The present disclosure is related to the field of nanotechnology and materials science. Nanotechnology may include nanostructures, the chemical compositions of nanostructures, devices that include nanostructures and specific uses of nanostructures which may possess special properties that originate from structure's physical size. Particularly, the present disclosure is directed towards nanosheets.
The detailed description is set forth with reference to the accompanying FIGURE.
The
Overview
While there are many examples of nanostructures that have original properties based on size alone, this disclosure presents an approach wherein the new properties originate not only from the nanostructure's size, but also from the shape of the nanostructures and their surface properties. Nanostructures according to this disclosure may possess anisotropic properties that lead to their ability to exhibit self-assembly under conditions such as, but not limited to, phase boundaries, shear stresses, friction, differences in surface tension, and/or temperature gradients. Such self-assembling properties are not typically displayed by bulk materials of the same chemistry.
This disclosure describes a three-dimensional object with at least a first dimension less than 100 nanometers, and second and third dimensions substantially greater than 100 nanometers. The object may comprise a first surface and a second surface, the first surface having substantially different properties than the second surface. The different surface properties may be the result of different chemical structures or the same chemical structure with different orientations, crystal structures, defects, substitute dopants or other features that may lead to substantial differences in properties. By way of example and not limitation, the surface properties may include, surface termination, surface energy, hydrophilicity, thermal conductivity, coefficients of thermal expansion, reactivity and conductivity. By employing different features on the first surface and the second surface of the object, the particulate matter comprising the object may be configured to have a combination of different surface properties.
In some embodiments, the object may be built using a top-down approach or, in other embodiments, the object may be built using a bottom-up approach.
Multiple and varied example implementations and embodiments are described below. However, these examples are merely illustrative, and other implementations and embodiments of a nanostructure with functionally different surfaces may be implemented without departing from the scope of the disclosure.
Illustrative Nanostructure with Functionally Different Surfaces
The embodiments shown in the
Embodiment One
As illustrated in the
In one specific example, serpentine powder of a lizardite variety was dry-ground into a powder with an average particle size of less than 1 micron using a Spex SamplePrep® 8000M High Energy Ball Mill. After grinding, the powder was heated to 400° C. for eight hours to produce lamellar dehydration. The weight of the sample decreased by three to four percent, while full dehydration leads to thirteen percent weight loss. The resulting powder was then dispersed into ethanol and sonicated using a Cole-Parmer® 300 W Ultrasonic Processor for one hour. The resulting flakes were observed to have a distorted magnesium oxide structure on one side and a tetrahedral silica structure on the other side. In some embodiments, the side comprising magnesium oxide may attach to a metals' surface, exposing the silica side on the outside.
Embodiment Two
In a second embodiment, nanostructures with two different sides can be synthesized using a bottom-up approach, such as the direct synthesis of layered nanosheets with subsequent modification of one side of the nanostructure.
In one specific example, finely ground forsterite powder was mixed with sodium metasilicate and subjected to microwave hydrothermal synthesis at 250° C. in a Biotage® Advancer Kilobatch Microwave Pressure Reactor for three hours. The resulting powder was dispersed in ethanol using a 300 W ultrasonic processor. Sedimentation was used to separate synthesized nanosheets from larger host particles of forsterite.
Other methods may be used to generate nanostructures with a first side having substantially different properties than a second side. Some example methods may include lithography, chemical or plasma vapor deposition of a material on one of the first side or the second side of the nanostructure. For example, gold or platinum may be deposited on nanosheets of talc or molybdenum disulphide.
Although this disclosure uses language specific to structural features and/or methodological acts, it is to be understood that the scope of the disclosure is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as illustrative forms of implementation.
This application claims the benefit of U.S. Provisional Application No. 61/654,089, filed Jun. 1, 2012, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6954235 | Russell et al. | Oct 2005 | B1 |
7122842 | Hill | Oct 2006 | B2 |
20030066998 | Lee | Apr 2003 | A1 |
20050051777 | Hill | Mar 2005 | A1 |
20060240227 | Zhang | Oct 2006 | A1 |
20100065818 | Kim et al. | Mar 2010 | A1 |
20100092809 | Drzal | Apr 2010 | A1 |
20110111947 | Natsui | May 2011 | A1 |
20110170208 | Zhao | Jul 2011 | A1 |
20110186817 | Bowers | Aug 2011 | A1 |
20110210308 | Kim et al. | Sep 2011 | A1 |
20130177503 | Bao | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
1398925 | Feb 2003 | CN |
1510088 | Jul 2004 | CN |
1978096 | Jun 2007 | CN |
101121828 | Feb 2008 | CN |
102300705 | Dec 2011 | CN |
2347841 | Mar 2009 | RU |
2421394 | Jun 2011 | RU |
2434043 | Jul 2011 | RU |
2000015545 | Mar 2000 | WO |
Entry |
---|
PCT Search Report and Written Opinion from PCT/US/2013/043805 (counterpart of this application) dated Sep. 19, 2013, 8 pages in English. |
The European Office Action dated Sep. 7, 2014 for European patent application No. 1379853.8, a counterpart foreign application of U.S. Appl. No. 13/905,066, 7 pages. |
The Extended European Search Report dated Aug. 20, 2015 for European patent application No. 13798053.8, 4 pages. |
Database WPI Week 201058 Thomson Scientific, London, GB, Jul. 8, 2010, 8 pages. |
Translated Chinese Office Action dated Oct. 13, 2015 for Chinese Patent Application No. 201380028992.2, a counterpart foreign application of U.S. Appl. No. 13/905,066, 16 pages. |
Si et al., “Controlled-Synthesis, Self-Assembly, Behavior, and Surface-Dependent Optical Properties of High-Quality Rare-Earth Oxide Nanocrystals,” Chem. Mater., vol. 19, No. 1, American Chemical Society, 2007, pp. 18-27. |
Translated Chinese Office Action dated Jul. 7, 2016 for Chinese Patent Application No. 201380028992.2, a counterpart foreign application of U.S. Appl. No. 13/905,066, 19 pages. |
The European Office Action dated Mar. 11, 2016 for European patent application No. 13798053.8, a counterpart foreign application of U.S. Appl. No. 13/905,066, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20130323507 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
61654089 | Jun 2012 | US |