbon disposed therein. The carbon addition includes at least one form of material that is substantially composed of carbon. Exemplary forms of the carbon addition include, for example, at least one of activated carbon, carbon powder, carbon fibers, rayon, graphene, aerogel, nanohorns, carbon nanotubes and the like. While in some embodiments, the carbon addition is formed substantially of carbon, it is recognized that the carbon addition may include at least some impurities, e.g., by design.


Generally, the one or more of the solvents used may be an anhydrous solvent, although this is not a requirement. For example, the solvent may include at least one of ethanol, methanol, DMSO, DMF, acetone, acetonitrile, and the like. Generally, the dispersion of vertically aligned carbon nanotubes may include fragments of vertically aligned carbon nanotubes produced by a production cycle. That is, the vertically aligned carbon nanotubes may be segmented into fragments when harvested from a substrate.


The two solutions may subjected to “sonication” (physical effects realized in an ultrasonic field). With regard to the first solution, the sonication is generally conducted for a period that is adequate to tease out, fluff or otherwise parse the carbon nanotubes. With regard to the second solution, the sonication is generally conducted for a period that is adequate to ensure good dispersion or mixing of the carbon additions within the solvent.


Once the first solution and the second solution have been adequately sonicated, they are then mixed together, to provide a combined solution and may again be sonicated. Generally, the mixture is sonicated for a period that is adequate to ensure good mixing of the vertically aligned carbon nanotube with the carbon addition. This second mixing results in a carbonaceous aggregate.


The carbonaceous aggregate may then be withdrawn from the combined solution and processed. For example, the wet carbonaceous aggregate may be placed onto an appropriate surface. While any material deemed appropriate may be used for the surface, exemplary material includes PTFE as subsequent removal from the surface is facilitated by the properties thereof.


In some embodiments, the carbonaceous aggregate is formed in a press to provide a layer that exhibits a desired thickness, area and density.


In some embodiments, the aggregate may be cast wet directly onto the surface 103a, and dried (e.g., by applying heat or vacuum or both) until substantially all of the solvent and any other liquids have been removed, thereby forming the contact layer 106a. In some such embodiments it may be desirable to protect various parts of the current collector 101 (e.g., and underside where the current collector is intended for two sided operation) from the solvent, e.g., by masking certain areas, or providing a drain to direct the solvent.


In other embodiments, the aggregate may be dried elsewhere and then transferred onto the surface 103 to form the contact layer 106a, using any suitable technique (e.g., roll-to-roll layer application).


In some embodiments the media 106 includes a first overlayer 106b of carbonaceous material disposed on the contact layer 106a. In some embodiment, the first overlayer 106b has a thickness in a direction perpendicular the first surface 103 that is greater than a thickness of the contact layer 106a along the same dimension (as shown, the vertical direction). In some embodiments, the first overlayer 106b has a thickness in a direction perpendicular the first surface of in the range of about 1 μm to about 1,000 μm, or any subrange thereof, such as 10-100 μm.


In some embodiments, the overlayer 106b may include a compressed layer of carbon nanotubes. For example, in some embodiments, the nanotubes (e.g., vertically aligned nanotubes) may be grown on a carrier substrate (not shown) and transferred onto the contact layer 106a using any suitable technique. Exemplary transfer techniques are disclosed in PCT Publication No. WO/2012/170749 published Dec. 13, 2012, and in U.S. Patent Publication No. 2013/0044405 published Feb. 21, 2013 and titled “High Power and High Energy Electrodes Using Carbon Nanotubes,” the entire contents of each of which are incorporated herein be reference. In some embodiments, pressure may be applied during the transfer process to compress the nanotubes. The compressed nanotubes may include physical defects, such as windows and cracks, generally provide more surface area for charge storage, while


In some embodiments, the nanotubes may be aligned in a direction transverse to the first surface 103 (e.g., substantially perpendicular to the surface). In some embodiments, the nanotubes may be aligned in a direction substantially parallel to the first surface 103. In still further embodiments, the nanotubes may be unaligned or in a combination of various configurations.


In some embodiments, the overlayer 106b comprises an aggregate of carbonaceous materials, e.g., including carbon nanotubes. In some embodiments, the aggregate may consist essentially of carbon nanotubes. In some embodiments, the aggregate may include carbon nanotubes mixed with a different form of carbonaceous material such as activated carbon or another nanoform carbon material. For example, in some embodiments, the carbon nanotubes may make up less than 90%, 80%, 70%, 60%, 50%, 40%, 30%, 10%, 5%, 2.5%, 1%, or less of the aggregate by weight. In some embodiments, the aggregate may be a dried aggregate, e.g., substantially free of any liquid such as solvents or moisture.


The aggregate may be formed using any suitable technique, such as those described in PCT Publication No. WO/2012/170749. The aggregate may wet cast onto the contact layer 106a, or cast and dried to form the overlay 106b. The aggregate may be formed as a dry layer transferred onto the contact layer 106a.


In some embodiments, the overlayer 106b may be in direct physical contact with contact layer 106a, e.g., such that no adhesion or bonding layer is disposed therebetween. For example, in some embodiments, the contact layer 106a and the overlayer 106b adhere to each other through Van der Waals bonding between carbonaceous material in each layer.


In various embodiments, one more additional overlayers (not shown), comprising carbonaceous material may be stacked over the first overlayer 106b, e.g., by repeating any of the techniques described above with respect to applying the first overlayer 106b.


In some embodiments, the electrode 100 may be a two sided electrode, wherein the current collector comprises a second surface, e.g., a lower surface, having a similar structure and energy storage media disposed thereon.


In various embodiments, the presently disclosed electrodes comprise a current collector having a metal carbide layer on at least one surface and CNTs disposed on the metal carbide layer. FIGS. 2A-2D depict various electrodes 1 according to the present disclosure. FIG. 2A depicts certain embodiments in which the electrode comprises horizontally aligned CNTs 6 disposed on a layer of metal carbide whiskers 5 on a surface of a current collector 2. Current collector 2 may comprise a conducting layer 3 and an oxide layer 4. Conducting layer 3 may be selected from any material with acceptable electrical and mechanical properties for a particular application, such as conductivity, stability, electrochemical reactivity, hardness, tear resistance, and processability. Conducting layer 3 is typically selected from a variety of conducting metals, such as aluminum, or metal alloys. Oxide layer 4 may be present or absent, but is typically present when conducting layer 4 comprises as oxidizable metal such as aluminum. Metal carbide whiskers 5 are generally a nanostructured metal carbide that are connected to conductor layer 3 of current collector 2 and, when oxide layer 4 is present, extend through oxide layer 4. CNTs, which are shown as horizontally aligned CNTs 6 in FIG. 2A, adhere to metal carbide whiskers 5, e.g., through Van der Waals forces. Metal carbide whiskers 5 provide for improved electrical contact between the CNTs and conducting layer 3, enabling a reduction in the intrinsic resistance of the electrode, while maintaining good adhesion between the current collector 2 and the CNTs 6, when compared to an electrode having an analogous current collector without metal carbide whiskers.



FIG. 2B depicts certain embodiments in which the electrode comprises vertically aligned CNTs 7. FIG. 2C depicts certain embodiments in which the electrode comprises non-aligned CNTs 8, such as tangled or clustered CNTs. FIG. 2D depicts certain embodiments in which the electrode comprises compressed CNTs 9, which may be horizontally aligned CNTs or vertically aligned CNTs that are compressed before or after disposing them onto current collector 2. Generally, compressed CNTs have a higher specific surface area (m2/g) than the corresponding uncompressed CNTs. U.S. Patent Publication No. 2013/0044405 published Feb. 21, 2013 and titled “High Power and High Energy Electrodes Using Carbon Nanotubes,” the entire disclosure of which is incorporated herein by reference, discloses compressed CNTs and methods of fabricating electrodes comprising compressed CNTs that may be employed to construct electrodes according to the present disclosure. Specifically, paragraphs [0028] to [0038] and U.S. Patent Publication No. 2013/0044405 and the related figures describe, among other things, electrodes comprising compressed CNTs and methods of fabricating such electrodes.


In certain embodiments, the current collector comprises aluminum carbide whiskers (analogous to metal carbide whiskers 5) on an aluminum current collector (analogous to current collector 2) having a conducting layer of aluminum (analogous to conducting layer 3) and a layer of aluminum oxide (analogous to oxide layer 4). An exemplary current collector is the current collector available from Toyo Aluminum K.K. under the trade name TOYAL-CARBO®. The aluminum carbide “whiskers” are typically <50 nm, <30 nm, or about 20-30 nm in diameter.


As used herein, the term “ultracapacitor” should be given its ordinary and customary meaning to those skilled in the art and refers, without limitation, to an energy storage device also known as a “supercapacitor” and sometimes as an “electric double layer capacitor.”


Ultracapacitors are disclosed herein, which employ the electrodes disclosed herein. The ultracapacitors disclosed herein are exemplary energy storage devices in which the electrodes disclosed herein may be employed. Other energy storage devices, including electrolytic capacitors and rechargeable batteries, that comprise the electrodes disclosed herein are also contemplated by this disclosure, and can be constructed by adapting existing fabrication methods.


In certain embodiments, an ultracapacitor may be formed comprising an electrode of the type described herein. The ultracapacitor may further comprise an electrolyte with certain desired properties in terms of the electrical performance and compatibility with the other materials of the ultracapacitor, e.g., the electrode or separator. In certain embodiments, the electrolyte is a solution comprising at least one inorganic or organic salt, such as an ionic liquid, and optionally further comprising at least one solvent. In certain embodiments, the electrolyte is a gel comprising at least one ionic liquid and at least one gelling agent, and optionally comprising other additives such as solvents, salts, and surfactants. In certain embodiments, the electrolyte is a solid polymer electrolyte comprising at least one inorganic or organic salt, such as an ionic liquid, and at least one polymeric material, such as a fluoropolymer (e.g., polytetrafluoroethylene (PTFE), polyether ether ketone (PEEK), polyvinylidene difluoride (PVDF), or co-polymers thereof) and optionally comprising other additives such as solvents, salts, and surfactants. In a particular embodiment, the electrolyte is substantially free of moisture and other contaminants that may adversely affect the performance of the ultracapacitor.


The ultracapacitor may further comprise a separator to provide electrical separation between a positive electrode and a negative electrode of the ultracapacitor, which separator has certain desired properties in terms of the electrical performance and compatibility with the other materials of the ultracapacitor, e.g., the electrode or electrolyte. In certain embodiments, the separator comprises a material selected from the group consisting of polyamide, PTFE, PEEK, PVDF, aluminum oxide (Al2O3), fiberglass, fiberglass reinforced plastic, or any combination thereof. In a particular embodiment, the separator is substantially free of moisture. In another particular embodiment, the separator is substantially hydrophobic. In some embodiments, (e.g., where a solid state electrolyte use used that may operate to separate the electrodes of the device), a separator may be omitted.



FIG. 6 shows an exemplary implementation of an ultracapacitor 10 (note, for FIG. 6 like reference numerals do not indicate correspondence to equivalent elements in other figures). In this case, the ultracapacitor 10 is an electric double-layer capacitor (EDLC). The EDLC includes at least one electrode 3, e.g., of the types described in detail above (in some cases, such as where there are two electrodes 3, the electrodes may be referred to as a negative electrode 3 and a positive electrode 3). When assembled into the ultracapacitor 10, each electrode 3 presents a double layer of charge at an electrolyte interface. In some embodiments, a plurality of electrodes 3 is included. However, for purposes of discussion, only two electrodes 3 are shown. As a matter of convention herein, at least one of the electrodes 3 uses a carbon-based energy storage media 1 (as discussed further herein) to provide energy storage.


Each of the electrodes 3 includes a respective current collector 2 (also referred to as a “charge collector”). The electrodes 3 are separated by a separator 5. In general, the separator 5 is a thin structural material (usually a sheet) used to separate the electrodes 3 into two or more compartments.


At least one form of electrolyte 6 is included, and fills void spaces in and between the electrodes 3 and the separator 5. In general, the electrolyte 6 is a substance that disassociates into electrically charged ions. A solvent that dissolves the substance may be included in some embodiments. A resulting electrolytic solution conducts electricity by ionic transport.


Generally, a combination of the electrode(s) 3 and the separator 5 are then formed into one of a wound form or prismatic form which is then packaged into a cylindrical or prismatic housing 7. Once the electrolyte 6 has been included, the housing 7 is hermetically sealed. In various examples, the package is hermetically sealed by techniques making use of laser, ultrasonic, and/or welding technologies. The housing 7 (also referred to as a “enclosing body” or “case” or by other similar terms) includes at least one terminal 8. Each terminal 8 provides electrical access to energy stored in the energy storage media 1, generally through electrical leads (not shown) which are coupled to the energy storage media 1.


That is, in some embodiments, a plurality of leads (not shown) are electrically coupled to each of the current collectors 2. Each plurality (accordingly to a polarity of the ultracapacitor 10) are grouped and coupled to respective terminals 8 of the housing 7.


Additional exemplary suitable implementations of ultracapacitors that may include electrodes of the type described in the present disclosure are disclosed in PCT Publication Number WO/2015/102716 published Jul. 9, 2015, and entitled “ADVANCED ELECTROLYTES FOR HIGH TEMPERATURE ENERGY STORAGE DEVICE,” the entire contents of which are incorporated herein by reference.



FIGS. 3 to 5C show experimental results for exemplary ultracapacitors of the type described here. FIG. 3 shows a conventional Nyquist plot for an ultracapacitor of the type described herein showing excellent performance.



FIG. 4A and FIG. 4B are, respectively, plots of capacitance and phase versus frequency for an ultracapacitor of the type described herein having an electrode featuring an electrode comprising a 50 μm aluminum foil with aluminum carbide whiskers and a carbon nanotubes layer disposed thereon. The ultracapacitor shows good capacitive behavior up to a cutoff frequency of about 10 Hz. FIG. 4C shows cyclic voltammetry results for the same ultracapacitor, showing a good operation voltage window ranging from 0V to more than 3V.



FIGS. 5A, 5B, and 5C show a performance comparison for ultracapacitors of the type described herein having an electrode featuring either an electrode comprising a 50 μm aluminum foil with aluminum carbide whiskers and a carbon nanotubes layer disposed thereon or a similar electrode without any carbon nanotubes. As will be apparent to one skilled in the art, the nanotube-based electrode shows substantially better performance than the electrode lacking nanotubes.


Having disclosed aspects of embodiments of the production apparatus and techniques for fabricating aggregates of carbon nanotubes, it should be recognized that a variety of embodiments may be realized. Further a variety of techniques of fabrication may be practiced. For example, steps of fabrication may be adjusted, as well as techniques for joining, materials and chemicals used and the like.


As a matter of convention, it should be considered that the terms “may” as used herein is to be construed as optional; “includes,” “has” and “having” are to be construed as not excluding other options (i.e., steps, materials, components, compositions, etc. . . . ); “should” does not imply a requirement, rather merely an occasional or situational preference. Other similar terminology is likewise used in a generally conventional manner.


While the invention has been described with reference to exemplary embodiments, it will be understood that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. For example, in some embodiments, one of the foregoing layers may include a plurality of layers there within. In addition, many modifications will be appreciated to adapt a particular instrument, situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims
  • 1. An electrode comprising: a current collector comprising: a conductor layer having at least a first surface;a metal oxide layer disposed on the first surface; andelongated metal carbide nanostructures extending from the first surface; anda carbonaceous energy storage media disposed on the metal oxide layer and in contact with the elongated metal carbide nanostructures; wherein the carbonaceous energy storage media is present in the form of a contact layer and an over layer; and wherein the contact layer comprises carbon nanotubes and activated carbon.
  • 2. The electrode of claim 1, wherein the over layer is disposed on the contact layer.
  • 3. The electrode of claim 2, wherein the over layer comprises carbon nanotubes.
  • 4. The electrode of claim 2, wherein the carbon nanotubes are compressed.
  • 5. The electrode of claim 1, wherein the carbon nanotubes are compressed.
  • 6. The electrode of claim 1, wherein the carbon nanotubes are present in the form of carbon nanotube aggregates.
  • 7. The electrode of claim 1, wherein the elongated metal carbide nanostructures extend through the contact layer.
  • 8. The electrode of claim 7, wherein the elongated metal carbide nanostructures comprise magnesium carbide, aluminum carbide, titanium carbide, zirconium carbide, hafnium carbide, vanadium carbide, niobium carbide, tantalum carbide, chromium carbide, molybdenum carbide, tungsten carbide, or a mixed metal carbide.
  • 9. The electrode of claim 8, wherein the mixed metal carbide comprises a titanium-tantalum carbide, an aluminum-titanium carbide, or a nickel-silicon carbide.
  • 10. The electrode of claim 1, wherein the contact layer has a thickness in a direction perpendicular the first surface of less than about 5 μm.
  • 11. The electrode of claim 1, wherein the contact layer has a thickness in a direction perpendicular the first surface of less than about 10 μm.
  • 12. The electrode of claim 1, wherein the over layer has a thickness in a direction perpendicular the first surface of in a range of about 10 μm to about 1,000 μm.
  • 13. The electrode of claim 1, wherein the over layer comprises vertically aligned carbon nanotubes.
  • 14. The electrode of claim 1, wherein the over layer comprises vertically aligned carbon nanotubes.
  • 15. The electrode of claim 1, wherein no adhesion or bonding layer is disposed between the contact layer and the overlayer and wherein the contact layer and the over layer adhere through Van der Waals bonding between carbonaceous material in each layer.
  • 16. The electrode of claim 1, wherein the elongated metal carbide nanostructures comprise nanorods each having a radial thickness of less than 50 nm and a longitudinal length of greater than 500 nm.
  • 17. An energy storage device comprising: at least one electrode comprising:a current collector comprising: a conductor layer having at least a first surface;a metal oxide layer disposed on the first surface; andelongated metal carbide nanostructures extending from the first surface; anda carbonaceous energy storage media disposed on the metal oxide layer and in contact with the elongated metal carbide nanostructures; wherein the carbonaceous energy storage media is present in the form of a contact layer and an over layer; and wherein the contact layer comprises carbon nanotubes and activated carbon.
  • 18. The energy storage device of claim 17, wherein the wherein the over layer is disposed on the contact layer.
  • 19. The energy storage device of claim 17, wherein the over layer comprises carbon nanotubes.
  • 20. The energy storage device of claim 19, wherein the carbon nanotubes are compressed.
  • 21. The energy storage device of claim 17, wherein the carbon nanotubes are compressed.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a Divisional of U.S. patent application Ser. No. 17/141,728, filed Jan. 5, 2021, which is a Divisional of U.S. patent application Ser. No. 16/591,901 filed Oct. 3, 2019, now U.S. Pat. No. 10,886,074, granted on Jan. 5, 2021, which is a Continuation of U.S. patent application Ser. No. 15/482,765 filed Apr. 8, 2017, abandoned Dec. 27, 2019, which is a continuation of International Patent Application No. PCT/US2015/055032, filed Oct. 9, 2015, which claims priority to U.S. Provisional Application 62/061,947 filed Oct. 9, 2014, the entire contents of which are incorporated herein by reference.

STATEMENT OF FEDERALLY SPONSORED RESEARCH

This invention was made with government support under grant DE-AR0000035/0001 awarded by the Unites States Department of Energy (ARPA-E) and/or DE-DE-EE0005503/001 awarded by the Unites States Department of Energy (EERE). The United States government has certain rights in the invention.

US Referenced Citations (211)
Number Name Date Kind
3982182 Hogg Sep 1976 A
4349910 Belz Sep 1982 A
4408259 Muranaka et al. Oct 1983 A
4934366 Truex et al. Jun 1990 A
5426561 Yen et al. Jun 1995 A
5440447 Shipman et al. Aug 1995 A
5441827 Gratzel et al. Aug 1995 A
5476709 Noue et al. Dec 1995 A
5711988 Tsai et al. Jan 1998 A
5905629 Alford May 1999 A
5923619 Knapen et al. Jul 1999 A
6059847 Farahmandi et al. May 2000 A
6060424 Alford May 2000 A
6193779 Reichert et al. Feb 2001 B1
6205016 Niu Mar 2001 B1
6232706 Dai et al. May 2001 B1
6257332 Vidrine et al. Jul 2001 B1
6304427 Reed et al. Oct 2001 B1
6318457 Den Boer et al. Nov 2001 B1
6346187 Tran et al. Feb 2002 B1
6350488 Lee et al. Feb 2002 B1
6388423 Schilleci, Jr. May 2002 B1
6413285 Chu et al. Jul 2002 B1
6444326 Smith Sep 2002 B1
6454816 Lee et al. Sep 2002 B1
6491848 Sato et al. Dec 2002 B1
6511760 Barone et al. Jan 2003 B1
6514113 Lee et al. Feb 2003 B1
6565701 Jerabek et al. May 2003 B1
6665169 Tennent et al. Dec 2003 B2
6764874 Zhang et al. Jul 2004 B1
6843119 Patey et al. Jan 2005 B2
6872681 Niu et al. Mar 2005 B2
6906911 Ikeda et al. Jun 2005 B2
6914341 McIntyre Jul 2005 B1
6924059 Kawakami et al. Aug 2005 B1
6962823 Empedocles et al. Nov 2005 B2
7070833 Smith et al. Jul 2006 B2
7126207 Mosley et al. Oct 2006 B2
7168487 Salamitou et al. Jan 2007 B2
7201627 Ohnuma Apr 2007 B2
7327556 Ro et al. Feb 2008 B2
7335395 Ward et al. Feb 2008 B2
7381367 Baker et al. Jun 2008 B1
7468679 Feluch Dec 2008 B2
7493962 Sheffield Feb 2009 B2
7511941 Gallay et al. Mar 2009 B1
7699102 Storm et al. Apr 2010 B2
7713658 Mizuta et al. May 2010 B2
7767114 Gordon et al. Aug 2010 B2
7785558 Hikata Aug 2010 B2
7897209 Shibuya et al. Mar 2011 B2
7914927 Mizuta et al. Mar 2011 B2
7982439 Trainor et al. Jul 2011 B2
7999695 Rodney et al. Aug 2011 B2
8025971 Maeno et al. Sep 2011 B2
8119032 Gordon et al. Feb 2012 B2
8168331 Best et al. May 2012 B2
8450012 Cui May 2013 B2
8531818 Hashimoto et al. Sep 2013 B2
8709374 Cooper et al. Apr 2014 B2
8760851 Signorelli et al. Jun 2014 B2
8822057 Sinsabaugh et al. Sep 2014 B2
8932750 Cooley et al. Jan 2015 B2
9001495 Martini et al. Apr 2015 B2
9013144 Cooley Apr 2015 B2
9017634 Brambilla et al. Apr 2015 B2
9206672 Cooley et al. Dec 2015 B2
9209434 Epstein Dec 2015 B2
9214709 Cooley et al. Dec 2015 B2
9218917 Brambilla et al. Dec 2015 B2
9257704 Balu et al. Feb 2016 B2
9515499 Signorelli et al. Dec 2016 B2
9558894 Signorelli et al. Jan 2017 B2
9683441 Signorelli et al. Jun 2017 B2
9954382 Cooley et al. Apr 2018 B2
20010006108 Brett Jul 2001 A1
20020043369 Vinegar et al. Apr 2002 A1
20020159943 Smalley et al. Oct 2002 A1
20020177018 Fuglevand Nov 2002 A1
20030003359 Banno et al. Jan 2003 A1
20030027038 Tsukamoto et al. Feb 2003 A1
20030030969 Farahmandi et al. Feb 2003 A1
20030081372 Nakazawa et al. May 2003 A1
20040131937 Chen et al. Jul 2004 A1
20040188350 Beste et al. Sep 2004 A1
20040229117 Mitani et al. Nov 2004 A1
20050152096 Farahmandi et al. Jul 2005 A1
20050208207 Hinoki et al. Sep 2005 A1
20050230270 Ren et al. Oct 2005 A1
20050231893 Harvey Oct 2005 A1
20050234177 Zaghib et al. Oct 2005 A1
20050238810 Scaringe et al. Oct 2005 A1
20050250052 Nguyen Nov 2005 A1
20060019168 Li et al. Jan 2006 A1
20060115722 Kim Jun 2006 A1
20060191681 Storm et al. Aug 2006 A1
20060194102 Keshishian et al. Aug 2006 A1
20060241236 Kuznetsov et al. Oct 2006 A1
20060256506 Konuma et al. Nov 2006 A1
20060279906 Stemen et al. Dec 2006 A1
20070015336 Farahmandi et al. Jan 2007 A1
20070076349 Dementiev et al. Apr 2007 A1
20070097598 Siggel May 2007 A1
20070146965 Mitchell et al. Jun 2007 A1
20070188977 Takeda et al. Aug 2007 A1
20070254213 Best et al. Nov 2007 A1
20070258192 Schindall et al. Nov 2007 A1
20070258193 Zhong et al. Nov 2007 A1
20070259216 Logan Nov 2007 A1
20070292746 Sloop Dec 2007 A1
20080013224 Kim et al. Jan 2008 A1
20080068801 Wilk Mar 2008 A1
20080083626 Kubo et al. Apr 2008 A1
20080090183 Zhu et al. Apr 2008 A1
20080094777 Tahashi et al. Apr 2008 A1
20080192407 Lu et al. Aug 2008 A1
20080218945 Ro et al. Sep 2008 A1
20080304207 Brandon et al. Dec 2008 A1
20080316678 Ehrenberg et al. Dec 2008 A1
20080317660 Pan et al. Dec 2008 A1
20090011330 Onodera et al. Jan 2009 A1
20090021890 Bourcier et al. Jan 2009 A1
20090194314 Varkey et al. Aug 2009 A1
20090246625 Lu Oct 2009 A1
20090250409 Fiene et al. Oct 2009 A1
20090272935 Hata et al. Nov 2009 A1
20090272946 Lu Nov 2009 A1
20090294753 Hauge et al. Dec 2009 A1
20090303658 Hiroyuki et al. Dec 2009 A1
20100046142 Aitchison et al. Feb 2010 A1
20100062229 Hata et al. Mar 2010 A1
20100119934 Ushio et al. May 2010 A1
20100134955 O'Connor et al. Jun 2010 A1
20100178543 Gruner et al. Jul 2010 A1
20100178564 Asari et al. Jul 2010 A1
20100190639 Worsley Jul 2010 A1
20100195269 Kim et al. Aug 2010 A1
20100196600 Shibuya et al. Aug 2010 A1
20100196758 Hojo et al. Aug 2010 A1
20100236777 Partouche et al. Sep 2010 A1
20100259866 Shaffer et al. Oct 2010 A1
20100285358 Cui et al. Nov 2010 A1
20110013344 Remizov et al. Jan 2011 A1
20110027537 Inoue et al. Feb 2011 A1
20110049901 Tinnen et al. Mar 2011 A1
20110080689 Bielawski et al. Apr 2011 A1
20110085285 Zednicek et al. Apr 2011 A1
20110091767 Hojo et al. Apr 2011 A1
20110102002 Riehl et al. May 2011 A1
20110133284 Mitra et al. Jun 2011 A1
20110141661 Muthu et al. Jun 2011 A1
20110143197 Ohtsuka et al. Jun 2011 A1
20110150736 Hagiwara et al. Jun 2011 A1
20110151317 Giroud et al. Jun 2011 A1
20110170236 Young Jul 2011 A1
20110170237 Brandon et al. Jul 2011 A1
20110171371 Li et al. Jul 2011 A1
20110183206 Davis et al. Jul 2011 A1
20110220191 Flood Sep 2011 A1
20110255212 Liu et al. Oct 2011 A1
20110262772 Hauge et al. Oct 2011 A1
20110281156 Boren et al. Nov 2011 A1
20110293850 Yi et al. Dec 2011 A1
20120021291 Ji et al. Jan 2012 A1
20120077006 Worsley et al. Mar 2012 A1
20120094181 Kim et al. Apr 2012 A1
20120099244 Lee et al. Apr 2012 A1
20120122020 Hata et al. May 2012 A1
20120154979 Signorelli et al. Jun 2012 A1
20120231270 Dhinojwala et al. Sep 2012 A1
20120251432 Cooper et al. Oct 2012 A1
20120257326 Gadkaree et al. Oct 2012 A1
20120313586 Signorelli et al. Dec 2012 A1
20120313591 Brambilla Dec 2012 A1
20130004657 Xu et al. Jan 2013 A1
20130005941 Kondou et al. Jan 2013 A1
20130026978 Cooley et al. Jan 2013 A1
20130029215 Signorelli et al. Jan 2013 A1
20130044130 Geisner et al. Feb 2013 A1
20130044405 Brambilla Feb 2013 A1
20130045157 Brambilla et al. Feb 2013 A1
20130141840 Cooley et al. Jun 2013 A1
20130177812 Han et al. Jul 2013 A1
20130189580 Dai et al. Jul 2013 A1
20140016246 Gadkaree et al. Jan 2014 A1
20140042988 Kuttipillai Feb 2014 A1
20140057164 Brambilla et al. Feb 2014 A1
20140065447 Liu et al. Mar 2014 A1
20140104754 Lipka et al. Apr 2014 A1
20140186550 Cooper et al. Jul 2014 A1
20140186716 Wu Jul 2014 A1
20140265565 Cooley et al. Sep 2014 A1
20140265580 Cooley et al. Sep 2014 A1
20140299359 Mittal et al. Oct 2014 A1
20140363568 Suematsu et al. Dec 2014 A1
20150002987 Signorelli et al. Jan 2015 A1
20150107824 Signorelli et al. Apr 2015 A1
20150210548 Brambilla et al. Jul 2015 A1
20150218913 Cooley et al. Aug 2015 A1
20150279578 Martini et al. Oct 2015 A1
20150287961 Signorelli et al. Oct 2015 A1
20160012979 Zheng Jan 2016 A1
20160104891 Holme Apr 2016 A1
20170316889 Martini et al. Nov 2017 A1
20180068803 Brambilla et al. Mar 2018 A1
20180135408 Cooley et al. May 2018 A1
20180171777 Cooley et al. Jun 2018 A1
20180204689 Brambilla Jul 2018 A1
20180211794 Brambilla Jul 2018 A1
20200035422 Brambilla et al. Jan 2020 A1
Foreign Referenced Citations (19)
Number Date Country
101027736 Aug 2007 CN
103891013 Jun 2014 CN
1798743 Jun 2007 EP
2056312 Jun 2009 EP
2003133185 May 2003 JP
2007005718 Jan 2007 JP
2012170749 Dec 2012 NO
9966985 Dec 1999 WO
0019461 Apr 2000 WO
0044965 Aug 2000 WO
2008016990 Feb 2008 WO
2009125540 Oct 2009 WO
2009128343 Oct 2009 WO
2010067509 Jun 2010 WO
2012162500 Nov 2012 WO
2015054432 Apr 2015 WO
2015102716 Jul 2015 WO
2015171528 Nov 2015 WO
2018102652 Jun 2018 WO
Non-Patent Literature Citations (62)
Entry
International Search Report and Written Opinion for PCT/US2012/039342 dated Dec. 6, 2012 (F0704.70003WO00).
Office Action dated Dec. 11, 2013 for U.S. Appl. No. 12/928,897 (F0704.700002US00).
Office Action dated Jul. 16, 2014 for U.S. Appl. No. 12/928,897 (F0704.70002US00).
Shamsipur,et al.,Phys.&electro.prop.of ionic liquids1-ethyl-3-methylimidazolium tetrafluoroborate,1-butyl-3-methylimidazolium trifluoromethanesulfonate&1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide,J.Mol.Liq.,p. 43-50,Aug.24, 2010, vol. 157.
Signorelli, et al., “Carbon Nanotube Enhanced Ultracapacitor”, Sep. 2004. 2 pages.
Signorelli, et al., “Fabrication and Electrochemical Testing of the First Generation Carbon-Nanotube Based Ultracapacitor Cell,” 17th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Dec. 10-12, 2007, pp. 70-78.
Signorelli, et al., “High Density Energy Storage Using a Nanotube-Enhanced Ultracapacitor,” 16th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Dec. 4-6, 2006, pp. 15-21.
Signorelli, et al., “High Potential Vertically Aligned Carbon Nanotubes, EDLC Electrodes,” 18th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Dec. 8-10, 2008, pp. 73-79.
Signorelli, et al., “Nanotube Enhanced Ultracapacitor,” 14th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Dec. 6-8, 2004, pp. 49-61.
Signorelli, et al., “Nanotube Enhanced Ultracapacitor,” 15th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Dec. 5-7, 2005, pp. 158-168.
Ue, et al., “Application of Low- Viscosity Ionic Liquid to the Electrolyte of Double-Layer Capacitors,” J. Electrochem. Soc., Feb. 28, 2003, pp. A499-A502, vol. 150, No. 4.
Welna et al., Vertically aligned carbon nanotube electrodes for lithium-ion batteries. Journal of Power Sources. Feb. 1, 2011;196(3):1455-60.
Wongwiryapan, et al., “Direct Growth of Single-Walled Carbon Nanotube Networks on Alumina Substrate: A novel route to Ultrasensitive Gas Sensor Fabrication”, Japanese Journal of Applied Physics, Nov. 9, 2005, pp. 8227-8230, vol. 44, No. 11.
Zuckerbrod, et al., “How Dry I am: Optimizing Cell Performance Through Proper Component Drying,” 15th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Dec. 5-7, 2005,pp. 101-110.
[No Author Listed], New high-energy cathode material can significantly iincrease safety, life of lithium batteries. ECOPRO—Battery Material Division. Apr. 7, 2009. 16 pages.
An, et al., “Electrochemical Properties of High-Power Supercapacitors Using Single- Walled Carbon Nanotube Electrodes,” Adv. Funct. Mater., Oct. 2001, 387-392, vol. 11, No. 5.
An, et al., “Supercapacitors Using Single- Walled Carbon Nanotube Electrodes”, Advanced Materials, Apr. 2001, pp. 497-500, vol. 13, No. 7.
Awad, et al., “Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites,” Thermochimica Acta, pp. 3-11, 2004, vol. 409.
Balducci, et al., “High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte,” J. Power Sources, pp. 922-927, Jan. 3, 2007, vol. 165.
Chen et al., The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes. Carbon. 2003;41 (5):959-66. Epub Apr. 9, 2003.
Cui et al., Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries. Nano Lett. 2009;9(9):3370-4. Epub Aug. 5, 2009.
Emmenegger, et al., “Investigation of Electrochemical Double-layer {ECOL) Capacitors Electrodes Based on Carbon Nanotubes and Activated Carbon Materials,” J. of Power Sources, 2003, pp. 321-329, vol. 124.
European Extended Search Report for EP Application No. 21218407.01; dated Jul. 4, 2022 (10 pages).
Evanoff et al., Towards Ultrathick Battery Electrodes: Aligned Carbon Nanotube—Enabled Architecture. Advanced Materials. Jan. 24, 2012;24(4):533-7.
Extended European Search Report for EP 12796013.6 dated Mar. 24, 2015 (F0704.70005EP00). 7 pages.
Extended European Search Report for EP 15849206.6 dated Jul. 4, 2018 (F0704.70053EP00).
Farmer et al., Atomic Layer Deposition on Suspended Single- Walled Carbon Nanotubes via Gas-Phase Noncovalent Functionalization. Nano Lett. 2006;6(4):699-703. Epub Mar. 4, 2006.
Halber, “Researchers Fired Up Over New Battery”, The Tech, Feb. 8, 2006, pp. 1, 5, vol. 50, No. 16.
Hensley, et al., “The evolution of oilfield batteries”, Oilfield Review, Autumn 1998,pp. 42-57.
International Preliminary Report on Patentability for PCT/US12/41438 dated Dec. 27, 2013 (F0704.70005WO00).
International Preliminary Report on Patentability for PCT/US2015/055032 dated Apr. 20, 2017 (F0704.70053WO00).
International Search Report and Written Opinion for PCT/US12/45994 dated Dec. 26, 2012 (F0704.70009WO00).
International Search Report and Written Opinion for PCT/US2007/068314 dated Feb. 13, 2008.
International Search Report and Written Opinion for PCT/US2012/041438 dated Nov. 19, 2012 (F0704.70005WO00).
International Search Report and Written Opinion for PCT/US2012/047474 dated Oct. 16, 2012 (F0704.70010WO00).
International Search Report and Written Opinion for PCT/US2013/027697 dated Jun. 26, 2013 (F0704.70023WO00).
International Search Report and Written Opinion for PCT/US2015/055032 dated May 12, 2016 (F0704.70053WO00).
International Search Report and Written Opinion for PCT/US2017/064152 dated Mar. 22, 2018 (F0704.70084WO00).
International Search Report for PCT/US2014/029992 dated Oct. 7, 2014 (F0704.70033WO00).
International Search Report PCT/US2014/030310 dated Oct. 10, 2014 (F0704.70034WO00).
Johnson et al., Thermocompression bonding of vertically aligned carbon nanotube turfs to metalized substrates. Nanotechnology. Jan. 15, 2009;20(6):065703. 6 pages.
Koch, “Electrochemical Double Layer Capacitors for High Temperature Applications,” 14th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Dec. 6-8, 2004, pp. 33-39.
Koch, “Thermally Robust Capacitors for the Drilling Industry,” Report for U.S. Dept. of Energy Grant No. DE-FG02-06ER84598 for the period Jun. 28, 2006 to Mar. 27, 2007.
Kurtz et al., Chemical vapor deposition of titanium nitride at low temperatures. Thin Solid Films. Jul. 1, 1986;140 (2):277-90.
Lee et al., High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature Nanotechnology. 2010;5:531-7. Epub Jun. 20, 2010.
Liu, et al., “Graphene-Based Supercapacitor with an Ultrahigh Energy Density,” Nano Lett., pp. 4863-4868, 2010, vol. 10.
Marincic, “High Temperature Electrochemical Double Layer Capacitors with Reduced Leakage Rate,” 14th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Dec. 6-8, 2004, pp. 310-316.
Maxwell Active Cell Voltage Management Electronics Document #1011130. Maxwell Technologies. Published Feb. 17, 2007.9 pages.
Maxwell Technologies Application Note, “Maxwell Technologies' Test Procedures for Capacitance, ESR, Leakage Current and Self-Dischange Characterizations of Ultracapacitors,” Jul. 2009, pp. 1-10.
Mikhalin, Issledovanie emokostnyk i elektrokineticheskikh svoistv elektrodov na osnove vysokodispersnogo ugleroda briminitelno k ikh ispolzovaniyu v superkondensatorakh i dlya emkostnoi dionizatsii vody. Dissertatsiya na soiskanie uchenoi stepeni kandidata khimicheskikh nauk. Moskva. 2013;1:36-43.
Morris et al., High-energy, rechargeable Li-ion battery based on carbon nanotube technology. Journal of Power Sources. Nov. 15, 2004;138(1-2):277-80.
Murakami, et al., “Growth of Vertically Aligned Single-walled Carbon Nanotube Films on Quartz Substrates and Their Optical Anisotropy,” Chem. Phys. Lett., 2004, pp. 298-303, vol. 385.
Ng et al., Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochimica Acta. Oct. 5, 2005;51(1):23-8.
Ngo, et al., “Thermal properties of imidazolium ionic liquids,” Thermochimica Acta, pp. 97-102, 2000, vol. 357-58.
Nishida, et al., “Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte,” J. Fluorine Chem., pp. 135-141, 2003, vol. 120.
Niu, et al., “High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes,” Appl. Phys. Lett., Mar. 17, 1997, pp. 1480-1482, vol. 70, No. 11.
Office Action dated Jun. 18, 2014 for U.S. Appl. No. 13/588,452 (F0704,70012US01).
Office Action dated May 29, 2014 for U.S. Appl. No. 13/560,628 (F0704.70011US00).
Office Action dated Oct. 15, 2014 for U.S. Appl. No. 13/587,037 (F0704,70013US01).
Randstrom, “The influence of air and its components on the cathodic stability of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide,” Electrochimica Acta, pp. 1837-1842, Aug. 19, 2007, vol. 53.
Robertson, “Realistic applications of CNTs,” materialstoday, Oct. 2004, pp. 46-52, vol. 7, No. 10.
Schneuwly, et al. “Properties of supercapacitors From the state-of-the-ar to future trends” Proc. PCIM 2000. 9 pages.
Related Publications (1)
Number Date Country
20230282426 A1 Sep 2023 US
Provisional Applications (1)
Number Date Country
62061947 Oct 2014 US
Divisions (2)
Number Date Country
Parent 17141728 Jan 2021 US
Child 18139008 US
Parent 16591901 Oct 2019 US
Child 17141728 US
Continuations (2)
Number Date Country
Parent 15482765 Apr 2017 US
Child 16591901 US
Parent PCT/US2015/055032 Oct 2015 US
Child 15482765 US