The present invention relates generally to a nasal insert, and in particular, to a nasal insert and cannula suitable for the treatment of various sleep disorders, including without limitation sleep apnea.
There are a wide variety of different diseases and physiological disorders associated with breathing, including sleep disorders such as sleep apnea and snoring, chronic obstructive pulmonary disease (CPOD), bronchitis, asthma and others. Many of these diseases and disorders may be treated by modifying the respiratory cycle.
For example, various oral or dental devices, such as the mandibular advancement device (MAD), have been developed for sleep apnea, and may be effective for treatment of mild sleep apnea, especially for patients that sleep on their back or stomach, and may improve airflow for patients with severe sleep apnea. These types of oral/dental devices may not be as effective, however, as continuous positive airway pressure devices (CPAP). Moreover, oral/dental devices are typically expensive, and may be associated with various side effects, including nighttime pain, dry lips, tooth discomfort, rearrangement in tooth and jaw positions, and excessive salivation, one or more of which may lead to reduced patient compliance.
CPAP devices will effectively control sleep apnea, but patient compliance may again be low, due for example to the discomfort of, and claustrophobic feeling associated with, the mask, pressure of the device, noise associated with the machine, entanglement of tubes, etc.
Other devices, as disclosed for example and without limitation in U.S. Pat. No. 7,735,491 to Doshi, U.S. Pat. No. 6,626,179 to Pedley and WO 2007/134458 to Robitaille, have been developed to treat sleep apnea and other respiratory disease and disorders by interfacing with the nasal passage of the user. Many of these types of nasal insert devices, however, may be difficult to properly install and/or use, for example requiring screwing of the device into the nasal passageway. In other systems, a holdfast, which secures the device to the user, may be external to the user, leading to lower levels of comfort and compliance. Conversely, internal holdfast systems may have a limited size variance, leading to such devices being either too tight or too loose, and/or adversely affecting the comfort level of the device and the associated compliance. Indeed, internal holdfast systems are often intended to create a tight seal with the nasal passageway, which may limit the population associated with any particular device.
Briefly stated, in one aspect, one embodiment of a nasal insert includes a housing having a circumferential wall defining an interior passage. The wall has a longitudinal gap extending along a length thereof, with an outer peripheral dimension of the housing being adjustable by varying the gap. A valve is in communication with the interior passage and limits a fluid flow through the interior passage in at least one direction.
In another embodiment, a nasal insert includes a user interface having a tubular housing defining an interior cavity open at opposite ends. An exterior surface of the housing is adapted to interface with a nasal vestibule of a user. A base is received in the interior cavity of the housing and includes an exit port. A cap is connected to the base and has an input port. A valve member is disposed in an interior passage defined by at least one of the cap and base, with the valve member being moveably received in the interior passage.
In yet another aspect, an embodiment of a nasal insert includes a housing including an interior passageway having a polygonal cross-section and a valve member disposed in the interior passageway. The valve member is moveably received in the interior passage and has a different cross-sectional shape than the polygonal cross-section. At least one airflow passageway is formed between the valve member and the interior passageway.
In another embodiment, a nasal insert includes a housing having a longitudinally extending flow passageway and an opening formed in a side thereof transversely to the flow passageway. A valve member is inserted into the flow passageway through the opening. A user interface is disposed around the housing and covers the opening so as to retain the valve member in the flow passageway. In one embodiment, a panel may be provided to cover the opening before the user interface is disposed around the housing.
Various methods of providing resistance during exhalation are also provided. For example, in one embodiment, a method of providing resistance during exhalation includes providing a housing having a circumferential wall defining an interior passage, wherein the wall has a longitudinal gap extending along a length thereof. The method includes squeezing the housing and thereby closing at least a portion of the gap, inserting the housing into a nasal passage of a user while the housing is being squeezed and releasing the housing and thereby letting the gap increase as the housing expands into the nasal passage of the user. The method further includes inhaling through the housing and passing air through a valve in communication with the interior passage and exhaling through the housing and limiting a flow of exhaled air through the interior passage with the valve while passing at least a portion of the exhaled air through the gap.
In another embodiment, a method of providing resistance during exhalation includes compressing a user interface having an exterior tubular housing, inserting the user interface into a nasal passage of a user while the user interface is being compressed, and releasing the user interface and thereby letting the user interface expand into the nasal passage of the user. The method further includes inhaling through an interior housing disposed in the exterior tubular housing, wherein the interior housing is less compressible than the exterior housing and passing air through a valve disposed in the interior housing. The method further includes exhaling through the interior housing and limiting a flow of exhaled air through the interior housing with the valve.
In another aspect, a method of assembling a nasal insert includes inserting a valve member through an opening in the side of a housing, wherein the housing has a longitudinally extending flow passageway, and disposing a user interface around the housing and thereby covering the opening with the user interface so as to retain the valve member in the flow passageway.
The various aspects and embodiments provide significant advantages over other nasal inserts. For example and without limitation, a nasal insert configured with a gap may be easily inserted into a wide population of users with different size nasal passageways. At the same time, the gap provides a defined passageway for the flow of air. In addition, an embodiment configured with a base and cap allows for secure disposal of the valve member, thereby avoiding aspiration into the user's lungs, while providing for a simple and robust design. At the same time, the interface between the valve member and passageway provides for predetermined air flow paths and associated amounts of resistance.
The present invention, together with further objects and advantages, will be best understood by reference to the following detailed description taken in conjunction with the accompanying drawings.
Referring to the drawings, various nasal inserts, nasal insert assemblies and nasal cannula assemblies are shown. The phrase “nasal insert” and “nasal insert assembly” refer to a nasal insert configured to interface with one or both nasal cavities of the user, or in a cavity formed in the user's tracheotomy. The phrase “nasal cannula” of “nasal cannula assembly” refers to a nasal insert or assembly coupled to a delivery tube configured to deliver oxygen or other gases.
The terms “longitudinal” and “axial” as used herein relates to a length or lengthwise direction, including for example generally the direction of flow of fluids through the nasal inserts and assemblies. The term “lateral” and variations thereof refer to a sideways direction. The terms “top” and “bottom” are intended to indicate directions when viewing the nasal insert when positioned for insertion into the nasal cavity of the user, with the “top” end thereof being inserted first. However, it should be understood that a user can use the nasal insert and assembly, and cannula assembly, when the user is in any number of positions, including but not limited to an upright position (seated or standing) or horizontal position (whether lying sideways, prone or supine).
It should be understood that the term “plurality,” as used herein, means two or more. The term “coupled” means connected to or engaged with, whether directly or indirectly, for example with an intervening member, and does not require the engagement to be fixed or permanent, although it may be fixed or permanent. The term “transverse” means extending across an axis, including without limitation substantially perpendicular to an axis. It should be understood that the use of numerical terms “first,” “second,” “third,” etc., as used herein does not refer to any particular sequence or order of components; for example “first” and “second” housing members may refer to any sequence of such members, and is not limited to the first and second indicator members of a particular configuration unless otherwise specified. It should be understood that the terms “input port” and “exit port” refer to the function of the ports during an inhalation phase, and that those same ports serve the opposite function (input and exit) during an exhalation phase.
Referring to
The nasal insert 2 may be configured as a single unit, which is suitable for independent and separate insertion into a single nasal cavity of the user or tracheomoty, or may include a pair of units, connected with a bridge 12, which are configured for insertion into adjacent nasal cavities of the user as shown for example in
The nasal insert 2 further includes a base 50 that is shaped to be received in the interior cavity 6 of the user interface housing. The base 50 defines and includes an exit port 52. A cap 24 is connected to the base and defines and includes an input port 54. The base and cap are configured to fit together, with one or both of the base and cap, alone or in combination, defining an interior passageway 40. A valve member 30 is moveably disposed in the interior passage. As shown in
As shown in
In one embodiment, the cap 24 includes a baffle 26 defining a plurality of valve openings 28, shown as three, arranged around a central opening 36. It should be understood that the baffle may be formed on the base, or separately formed and coupled between the base and cap. In one embodiment, best shown in
In one embodiment, the valve member 30 is configured as an O-ring, which moves reciprocally in the passageway 40 defined by the cap 24 and base 50. In one embodiment, the valve member surrounds and is moveable along a hub 48, which is configured with three fingers in one embodiment and forms part of the baffle 26. The three fingers help control and maintain the alignment of the O-ring valve member along a centerline of the assembly. In an inspiration position, shown in
During exhalation as shown in
The cap 24 and base 50 are coupled together, for example with a snap fit. As shown in
Referring to the embodiment of
In an alternative embodiment, shown in
In an alternative embodiment, shown in
Referring to
Referring to
In one embodiment, shown in
Referring to the embodiment shown in
Referring to
In operation, and referring to
The opposite end of the handle may also be used for insertion/extraction. For example, the magnet 520 may attract a nasal insert, which may then be manipulated and inserted into a vestibule. The handle 502 may then be twisted or turned to disengage the magnet 520. The nasal insert may be extracted by first engaging the handle 502 through a magnetic attraction with the nasal insert, with the handle 520 and insert then being moved away from the vestibule.
Referring to
A valve 306 is in communication with the interior passage 312. The valve 306 limits a fluid flow through the interior passage in at least one direction. In one embodiment, the valve 306 is configured as a hinged flap covering one end of the interior passage. As shown in
As shown in
Referring to
Referring to the embodiments of
In various embodiments, especially where configured as a single insert without a bridge providing stability, one or more interior, annular ribs 432, shown as three in one embodiment (
The use of separate inserts may be particularly advantageous for users that, due to anatomical structure or nasal injury, use only one nostril for inhalation/exhalation. In addition, some users may have different internal heights in the vestibule area, thereby allowing the user to customize the individual insert to be used in each nasal cavity.
Referring to
Each insert 602 has an inlet port opening into an interior space. One or more of the flaps 604 will open to allow inhaled air to flow from the interior space to the patient's lungs. There is very little resistance, e.g., less than 2 cm of water, during inhalation. Upon exhalation, the flaps 604 are closed such that the exhaled air is directed along the outer surface of the flaps. The air travels down a circular, spiral flow path 616 defined by and between the spiral rib 612 and the nasal vestibule tissue engaged therewith, which creates a tortuous flow path for the exhaled air. The tortuous flow path produces a resistance to exhaled air flow which in turn creates an increased air pressure in the patient's respiratory system. The increase in pressure will be in the range between 5 and 20 cm of water. The spiral rib 612 may also be easily compressed such that the nasal tissue is partially allowed to settle in between the spiral rib and help maintain the nasal insert in the nasal cavity.
Although the present invention has been described with reference to preferred embodiments, those skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. As such, it is intended that the foregoing detailed description be regarded as illustrative rather than limiting and that it is the appended claims, including all equivalents thereof, which are intended to define the scope of the invention.
This application is a continuation of U.S. application Ser. No. 13/629,921, filed Sep. 28, 2012, which claims the benefit of U.S. Provisional Application No. 61/540,740, filed Sep. 29, 2011, entitled “Nasal Insert and Cannula and Methods for the Use Thereof,” the entire disclosures of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
628111 | McHatton | Jul 1899 | A |
669098 | Overshiner | Mar 1901 | A |
675275 | Gunning | May 1901 | A |
746869 | Moulton | Dec 1903 | A |
774446 | Moulton | Nov 1904 | A |
810617 | Carence | Jan 1906 | A |
1819884 | Fores | Aug 1931 | A |
1867478 | Stelzner | Jul 1932 | A |
2198959 | Clarke | Apr 1940 | A |
2237954 | Wilson | Apr 1941 | A |
2264153 | Rowe | Nov 1941 | A |
2274886 | Carroll | Mar 1942 | A |
2282681 | Stotz | May 1942 | A |
2335936 | Hanlon | Dec 1943 | A |
2433565 | Korman | Dec 1947 | A |
2448724 | McGovney | Sep 1948 | A |
2672138 | Carlock | Mar 1954 | A |
2751906 | Irvine | Jun 1956 | A |
2777442 | Zelano | Jan 1957 | A |
3145711 | Beber | Aug 1964 | A |
3370305 | Goott et al. | Feb 1968 | A |
3424152 | Kuhlman | Jan 1969 | A |
3451392 | Cook et al. | Jun 1969 | A |
3463149 | Albu | Aug 1969 | A |
3513839 | Vacante | May 1970 | A |
3556122 | Laerdal | Jan 1971 | A |
3695265 | Brevik | Oct 1972 | A |
3710799 | Caballero | Jan 1973 | A |
3722509 | Nebel | Mar 1973 | A |
3747597 | Olivera | Jul 1973 | A |
3884223 | Keindl | May 1975 | A |
3902621 | Hidding | Sep 1975 | A |
4004584 | Geaney | Jan 1977 | A |
4030491 | Mattila | Jun 1977 | A |
4040428 | Clifford | Aug 1977 | A |
4054134 | Kritzer | Oct 1977 | A |
4062358 | Kritzer | Dec 1977 | A |
4120299 | Russo | Oct 1978 | A |
4143872 | Havstad et al. | Mar 1979 | A |
4226233 | Kritzer | Oct 1980 | A |
4240420 | Riaboy | Dec 1980 | A |
4249527 | Ko et al. | Feb 1981 | A |
4267831 | Aguilar | May 1981 | A |
4325366 | Tabor | Apr 1982 | A |
4327719 | Childers | May 1982 | A |
RE31040 | Possis | Sep 1982 | E |
4354489 | Riaboy | Oct 1982 | A |
4403616 | King | Sep 1983 | A |
4456016 | Nowacki et al. | Jun 1984 | A |
4487207 | Fitz | Dec 1984 | A |
4533137 | Sonne | Aug 1985 | A |
4582058 | Depel et al. | Apr 1986 | A |
4601465 | Roy | Jul 1986 | A |
4739987 | Nicholson | Apr 1988 | A |
4822354 | Elosegui | Apr 1989 | A |
4854574 | Larson et al. | Aug 1989 | A |
4862903 | Campbell | Sep 1989 | A |
4878513 | Ashby et al. | Nov 1989 | A |
4908028 | Colon et al. | Mar 1990 | A |
4944310 | Sullivan | Jul 1990 | A |
4973047 | Norell | Nov 1990 | A |
4979505 | Cox | Dec 1990 | A |
4984302 | Lincoln | Jan 1991 | A |
4984581 | Stice | Jan 1991 | A |
5033312 | Stupecky | Jul 1991 | A |
5038621 | Stupecky | Aug 1991 | A |
5059208 | Coe | Oct 1991 | A |
5078739 | Martin | Jan 1992 | A |
5092781 | Casciotti et al. | Mar 1992 | A |
5117820 | Robitaille | Jun 1992 | A |
5197980 | Gorshkov et al. | Mar 1993 | A |
5255687 | McKenna | Oct 1993 | A |
5383470 | Kolbly | Jan 1995 | A |
5385542 | Rawlings | Jan 1995 | A |
5391205 | Knight | Feb 1995 | A |
5392773 | Bertrand | Feb 1995 | A |
5394867 | Swann | Mar 1995 | A |
5415660 | Campbell et al. | May 1995 | A |
5425359 | Liou | Jun 1995 | A |
5459544 | Emura | Oct 1995 | A |
RE35339 | Rapoport | Oct 1996 | E |
5562641 | Flomenblit et al. | Oct 1996 | A |
5568808 | Rimkus | Oct 1996 | A |
5607469 | Frey | Mar 1997 | A |
5649533 | Oren | Jul 1997 | A |
5665104 | Lee | Sep 1997 | A |
5740798 | McKinney | Apr 1998 | A |
5743256 | Jalowayski | Apr 1998 | A |
5763979 | Mukherjee et al. | Jun 1998 | A |
5775335 | Seal | Jul 1998 | A |
5782896 | Chen et al. | Jul 1998 | A |
5797920 | Kim | Aug 1998 | A |
5816241 | Cook | Oct 1998 | A |
5865170 | Moles | Feb 1999 | A |
5876434 | Flomenblit et al. | Mar 1999 | A |
5890998 | Hougen | Apr 1999 | A |
5899832 | Hougen | May 1999 | A |
5910071 | Hougen | Jun 1999 | A |
5911756 | Debry | Jun 1999 | A |
5929286 | Krumpelt et al. | Jul 1999 | A |
5947119 | Reznick | Sep 1999 | A |
5954766 | Zadno-Azizi et al. | Sep 1999 | A |
5957978 | Blom | Sep 1999 | A |
5992006 | Datsikas | Nov 1999 | A |
6004342 | Filis | Dec 1999 | A |
6083141 | Hougen | Jul 2000 | A |
6110861 | Krumpelt et al. | Aug 2000 | A |
D430667 | Rome | Sep 2000 | S |
6119690 | Pantaleo | Sep 2000 | A |
6177482 | Cinelli et al. | Jan 2001 | B1 |
6258100 | Alferness et al. | Jul 2001 | B1 |
6287290 | Perkins et al. | Sep 2001 | B1 |
6293951 | Alferness et al. | Sep 2001 | B1 |
6369126 | Cinelli et al. | Apr 2002 | B1 |
6386197 | Miller | May 2002 | B1 |
6443944 | Doshi et al. | Sep 2002 | B1 |
6484725 | Chi | Nov 2002 | B1 |
6558831 | Doshi et al. | May 2003 | B1 |
6561188 | Ellis | May 2003 | B1 |
6562057 | Santin | May 2003 | B2 |
6564800 | Olivares | May 2003 | B1 |
6568387 | Davenport et al. | May 2003 | B2 |
6585639 | Kotmel et al. | Jul 2003 | B1 |
6592594 | Rimbaugh et al. | Jul 2003 | B2 |
6595215 | Wood | Jul 2003 | B2 |
6626172 | Karow et al. | Sep 2003 | B1 |
6626179 | Pedley | Sep 2003 | B1 |
6632554 | Doshi et al. | Oct 2003 | B2 |
6679264 | Deem et al. | Jan 2004 | B1 |
6722360 | Doshi | Apr 2004 | B2 |
6756144 | Issacci et al. | Jun 2004 | B2 |
6863066 | Ogle | Mar 2005 | B2 |
6872439 | Fearing et al. | Mar 2005 | B2 |
6921574 | Cinelli et al. | Jul 2005 | B2 |
6997177 | Wood | Feb 2006 | B2 |
7001684 | Doshi et al. | Feb 2006 | B2 |
7011723 | Full et al. | Mar 2006 | B2 |
7047969 | Noble | May 2006 | B2 |
7156098 | Dolezal et al. | Jan 2007 | B2 |
7156099 | Jenkins | Jan 2007 | B1 |
7175723 | Jones et al. | Feb 2007 | B2 |
7178524 | Noble | Feb 2007 | B2 |
7201169 | Wilkie et al. | Apr 2007 | B2 |
D542407 | Stallard et al. | May 2007 | S |
7211342 | Issacci et al. | May 2007 | B2 |
7263996 | Yung Ho | Sep 2007 | B2 |
7334581 | Doshi | Feb 2008 | B2 |
7493902 | White et al. | Feb 2009 | B2 |
7506649 | Doshi et al. | Mar 2009 | B2 |
7615304 | Ferrall et al. | Nov 2009 | B2 |
7658189 | Davidson et al. | Feb 2010 | B2 |
7676276 | Karell | Mar 2010 | B2 |
7678132 | Abbott et al. | Mar 2010 | B2 |
7708017 | Davidson et al. | May 2010 | B2 |
7735491 | Doshi et al. | Jun 2010 | B2 |
7735492 | Doshi et al. | Jun 2010 | B2 |
7775210 | Schobel et al. | Aug 2010 | B2 |
7798148 | Doshi et al. | Sep 2010 | B2 |
7806120 | Loomas et al. | Oct 2010 | B2 |
7856979 | Doshi et al. | Dec 2010 | B2 |
7987852 | Doshi et al. | Aug 2011 | B2 |
8281557 | Doshi et al. | Oct 2012 | B2 |
20010051799 | Ingenito | Dec 2001 | A1 |
20010052344 | Doshi | Dec 2001 | A1 |
20010056274 | Perkins et al. | Dec 2001 | A1 |
20020062120 | Perkins et al. | May 2002 | A1 |
20020177031 | Doshi et al. | Nov 2002 | A1 |
20020177871 | Santin | Nov 2002 | A1 |
20030004498 | Doshi et al. | Jan 2003 | A1 |
20030054215 | Doshi et al. | Mar 2003 | A1 |
20030106555 | Tovey | Jun 2003 | A1 |
20030124401 | Issacci et al. | Jul 2003 | A1 |
20030140925 | Sapienza et al. | Jul 2003 | A1 |
20030154988 | Devore et al. | Aug 2003 | A1 |
20030158515 | Gonzalez et al. | Aug 2003 | A1 |
20030195552 | Santin | Oct 2003 | A1 |
20030209247 | O'Rourke | Nov 2003 | A1 |
20040016432 | Genger et al. | Jan 2004 | A1 |
20040020493 | Wood | Feb 2004 | A1 |
20040059368 | Maryanka | Mar 2004 | A1 |
20040067235 | Doshi | Apr 2004 | A1 |
20040141875 | Doshi | Jul 2004 | A1 |
20040146773 | Doshi et al. | Jul 2004 | A1 |
20040194779 | Doshi | Oct 2004 | A1 |
20040194780 | Doshi | Oct 2004 | A1 |
20040209134 | Issacci et al. | Oct 2004 | A1 |
20040261791 | Horian | Dec 2004 | A1 |
20050003262 | Doshi | Jan 2005 | A1 |
20050011524 | Thomlinson et al. | Jan 2005 | A1 |
20050051770 | Ando et al. | Mar 2005 | A1 |
20050133026 | Seleznev et al. | Jun 2005 | A1 |
20050284479 | Schrader et al. | Dec 2005 | A1 |
20060032497 | Doshi | Feb 2006 | A1 |
20060085027 | Santin et al. | Apr 2006 | A1 |
20060096596 | Occhialini et al. | May 2006 | A1 |
20060144398 | Doshi et al. | Jul 2006 | A1 |
20060150978 | Doshi et al. | Jul 2006 | A1 |
20060150979 | Doshi et al. | Jul 2006 | A1 |
20060283461 | Lubke et al. | Dec 2006 | A1 |
20070095349 | Hansmann et al. | May 2007 | A1 |
20070175478 | Brunst | Aug 2007 | A1 |
20070227542 | Kashmakov et al. | Oct 2007 | A1 |
20070277832 | Doshi | Dec 2007 | A1 |
20070283962 | Doshi et al. | Dec 2007 | A1 |
20070295338 | Loomas et al. | Dec 2007 | A1 |
20080173309 | Doshi | Jul 2008 | A1 |
20080178874 | Doshi et al. | Jul 2008 | A1 |
20080221470 | Sather et al. | Sep 2008 | A1 |
20080275424 | Doshi et al. | Nov 2008 | A1 |
20090011323 | Guan et al. | Jan 2009 | A1 |
20090145441 | Doshi et al. | Jun 2009 | A1 |
20090145788 | Doshi et al. | Jun 2009 | A1 |
20090194100 | Minagi | Aug 2009 | A1 |
20090194109 | Doshi et al. | Aug 2009 | A1 |
20090308398 | Ferdinand et al. | Dec 2009 | A1 |
20090308402 | Robitaille | Dec 2009 | A1 |
20090320851 | Selvarajan et al. | Dec 2009 | A1 |
20100031965 | Soderberg | Feb 2010 | A1 |
20100147308 | Doshi et al. | Jun 2010 | A1 |
20100234789 | Batiste et al. | Sep 2010 | A1 |
20100234880 | Abbott et al. | Sep 2010 | A1 |
20100331777 | Danielsson | Dec 2010 | A1 |
20110005520 | Doshi et al. | Jan 2011 | A1 |
20110005528 | Doshi et al. | Jan 2011 | A1 |
20110005529 | Doshi et al. | Jan 2011 | A1 |
20110005530 | Doshi et al. | Jan 2011 | A1 |
20110218451 | Lai et al. | Sep 2011 | A1 |
20120111340 | Robitaille | May 2012 | A1 |
20130081637 | Foley et al. | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
1 157 663 | Nov 2001 | EP |
1 917 993 | May 2008 | EP |
2 210 109 | Jul 1974 | FR |
2 610 830 | Aug 1988 | FR |
2 126 101 | Mar 1984 | GB |
2 176 406 | Dec 1986 | GB |
2 324 729 | Nov 1998 | GB |
WO 8705798 | Oct 1987 | WO |
WO 9012614 | Nov 1990 | WO |
WO 9517220 | Jun 1995 | WO |
WO 9533520 | Dec 1995 | WO |
WO 0029066 | May 2000 | WO |
WO 0050121 | Aug 2000 | WO |
WO 0067848 | Nov 2000 | WO |
WO 0102042 | Jan 2001 | WO |
WO 0113839 | Mar 2001 | WO |
WO 0113908 | Mar 2001 | WO |
WO 0149371 | Jul 2001 | WO |
WO 0187170 | Nov 2001 | WO |
WO 0238038 | May 2002 | WO |
WO 2004060438 | Jul 2004 | WO |
WO 2004060438 | Jul 2004 | WO |
WO 2004069110 | Aug 2004 | WO |
WO 2006063339 | Jun 2006 | WO |
WO 2006063339 | Jun 2006 | WO |
WO 2007023607 | Mar 2007 | WO |
WO 2007129814 | Nov 2007 | WO |
WO 2007134458 | Nov 2007 | WO |
Entry |
---|
Extended European Search Report in European Application No. 07719844.8, dated Oct. 7, 2009, 7 pages. |
Extended European Search Report for European Application No. 12152742.8, dated Jul. 18, 2012, 11 pages. |
European Search Report for Application No. 12835151.7 dated Jan. 14, 2016 6 pages. |
International Search Report in International Application No. PCT/CA2007/000922, dated Aug. 14, 2007, 2 pages. |
International Preliminary Report on Patentability for International Application No. PCT/CA2007/000922, dated Nov. 27, 2008, 5 pages. |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/IB2012/001929, dated Jan. 16, 2013, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20180008453 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
61540740 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13629921 | Sep 2012 | US |
Child | 15655387 | US |