1. Technical Field
The present invention relates generally to communication protocols between a host computer and an input/output (I/O) adapter. More specifically, the present invention provides an implementation for virtualizing resources on a physical I/O adapter. In particular, the present invention provides a mechanism by which a single physical I/O adapter, such as a PCI, PCI-X, or PCI-E adapter, can associate its resources to a system image and isolate them from other system images, thereby providing I/O virtualization.
2. Description of Related Art
Virtualization is the creation of substitutes for real resources. The substitutes have the same functions and external interfaces as their real counterparts, but differ in attributes such as size, performance, and cost. These substitutes are virtual resources and their users are usually unaware of the substitute's existence. Servers have used two basic approaches to virtualize system resources: Partitioning and logical partitioning (LPAR) managers. Partitioning creates virtual servers as fractions of a physical server's resources, typically in coarse (e.g. physical) allocation units (e.g. a whole processor, along with its associated memory and I/O adapters). LPAR managers are software or firmware components that can virtualize all server resources with fine granularity (e.g. in small fractions that of a single physical resource).
In conventional systems, servers that support virtualization have two options for handling I/O. The first option was to not allow a single physical I/O adapter to be shared between virtual servers. The second option was to add functionality into the LPAR manager, or another suitable intermediary, that provides the isolation necessary to permit multiple operating systems to share a single physical adapter.
The first option has several problems. One significant problem is that expensive adapters cannot be shared between virtual servers. If a virtual server only needs to use a fraction of an expensive adapter, an entire adapter would be dedicated to the server. As the number of virtual servers on the physical server increases, this leads to under-utilization of the adapters and more importantly a more expensive solution, because each virtual server needs a physical adapter dedicated to it. For physical servers that support many virtual servers, another significant problem with this approach is that it requires many adapter slots, and the accompanying hardware (e.g. chips, connectors, cables, and the like) required to attach those adapters to the physical server.
Though the second option provides a mechanism for sharing adapters between virtual servers, that mechanism must be invoked and executed on every I/O transaction. The invocation and execution of the sharing mechanism by the LPAR manager or other intermediary on every I/O transaction degrades performance. It also leads to a more expensive solution, because the customer must purchase more hardware, either to make up for the cycles used to perform the sharing mechanism or, if the sharing mechanism is offloaded to an intermediary, for the intermediary hardware.
It would be advantageous to have an improved method, apparatus, and computer instructions that allow a single physical I/O adapter, such as a PCI, PCI-X, or PCI-E adapter, to associate its resources to a system image and isolate them from other system images, thereby providing I/O virtualization. It would also be advantageous to have the mechanism apply for adapters that support memory mapped I/O interfaces, such as Ethernet NICs (Network Interface Controllers), FC (Fibre Channel) HBAs (Host Bus Adapters), pSCSI (parallel SCSI) HBAs, InfiniBand, TCP/IP Offload Engines, RDMA (Remote Direct Memory Access) enabled NICs (Network Interface Controllers), iSCSI adapters, iSER (iSCSI Extensions for RDMA) adapters, and the like.
The present invention provides a method, computer program product, and distributed data processing system that allows a single physical I/O adapter, such as a PCI, PCI-X, or PCI-E adapter, to associate its resources to a system image and isolate them from other system images, thereby providing I/O virtualization. Specifically, the present invention is directed to a mechanism for sharing conventional PCI (Peripheral Component Interconnect) I/O adapters, PCI-X I/O adapters, PCI-Express I/O adapters, and, in general, any I/O adapter that uses a memory mapped I/O interface for communications. A mechanism is provided that allows a single physical I/O adapter, such as a PCI, PCI-X, or PCI-E adapter, to associate its resources to a system image and isolate them from other system images thereby providing I/O virtualization.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objectives and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
The present invention applies to any general or special purpose host that uses a PCI family I/O adapter to directly attach a storage device or to attach to a network, where the network consists of endnodes, switches, routers and the links interconnecting these components. The network links can be, for example, Fibre Channel, Ethernet, InfiniBand, Advanced Switching Interconnect, or a proprietary link that uses proprietary or standard protocols. While embodiments of the present invention are shown and described as employing a peripheral component interconnect (PCI) family adapter, implementations of the invention are not limited to such a configuration as will be apparent to those skilled in the art. Teachings of the invention may be implemented on any physical adapter that support a memory mapped input/output (MMIO) interface, such as, but not limited to, HyperTransport, Rapid I/O, proprietary MMIO interfaces, or other adapters having a MMIO interface now know or later developed. Implementations of the present invention utilizing a PCI family adapter are provided for illustrative purposes to facilitate an understanding of the invention.
With reference now to the figures and in particular with reference to
Network 120 can also attach large host node 124 through port 136 which attaches to switch 140. Large host node 124 can also contain a second type of port 128, which connects to a direct attached storage subsystem, such as direct attached storage 132.
Network 120 can also attach a small integrated host node 144 which is connected to network 120 through port 148 which attaches to switch 140. Small integrated host node 144 can also contain a second type of port 152 which connects to a direct attached storage subsystem, such as direct attached storage 156.
Turning next to
In this example, small host node 202 includes two processor I/O hierarchies, such as processor I/O hierarchy 200 and 203, which are interconnected through link 201. In the illustrative example of
With reference now to
In this example, small integrated host node 302 includes two processor I/O hierarchies 300 and 303, which are interconnected through link 301. In the illustrative example, processor I/O hierarchy 300 includes processor chip 304, which is representative of one or more processors and associated caches. Processor chip 304 is connected to memory 312 through link 308. One of the links on the processor chip, such as link 330, connects to a PCI family adapter, such as PCI family adapter 345. Processor chip 304 has one or more PCI family (e.g., PCI, PCI-X, PCI-Express, or any future generation of PCI) links that is used to connect either PCI family I/O bridges or a PCI family I/O adapter, such as PCI family adapter 344 and PCI family adapter 345 through a PCI link, such as link 316, 330, and 324. PCI family adapter 345 can also be used to connect with a network, such as network 364, through link 356 via either a switch or router, such as switch or router 360. PCI family adapter 344 can be used to connect with direct attached storage 352 through link 348.
Turning now to
In this example, large host node 402 includes two processor I/O hierarchies 400 and 403 interconnected through link 401. In the illustrative example of
Turning next to
PCI bus transaction 500 shows three phases: an address phase 508; a data phase 512; and a turnaround cycle 516. Also depicted is the arbitration for next transfer 504, which can occur simultaneously with the address, data, and turnaround cycle phases. For PCI, the address contained in the address phase is used to route a bus transaction from the adapter to the host and from the host to the adapter.
PCI-X transaction 520 shows five phases: an address phase 528; an attribute phase 532; a response phase 560; a data phase 564; and a turnaround cycle 566. Also depicted is the arbitration for next transfer 524 which can occur simultaneously with the address, attribute, response, data, and turnaround cycle phases. Similar to conventional PCI, PCI-X uses the address contained in the address phase to route a bus transaction from the adapter to the host and from the host to the adapter. However, PCI-X adds the attribute phase 532 which contains three fields that define the bus transaction requester, namely: requester bus number 544, requester device number 548, and requester function number 552 (collectively referred to herein as a BDF). The bus transaction also contains a tag 540 that uniquely identifies the specific bus transaction in relation to other bus transactions that are outstanding between the requestor and a responder. The byte count 556 contains a count of the number of bytes being sent.
Turning now to
PCI-E bus transaction 600 shows six phases: frame phase 608; sequence number 612; header 664; data phase 668; cyclical redundancy check (CRC) 672; and frame phase 680. PCI-E header 664 contains a set of fields defined in the PCI-Express specification. The requester identifier (ID) field 628 contains three fields that define the bus transaction requester, namely: requester bus number 684, requester device number 688, and requester function number 692. The PCI-E header also contains tag 652, which uniquely identifies the specific bus transaction in relation to other bus transactions that are outstanding between the requester and a responder. The length field 644 contains a count of the number of bytes being sent.
With reference now to
PCI family adapter 736 contains a set of physical adapter configuration resources 740 and physical adapter memory resources 744. The physical adapter configuration resources 740 and physical adapter memory resources 744 contain information describing the number of virtual adapters that PCI family adapter 736 can support and the physical resources allocated to each virtual adapter. As referred to herein, a virtual adapter is an allocation of a subset of physical adapter resources and virtualized resources, such as a subset of physical adapter resources and physical adapter memory, that is associated with a logical partition, such as system image 712 and applications 716 and 720 running on system image 712, as described more fully hereinbelow. LPAR manager 708 is provided a physical configuration resource interface 738, and physical memory configuration interface 742 to read and write into the physical adapter configuration resource and memory spaces during the adapter's initial configuration and reconfiguration. Through the physical configuration resource interface 738 and physical configuration memory interface 742, LPAR manager 708 creates virtual adapters and assigns physical resources to each virtual adapter. LPAR manager 708 may use one of the system images, for example a special software or firmware partition, as a hosting partition that uses physical configuration resource interface 738 and physical configuration memory interface 742 to perform a portion, or even all, of the virtual adapter initial configuration and reconfiguration functions.
After LPAR manager 708 configures the PCI family adapter 736, each system image is allowed to only communicate with the virtual adapters that were associated with that system image by LPAR manager 708. As shown in
With reference now to
If the processor, I/O hub, or I/O bridge 800 uses the same bus number, device number, and function number for all transaction initiators, then when a software component initiates a PCI-X or PCI-E bus transaction, such as host to adapter PCI-X or PCI-E bus transaction 812, the processor, I/O hub, or I/O bridge 800 places the processor, I/O hub, or I/O bridge's bus number in the PCI-X or PCI-E bus transaction's requester bus number field 820, such as requestor bus number 544 field of the PCI-X transaction shown in
If the processor, I/O hub, or I/O bridge 800 uses a different bus number, device number, and function number for each transaction initiator, then the processor, I/O hub, or I/O bridge 800 assigns a bus number, device number, and function number to the transaction initiator. When a software component initiates a PCI-X or PCI-E bus transaction, such as host to adapter PCI-X or PCI-E bus transaction 812, the processor, I/O hub, or I/O bridge 800 places the software component's bus number in the PCI-X or PCI-E bus transaction's requestor bus number 820 field, such as requester bus number 544 field shown in
With reference now to
Turning next to
The functions performed at the super-privileged physical resource allocation level 1000 include but are not limited to: PCI family adapter queries, creation, modification and deletion of virtual adapters, submission and retrieval of work, reset and recovery of the physical adapter, and allocation of physical resources to a virtual adapter instance. The PCI family adapter queries are used to determine, for example, the physical adapter type (e.g. Fibre Channel, Ethernet, iSCSI, parallel SCSI), the functions supported on the physical adapter, and the number of virtual adapters supported by the PCI family adapter. The LPAR manager, such as LPAR manager 708 shown in
The functions performed at the privileged virtual resource allocation level 1008 include, for example, virtual adapter queries, allocation and initialization of virtual adapter resources, reset and recovery of virtual adapter resources, submission and retrieval of work through virtual adapter resources, and, for virtual adapters that support offload services, allocation and assignment of virtual adapter resources to a middleware process or thread instance. The virtual adapter queries are used to determine: the virtual adapter type (e.g. Fibre Channel, Ethernet, iSCSI, parallel SCSI) and the functions supported on the virtual adapter. A system image, such as system image 712 shown in
Finally, the functions performed at the non-privileged level 1016 include, for example, query of virtual adapter resources that have been assigned to software running at the non-privileged level 1016 and submission and retrieval of work through virtual adapter resources that have been assigned to software running at the non-privileged level 1016. An application, such as application 716 shown in
Turning next to
The first exemplary mechanism that LPAR manager 708 can use to associate and make available host memory to a system image and to one or more virtual adapters is to write into the virtual adapter's resources a system image association list 1122. Virtual adapter resources 1120 contains a list of PCI bus addresses, where each PCI bus address in the list is associated by the platform hardware to the starting address of a system image (SI) page, such as SI 1 page 1 1128 through SI 1 page N 1136 allocated to system image 1108. Virtual adapter resources 1120 also contains the page size, which is equal for all the pages in the list. At initial configuration, and during reconfigurations, LPAR manager 708 loads system image association list 1122 into virtual adapter resources 1120. The system image association list 1122 defines the set of addresses that virtual adapter 1104 can use in DMA write and read operations. After the system image association list 1122 has been created, virtual adapter 1104 must validate that each DMA write or DMA read requested by system image 1108 is contained within a page in the system image association list 1122. If the DMA write or DMA read requested by system image 1108 is contained within a page in the system image association list 1122, then virtual adapter 1104 may perform the operation. Otherwise virtual adapter 1104 is prohibited from performing the operation. Alternatively, the PCI family adapter 1101 may use a special, LPAR manager-style virtual adapter (rather than virtual adapter 1104) to perform the check that determines if a DMA write or DMA read requested by system image 1108 is contained within a page in the system image association list 1122. In a similar manner, virtual adapter 1112 associated with system image 1116 validates DMA write or read requests submitted by system image 1116. Particularly, virtual adapter 1112 provides validation for DMA read and write requests from system image 1116 by determining whether the DMA write or read request is in a page in system image association list (configured in a manner similarly to system image association list 1122) associated with system image pages of system image 1116.
The second mechanism that LPAR manager 708 can use to associate and make available host memory to a system image and to one or more virtual adapters is to write a starting page address and page size into system image. association list 1122 in the virtual adapter's resources. For example, virtual adapter resources 1120 may contain a single PCI bus address that is associated by the platform hardware to the starting address of a system image page, such as SI 1 Page 1 1128. System image association list 1122 in virtual adapter resources 1120 also contains the size of the page. At initial configuration, and during reconfigurations, LPAR manager 708 loads the page size and starting page address into system image association list 1122 into the virtual adapter resources 1120. The system image association list 1122 defines the set of addresses that virtual adapter 1104 can use in DMA write and read operations. After the system image association list 1122 has been created, virtual adapter 1104 validates whether each DMA write or DMA read requested by system image 1108 is contained within a page in system image association list 1122. If the DMA write or DMA read requested by system image 1108 is contained within a page in the system image association list 1122, then virtual adapter 1104 may perform the operation. Otherwise, virtual adapter 1104 is prohibited from performing the operation. Alternatively, the PCI family adapter 1101 may use a special, LPAR manager-style virtual adapter (rather than virtual adapter 1104) to perform the check that determines if a DMA write or DMA read requested by system image 1108 is contained within a page in the system image association list 1122. In a similar manner, virtual adapter 1112 associated with system image 1116 may validate DMA write or read requests submitted by system image 1116. Particularly, a system image association list similar to system image association list 1122 may be associated with virtual adapter 1112. The system image association list associated with virtual adapter 1112 is loaded with a page size and starting page address of a system image page of system image 1116 associated with virtual adapter 1112. The system image association list associated with virtual adapter 1112 thus provides a mechanism for validation of DMA read and write requests from system image 1116 by determining whether the DMA write or read request is in a page in a system image association list associated with system image pages of system image 1116.
The third mechanism that LPAR manager 708 can use to associate and make available host memory to a system image and to one or more virtual adapters is to write into the virtual adapter's resources a system image buffer association list 1154. In
The fourth mechanism that LPAR manager 708 can use to associate and make available host memory to a system image and to one or more virtual adapters is to write into the virtual adapter's resources a single starting and ending address in system image buffer association list 1154. In this implementation, virtual adapter resources 1150 contains a single pair of PCI bus starting and ending address that is associated by the platform hardware to a pair (starting and ending) of addresses associated with a system image buffer, such as SI 2 Buffer 1 1166. At initial configuration, and during reconfigurations, LPAR manager 708 loads the starting and ending addresses of SI 2 buffer 1 1166 into the system image buffer association list 1154 in virtual adapter resources 1150. The system image buffer association list 1154 then defines the set of addresses that virtual adapter 1112 can use in DMA write and read operations. After the system image buffer association list 1154 has been created, virtual adapter 1112 validates whether each DMA write or DMA read requested by system image 1116 is contained within the system image buffer association list 1154. If the DMA write or DMA read requested by system image 1116 is contained within system image buffer association list 1154, then virtual adapter 1112 may perform the operation. Otherwise, virtual adapter 1112 is prohibited from performing the operation. Alternatively, the PCI family adapter 1101 may use a special, LPAR manager-style virtual adapter (rather than virtual adapter 1150) to perform the check that determines if DMA write or DMA read requested by system image 1116 is contained within a page system image buffer association list 1154. In a similar manner, virtual adapter 1104 associated with system image 1108 may validate DMA write or read requests submitted by system image 1108. Particularly, virtual adapter 1104 provides validation for DMA read and write requests from system image 1108 by determining whether the DMA write or read requested by system image 1108 is contained within a buffer in a buffer association list that contains a single PCI bus starting and ending address in association with a system image buffer starting and ending address allocated to system image 1108 in a manner similar to that described above for system image 1116 and virtual adapter 1112.
Turning next to
A notable difference between the system image and virtual adapter configuration shown in
The first and second mechanisms that LPAR manager 708 can use to associate and make available PCI family adapter memory to a system image and to a virtual adapter is to write into the PCI family adapter's physical adapter memory translation table 1290 a page size and the starting address of one (first mechanism) or more (second mechanism) pages, in this case all pages have the same size. For example,
The third and fourth mechanisms that LPAR manager 708 can use to associate and make available PCI family adapter memory to a system image and to a virtual adapter is to write into the PCI family adapter's physical adapter memory translation table 1290 one (third mechanism) or more (fourth mechanism) buffer starting and ending addresses (or starting address and length). In this case, the buffers may have different sizes. For example,
With reference next to
The first mechanism is to compare the memory address of incoming PCI bus transaction 1304 with each row of high address cell 1316 and low address cell 1320 in buffer table 1390. High address cell 1316 and low address cell 1320 respectively define an upper and lower address of a range of addresses associated with a corresponding virtual or physical adapter identified in association cell 1324. If incoming PCI bus transaction 1304 has an address that is lower than the contents of high address cell 1316 and that is higher than the contents of low address cell 1320, then incoming PCI bus transaction 1304 is within the high address and low address cells that are associated with the corresponding virtual adapter identified in association cell 1324. In such a scenario, the incoming PCI bus transaction 1304 is allowed to be performed on the matching virtual adapter. Alternatively, if incoming PCI bus transaction 1304 has an address that is not between the contents of high address cell 1316 and the contents of low address cell 1320, then completion or processing of incoming PCI bus transaction 1304 is prohibited. The second mechanism is to simply allow a single entry in buffer table 1390 per virtual adapter.
The third mechanism is to compare the memory address of incoming PCI bus transaction 1304 with each row of page starting address cell 1322 and with each row of page starting address cell 1322 plus the page size in page table 1392. If incoming PCI bus transaction 1304 has an address that is higher than or equal to the contents of page starting address cell 1322 and lower than page starting address cell 1322 plus the page size, then incoming PCI bus transaction 1304 is within a page that is associated with a virtual adapter. Accordingly, incoming PCI bus transaction 1304 is allowed to be performed on the matching virtual adapter. Alternatively, if incoming PCI bus transaction 1304 has an address that is not within the contents of page starting address cell 1322 and page starting address cell 1322 plus the page size, then completion of incoming PCI bus transaction 1304 is prohibited. The fourth mechanism is to simply allow a single entry in page table 1392 per virtual adapter.
With reference next to
The requester bus number, such as host bus number 1408, requester device number, such as host device number 1412, and requester function number, such as host function number 1416, referenced in incoming PCI bus transaction 1404 provides an additional check beyond the memory address mappings that were set up by a host LPAR manager.
Turning next to
Turning next to
With reference next to
A virtual system image, such as system image 1796 (illustratively designated system Image A) runs in host memory 1798 and has applications running on it. Each application has its own virtual address (VA) space. In the illustrative example, two applications (App 1 and App 2) are running on system image 1796. Application 1 has VA space 1792 and 1794 allocated thereto, and application 2 has VA space 1790 allocated thereto. The VA space allocated to an application is mapped to an application by the O/S and the LPAR manager to a set of physically contiguous host memory addresses. In the illustrative example, VA space 1794 maps into a portion of logical memory block (LMB) 1786 and 1784 (respectively designated LMB 1 and LMB 2). Similarly, VA space 1792 maps into a portion of LMB 1782 and 1780 (respectively designated LMB 3 and LMB 4). Finally, VA space 1790 maps into a portion of LMB 1780 and 1778 (respectively designated LMB 4 and LMB N).
A host does not directly expose host memory addresses, such as the addresses used to reference host memory 1798, into PCI bus addresses on its PCI port, such as PCI port 1750, in accordance with implementations of the present invention. Instead, the host maps host memory addresses, such as the addresses used to reference host memory 1798, through an address translation and protection table (ATPT), such as an ATPT implemented as a translation and control (TCE) table 1760. TCE table 1760 maps LMBs into PCI bus addresses on its PCI port, such as host PCI port 1750, which is directly or indirectly, through intermediate chips and networks, connected to a PCI adapter port, such as adapter PCI ports 1728 or 1740.
Using the mechanisms depicted in
The host side I/O ASIC, such as I/O ASIC 1768, isolates PCI DMA accesses to a physical adapter granularity. It does this by: having the LPAR manager, or another suitable intermediary, associate the system image's host memory addresses that will be used in I/O operations to PCI bus addresses which will be used by the PCI adapter to perform PCI bus DMA operations; and then having the I/O ASIC check that each incoming PCI bus DMA operation references host memory addresses that are indeed associated with the PCI adapter.
In
The OS builds and adds one or more work queue elements (WQEs) to a work queue (WQ) that is associated with the OS (step 1800). The WQ resides on a PCI adapter that supports either the virtual adapter level (VAL). management approach, such as PCI adapter 1731 shown in
The OS informs the adapter that it has more work to do by performing a programmed input/output (PIO) write to the doorbell address associated with the WQ (step 1808). Alternatively, the doorbell may be alternatively implemented with a MMIO to a specific address. The OS code that performs the PIO may be running in either privileged or user space.
The PCI adapter then evaluates whether address checking is enabled (step 1812). If the PCI adapter was configured to check whether DMA addresses referenced in WQE data segments are associated with the system image that is also associated with the PCI bus address of the incoming MMIO operation, then the PCI adapter performs the DMA containment checks as described in U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040552US1 entitled “Method and System for Fully Trusted Adapter Validation of Addresses Referenced in a Virtual Host Transfer Request” filed even date hereof) (step 1816), and then continues to evaluate whether the containment checks were successful (step 1820).
If the containment checks are identified as successful at step 1820, the adapter marks the WQE as. valid (step 1824), otherwise the adapter creates a completion queue element (CQE) describing the error and conveys the CQE to the host via a DMA operation (step 1836).
Returning again to step 1812, if the adapter does not have address checking enabled, the adapter proceeds to mark the WQE as valid according to step 1824. After marking the WQE as valid, whether in response to the adapter determining that address checking is not enabled or in response to evaluation of a successful containment check, the adapter then performs all functions associated with the WQE (step 1832). For each function that requires a transfer on the downstream network, the physical adapter adds the downstream network's ID that is associated with the virtual adapter (if the VAL approach is used), or virtual resource (if the VRL approach is used). Examples of a downstream network ID include: N-port ID for Fibre Channel, SCSI Initiator ID for SCSI, and VLAN ID (or MAC Address) for Ethernet. After performing the functions associated with the WQE, the adapter creates a completion queue element (CQE) describing the results of the functions performed on the WQE according to step 1836. The CQE may indicate, for example, that all functions were completed successfully or one, or more, of the functions completed in error. After the CQE has been created and conveyed to the host via a DMA operation, the adapter evaluates whether the CQE was requested (step 1844). If a completion event was requested, then the adapter generates an event for the operation (step 1848) and completes (step 1854). Otherwise, the adapter completes the operation according to step 1854 without first generating an event.
The description of the present invention has been presented for purposes of illustration and description, and is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. The embodiment was chosen and described in order to best explain the principles of the invention, the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
This application is related to commonly assigned and co-pending U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040178US1) entitled “Method, System and Program Product for Differentiating Between Virtual Hosts on Bus Transactions and Associating Allowable Memory Access for an Input/Output Adapter that Supports Virtualization”; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040179US1) entitled “Virtualized I/O Adapter for a Multi-Processor Data Processing System”; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040180US1) entitled “Virtualized Fibre Channel Adapter for a Multi-Processor Data Processing System”; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040181US1) entitled “Interrupt Mechanism on an IO Adapter That Supports Virtualization”; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040182US1) entitled. “System and Method for Modification of Virtual Adapter Resources in a Logically Partitioned Data Processing System”; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040183US1) entitled “Method, System, and Computer Program Product for Virtual Adapter Destruction on a Physical Adapter that Supports Virtual Adapters”; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040184US1) entitled “System and Method of Virtual Resource Modification on a Physical Adapter that Supports Virtual Resources”; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040185US1) entitled “System and Method for Destroying Virtual Resources in a Logically Partitioned Data Processing System”; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040186US1) entitled “Association of Memory Access Through Protection Attributes that are Associated to an Access Control Level on a PCI Adapter that Supports Virtualization”; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040187US1) entitled “Association of Host Translations that are Associated to an Access Control Level on a PCI Bridge that Supports Virtualization”; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040507US1) entitled “Method, Apparatus, and Computer Program Product for Coordinating Error Reporting and Reset Utilizing an I/O Adapter that Supports Virtualization”; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040552US1) entitled “Method and System for Fully Trusted Adapter Validation of Addresses Referenced in a Virtual Host Transfer Request”; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040553US1) entitled “System, Method, and Computer Program Product for a Fully Trusted Adapter Validation of Incoming Memory Mapped I/O Operations on a Physical Adapter that Supports Virtual Adapters or Virtual Resources”; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040554US1) entitled “System and Method for Host Initialization for an Adapter that Supports Virtualization”; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040555US1) entitled “Data Processing System, Method, and Computer Program Product for Creation and Initialization of a Virtual Adapter on a Physical Adapter that Supports Virtual Adapter Level Virtualization”; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040556US1) entitled “System and Method for Virtual Resource Initialization on a Physical Adapter that Supports Virtual Resources”; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040557US1) entitled “Method and System for Native Virtualization on a Partially Trusted Adapter Using Adapter Bus, Device and Function Number for Identification”; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040559US1) entitled “Native Virtualization on a Partially Trusted Adapter Using PCI Host Bus, Device, and Function Number for Identification; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040560US1) entitled “System and Method for Virtual Adapter Resource Allocation”; U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040561US1) entitled “System and Method for Providing Quality of Service in a Virtual Adapter”; and U.S. patent application Ser. No. ______ (Attorney Docket No. AUS920040562US1) entitled “System and Method for Managing Metrics Table Per Virtual Port in a Logically Partitioned Data Processing System” all of which are hereby incorporated by reference.