The present application claims priority from Japanese Patent Application No. 2022-050284 filed on Mar. 25, 2022, the entire contents of which are hereby incorporated by reference.
The disclosure relates to a nap spot selection method and a nap spot selection system that select a nap spot positioned along a traveling route of a vehicle.
In long-distance driving on a freeway, a user may sometimes take a break by stopping a vehicle for a long time, such as taking a nap or spending a night in the vehicle at a rest area or a parking area. The user may sometimes use an air conditioner during a long time stop of the vehicle to ensure a comfort in a vehicle compartment.
An electric vehicle such as an electric automobile or a hybrid vehicle is equipped with a battery directed to traveling of the vehicle. Unlike an engine vehicle, the electric vehicle has no noise or exhaust gas caused by idling. Accordingly, the user is able to take a nap comfortably upon using the air conditioner during a stop of the vehicle. However, operating the air conditioner for a long time results in an increase in an amount of power consumption of the battery.
In order to suppress the power consumption amount of the battery as a result of operating the air conditioner during a stop of the vehicle, Japanese Unexamined Patent Application Publication (JP-A) No. 2019-22377 discloses a vehicle system that displays, on an in-vehicle display, information on a facility having an external power supply device when an operation of an air conditioner is predicted during a long time stop of an electric vehicle. The vehicle system predicts the operation of the air conditioner during the stop of the vehicle on the basis of data on an outside air temperature. In a case where the operation of the air conditioner is predicted, the vehicle system displays the information on the facility having the external power supply device that allows for charging of the battery, by giving more priority to the information on the facility having the external power supply device than information on any other facility among a plurality of facilities.
An aspect of the disclosure provides a nap spot selection method including: choosing nap spots positioned along a traveling route of an electric vehicle that includes a battery and an air conditioner; acquiring data on an outside air temperature of each of the chosen nap spots; calculating, based on the outside air temperature data, a power consumption amount of the battery when the air conditioner is operated for a predetermined time at each of the nap spots; calculating, based on the outside air temperature data, a deterioration level of the battery at each of the nap spots; and selecting, from the nap spots, a nap spot in which the power consumption amount of the battery and/or the deterioration level of the battery are/is relatively low, based on the calculated power consumption amount of the battery and the calculated deterioration level of the battery.
An aspect of the disclosure provides a nap spot selection system that includes a communicator and a control unit. The communicator is configured to acquire data on an outside air temperature from outside of an electric vehicle that includes a battery and an air conditioner. The control unit is coupled to the air conditioner and the communicator, and includes a choosing unit, a first calculating unit, a second calculating unit, and a selecting unit. The choosing unit is configured to choose nap spots positioned along a traveling route of the electric vehicle. The first calculating unit is configured to calculate, based on the outside air temperature data acquired by the communicator, a power consumption amount of the battery when the air conditioner is operated for a predetermined time at each of the nap spots. The second calculating unit is configured to calculate, based on the outside air temperature data, a deterioration level of the battery at each of the nap spots. The selecting unit is configured to select, from the nap spots, a nap spot in which the power consumption amount of the battery and/or the deterioration level of the battery are/is relatively low, based on the power consumption amount of the battery calculated by the first calculating unit and the deterioration level of the battery calculated by the second calculating unit.
An aspect of the disclosure provides a nap spot selection system that includes a communicator and circuitry. The communicator is configured to acquire data on an outside air temperature from outside of an electric vehicle that includes a battery and an air conditioner. The circuitry is coupled to the air conditioner and the communicator, and configured to: choose nap spots positioned along a traveling route of the electric vehicle; calculate, based on the outside air temperature data acquired by the communicator, a power consumption amount of the battery when the air conditioner is operated for a predetermined time at each of the nap spots; calculate, based on the outside air temperature data, a deterioration level of the battery at each of the nap spots; and select, from the nap spots, a nap spot in which the power consumption amount of the battery and/or the deterioration level of the battery are/is relatively low, based on the calculated power consumption amount of the battery and the calculated deterioration level of the battery.
The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments and, together with the specification, serve to explain the principles of the disclosure.
An amount of power consumption of a battery resulting from an operation of an air conditioner during a stop of a vehicle varies depending on a surrounding environment, such as an outside air temperature of a nap spot at which the vehicle is stopped. Accordingly, the battery can deteriorate due to the necessity of more electric power than expected or due to an output of the electric power for a long time in a severe environment, depending on which spot on a driving route the nap spot is to be set.
It is desirable to provide a nap spot selection method and a nap spot selection system that make it possible to suppress a power consumption amount and/or a deterioration amount of a battery directed to traveling of a vehicle.
In the following, some example embodiments of the disclosure are described in detail with reference to the accompanying drawings. Note that the following description is directed to illustrative examples of the disclosure and not to be construed as limiting to the disclosure. Factors including, without limitation, numerical values, shapes, materials, components, positions of the components, and how the components are coupled to each other are illustrative only and not to be construed as limiting to the disclosure. Further, elements in the following example embodiments which are not recited in a most-generic independent claim of the disclosure are optional and may be provided on an as-needed basis. The drawings are schematic and are not intended to be drawn to scale. Throughout the present specification and the drawings, elements having substantially the same function and configuration are denoted with the same reference numerals to avoid any redundant description. In addition, elements that are not directly related to any embodiment of the disclosure are unillustrated in the drawings.
The nap spot selection system 10 may be a system that chooses a spot (a nap spot) at which the vehicle 11 is to be stopped for a long time to take a break in a vehicle compartment, such as a spot at which a nap is to be taken during a traveling route from a departure point to a destination when a user drives for a long distance from the departure point to the aimed destination. The nap spot may be chosen from any of a plurality of nap spots positioned at different locations at which a power consumption amount and/or a deterioration level of the battery 12 are/is estimated to be low when an air conditioner 14 is operated for a predetermined time. Hereinafter, a configuration of the nap spot selection system 10 will be described in detail.
Referring to
The battery 12 may be, for example, a lithium-ion secondary battery having a rated voltage of 200 V or 250 V without limitation. The battery 12 may be coupled to an unillustrated charging unit. The battery 12 may be chargeable by coupling the battery 12 to an external power supply device via the charging unit at a charging station or any other charging spot.
The air conditioner 14 may perform air conditioning inside a vehicle compartment, and configured to operate by receiving a supply of electric power from the battery 12.
The communicator 18 may be, for example, a data communication module (DCM), and configured to communicate with an information processing device provided outside of the vehicle 11. In the example embodiment, the communicator 18 may be configured to communicate with the server 30 as the information processing device provided at an information processing center positioned outside of the vehicle 11.
The server 30 may include a receiver 32 that receives information and a transmitter 34 that transmits data to the outside. The server 30 may transmit, from the transmitter 34 to the vehicle 11, data on an outside air temperature and/or weather received from a weather satellite, for example. The nap spot selection system 10 may supply, to the control unit 20, data received from the server 30 via the communicator 18. The nap spot selection system 10 may also acquire, via the communicator 18, map data stored on the server 30, for example. The thus-acquired map data may be held in the storage 21 of the control unit 20 or displayed on the display 16.
The display 16 may be provided in front of a driver's seat inside the vehicle compartment, and display information on the vehicle 11 or any other information. In the example embodiment, the display 16 may have a touch panel overlaid on a display screen of the display 16. The touch panel may be the input device 17 configured to allow input of information. A user may be able to input a departure point and a destination of the vehicle 11 through the input device 17. For example, the map data acquired by the control unit 20 may be displayed on the display 16, and the departure point and the destination may be inputted through the input device 17 or addresses of the departure point and the destination may be inputted through the input device 17 to set the departure point and the destination.
The control unit 20 may control devices mounted on the vehicle 11, including the nap spot selection system 10. The control unit 20 may include: an information processor such as a central processing unit (CPU) or an application specific integrated circuit (ASIC); a storage such as a random-access memory (RAM) or a read-only memory (ROM); and an input/output interface, for example. The control unit 20 may be electrically coupled to the battery 12, the air conditioner 14, the display 16, the input device 17, and the communicator 18.
The storage 21 of the control unit 21 may contain, for example, a program that controls each device coupled to the control unit 20. The storage 21 may contain data on a map illustrated by way of example in
The choosing unit 22 may choose a plurality of nap spots positioned along a traveling route from the departure point to the destination of the vehicle 11 inputted via the input device 17. In the nap spot selection system 10 according to the example embodiment, the choosing unit 22 may choose, as the nap spot, a rest area and a parking area positioned on a freeway in a case where the traveling route includes the freeway.
The battery remaining amount calculating unit 23 may calculate a state of charge (SOC) of the battery 12. The SOC may be calculated on the basis of an output of a battery sensor. The battery 12 may be provided with the battery sensor.
The power consumption amount calculating unit 24 may calculate a power consumption amount of the battery 12. In the example embodiment, the power consumption amount calculating unit 24 may calculate, on the basis of the outside air temperature data acquired via the communicator 18, the power consumption amount of the battery 12 where the air conditioner 14 is operated for a predetermined time at each of the nap spots chosen by the choosing unit 22. A condition for an operation of the air conditioner 14 at the nap spot, such as a temperature of air conditioning, may be set in advance by the user through the input device 17 upon setting the traveling route. A time during which the air conditioner 14 is to be operated, or a predetermined time, may be a time during which the vehicle 11 is to be stopped at the nap spot, and may be inputted by the user through the input device 17 upon setting the traveling route. In one embodiment, the time during which the air conditioner 14 is to be operated may serve as a “predetermined time”. For example, an air blowing mode where the predetermined time is 3 hours and the air conditioning temperature of the air conditioner 14 is 22 degrees centigrade may be set as a predetermined blowing mode suitable for taking a nap.
In an example illustrated in
The power consumption amount calculating unit 24 may also calculate a power consumption amount of the battery 12 that is based on the traveling of the vehicle 11 on the traveling route. For example, the power consumption amount calculating unit 24 may calculate the power consumption amounts of the battery 12 that are based on the traveling of the vehicle 11 on the traveling route before and after the nap spot, for each of the patterns of the traveling route. In an example illustrated in
The battery deterioration level calculating unit 25 may calculate a deterioration level of the battery 12 at each of the nap spots, on the basis of the outside air temperature data of each of the nap spots. For example, the battery deterioration level calculating unit 25 may calculate the deterioration level of the battery 12, on the basis of a temperature of the battery 12 upon the operation of the air conditioner 14 estimated on the basis of the outside air temperature data and the SOC of the battery 12 of each of the nap spots. In the example embodiment, the battery deterioration level calculating unit 25 may calculate, as the deterioration level, an amount of change in a state of health (SOH) that indicates a deterioration state of the battery 12. For example, the battery deterioration level calculating unit 25 may calculate the SOC at each of the nap spots, by calculating the SOC of the battery 12 at the departure point by the battery remaining amount calculating unit 23 and by further calculating, on the basis of the SOC at the departure point, the SOC of the battery 12 in a case of traveling to the nap spot. In an example illustrated in
The battery deterioration level calculating unit 25 may calculate a deterioration amount (ΔSOH) of the battery 12, on the basis of the outside air temperature data and the SOC at the nap spot, and on the basis of data on a map that is stored in the storage 21 and indicates a preset relationship between a temperature and the SOC.
The quadrant creating unit 26 may create a four-quadrant matrix in which the power consumption amount and the deterioration level of the battery 12 at each of the nap spots are divided into four quadrants, on the basis of a high-low degree of the power consumption amount and a high-low degree of the battery deterioration level. In the example embodiment, the quadrant creating unit 26 may plot the power consumption amount and the deterioration level of each pattern respectively calculated by the power consumption amount calculating unit 24 and the battery deterioration level calculating unit 25 on a graph that indicates the power consumption amount and the battery deterioration amount, and divide the plotted graph into four quadrants on the basis of the high-low degree of the power consumption amount and the high-low degree of the battery deterioration level.
In the following, described with reference to
Referring to
Thereafter, the quadrant creating unit 26 may calculate a reference point R in which the sum of distances to the respective points A2, B2, C2, and D2 becomes the minimum. In
The selecting unit 27 may select, from the chosen nap spots, a nap spot in which the power consumption amount and/or the deterioration level of the battery 12 are/is low, on the basis of the power consumption amount and the deterioration level respectively calculated by the power consumption amount calculating unit 24 and the battery deterioration level calculating unit 25. In the example embodiment, the selecting unit 27 may select a pattern of the traveling route having the nap spot in which the power consumption amount and/or the deterioration level are/is low.
Described next with reference to
In a case where the nap spot selection system 10 is started up and the departure point and the destination are inputted by the input device 17 (step S11), the control unit 20 may choose a traveling route that includes a freeway (step S12). One of the traveling routes may be chosen manually by the user or automatically by the control unit 20 in a case where multiple traveling routes are present. The choosing unit 22 may choose a plurality of nap spots positioned along the chosen traveling routes (step S13). For example, the choosing unit 22 may choose a plurality of proposed nap spots such as the rest area or the parking area. In one embodiment, this process may serve as a “choosing step”. Further, the choosing unit 22 may choose patterns of the traveling route having different nap spots from each other, on the basis of the plurality of chosen nap spots (step S13).
Thereafter, in step S14, in a case where the nap spots (the proposed nap spots) are chosen, the nap spot selection system 10 may acquire the outside air temperature data acquired via the communicator 18. In one embodiment, this process may serve as an “outside air temperature acquiring step”. Further, in step S14, the nap spot selection system 10 may calculate the temperature and the SOC of the battery 12 at each of the nap spots. In one embodiment, this process may serve as the “outside air temperature acquiring step”. The outside air temperature data may contain data on an expected air temperature at the time of arrival at the proposed nap spot.
Thereafter, in step S15, the power consumption amount calculating unit 24 may calculate the power consumption amount of the battery 12 where the air conditioner 14 is operated for the predetermined time at each of the nap spots. In one embodiment, this process may serve as a “power consumption amount calculating step”. Further, in step S15, the battery deterioration level calculating unit 25 may calculate the deterioration level of the battery 12. In one embodiment, this process may serve as a “battery deterioration level calculating step”. Thereafter, in step S16, the power consumption amount calculating unit 24 may calculate the power consumption amount of the battery 12 that is based on the traveling of the traveling route. In one embodiment, this process may serve as the “power consumption amount calculating step”. In some embodiments, the power consumption amount calculating step and the battery deterioration level calculating step may be reversed in order. For example, the power consumption amount of the battery 12 based on traveling of the vehicle 11 may be calculated prior to the calculation of the power consumption amount and/or the battery deterioration amount at the nap spot.
Thereafter, in step S17, the power consumption amount calculating unit 24 and the battery deterioration level calculating unit 25 may respectively calculate the power consumption amounts based on the operation of the air conditioner 14 at the nap spot and the traveling of the vehicle 11 and the battery deterioration amount, for each of the patterns having different nap spots from each other.
Thereafter, in a case where the power consumption amount and the battery deterioration amount of each of the patterns are calculated, the quadrant creating unit 26 may create a graph on the power consumption amount and the battery deterioration amount (step S18). Thereafter, the quadrant creating unit 26 may calculate the reference point R on the basis of the points of the respective patterns plotted on the graph (step S19). Thereafter, in a case where the reference point R is calculated, the quadrant creating unit 26 may divide the graph into four quadrants to create the four-quadrant matrix (step S20).
Thereafter, in step S21, the selecting unit 27 may exclude the pattern that belongs to the first quadrant I from the four-quadrant matrix. For example, the selecting unit 27 may exclude the pattern in which the power consumption amount and the battery deterioration amount become high from the four-quadrant matrix.
Thereafter, in step S22, the selecting unit 27 may determine whether the pattern in which both the power consumption amount and the battery deterioration level are the minimum is present among the remaining patterns. If the minimum pattern is present (step S22: Yes), the selecting unit 27 may select the minimum pattern (step S23). In an example illustrated in
In step S22, if the pattern in which the power consumption amount and the battery deterioration level are the minimum is not present (step S22: No), the selecting unit 27 may select, out of the four-quadrant matrix, the pattern belonging to the point of any one of the second quadrant II, the third quadrant III, and the fourth quadrant IV (step S24).
As an example of determining the priority order upon the selection of the pattern to be performed by the selecting unit 27, the suppression of the power consumption amount may be so set as to be prioritized in an example case where the SOC of the battery at the departure point is equal to or lower than a predetermined value. The suppression of the battery deterioration level may be so set as to be prioritized in an example case where the SOH of the battery 12 is equal to or less than a predetermined value. The balanced suppression of the power consumption amount and the battery deterioration level may be so set as to be prioritized in an example case where the SOC and the SOH of the battery 12 are higher than their respective predetermined values, or in an example case where the SOC and the SOH of the battery 12 are lower than their respective predetermined values.
Thereafter, in a case where one of the patterns is selected by the selecting unit 27 in step S23 or step S24, the nap spot of the set traveling route may be determined (step S25). Thereafter, the thus-determined traveling and nap schedule may be executed (step S26), which helps to suppress the power consumption amount and/or the deterioration level of the battery 12 from the departure point to the destination.
The nap spot selection system 10 and the nap spot selection according to the example embodiment described above help to propose the nap spot that helps to suppress the power consumption amount and/or the deterioration amount of the battery 12 for the set traveling route from the departure point to the destination. In some embodiments, the quadrant creating unit 26 may create the four-quadrant matrix on the basis of the high-low degree of the power consumption amount and the high-low degree of the deterioration level of the battery 12, which helps to efficiently select, from the points plotted on the four-quadrant matrix, the nap spot that helps to suppress the power consumption amount and/or the deterioration level.
The nap spot selection system 10 according to any embodiment of the disclosure may be applied to a hybrid vehicle that includes a traveling engine in addition to the battery 12 directed to the vehicle traveling. In such an example embodiment, the calculation of the power consumption amount of the battery 12 that is based on the traveling of the vehicle 11 (step S16) may be eliminated for the power consumption amount of the battery 12.
In the example embodiment described above, a rest area and a parking area positioned on a freeway may be chosen as the nap spot in a case where the traveling route includes the freeway. In some embodiments, the traveling route may not include the freeway. In such an example embodiment, the choosing unit 22 may choose, as the nap spot, a location or a facility on a traveling route at which a long time stop of the vehicle 11 is available, or the user may select a plurality of nap spots on a traveling route and input the selected nap spots through the input device 17.
In some embodiments, the nap spot selection system 10 may choose a pattern that includes two or more nap spots for a traveling route. In such an example embodiment, the number of spots at which a nap is to be taken (the number of nap spots) for a single traveling route may be set through the input device 17, or a distance to the next nap spot or an interval of time required for the next nap spot may be set in advance through the input device 17.
Although some example embodiments of the disclosure have been described in the foregoing by way of example with reference to the accompanying drawings, the disclosure is by no means limited to the embodiments described above. It should be appreciated that modifications and alterations may be made by persons skilled in the art without departing from the scope as defined by the appended claims. The disclosure is intended to include such modifications and alterations in so far as they fall within the scope of the appended claims or the equivalents thereof.
The control unit 20 illustrated in
Number | Date | Country | Kind |
---|---|---|---|
2022-050284 | Mar 2022 | JP | national |