The invention relates to an ester-based lubricant composition which exhibits enhanced hydrolytic stability and to a method of enhancing the hydrolytic stability of ester based lubricants.
Synthetic and natural ester based lubricants are used in a large number of applications including, for example, automotive and aviation oils, refrigeration oils, metal working fluids, gear oils, turbo oils, hydraulic fluids and refrigeration lubricants.
Synthetic and natural ester based lubricants, however, are well known to be very sensitive to the effects of water. Hydrolysis of such lubricants can substantially shorten the lubricant life and lead to a higher risk of equipment failure. Further, it is known in the art that inclusion of anti-wear additives in ester base oils can accelerate the hydrolytic degradation of esters due to their acidic nature. Thus, at least one common additive exacerbates the hydrolytic instability of ester base oils.
Several approaches have been taken to increase the hydrolytic stability of ester based lubricants. In one approach, additives, such as dicarbo-imides, are included in various amounts to minimize ester hydrolysis. In another approach, esters having a significant level of steric hindrance around the ester functionality have been used to minimize ester hydrolysis. Neither approach has satisfactorily solved the problem ester based lubricant hydrolytic stability.
The instant invention is a lubricant composition and a method of enhancing the hydrolytic stability of an ester based lubricant.
In one embodiment, the instant invention provides a lubricant composition comprising: (a) from 0.1 to 10 percent by weight of one or more polyalkylene glycols (PAGs); and (2) one or more ester base oils selected from the group of natural esters, synthetic esters and combinations thereof; wherein the one or more PAGs have a molecular weight in the range 1500 to 5000 g/mole, comprise from 10 to 40 percent by weight of units derived from ethylene oxide and from 90 to 60 percent by weight of units derived from propylene oxide; and wherein the one or more PAGs are in the form of block copolymer, reverse block copolymer or combinations thereof.
In an alternative embodiment, the instant invention further provides a method of enhancing the hydrolytic stability of an ester based lubricant comprising: (a) providing an ester base oil; (b) adding to the ester base oil from 0.1 to 10 percent by weight one or more PAGs wherein the one or more PAGs have a molecular weight in the range 1500 to 5000 g/mole, comprise from 10 to 40 percent by weight of units derived from ethylene oxide and from 90 to 60 percent by weight of units derived from propylene oxide; and wherein the one or more PAG is in the form of block copolymer, reverse block copolymer or combinations thereof; and (c) blending the one or more PAGs to form a lubricant composition.
In an alternative embodiment, the instant invention provides a lubricant composition and method of enhancing the hydrolytic stability of an ester based lubricant, in accordance with any of the preceding embodiments, except that the one or more ester base oils is one or more natural esters selected from the group consisting of vegetable oils.
In an alternative embodiment, the instant invention provides a lubricant composition and method of enhancing the hydrolytic stability of an ester based lubricant, in accordance with any of the preceding embodiments, except that the one or more ester base oils is one or more natural esters selected from the group consisting soy oil, canola oil, and sunflower oil.
In an alternative embodiment, the instant invention provides a lubricant composition and method of enhancing the hydrolytic stability of an ester based lubricant, in accordance with any of the preceding embodiments, except that the one or more ester base oils include from greater than 0 to 100 percent by weight of ester derived from a renewable resource.
In an alternative embodiment, the instant invention provides a lubricant composition and method of enhancing the hydrolytic stability of an ester based lubricant, in accordance with any of the preceding embodiments, except that the one or more esters is one or more synthetic esters selected from the group consisting of polyol esters and dicarbonic acid esters.
In an alternative embodiment, the instant invention provides a lubricant composition and method of enhancing the hydrolytic stability of an ester based lubricant, in accordance with any of the preceding embodiments, except that the lubricant composition further comprises one or more selected from the group of antioxidants, anti-wear additives and corrosion inhibitors.
In an alternative embodiment, the instant invention provides a lubricant composition and method of enhancing the hydrolytic stability of an ester based lubricant, in accordance with any of the preceding embodiments, except that the antioxidants are selected from the group consisting of phenolic antioxidants, hindered phenolic antioxidants, aromatic amine antioxidants, secondary amine antioxidants, sulfurized phenolic antioxidants, sulfurized olefins, oil-soluble copper compounds, and combinations thereof.
In an alternative embodiment, the instant invention provides a lubricant composition and method of enhancing the hydrolytic stability of an ester based lubricant, in accordance with any of the preceding embodiments, except that the corrosion inhibitors are selected from the group consisting of (1) amine salts of an aliphatic phosphoric acid ester; (2) alkenyl succinic acid half esters; (3) amine salts of an alkyl phosphoric acid combined with a dithiophosphoric acid derivative; (4) combinations of barium dinonylnaphthalene sulfonate and dinonylnaphthalene carboxylate in a hydrotreated naphthenic oil; and (5) combinations thereof.
In an alternative embodiment, the instant invention provides a lubricant composition and method of enhancing the hydrolytic stability of an ester based lubricant, in accordance with any of the preceding embodiments, except that the anti-wear additives are selected from the group consisting of zinc dialkyldithiophosphates, tricresyl phosphate, didodecyl phosphite, sulfurized sperm oil, sulfurized terpenes, zinc dialkyldithiocarbamate, and combinations thereof.
In an alternative embodiment, the instant invention provides a lubricant composition and method of enhancing the hydrolytic stability of an ester based lubricant, in accordance with any of the preceding embodiments, except that the one or more PAGs each have a molecular weight from 1700 to 3300 g/mole.
In an alternative embodiment, the instant invention provides a lubricant composition and method of enhancing the hydrolytic stability of an ester based lubricant, in accordance with any of the preceding embodiments, except that the one or more PAGs are present in an amount from 5 to 10 percent by weight.
In an alternative embodiment, the instant invention provides a lubricant composition and method of enhancing the hydrolytic stability of an ester based lubricant, in accordance with any of the preceding embodiments, except that the one or more PAGs has an amount of units derived from EO from 20 to 40 percent by weight.
The instant invention is a lubricant composition and a method of improving the hydrolytic stability of a natural or synthetic lubricant composition.
The lubricant composition according to the present invention comprises(a) from 0.1 to 10 percent by weight of one or more polyalkylene glycols (PAG); and (2) one or more ester base oils selected from the group of natural esters and synthetic esters; wherein the one or more PAG has a molecular weight in the range 1500 to 5000 g/mole, comprises from 10 to 40 percent by weight of units derived from ethylene oxide and from 90 to 60 percent by weight of units derived from propylene oxide; and wherein the one or more PAG is in the form of block copolymer, reverse block copolymer or combinations thereof.
The PAGs useful in the present invention may be present in any amount from 0.1 to 10 percent by weight based on the total weight of the PAG and ester base oil(s). All individual values and subranges from 1 to 10 wt % are included herein and disclosed herein; for example, the total PAG may be present in an amount from a lower limit of 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, or 9 wt % to an upper limit of 2, 3, 4, 5, 6, 7, 8, 9, or 10 wt %. For example, the total amount of PAG may be in the range of from 0.1 to 10 wt %, or in the alternative, the total amount of PAG may be in the range of from 3 to 9 wt %, or in the alternative, the total amount of PAG may be in the range of from 5 to 9 wt %, or in the alternative, the total amount of PAG may be in the range of from 5 to 10 wt %, or in the alternative, the total amount of PAG may be in the range of from 6 to 9 wt %.
The one or more PAG useful in embodiments of the present invention have a molecular weight in the range 1500 to 5000 g/mole. All individual values and subranges from 1500 to 5000 g/mole are included herein and disclosed herein; for example, the molecular weight can be from a lower limit of 1500, 2000, 2500, 3000, 3500, 4000, or 4500 g/mole to an upper limit of 2000, 2500, 3000, 3500, 4000, 4500, or 5000 g/mole. For example, the PAG molecular weight may be in the range of from 1500 to 5000 g/mole, or in the alternative, the PAG molecular weight may be in the range of from 2000 to 5000 g/mole, or in the alternative, the PAG molecular weight may be in the range of from 3000 to 4800 g/mole, or in the alternative, the PAG molecular weight may be in the range of from 3500 to 5000 g/mole, or in the alternative, the PAG molecular weight may be in the range of from 2000 to 4000 g/mole.
The one or more PAG useful in embodiments of the present invention comprise from 10 to 40 percent by weight of units derived from ethylene oxide (EO). All individual values and subranges from 10 to 40 percent by weight are included herein and disclosed herein; for example, the amount of units derived from EO in the PAG can be from a lower limit of 10, 13, 17, 21, 25, 29, 33, or 39 percent by weight to an upper limit of 14, 18, 22, 26, 30, 34, 38 or 40 percent by weight. For example, the amount of units derived from EO in the PAG may be in the range of from 10 to 40 percent by weight, or in the alternative, the amount of units derived from EO in the PAG may be in the range of from 23 to 30 percent by weight, or in the alternative, the amount of units derived from EO in the PAG may be in the range of from 19 to 38 percent by weight, or in the alternative, the amount of units derived from EO in the PAG may be in the range of from 25 to 40 percent by weight, or in the alternative, the amount of units derived from EO in the PAG may be in the range of from 30 to 40 percent by weight.
The one or more PAG useful in embodiments of the present invention comprise from 60 to 90 percent by weight of units derived from propylene oxide (PO). All individual values and subranges from 60 to 90 percent by weight are included herein and disclosed herein; for example, the amount of units derived from PO in the PAG can be from a lower limit of 60, 65, 70, 75, 80 or 85 percent by weight to an upper limit of 65, 70, 75, 80, 85 or 90 percent by weight. For example, the amount of units derived from PO in the PAG may be in the range of from 60 to 90 percent by weight, or in the alternative, the amount of units derived from PO in the PAG may be in the range of from 70 to 77 percent by weight, or in the alternative, the amount of units derived from PO in the PAG may be in the range of from 62 to 81 percent by weight, or in the alternative, the amount of units derived from PO in the PAG may be in the range of from 60 to 75 percent by weight, or in the alternative, the amount of units derived from PO in the PAG may be in the range of from 60 to 70 percent by weight.
Polyalkylene glycol (PAG) polymers useful in the invention comprise units derived from ethylene oxide and propylene oxide to form block or reverse block copolymers. As used herein the term block copolymer refers to copolymers made by feeding a block of PO onto an initiator followed by a block of EO. As used herein the term reverse block copolymer refers to copolymers made by feeding a block of EO onto an initiator followed by a block of PO. An initiator is a chemical that has a labile hydrogen atom that can react with the oxides. Typical initiators include alcohols such as butanol and 2-ethylhaxanol. These are often called “monols” since they have one hydroxyl group that can be alkoxylated. Glycols are also used as initiators for example monoethylene glycol or monopropylene glycol. These contain two labile hydrogens and are often referred to as “diols,” Tri-functional initiators such as glycerol or trimethylolpropane (TMP) are also used and are referred to as “Triols.” In addition other initiators with labile hydrogens such as fatty acids (e.g. R—COOH) or amines (e.g. RNH2) can also be used.
Ester base oils useful in embodiments of the present invention include synthetic oils, natural oils, and combinations thereof.
In some embodiments of the inventive lubricant composition, the one or more ester base oils is one or more natural esters selected from the group consisting of vegetable seed oils. U.S. Patent Application Publication 2006/0193802 (Lysenko et al.), the relevant teachings of which are incorporated herein by reference, lists illustrative plant and vegetable seed oils in paragraph [0030]. Such oils include palm oil, palm kernel oil, castor oil, soybean oil, olive oil, peanut oil, rapeseed oil, corn oil, sesame seed oil, cottonseed oil, canola oil, safflower oil, linseed oil, sunflower oil; high oleic oils (e.g. an oleic acid content of from about 70 wt % to 90 wt %, based upon total oil weight) such as high oleic sunflower oil, high oleic safflower oil, high oleic corn oil, high oleic rapeseed oil, high oleic soybean oil and high oleic cottonseed oil; genetically-modified variations of oils noted in this paragraph, and mixtures thereof.
In certain specific embodiments of the inventive lubricant composition, the one or more ester base oils is one or more natural esters selected from the group consisting soy oil, canola oil (also known as rapeseed oil), and sunflower oil and castor oil
In alternative embodiments of the inventive lubricant composition, the base oil includes from greater than 0 to 100 percent by weight of ester derived from a renewable resource. All individual values and subranges from greater than 0 to 100 percent by weight are included herein and disclosed herein; for example, the amount of ester derived from a renewable resource in the base oil can be from a lower limit of 1, 20, 38, 55, 62, 79, 87, or 96 percent by weight to an upper limit of 5, 28, 39, 45, 58, 66, 79, 88, 95 or 100 percent by weight. For example, the amount of ester derived from a renewable resource in the base oil may be in the range of from 1 to 100 percent by weight, or in the alternative, the amount of ester derived from a renewable resource in the base oil may be in the range of from 20 to 80 percent by weight, the amount of ester derived from a renewable resource in the base oil may be in the range of from 20 to 60 percent by weight, the amount of ester derived from a renewable resource in the base oil may be in the range of from 10 to 40 percent by weight, the amount of ester derived from a renewable resource in the base oil may be in the range of from 15 to 65 percent by weight. As used herein, the term renewable resource refers to resources such as seed oils and vegetable oils as distinguished from non-renewable resources, such as petroleum or natural gas.
In some embodiments of the inventive lubricant composition, the one or more ester base oils is one or more synthetic esters selected from the group consisting of a polyhydric alcohol and a C6-C22 acid (acid with six to 22 carbon atoms). Preferred polyhydric alcohols include at least one of trimethylolpropane, neopentylglycol, pentaerythritol, and 1,2,3-trihydroxy-propanol.
Additives may be used for a variety of purpose in lubricants. Certain embodiments of the inventive lubricant composition may include one or more additives selected from the group of antioxidants, anti-wear additives and corrosion inhibitors. Exemplary antioxidants useful in various embodiments of the inventive lubricant composition include phenolic antioxidants, hindered phenolic antioxidants, aromatic amine antioxidants, secondary amine antioxidants, sulfurized phenolic antioxidants, sulfurized olefins, oil-soluble copper compounds, and combinations thereof. Exemplary corrosion inhibitors useful in various embodiments of the inventive lubricant composition include: (1) an amine salt of an aliphatic phosphoric acid ester (for example, NALUBE 6110, available from King Industries); (2) an alkenyl succinic acid half ester in mineral oil (for example, IRGACOR L12, available from BASF Corporation); (3) an amine salt of an alkyl phosphoric acid combined with a dithiophosphoric acid derivative (for example, NALUBE 6330, available from King Industries); (4) a combination of barium dinonylnaphthalene sulfonate and dinonyl naphthalene carboxylate in a hydrotreated naphthenic oil (for example, NASUL BSN, available from King Industries); and (5) combinations thereof. Exemplary anti-wear additives useful in various embodiments of the inventive lubricant composition include zinc dialkyldithiophosphates, tricresyl phosphate, didodecyl phosphite, sulfurized sperm oil, sulfurized terpenes, zinc dialkyldithiocarbamate, and combinations thereof. Typical additive packages include antioxidants and corrosion inhibitors such as a combination of (4-nonlyphenol)acetic acid, a proprietary acylsarkosinate and nonyl phenol (IRGACOR L17), N-phenyl-ar-(1,1,3,3-tetramethylbutyl)-1-naphthaleneamine (IRGANOX L06), a reaction product of N-phenylbenzenamine with 2,4,4-trimethylpentent diphenylamine (IRGANOX L57), tolyltriazole and monomethyl hydroquinone. IRGANOX and IRGACOR may be obtained from the BASF Corporation. Yet other additives which may be used in lubricants include defoamers such as polymethylsiloxanes, demulsifiers, copper corrosion inhibitors, rust inhibitors, pour point depressants, detergents, dyes, metal deactivators, supplemental friction modifiers, diluents, combinations thereof, and the like. Additives may be used in any convenient combination or amount but typically comprise from 0.05 wt % to 5 wt %, preferably from 1 wt % to 3 wt %, of the total composition.
In an alternative embodiment, the instant invention further provides a method of enhancing the hydrolytic stability of an ester based lubricant comprising: (a) providing an ester base oil; (b) adding to the ester base oil from 0.1 to 10 percent by weight one or more PAGs wherein the one or more PAGs have a molecular weight in the range 1500 to 5000 g/mole, comprise from 10 to 40 percent by weight of units derived from ethylene oxide and from 90 to 60 percent by weight of units derived from propylene oxide; and wherein the one or more PAG is in the form of block copolymer, reverse block copolymer or combinations thereof; and (c) blending the one or more PAGs to form a lubricant composition.
Ester base oils useful in embodiments of the inventive method are as discussed above. Likewise, PAGs useful in embodiments of the inventive method are as discussed previously herein.
In some embodiments of the inventive method, one or more additives selected from the group consisting of antioxidants, anti-wear additives and corrosion inhibitors are added to the lubricant composition.
The following examples illustrate the present invention but are not intended to limit the scope of the invention. The examples of the instant invention demonstrate that inclusion of specific PAG block copolymer structures into the ester composition significantly improve the hydrolytic stability of the resultant lubricant composition.
Table 1 lists the components used in preparing the inventive and comparative lubricant compositions.
Table 2 provides the composition of Inventive Examples 1-5 and Comparative Examples 1-25.
Each of Inventive Examples and Comparative Examples were made by blending the components at room temperature until a uniform mixture was obtained. Each of Inventive Examples and Comparative Examples were clear upon blending except for Comparative Examples 3, 8, 13, 18, and 23 (those containing SYNALOX 50-30B) which were all turbid.
Table 3 provides the results of hydrolytic stability testing on Inventive Examples 1-5 and Comparative Examples 1-25. This testing, as described below, provides total acid number (TAN) of the examples before and after exposure to water. The difference in TAN measurements before and after water exposure, ΔTAN, indicates the level of hydrolytic stability, wherein the smaller the ΔTAN, the greater the hydrolytic stability (i.e., indicating that exposure to water has not as severely increased the total acid number by hydrolysis).
As can be seen from Table 3, in each of the ester base oils tested, DOWFAX 63N30, which is a 60 to 90/10 to 40 w/w PO/EO block copolymer showed significantly decreased hydrolysis, improved hydrolytic stability, in comparison to those ester base oils with no PAG additive or with PAG additives not meeting the specifications of the present inventive compositions.
No, or minor, beneficial effect was observed using the two random EO/PO copolymers (SYNALOX 80-130B and SYNALOX 50-30B) or the PO homo-polymer (SYNALOX 100-30B).
Inventive Examples 2-5 and Comparative Examples 6-25 further include 0.25 percent by weight of NALUBE AW 6110, an anti-wear additive. As previously mentioned, anti-wear additives tend to accelerate the hydrolytic degradation of esters. Anti-wear additives are commonly used in applications such as hydraulic fluids at low treat levels (0.1-0.5%). However, as seen from Table 3, even in the presence of the anti-wear additive, the Inventive Examples showed significant improvement over each of the Comparative Examples.
Table 4 illustrates the improvement in hydrolytic stability afforded at varying levels of DOWFAX 63N30, specifically at levels of 10 wt %, 5 wt % and 1 wt % in two natural Sunflower oil esters and two synthetic esters. As can be seen from Table 4, all levels tested exhibit improved hydrolytic stability.
Table 4 also shows the effect of adding DOWFAX 63N30 to a commercially available compressor lubricant (SSR Ultracoolant) that contains a PAG (homo-polymer of propylene oxide) and an ester. Improvements in hydrolytic stability are observed at 5, 2 and 1% addition of a block copolymer.
Table 5 illustrates that the use of other PAG compositions meeting the structural requirements of the present invention also results in enhanced hydrolytic stability. Specifically, each of DOWFAX 63N10 and DOWFAX 100N15 are EO/PO block copolymers having a molecular weight in the range 1500 to 5000 g/mole, from 10 to 40 percent by weight of units derived from ethylene oxide and from 90 to 60 percent by weight of units derived from propylene oxide.
Tables 6 and 7 provide the solubility of different PAG structures at treat levels of 1, 5 and 10 weight percentages in a synthetic ester (SYNATIVE ES TMTC) and a natural ester (Sunflower HILO), respectively. As can be seen from Table 6, PAGs with an EO content of 40 wt % or higher are not soluble in the esters and form two layers on standing at ambient temperature. Hence, 40 wt % or greater EO PAGs have little practical value for use as ester base oil additives.
Hydrolytic stability was tested using a modified version of ASTM D2619, (Standard Test Method for Hydrolytic Stability of Hydraulic Fluids (Beverage Bottle Method)). ASTM D2619 stipulates that 25 percent by weight of water should be added to the lubricant. In preparing the data included herein, only 10 percent by weight water was used. In summary, the test proceeds as follows: (a) a sample of 90 g lubricant composition and 10 g of deionized water and a copper test coupon specimen are sealed in a pressure-type beverage bottle. The bottle is rotated, end over end, for 48 hours in an oven at 93° C. The oil and water layers are separated, and any insoluble material is weighed. The total acid number (TAN) of the fluid before and after the test is determined and the change reported.
The practical molecular weight of each of the polymers was determined by measuring the hydroxyl content in accordance with ASTM D4274-D (Standard Test Methods for Testing Polyurethane Raw Materials: Determination of Hydroxyl Numbers of Polyols).
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/041452 | 6/8/2012 | WO | 00 | 11/19/2013 |
Number | Date | Country | |
---|---|---|---|
61496960 | Jun 2011 | US |