The present invention relates to nanowire light emitting diodes structures, in particular arrays of nanowire light emitting devices and in particular to contacting thereof.
Light emitting diodes (LEDs) are increasingly used for lighting, but still there are some technological challenges to overcome, in particular with regard to large-scale processing, in order to reach the real breakthrough.
Over recent years the interest in nanowire technology has increased. In comparison with LEDs produced with conventional planar technology nanowire LEDs offer unique properties due to the one-dimensional nature of the nanowires, improved flexibility in materials combinations due to less lattice matching restrictions and opportunities for processing on larger substrates. Suitable methods for growing semiconductor nanowires are known in the art and one basic process is nanowire formation on semiconductor substrates by particle-assisted growth or the so-called VLS (vapor-liquid-solid) mechanism, which is disclosed in e.g. U.S. Pat. No. 7,335,908. Particle-assisted growth can be achieved by use of chemical beam epitaxy (CBE), metalorganic chemical vapour deposition (MOCVD), metalorganic vapour phase epitaxy (MOVPE), molecular beam epitaxy (MBE), laser ablation and thermal evaporation methods. However, nanowire growth is not limited to VLS processes, for example the WO 2007/102781 shows that semiconductor nanowires may be grown on semiconductor substrates without the use of a particle as a catalyst. One important breakthrough in this field was that methods for growing group III-V semiconductor nanowires, and others, on Si-substrates have been demonstrated, which is important since it provides a compatibility with existing Si processing and non-affordable III-V substrates can be replaced by cheaper Si substrates.
One example of a bottom emitting nanowire LED is shown in WO 2010/14032. This nanowire LED comprises an array of semiconductor nanowires grown on a buffer layer of a substrate, such as a GaN buffer layer on a Si substrate. Each nanowire comprises an n-type nanowire core enclosed in a p-type shell and a p-electrode with an active layer formed between the n-type and p-type regions that form a pn or pin junction. The buffer layer has the function of being a template for nanowire growth as well as serving as a current transport layer connecting to the n-type nanowire cores. Further the buffer layer is transparent since the light that is generated in the active area is emitted through the buffer layer.
Although having advantageous properties and performance the processing with regard to contacting of the nanowire LEDs requires new routes as compared to planar technology. Since nanowire LEDs comprise large arrays of nanowires, thereby forming a three-dimensional surface with high aspect ratio structures, deposition of contact material using line-of-sight processes is a challenging operation.
In view of the foregoing one object of embodiments of the invention is to provide improved nanowire LEDs and new routes for contacting thereof.
This object is achieved by a semiconductor device and a method for forming a semiconductor device in accordance with the independent claims.
A nanowire light emitting diode (LED) structure in accordance with embodiments of the invention comprises nanowires arranged side by side. Each nanowire comprises a first conductivity type (e.g., n-type) nanowire core and an enclosing second conductivity type (e.g., p-type) shell for forming a pn or pin junction that in operation provides an active region for light generation. While the first conductivity type of the core is described herein as an n-type semiconductor core and the second conductivity type shell is described herein as a p-type semiconductor shell, it should be understood that their conductivity types may be reversed. A p-electrode layer extends over a plurality of nanowires and is in electrical contact with at least a top portion of the nanoelements to connect to the p-type shell. The p-electrode layer is at least partly air-bridged between the nanowires.
Traditional, planar LEDs comprise functional layers in a sandwich structure. In their simplest form, the planar LEDs comprise at least three functional layers: a p-doped layer, an active region, and an n-doped layer. Functional layers may also include wells, barriers, intrinsic and graded layers (e.g., as part of the active region). The LED arrays described in embodiments of the invention distinguish themselves by at least one of the functional layers being electrically separated from the surrounding LEDs in the array. Another distinguishing feature is the utilization of more than one facet and non-planarity of functional layers as emission layers.
Although the fabrication method described herein preferably utilizes a nanowire core to grow semiconductor shell layers on the cores to form a core-shell nanowire, as described for example in U.S. Pat. No. 7,829,443, to Seifert et al., incorporated herein by reference for the teaching of nanowire fabrication methods, it should be noted that the invention is not so limited. For example, as will be described below, in the alternative embodiments, only the core may constitute the nanostructure (e.g., nanowire) while the shell may optionally have dimensions which are larger than typical nanowire shells. Furthermore, the device can be shaped to include many facets, and the area ratio between different types of facets may be controlled. This is exemplified in figures by the “pyramid” facets and the vertical sidewall facets. The LEDs can be fabricated so that the emission layer formed on templates with dominant pyramid facets or sidewall facets. The same is true for the contact layer, independent of the shape of the emission layer.
The use of sequential (e.g., shell) layers gives that the final individual device (e.g., a pn or pin device) may have a shape anywhere between a pyramid shape (i.e., narrower at the top or tip and wider at the base) and pillar shaped (e.g., about the same width at the tip and base) with circular or hexagonal or other polygonal cross section perpendicular to the long axis of the device. Thus, the individual devices with the completed shells may have various sizes. For example, the sizes may vary, with base widths ranging from 100 nm to several (e.g., 5) μm, such as 100 nm to below 1 micron, and heights ranging from a few 100 nm to several (e.g., 10) μm.
A method of manufacturing a nanowire LED structure in accordance with embodiments of the invention comprises the steps of:
In prior art methods, arrays of nanowire LEDs are contacted by depositing a contact layer that covers essentially the whole surface of the nanowires and intermediate surfaces between the nanowires using sputtering or evaporation techniques. Due to the high aspect ratio, and often small spacing of the nanowires these line-of-sight processes results in a non-conformal coverage. In particular, there is a risk that the contact layer becomes discontinuous and that the contact layer on the intermediate surfaces (e.g., the horizontal surface exposed between vertical nanowires) becomes too thin. In operation, this will result in losing the effect of some nanowires and a poor current spreading in the device, respectively. With an air-bridged p-electrode in accordance with embodiments of the invention, the risk for discontinuities is reduced or eliminated, and the lateral current spreading is improved due to a uniform thickness of the p-electrode and optional additional layers deposited on the p-electrode.
One advantage of an air-bridge p-contact or electrode for top-emitting nanowire LEDs is that a thick contact layer can directly contact the top portion of the nanowire LED. For top emitting nanowire LEDs, a transparent p-contact layer is used. Without the air-bridge, the p-electrode layer at the nanowire top portion must be made much thicker, which increases absorption.
One advantage of the air-bridge p-contact or electrode for bottom-emitting nanowire LEDs is that the reflective p-contact layer is only arranged on the top portion of the nanowires and not the whole circumferential nanowire area. A reflective layer extending down on the whole circumferential area would give significant losses due to total internal reflection.
Thus, embodiments of the invention make it possible to obtain an efficient nanowire LED with regard to internal conductivity, light generation and coupling of light out from the nanowire LED.
Embodiments of the invention are defined in the dependent claims. Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings and claims.
Preferred embodiments of the invention will now be described with reference to the accompanying drawings, wherein:
a-b schematically illustrate side cross sectional views of air-bridged p-electrodes in accordance with embodiments of the invention,
a-h schematically illustrate side cross sectional views of a first implementation of a method in accordance with one embodiment of the invention,
i-s schematically illustrate side cross sectional views of a second implementation of a method in accordance with another embodiment of the invention,
a-i schematically illustrate side cross sectional views of a third implementation of a method in accordance with another embodiment of the invention,
As used herein, the term “air-bridged electrode” is taken to mean an electrode structure that extends between adjacent individual devices to leave an empty space between the adjacent devices. The empty space is preferably surrounded by the adjacent devices on the sides, the air-bridged electrode on the “top” and the support of the devices on the “bottom”, where the terms top and bottom are relative depending on which way the device is positioned. For example, in one embodiment in which each individual device is a radial core-shell nanowire, the air-bridged electrode covers the nanowire tips and the space between the nanowires, such that there is an empty space beneath the electrode between the nanowire support layer (e.g., substrate, buffer layer, a reflective or transparent conductive layer, insulating mask layer, etc.) and the electrode.
In the art of nanotechnology, nanowires are usually interpreted as nanostructures having a lateral size (e.g., diameter for cylindrical nanowires or width for pyramidal or hexagonal nanowires) of nano-scale or nanometer dimensions, whereas its longitudinal size is unconstrained. Such nanostructures are commonly also referred to as nanowhiskers, one-dimensional nano-elements, nanorods, nanotubes, etc. Generally, nanowires with a polygonal cross section are considered to have at least two dimensions each of which are not greater than 300 nm. However, the nanowires can have a diameter or width of up to about 1 μm. The one dimensional nature of the nanowires provides unique physical, optical and electronic properties. These properties can for example be used to form devices utilizing quantum mechanical effects (e.g., using quantum wires) or to form heterostructures of compositionally different materials that usually cannot be combined due to large lattice mismatch. As the term nanowire implies, the one dimensional nature is often associated with an elongated shape. In other words, “one dimensional” refers to a width or diameter less than 1 micron and a length greater than 1 micron. Since nanowires may have various cross-sectional shapes, the diameter is intended to refer to the effective diameter. By effective diameter, it is meant the average of the major and minor axis of the cross-section of the structure.
By growing the nanowires 1 on a growth substrate 5, optionally using a growth mask 6 (e.g., a nitride layer, such as silicon nitride dielectric masking layer) to define the position and determine the bottom interface area of the nanowires 1, the substrate 5 functions as a carrier for the nanowires 1 that protrude from the substrate 5, at least during processing. The bottom interface area of the nanowires comprises the area of the core 2 inside each opening in the masking layer 6. The substrate 5 may comprise different materials such as III-V or II-VI semiconductors, Si, Ge, Al2O3, SiC, Quartz, glass, etc., as discussed in Swedish patent application SE 1050700-2 (assigned to GLO AB), which is incorporated by reference herein in its entirety. In one embodiment, the nanowires 1 are grown directly on the growth substrate 5.
Preferably, the substrate 5 is also adapted to function as a current transport layer connecting to the n-side of each nanowire 1. This can be accomplished by having a substrate 5 that comprises a buffer layer 7 arranged on the surface of the substrate 5 facing the nanowires 1, as shown in
Thus, the buffer layer 7 provides means for contacting the n-side of the nanowires 1. In prior art nanowire LEDs, the contacting of the p-side of each nanowire 1 is typically accomplished by depositing a p-electrode comprising a conductive layer that encloses the p-type shell 3 of each nanowire 1 and extends to an insulating layer on the substrate or buffer layer. The conductive layer extends on this insulating layer to adjacent nanowires. However, since the nanowires of a nanowire LED are closely spaced and being of high aspect ratio in order to obtain a high luminescence, the p-electrode deposition is a challenging operation. Typically line-of-sight processes, such as sputtering or evaporation are used for electrode deposition. Due to the line-of-side deposition, a preferential growth on the tips of the nanowires and a shadowing effect are observed that result in a tapering of the p-electrode with decreased thickness towards the base of the nanowires 1. Hence, in order to obtain efficient lateral current spreading, the thickness of the p-electrode will become unnecessarily thick on the tips of the nanowires while being insufficiently thick in between the nanowires. The shadowing effect may also be so severe that there are discontinuities in the p-electrode.
A p-electrode 8 in accordance with embodiments of the invention is at least partly air-bridged between adjacent nanowires 1.
Different additional layers may be deposited on the p-electrode. For example layers that improve electrical conductivity or coupling of light out from/into the nanowire may be deposited on the nanowire.
The nanowire LED structure of the embodiments of the present invention is either adapted for top emitting, i.e., light emission through the p-electrode, or bottom emitting, i.e., light emission through the support layer (i.e., through the conductive layer and/or buffer layer and/or substrate). The requirements on the p-electrode are different for these two cases. As used herein, the term light emission includes both visible light (e.g., blue or violet light) as well as UV or IR radiation.
For a top emitting device, the p-electrode needs to be transparent (i.e., it should transmit the majority of light emitted by the LED). Indium Tin Oxide (ITO) is a suitable material for the p-electrode, in particular for the top emitting nanowire LED. The ITO preferably has a thickness of 150-900 nm, more preferably 250-650 nm, most preferably about 500 nm. ITO has been extensively used also for planar components where LED devices are formed by layer-by-layer techniques. In such components the thickness of the ITO layer is preferably about 150 nm since this is enough to obtain an acceptable current spreading. One drawback with increased thickness is that the ITO has comparatively high absorption of light. Therefore the ITO thickness is kept as low as possible. Another reason for keeping the ITO thickness low is that the ITO cannot readily be wet etched if too thick, i.e. more than 150 nm. Surprisingly the optimal ITO thickness for the p-electrode in accordance with the embodiments of then present invention is high. This can be explained by the fact that the efficiency of the nanowire LED is determined by a trade-off between good light coupling, i.e. comparatively thick ITO, and low absorption, i.e. comparatively thin ITO. The ITO can also be combined with layers of other materials to obtain specific properties. For example, similar properties as when having a 500 nm ITO can be obtained by having a 150 nm ITO covered with a silicon oxide layer. A thick p-electrode, preferably uniformly thick, will also contribute to efficient heat dissipation.
Other suitable materials for a p-electrode on a top emitting device are ZnO, doped ZnO and other transparent conducting oxides (TCOs). Important parameters for this material are good transparency, electrical conductivity and the ability to make low resistive contact to the shell. High thermal conductivity is also desirable, together with a matching refractive index (depending on configuration).
In one embodiment of a top emitting nanostructured LED the substrate is provided with a reflecting means (e.g., mirror) that preferably extends in a plane under the nanowire LEDs.
For a bottom emitting LED, the p-electrode is preferably reflective. As shown in the following examples, the p-electrode may comprise one or more additional layers deposited on the p-electrode for improving the reflective and/or conductive properties.
b schematically illustrates one embodiment of a nanowire LED structure in accordance with embodiments of the invention. In principle it is the same structure as shown in
In an alternative embodiment, in addition to the mask layer 6, the space between the nanowires can also be filled fully or partially with a dielectric (i.e., insulating) material, such as silicon oxide. For partially filled space, the air gap size below the air-bridge is reduced. For fully filled space, there is no longer an air-bridge. Thus, for the embodiments described below with regard to the contact schemes for the nanowires, it should be understood than the nanowires may be contacted either in an air-bridged or non-air-bridged configurations.
In the following first implementation of a method for forming a top emitting nanowire LED structure is described with reference to
a shows an array of nanowires 1 grown from a buffer layer 7 through a growth masking layer 6. The nanowires preferably comprise an n-type nanowire core 2 enclosed in a p-type shell layer 3 with an intermediate active layer 4 for light generation, as shown in
Referring to
Protection layer 9 deposition is followed by opening up, through lithography and etching, to the buffer layer 7 through the protection layer and the growth mask in the n-pad area 11. In other words, as shown in
Referring to
Referring to
Thereafter the p-electrode layer 16 is deposited. Since the p-electrode becomes elevated and does not have to extend down deeply into the narrow space between the nanowires 1, line-of-sight processes such as sputtering or evaporation can be used. Of course the n-electrode layer is formed at the same time since the n-pad area 11 is exposed. It should be noted that p-electrode 16 does not contact the n-type buffer layer 7 in the p-pad area 15 because the buffer layer 7 is covered by the masking layer 6 in the p-pad area. Thus, a short circuit between the p-electrode and the n-buffer layer/n-nanowire cores is avoided. However, if the left side portion of layer 16 is used to form the n-electrode, then it this portion of layer 16 contacts the exposed buffer layer 7 between the nanowires in the n-pad area 11. It should be noted that layer 16 does not contact the nanowires 1 in the non-active area 13 which is covered by the photoresist 13.
Referring to
Referring to
Referring to
Referring to
Since layer 16 was removed in non-active area 13, the same layer 16 may be used to form both p- and n-electrodes. Thus, in the above process sequence illustrated by
However, in an alternative second embodiment, the p-electrode is provided in a first step and the n-electrode is formed from a different material at a later stage. Such a process is discloses in
The first two steps in the second embodiment method are identical to the first embodiment method, i.e.
In the next step, a sacrificial (e.g., resist) layer 10a is deposited in two different thicknesses such that no nanowires are left uncovered in the n-pad area 11 as in the first embodiment. Thus, in the left hand side of
l shows that the protective layer 9 is at least partially removed from the exposed nanowire tips in LED area 13 in order to provide for contact between the p-shell 3 of the nanowires in area 13 and the p-electrode.
The p-electrode layer 16 is then deposited as shown in
As shown in
The exposed p-electrode layer 16 is then removed from areas 11 and 13 by selective etching, as shown in
As shown in
Next, a new photoresist pattern 19 is applied to cover areas 13, 14 and 15 but not the n-pad area 11, as can be seen in
N-electrode layer 20 is then deposited over the entire structure, as shown in
s shows a lift-off step in which the photoresist pattern 19 is removed to lift off layer 20 in areas 13, 14 and 15, such that the remaining layer 20 in area 11 forms the n-electrode. There is no electrode layers 16, 20 in the non-active area 13. This prevents shorting of layer 16 and 20. Dummy nanowires are located in the non-active area 13.
h and 4s show in process devices prior to formation of contacts (e.g., lead wires or bump electrodes) to the p-electrode 16a, 16 and n-electrode 16b, 20, respectively. However, it should be understood that the contacts described with respect to
The following third implementation of a method for forming a bottom emitting nanowire LED structure is described with reference to
a shows the structure which is similar to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
As mentioned above, nanowires may comprise heterostructures of compositionally different materials, conductivity type and/or doping such as the above exemplified radial heterostructures forming the pn or pin junction. In addition, axial heterostructures within the nanowire core may also be formed. These axial heterostructures can form pn- or p-i-n-junctions that can be used for light generation in a nanowire LED.
Although the present invention is described in terms of contacting of nanowire LEDs, it should be appreciated that other nanowire based semiconductor devices, such as field-effect transistors, diodes and, in particular, devices involving light absorption or light generation, such as, photodetectors, solar cells, lasers, etc., can be contacted in the same way, and in particular the air-bridge arrangement can be implemented on any nanowire structures.
All references to top, bottom, base, lateral, etc are introduced for the easy of understanding only, and should not be considered as limiting to specific orientation. Furthermore, the dimensions of the structures in the drawings are not necessarily to scale.
Further embodiments of the invention provide processes for packaging top emitting LEDs as disclosed above, and such processes will be described below with reference to
Reference is first made to
In order to attach a mirror, different methods can be used. In one embodiment, after the p-contact 92 has been provided, an n-contact 93(20) is provided on selected n-contact areas 11 on the LED array on the tips of the nanowires and between the nanowires in contact with the buffer layer 96 in the selected area 11 to provide a base for later wire bonding. The n-contact, suitably made of Ti/Al or other conductors (e.g., transparent alternatives, such as TCO), is deposited so as to cover the entire nanowire 94(1) and down through the masking layer 95(6) so as to contact the buffer layer 96(7), whereby after suitable wire bonding can be applied to the LED array. The deposition of the n-contact can be performed by any deposition technique, exemplified by sputtering, thermal or e-beam evaporation and plating. In order to make contact for the Ti/Al, openings are made in the masking layer 95 by etching e.g., wet etching or by dry etching (RIE).
In order to enable handling during the further processing of the array, a temporary carrier C is bonded to the p-contact side. The carrier is schematically shown in ghost lines. This carrier is suitably a silicon wafer, a ceramic substrate, or a glass or metal plate. There are several methods for achieving the bonding of the carrier, such as a product obtainable from Brewer Science called “Temporary wafer bonding” or contact bonding. Other alternatives are to use photoresist, BCB or some other polymer temporary adhesive material. The adhesive is coated on the components to be bonded and pressure (and optionally heating) is applied. When the carrier is attached, the original growth substrate 5 on which the nanowires were grown is subjected to an etching procedure to provide a recess 97, such as an opening, depression or full removal of the growth substrate down to the GaN/AlGaN buffer layer, i.e. on the back side of the array. The width of the recess is indicated by the bracket. Etching is suitably by dry etching, e.g., the so called Bosch Process, well known to the skilled artisan. It is also possible to use wet chemical methods or a combination of grinding and etching.
A further step of removing (partly or entirely) the GaN/AlGaN buffer layer and replacing it with a conductive layer (e.g., 91) can optionally be made at this point. In top emitting applications this layer can preferably comprise a mirror, but should be transparent for bottom emitting applications.
If, the growth substrate is only partly removed, in order to protect the areas of the substrate which should not form the depression, suitable masks (e.g., photoresist) are applied, depending on the etch method used.
The mirror 91 is provided in the recess 97 for a top emitting LED. If desired, plural mirrors may be formed in plural recesses in the substrate. The provision of the mirror can be performed in several different ways. A preferred method is by sputtering Ag into the recess 97 to a thickness of about 1 μm. Thicker layers improve thermal conductivity but usually do not improve reflectivity appreciably. Alternatively methods such as thermal or e-beam evaporation or plating can be used. This mirror can be passive in the sense that it is not electrically active in the array. The mirror simply reflects light out from the array to the top of the nanowires. It can also be active, but then additional steps, such as thinning of resistive layers should be made if the buffer ends with a material such as AlGaN.
After the mirror has been provided, the recess 97 is filled up with a filler material 98, e.g. epoxy or other suitable heat conductive material, preferably of high mechanical strength, so as to provide structural rigidity. Other appropriate materials are exemplified by, but not limited to TiN, graphene, and other polycrystalline or amorphous carbon films. Such materials may be most suitable in cases where the growth substrate is fully removed, as deposition times may be a constraint when used in deep recess structures. Then, the entire structure is debonded from the temporary carrier C to arrive at the structure shown in
The structure thus obtained is mounted to a suitable mount structure or carrier 100, as shown in
Now, with reference to
After the removal of the substrate so as to expose the buffer layer (e.g., AlGaN) 7, a mirror 111 is provided on the buffer layer 7. Suitably an Ag mirror is provided by sputtering. Then, the assembly is glue bonded to a new substrate 112, preferably using any of silicone, epoxy, BCB or other types of polymer 113 as adhesive. Finally, the carrier C is removed.
The same process steps as in the previous embodiment are used to make contacts, wire bonding and the protective “bulb” 105, as shown in
In a variation of the process just described in connection with
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, on the contrary, it is intended to cover various modifications and equivalent arrangements within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5376580 | Kish et al. | Dec 1994 | A |
6194743 | Kondoh et al. | Feb 2001 | B1 |
6320206 | Coman et al. | Nov 2001 | B1 |
6420199 | Coman et al. | Jul 2002 | B1 |
6800500 | Coman et al. | Oct 2004 | B2 |
6812502 | Chien et al. | Nov 2004 | B1 |
6818061 | Peczalski et al. | Nov 2004 | B2 |
7125734 | Sackrison et al. | Oct 2006 | B2 |
7221044 | Fan et al. | May 2007 | B2 |
7274040 | Sun | Sep 2007 | B2 |
7335908 | Samuelson et al. | Feb 2008 | B2 |
7456035 | Eliashevich et al. | Nov 2008 | B2 |
7491565 | Coman et al. | Feb 2009 | B2 |
7569941 | Majumdar et al. | Aug 2009 | B2 |
7675084 | Wierer et al. | Mar 2010 | B2 |
7714337 | Kim et al. | May 2010 | B2 |
7718449 | Gao et al. | May 2010 | B2 |
7763477 | Yuan et al. | Jul 2010 | B2 |
7816700 | Kim | Oct 2010 | B2 |
7829443 | Seifert et al. | Nov 2010 | B2 |
7867793 | Basin et al. | Jan 2011 | B2 |
7871839 | Lee et al. | Jan 2011 | B2 |
7910937 | Chen et al. | Mar 2011 | B2 |
7919780 | Lee | Apr 2011 | B2 |
7960260 | Samuelson et al. | Jun 2011 | B2 |
8350251 | Lowgren et al. | Jan 2013 | B1 |
20050227391 | Jin et al. | Oct 2005 | A1 |
20060131679 | Hantschel et al. | Jun 2006 | A1 |
20080012030 | Yoon et al. | Jan 2008 | A1 |
20080036038 | Hersee et al. | Feb 2008 | A1 |
20080135089 | Tsakalakos et al. | Jun 2008 | A1 |
20080179603 | Sakai et al. | Jul 2008 | A1 |
20090272971 | Lee et al. | Nov 2009 | A1 |
20100006817 | Ohlsson et al. | Jan 2010 | A1 |
20100059769 | Jeong | Mar 2010 | A1 |
20100109030 | Krames et al. | May 2010 | A1 |
20110240959 | Konsek et al. | Oct 2011 | A1 |
20110254034 | Konsek et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
H05-283741 | Oct 1993 | JP |
2007-059921 | Mar 2007 | JP |
2008-098220 | Apr 2008 | JP |
2009-152474 | Jul 2009 | JP |
WO2007102781 | Sep 2007 | WO |
WO2008079079 | Jul 2008 | WO |
WO2010014032 | Feb 2010 | WO |
Entry |
---|
International Search Report & Written Opinion, International Application No. PCT/US2011/040932, Feb. 9, 2012. |
International Preliminary Report on Patentability, International Application No. PCT/US2011/040932, Jan. 2, 2013. |
Japanese Patent Office communication for JP. No. 2013-515558, dated Apr. 20, 2015. |
Number | Date | Country | |
---|---|---|---|
20140141555 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
61356167 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13163280 | Jun 2011 | US |
Child | 14166308 | US |