NATURAL CLEANERS

Abstract
A cleaning composition with a limited number of natural ingredients contains an anionic surfactant, a hydrophobic syndetic, and a hydrophilic syndetic. The cleaning composition can be used to clean laundry, soft surfaces, and hard surfaces and cleans as well or better than commercial compositions containing synthetically derived cleaning agents.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to naturally based cleaners. Natural based cleaners include, but are not limited to, laundry detergents, soil and stain removers, light duty liquid detergents, all-purpose cleaners, and glass cleaners.


2. Description of the Related Art


Cleaning formulations have progressed and created a large chemical industry devoted to developing new synthetic surfactants and solvents to achieve ever improving cleaning compositions for the consumer. Recently, consumers have shown an increasing interest in natural and sustainable products. Obstacles in selling such products include the expense to the consumer, since many conventional cleaners typically cost half as much as natural products or products based on sustainable materials. Another inconvenience to consumers of such products includes the limited distribution of natural products, which are often found only in speciality stores.


Finally, there remains a significant gap in the performance of natural products, relative to that of highly developed formulations based on synthetic surfactants and solvents which are produced from petrochemical feedstocks. Companies marketing natural or sustainable consumer products have had difficulty in formulating cleaners that deliver acceptable consumer performance, while utilizing only a limited number of natural and/or sustainably produced components.


Typical cleaning formulations require multiple surfactants, solvents, and builder combinations to achieve adequate consumer performance. Because of the increased cost of synthetic sources for cleaning agents and a concern for the environment, there is a renewed focus on using materials that are naturally sourced.


For example, U.S. Pat. No. 6,759,382 to Ahmed discloses a concentrated liquid detergent composition containing a primary surfactant system chosen from alkylbenzene sulfonate or another sulfate or sulfonate, and a secondary surfactant system containing an α-sulfomethyl ester or alkyl polyglucoside, where the alkyl polyglucoside is a C8 to C16 alkyl polyglucoside, a C8 to C10 alkyl polyglucoside, a C8 to C14 alkyl polyglucoside, a C12 to C14 alkyl polyglucoside, or a C12 to C16 alkyl polyglucoside. U.S. Pat. No. 6,686,323 to Nilsson et al. discloses C6, C8 and C10 alkyl polyglucosides as surfactant for mud removal in oil drilling. U.S. Pat. No. 6,117,820 to Cutler et al. discloses agricultural formulations containing C8 to C10 alkyl polyglucosides, C9 to C11 alkyl polyglucosides, and 2-ethyl-1-hexylglucoside. U.S. Pat. App No. 20060172889 to Barnes et al. discloses agricultural formulations containing C7 to C18 alkyl polyglucosides. U.S. Pat. No. 6,537,960 to Ruhr et al. discloses C6 and C8 alkyl polyglucosides in highly alkaline formulations with amine oxides and alcohol alkoxylates. PCT App. No. WO 00/49095 to Landeweer et al. discloses C6 to C10 alkyl polyglucosides with glycol ethers such as butyl diglycol.


Prior art compositions do not combine effective cleaning with a minimum number of ingredients, especially with natural ingredients. It is therefore an object of the present invention to provide a cleaning composition that overcomes the disadvantages and obstacles associated with prior art cleaning compositions.


SUMMARY OF THE INVENTION

In accordance with the above objects and those that will be mentioned and will become apparent below, one aspect of the present invention comprises a natural cleaning composition consisting essentially of a. an anionic surfactant selected from the group consisting of sodium lauryl sulfate, sodium alkyl α-sulfomethyl ester, and combinations thereof; b. a hydrophilic syndetic selected from the group consisting of C6 alkyl polyglucoside, C6 to C8 alkyl polyglucoside, C8 alkyl polyglucoside, C4 to C8 alkyl polypentoside and combinations thereof; c. a hydrophobic syndetic selected from an amine oxide; d. an organic chelating agent from the group consisting of 2-hydroxyacids, 2-hydroxyacid derivatives, glutamic acid, glutamic acid derivatives, gluconate, and mixtures thereof; e. optionally a solvent selected from the group consisting of propylene glycol, 1,3-propanediol, ethanol, sorbitol, glycerol, and combinations thereof; f. optionally a nonionic surfactant selected from the group consisting of alkyl polyglucosides having chain lengths greater than C8, and combinations thereof; and g. optional ingredients selected from pH adjusting agents, builders, calcium salts, boric acid or borate, enzymes, dyes, colorants, fragrances, preservatives, fluorescent whitening agents, bluing agents, defoamers, bleaches, thickeners, anti-redeposition polymers, DTPA, GLDA, EDDS, TMG, Tiron and combinations thereof.


In accordance with the above objects and those that will be mentioned and will become apparent below, another aspect of the present invention comprises a natural cleaning composition consisting essentially of a. an anionic surfactant selected from the group consisting of a fatty alcohol sulfate, an alkyl α-sulfomethyl ester, and combinations thereof; b. a hydrophilic syndetic selected from the group consisting of C6 alkyl polyglucoside, C6 to C8 alkyl polyglucoside, C8 alkyl polyglucoside, C6 alkyl sulfate, C6 to C8 alkyl sulfate, C8 alkyl sulfate, C4 to C8 alkyl polypentoside and combinations thereof; c. a hydrophobic syndetic selected from the group consisting of an amine oxide, a fatty acid, a fatty alcohol, a sterol, a sorbitan fatty acid ester, a glycerol fatty acid ester, a polyglycerol fatty acid ester, a C14 to C22 alkyl polypentoside and combinations thereof; d. an organic chelating agent from the group consisting of 2-hydroxyacids, 2-hydroxyacid derivatives, glutamic acid, glutamic acid derivatives, gluconate, and mixtures thereof; e. optionally a solvent selected from the group consisting of propylene glycol, 1,3-propanediol, ethanol, sorbitol, glycerol and combinations thereof; f. optionally a nonionic surfactant selected from the group consisting of an alkyl polyglucoside having chain lengths from C10 to C20, a C8 to C14 alkyl polypentoside, alkyldiethanolamide, alkylethanolamide, an alkyl poly(glycerol ether) and combinations thereof; g. optionally an amphoteric surfactant selected from the group consisting of sarcosinate, tauride, betaine, sulfobetaine and combinations thereof; and i. optional ingredients selected from pH adjusting agents, calcium salts, boric acid, enzymes, dyes, colorants, fragrances, preservatives, fluorescent whitening agents, blueing agents, defoamers, bleaches, thickeners, anti-redeposition polymers, DTPA, GLDA, EDDS, TMG, Tiron and combinations thereof.


In accordance with the above objects and those that will be mentioned and will become apparent below, another aspect of the present invention comprises a natural cleaning composition comprising a. an anionic surfactant selected from the group consisting of a fatty alcohol sulfate, an alkyl α-sulfomethyl ester, and combinations thereof; b. a hydrophilic syndetic selected from the group consisting of C6 alkyl polyglucoside, C6 to C8 alkyl polyglucoside, C8 alkyl polyglucoside, C6 alkyl sulfate, C6 to C8 alkyl sulfate, C8 alkyl sulfate, C4 to C8 alkyl polypentoside and combinations thereof; c. a hydrophobic syndetic selected from the group consisting of an amine oxide, a fatty acid, a fatty alcohol, a sterol, a sorbitan fatty acid ester, a glycerol fatty acid ester, a polyglycerol fatty acid ester, a C14 to C22 alkyl polypentoside, and combinations thereof; d. optionally a solvent selected from the group consisting of propylene glycol, 1,3-propanediol, ethanol, sorbitol, glycerol, and combinations thereof; e. optionally a nonionic surfactant selected from the group consisting of an alkyl polyglucoside having chain lengths from C10 to C20, alkyldiethanolamide, alkylethanolamide, an alkyl(polyglycerol) ether, a C8 to C14 alkyl polypentoside, and combinations thereof; f. optionally an amphoteric surfactant selected from the group consisting of sarcosinate, tauride, betaine, sulfobetaine and combinations thereof; g. optionally an organic chelating agent from the group consisting of 2-hydroxyacids, 2-hydroxyacid derivatives, glutamic acid, glutamic acid derivatives, gluconate, and mixtures thereof; and i. optional ingredients selected from pH adjusting agents, calcium salts, boric acid, enzymes, dyes, colorants, fragrances, preservatives, fluorescent whitening agents, blueing agents, defoamers, bleaches, thickeners, anti-redeposition polymers, DTPA, GLDA, EDDS, TMG, Tiron and combinations thereof, wherein the composition does not contain alkyl glycol ethers, alcohol alkoxylates, alkyl monoglycerolether sulfate, alkyl ether sulfates, alkanolamines, alkyl ethoxysulfates, phosphates, EDTA, linear alkylbenzene sulfonate (“LAS”), linear alkylbenzene sulphonic acid (“HLAS”) or nonylphenol ethoxylate (“NPE”).


Further features and advantages of the present invention will become apparent to those of ordinary skill in the art in view of the detailed description of preferred embodiments below, when considered together with the attached claims.







DETAILED DESCRIPTION OF THE INVENTION

Before describing the present invention in detail, it is to be understood that this invention is not limited to particularly exemplified systems or process parameters that may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments of the invention only, and is not intended to limit the scope of the invention in any manner.


All publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference.


It must be noted that, as used in this specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to a “surfactant” includes two or more such surfactants.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although a number of methods and materials similar or equivalent to those described herein can be used in the practice of the present invention, the preferred materials and methods are described herein.


In the application, effective amounts are generally those amounts listed as the ranges or levels of ingredients in the descriptions, which follow hereto. Unless otherwise stated, amounts listed in percentage (“%'s”) are in weight percent (based on 100% active) of the cleaning composition. Each of the noted cleaner composition components is discussed in detail below.


The term “cleaning composition”, as used herein, is meant to mean and include a cleaning formulation having at least one surfactant.


The term “surfactant”, as used herein, is meant to mean and include a substance or compound that reduces surface tension when dissolved in water or water solutions, or that reduces interfacial tension between two liquids, or between a liquid and a solid. The term “surfactant” thus includes cationic, anionic, nonionic, zwitterionic, amphoteric agents and/or combinations thereof.


The term “base surfactant”, as used herein, refers to a surfactant or amphiphile that exhibits a strong tendency to adsorb at interfaces in a relatively ordered fashion, oriented perpendicular to the interface.


The term “syndetic” (meaning to join or link together, as in mixing water and oil), as used herein, refers to a relatively weak amphiphile which exhibits a significant ability to adsorb at an oil-water interface (from either the water phase, hence a “hydrophilic syndetic”, or from the oil phase, hence a “hydrophobic syndetic”) only when the interface already bears an adsorbed layer of a base surfactant or mixture of base surfactants. Adsorption of syndetics at oil-water interfaces is thought to affect the spacing and/or the order of the adsorbed ordinary surfactants in a manner that is highly beneficial to the production of very low oil-water interfacial tensions, which in turn increases the solubilization of oils and/or the removal of oils from solid surfaces.


The term “Interfacial Tension (“IFT”)” refers to the excess surface free energy of the molecules residing at the interface of two immiscible phases, e.g., an aqueous phase and an oily phase, relative to that of the bulk phase(s). The concept of IFT is well known to those skilled in the art, and has been extensively discussed in references, such as C. A. Miller, P. Neogi: Interfacial Phenomena—Equilibrium and Dynamic Effects, 2nd. Ed., Surfactant Science Series, Vol. 139, 2007, CRC Press.


The term “Renewable Carbon Index (“RCI”)”—refers to the fraction (or percentage) of the carbon atoms in the average structure of, for example, an anionic surfactant, hydrophilic syndetic, hydrophobic syndetic or optionally a solvent which are derived from feedstocks other than petroleum or natural gas. Typically, and desirably, when such components of cleaners are produced from natural materials or in a sustainable manner, the RCI will be in excess of 0.75 or “75%”, due to the use of materials found in nature, or to the use of feedstocks derived from sustainable sources such as plants, fungi or algae, products of bacterial fermentation processes, or products of treatments of plant-, fungal- or algae-derived biomass. The major challenges in the formulation of cleaners with desirably high RCIs are the selection of a few suitable materials that are economically viable, while delivering performance that is as good as or better than the conventional products.


The term “total syndetics” refers to the sum of the weight percentages of hydrophilic syndetics and hydrophobic syndetics in a composition.


The term “total base surfactant” refers to the sum of the weight percentages of anionic surfactant and any applicable nonionic and/or amphoteric surfactants in the composition.


The term “comprising”, which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. See MPEP 2111.03. See, e.g., Mars Inc. v. H. J. Heinz Co., 377 F.3d 1369, 1376, 71 USPQ2d 1837, 1843 (Fed. Cir. 2004) (“like the term ‘comprising,’ the terms ‘containing’ and ‘mixture’ are open-ended.”) Invitrogen Corp. v. Biocrest Mfg., L. P., 327 F.3d 1364, 1368, 66 USPQ2d 1631, 1634 (Fed. Cir. 2003) (“The transition ‘comprising’ in a method claim indicates that the claim is open-ended and allows for additional steps.”); Genentech, Inc. v. Chiron Corp., 112 F.3d 495, 501, 42 USPQ2d 1608, 1613 (Fed. Cir. 1997) See MPEP 2111.03. (“Comprising” is a term of art used in claim language which means that the named elements are essential, but other elements may be added and still form a construct within the scope of the claim.); Moleculon Research Corp. v. CBS, Inc., 793 F.2d 1261, 229 USPQ 805 (Fed. Cir. 1986); In re Baxter, 656 F.2d 679, 686, 210 USPQ 795, 803 (CCPA 1981); Ex parte Davis, 80 USPQ 448, 450 (Bd. App. 1948). See MPEP 2111.03.


The term “consisting essentially of” as used herein, limits the scope of a claim to the specified materials or steps “and those that do not materially affect the basic and novel characteristic(s)” of the claimed invention. In re Herz, 537 F.2d 549, 551-52, 190 USPQ 461, 463 (CCPA 1976) (emphasis in original).


The term “consisting of” as used herein, excludes any element, step, or ingredient not specified in the claim. In re Gray 53 F.2d 520, 11 USPQ 255 (CCPA 1931); Ex Parte Davis, 80 USPQ 448, 450 (Bd. App. 1948). See MPEP 2111.03.


The term “natural” as used herein is meant to mean at least 95% of the components of the product are derived from plant and mineral based materials. Also, the “natural” product is biodegradable. Additionally, the “natural” product is minimally toxic to humans and has a LD50>5000 mg/kg. The “natural” product does not contain of any of the following: non-plant based ethoxylated surfactants, linear alkylbenzene sulfonates (“LAS”), ether sulfates surfactants or nonylphenol ethoxylate (NPE).


The term “ecofriendly” as used herein is meant to mean at least 99% of the components of the product are derived from plant and mineral based materials. Also, the “ecofriendly” product is biodegradable. Additionally, the “ecofriendly” product is minimally toxic to humans and has a LD50>5000 mg/kg. The “ecofriendly” product does not contain of any of the following: non-plant based ethoxylated surfactants, linear alkylbenzene sulfonates (“LAS”), ether sulfates surfactants or nonylphenol ethoxylate (NPE).


The term “biodegradable” as used herein is meant to mean microbial degradation of carbon containing materials. The “biodegradable” material must be tested under a recognized protocol and with tested methods of established regulatory bodies such as: EPA, EPA-TSCA, OECD, MITI or other similar or equivalent organizations in the US or internationally. Suitable non-limiting examples of test methods for biodegradation include: OECD methods in the 301-305 series. Generally, all “biodegradable” material must meet the following limitations:


a) removal of dissolved organic carbon>70%


b) biological oxygen demand (BOD)>60%


c) % of BOD of theoretical oxygen demand>60%


d) % CO2 evolution of theoretical>60%


Syndetics Technology

The compositions can contain an anionic surfactant as a base surfactant, a hydrophilic syndetic, and a hydrophobic syndetic. Alternately, the compositions can contain an anionic surfactant as a base surfactant, a hydrophilic syndetic, a hydrophobic syndetic and a solvent. Alternately, the compositions can contain an anionic surfactant and a nonionic surfactant as a total base surfactant mixture, a hydrophilic syndetic, a hydrophobic syndetic and a solvent. Alternately, the compositions can contain an anionic surfactant and an amphoteric surfactant as a total base surfactant mixture, a hydrophilic syndetic, a hydrophobic syndetic and a solvent. Alternately, the compositions can contain an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant as a total base surfactant mixture, a hydrophilic syndetic, a hydrophobic syndetic and a solvent. One key component of the invention is the short-chain hydrophilic syndetic, which can rapidly adsorb at the interface between a water-immiscible oil and water, together with the base surfactant or surfactant mixture, resulting in very low IFT values, which are important for good detergency performance. The short-chain hydrophilic syndetic is preferably a C6 alkyl poly-glucoside, a C6 to C8 alkyl polyglucoside, or a C8 alkyl polyglucoside. Alternative suitable hydrophilic syndetics are C6 alkyl sulfate or C6 to C8 alkyl sulfate. Another alternative suitable hydrophilic syndetic is a C4 to C8 alkyl polypentoside. The alkyl polypentosides are materials of desirably high RCI in which the hydrophilic groups are derived from raw material sources such as wheat bran and straw. Such biomass-based sources, when refined, yield syrups that are enriched in pentoses, or 5 carbon sugars, such as arabinose and xylose. Glycosylation of pentoses with alcohols is readily accomplished, adding the hydrophobic alkyl groups which endow the resulting materials with interfacial activity. Preferably, the alkyl chains are derived from fatty alcohols which are derived from a natural source, such as coconut or palm oil, or sugar beets, or distilled cuts of fatty alcohols from such plant-based raw materials. Condensation reactions between the hydrophilic pentoses may occur during synthesis of the interfacially active materials, thus producing practical final materials that can be described as alkyl polypentosides. Suitable alkylpentosides are described in U.S. Pat. No. 5,688,930. Herein, we refer to glycosylated pentoses and their mixtures as alkyl pentosides, alkyl xylosides or alkyl polypentosides. In order for these materials to function as hydrophilic syndetics, the alkyl chains should be relatively short, that is the average length of the chain should be from about 4 to 8 carbon atoms. A second key component is the hydrophobic syndetic, which can interact with the other components, including the oil and the total base surfactant or total base surfactant mixture. The incorporation of both hydrophilic and hydrophobic syndetics in formulations has been found to be highly beneficial in delivering formulations that can decrease the IFT between an aqueous solution and oily substances commonly encountered as “soils” by consumers. The incorporation of both hydrophilic and hydrophobic syndetics in formulations has also been found to be highly beneficial in delivering rapid reduction of the IFT, especially on the timescales relevant to consumer-perceived performance of the cleaner. For example, the incorporation of the syndetics has been found to enable reduction of the IFT values on timescales of 15 minutes or less, which is quite relevant to the laundering of garments via machines. As is well known in the art, the removal of oily substances from surfaces by cleaning formulations proceeds via either the so-called “roll-up” of oil, or “snap-off” of oil, or true “solubilization” of oil. The efficiency of all of these processes is improved by the reduction of IFT.


Anionic Surfactant

In one embodiment of the invention, the anionic surfactant is a fatty alcohol sulfate having a C12 or longer chain, for example sodium lauryl sulfate. Typical alkyl sulfate surfactants are water soluble salts or acids of the formula ROSO3M wherein R preferably is a C10-C24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C10-C20 alkyl component, more preferably a C12-C18 alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g. sodium, potassium, lithium), or ammonium or substituted ammonium (e.g. methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations such as tetramethyl-ammonium and dimethyl piperidinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like).


In another embodiment of the present invention, the anionic surfactant is an α-sulfomethyl ester (MES). In a suitable embodiment, the α-sulfomethyl ester salt is an α-sulfomethyl ester of a fatty acid and can be chosen from a C12-C18 sodium methyl α-sulfomethyl ester and a C12-C18 disodium α-sulfo fatty acid salt. Because more than one α-sulfomethyl ester may be present, the present invention contemplates the use of both sodium methyl α-sulfomethyl ester and the disodium α-sulfo fatty acid salt in the secondary surfactant system. Commercially available sodium α-sulfomethyl esters that may be used in accordance with the present invention include ALPHA-STEP® ML-40 and ALPHA-STEP® MC-48, both sold by Stepan Company. A mixture of sodium methyl 2-sulfolaurate and disodium 2-sulfolaurate is preferred.


Other anionic materials include alkanoyl sarcosinates corresponding to the formula R1CON(CH3)—CH2CH2—CO2M wherein R1 is a saturated or unsaturated, branched or unbranched alkyl or alkenyl group of about 10 to about 20 carbon atoms, and M is a water-soluble cation. Nonlimiting examples of which include sodium lauroyl sarcosinate, sodium cocoyl sarcosinate, and ammonium lauroyl sarcosinate. Other anionic materials include acyl lactylates corresponding to the formula R1CO—[O—CH(CH3)—CO]x—CO2M wherein R1 is a saturated or unsaturated, branched or unbranched alkyl or alkenyl group of about 8 to about 24 carbon atoms, x is 3, and M is a water-soluble cation. Nonlimiting, examples of which include sodium cocoyl lactylate. Other anionic materials include acyl lactylates corresponding to the formula R1CO—[O—CH(CH3)—CO]x—CO2M wherein R1 is a saturated or unsaturated, branched or unbranched alkyl or alkenyl group of about 8 to about 24 carbon atoms, x is 3, and M is a water-soluble cation. Nonlimiting examples of which include sodium cocoyl lactylate. Other anionic materials include acyl glutamates corresponding to the formula R1CO—N(COOH)—CH2CH2—CO2M wherein R1 is a saturated or unsaturated, branched or unbranched alkyl or alkenyl group of about 8 to about 24 carbon atoms, and M is a water-soluble cation. Nonlimiting examples include sodium lauroyl glutamate and sodium cocoyl glutamate. Also useful are taurates which are based on taurine, which is also known as 2-aminoethanesulfonic acid. Examples of taurates include N-alkyltaurines such as the one prepared by reacting dodecylamine with sodium isethionate according to the teaching of U.S. Pat. No. 2,658,072 which is incorporated herein by reference in its entirety. Other examples based of taurine include the acyl taurines formed by the reaction of n-methyl taurine with fatty acids (having from about 8 to about 24 carbon atoms). Other anionic surfactants include glutamates, such as sodium or triethylammonium cocoyl glutamate, and glycinates, such as potassium cocoyl glycinate.


Other anionic surfactants which can be useful in the formulation of an anionic base surfactant package include alkyl sulfosuccinates. Also useful are disodium coco polyglucose citrate, sodium cocopolyglucose tartrate, and disodium cocopolyglucose sulfosuccinate, all available from, for example, Jan Dekker (UK) Ltd.


Besides sodium, other salts can include, for example, potassium, ammonium, and substituted ammonium salts of the anionic surfactant. The anionic surfactant is typically present in about 0.01 to about 50%, or about 0.01 to about 30%, or about 0.01 to about 20%, or about 0.01 to about 10.0%, or about 0.01 to about 5.0%, or about 0.01 to about 4.0%, or about 0.01 to about 3.0%, or about 0.01 to about 2.0% or about 0.01 to about 1.0%.


Nonionic Surfactant

In one embodiment of the invention, the cleaning compositions can optionally contain alkanol amides, and fatty acid amine surfactants. A suitable alkanolamide is a lower alkanolamide of a higher alkanoic acid, for example a mono-alkanolamide chosen from lauryl/myristic monoethanolamide and coco monoethanolamide from Stepan Company®.


In one embodiment of the invention, the cleaning compositions contain one or more alkyl polyglucoside surfactants. The alkyl polyglucoside surfactant preferably has a naturally derived alkyl substituent, such as coconut fatty alcohol or a distilled cut of a natural fatty alcohol. Examples of alkyl polyglucoside that function as a nonionic surfactant, include but are not limited to, such as a C10 to C20 alkylpolyglucoside, a C10 to C14 alkylpolyglucoside, a C12 to C14 alkylpolyglucoside, or a C12 to C16 alkylpolyglucoside.


Suitable alkyl polyglucoside surfactants are the alkyl polysaccharides that are disclosed in U.S. Pat. No. 5,776,872 to Giret et al.; U.S. Pat. No. 5,883,059 to Furman et al.; U.S. Pat. No. 5,883,062 to Addison et al.; and U.S. Pat. No. 5,906,973 to Ouzounis et al., which are all incorporated by reference. Suitable alkyl polyglucosides for use herein are also disclosed in U.S. Pat. No. 4,565,647 to Llenado describing alkylpolyglucosides having a hydrophobic group containing from about 6 to about 30 carbon atoms, or from about 10 to about 16 carbon atoms and polysaccharide, e.g., a polyglycoside (polyglucoside), hydrophilic group containing from about 1.3 to about 10, or from about 1.3 to about 3, or from about 1.3 to about 2.7 saccharide units. Typical hydrophobic groups include alkyl groups, either saturated or unsaturated, branched or unbranched containing from about 8 to about 18, or from about 10 to about 16, carbon atoms. Suitable alkyl polysaccharides are octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, and octadecyl, di-, tri-, tetra-, penta-, and hexaglucosides, galactosides, lactosides, glucoses, fructosides, fructoses and/or galactoses. Suitable mixtures include coconut alkyl, di-, tri-, tetra-, and pentaglucosides and tallow alkyl tetra-, penta-, and hexaglucosides.


In another embodiment of the invention the cleaning compositions contain one or more alkyl polypentosides. The alkyl polypentoside preferably has an alkyl chain length greater than C8 and less than about C14 (i.e., C10 to C14 alkyl polypentoside). Suitable alkyl polypentosides include Radia®Easysurf 6781 (described as a C8 to C10 alkyl polypentoside, available from Oleon). Blends of alkyl polypentosides and alkyl polyglucosides, when used as the nonionic surfactant, can be particularly useful in adjustment of aesthetic parameters of formulations, such as viscosity or color.


Other suitable nonionic surfactants are the alkyl(poly glycerol ethers), in which more than one glycerol group is present. Particularly preferred are alkyl(poly glycerol ethers) in which the alkyl groups are derived from natural fatty alcohols, for example, from plant-based sources such as coconut oil, and the hydrophilic polyglycerol groups are derived from natural glycerine, which can be produced via an alkaline condensation reaction as described in U.S. Pat. No. 3,968,169. It is possible to employ mixtures of alkyl polyglucosides, alkyl polypentosides and alkyl poly(glycerol) ethers as the nonionic surfactant mixture in formulations, in combination with a hydrophilic syndetic, a hydrophobic syndetic, and an anionic base surfactant or anionic surfactant mixture, in order to optimize costs and certain aesthetic parameters such as viscosity, depending on the manufacturing location utilized.


Suitably, the nonionic surfactant is present in the cleaning composition in an amount ranging from about 0.01 to about 30 weight percent, or about 0.1 to about 30 weight percent, or about 10 to about 30 weight percent, or about 1 to about 5 weight percent, or about 2 to about 5 weight percent, or about 0.5 to about 5 weight percent, or about 0.5 to about 4 weight percent, or about 0.5 to about 3 weight percent, or about 0.5 to about 2.0 weight percent, or about 0.1 to about 0.5 weight percent, or about 0.1 to about 1.0 weight percent, or about 0.1 to about 2.0 weight percent, or about 0.1 to about 3.0 weight percent, or about 0.1 to about 4.0 weight percent, or greater than 2 weight percent, or greater than 3 weight percent.


The cleaning compositions preferably have an absence of other nonionic surfactants, especially petroleum derived nonionic surfactants, such as nonionic surfactants based on synthetic alcohols or ethoxylates.


The present invention does not contain the following components: alkyl glycol ethers, alcohol alkoxylates, alkyl monoglycerolether sulfate, alkyl ether sulfates, alkanolamines, alkyl ethoxysulfates, linear alkylbenzene sulfonate (“LAS”), linear alkylbenzene sulphonic acid (“HLAS”), nonylphenol ethoxylate (“NPE”), phosphates, and EDTA.


Amphoteric Surfactants

The compositions can optionally contain amphoteric surfactants such as lecithin, alkyl betaines, alkyl sultaines, sulfobetaines, sarcosinates, taurides, alkyl amphoacetates, alkyl amphodiacetates, alkyl amphopropionates, and alkyl amphodipropionates. Suitable zwitterionic detergents for use herein comprise the betaine and betaine-like detergents wherein the molecule contains both basic and acidic groups which form an inner salt giving the molecule both cationic and anionic hydrophilic groups over a broad range of pH values. Some common examples of these detergents are described in U.S. Pat. Nos. 2,082,275, 2,702,279 and 2,255,082, incorporated herein by reference.


Suitably, the amphoteric surfactant is present in the cleaning composition in an amount ranging from about 0.01 to about 30 weight percent, or about 0.1 to about 30 weight percent, or about 10 to about 30 weight percent, or about 1 to about 5 weight percent, or about 2 to about 5 weight percent, or about 0.5 to about 5 weight percent, or about 0.5 to about 4 weight percent, or about 0.5 to about 3 weight percent, or about 0.5 to about 2.0 weight percent, or about 0.1 to about 0.5 weight percent, or about 0.1 to about 1.0 weight percent, or about 0.1 to about 2.0 weight percent, or about 0.1 to about 3.0 weight percent, or about 0.1 to about 4.0 weight percent, or greater than 2 weight percent, or greater than 3 weight percent.


Hydrophilic Syndetic

In one embodiment of the invention the cleaning compositions contain one or more hydrophilic syndetics. Suitable short-chain hydrophilic syndetics include a C6 alkyl polyglucoside, such as AG6206®, or a C6 to C8 alkyl polyglucoside, such as AG6202® from Akzo-Nobel® or C8 alkyl polyglucoside. Other suitable short-chain hydrophilic syndetics include C6 to C8 alkyl sulfate, including hexyl sulfate, octyl sulfate, and 2-ethylhexyl sulfate. Other suitable hydrophilic syndetic includes, but are not limited to, a C4 to C8 alkyl polypentoside. The alkyl chains are preferably straight chains and derived from natural sources, rather than branched chains, such as 2-ethylhexyl.


Where an alkyl polyglucoside or alkyl sulfate ingredient contains C6 and/or C8 alkyl chain lengths in addition to higher alkyl chain lengths, the portion of the ingredient containing C6 and/or C8 alkyl chain lengths may be considered to represent a hydrophilic syndetic component of the invention; the higher alkyl chain length portion may then be considered to represent an anionic or nonionic surfactant component of the invention, as appropriate. For example, Glucopon 425® (a coconut alkyl polyglucoside having naturally derived components available from Cognis Corporation), Dow Triton® CG110 (a C8-C10 alkyl polyglucoside available from Dow Chemical Company), and Alkadet 15® (a C8-C10 alkyl polyglucoside available from Huntsman Corporation) may be considered to contain both hydrophilic syndetic and nonionic surfactant components.


Suitably, hydrophilic syndetics are present in the cleaning composition in an amount ranging from about 0.01 to about 10 weight percent, or about 0.01 to about 5.0 weight percent, about 0.01 to about 4.0 weight percent, about 0.01 to about 3.0 weight percent, about 0.01 to about 2.0 weight percent, or about 0.01 to about 1.0 weight percent, or about 0.01 to about 0.5 weight percent, or about 0.01 to about 0.20 weight percent.


Hydrophobic Syndetic

In one embodiment of the invention the cleaning compositions contain one or more hydrophobic syndetics. Preferred hydrophobic syndetics are amine oxides. Suitable amine oxides include those compounds having the formula R3(OR4)xNO(R5)2 wherein R3 is selected from an alkyl, hydroxyalkyl, acylamidopropyl and alkylphenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof-, x is from 0 to 5, preferably from 0 to 3; and each R5 is an alkyl or hydroxyalkyl group containing from 1 to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups. Preferred are C10-C18 alkyl dimethylamine oxide, and C10-C18 acylamido alkyl dimethylamine oxide. Preferred amine oxides include but are not limited to, dimethyl alkyl amine oxide, amidoamine oxide, diethyl alkyl amine oxide and combinations thereof. In a more preferred embodiment, the amine oxide has C12-C18 alkyl chains.


Other preferred hydrophobic syndetics include fatty acids, such as oleic or palmitic acid. A fatty acid is a carboxylic acid that is often with a long unbranched aliphatic tail (chain), which is saturated or unsaturated. Fatty acids are aliphatic monocarboxylic acids, derived from, or contained in esterified form in an animal or vegetable fat, oil or wax. Natural fatty acids commonly have a chain of 4 to 28 carbons (usually unbranched and even numbered), which may be saturated or unsaturated. Saturated fatty acids do not contain any double bonds or other functional groups along the chain. The term “saturated” refers to hydrogen, in that all carbons (apart from the carboxylic acid [—COOH] group) contain as many hydrogens as possible. In contrast to saturated fatty acids, unsaturated fatty acids contain double bonds. Examples of fatty acids that can be used in the present invention, include but are not limited to, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachdic acid, behenic acid, lignoceric acid, myristoleic acid, palmitoleic acid, oleic acid, linoleic acid, alpha-linoleic acid, linolenic, arachidonic acid, eicosapentaenoic acid, erucic acid, docosahexaenoic acid or mixtures thereof. The fatty acid suitably has a primary chain length (the predominant chain length) from C12-C20.


Other suitable hydrophobic syndetics are glycerol fatty acid esters and sorbitan fatty acid esters. The glyceryl alkyl or alkenyl ester is preferably a monoester of a C8-C22 carboxylic acid with glycerol. A suitable example is CITHROL GML® which is glyceryl monolaurate. The sorbitan alkyl or alkenyl ester preferably contains from 8 to 22 carbon atoms in the ester group. An especially suitable sorbitan ester is a sorbitan monolaurate such as that available under the trade name SPAN 20®. Another suitable sorbitan ester is SPAN 80®. Other suitable hydrophobic syndetics are fatty alcohols, which are the reduction product of fatty acids. Other suitable hydrophobic syndetics are sterols, especially plant sterols such as campesterol, sitosterol, stigmasterol, lanosterol, avenasterol, and cycloartenol.


Other suitable hydrophobic syndetics are the polyglycerol fatty acid esters. The fatty acids are preferably from natural, plant-based sources, and preferably contain from about 8 to 22 carbon atoms. Particularly preferred are polyglycerol fatty acid esters in which the hydrophilic polyglycerol groups are derived from the condensation of glycerine of vegetable origin. Particularly preferred polyglycerols, which can be esterified to produce the polyglycerol fatty acid esters, are Diglycerol (INCI diglycerine) and Polyglycerol-3 (INCI polyglycerine-3) available from Solvay Chemicals. Commercial polyglycerols are typically heterogeneous mixtures of diglycerol, triglycerol, and higher oligomers, including components up to about decaglycerol, as well as additional cyclic isomers. Polyglycerols with reduced cyclic isomer content have been demonstrated to exhibit superior biodegradability, thus more readily enabling the formulation of eco-friendly cleaners containing polyglycerol fatty acid esters as the hydrophobic syndetic. In addition, without wishing to be bound by theory, applicants believe the kinetics of the reduction of IFT will be more rapid when there is less heterogeneity in the distribution of the polyglycerol groups of the polyglycerol fatty acid esters used as hydrophobic syndetics in the present invention. Nonlimiting examples of polyglycerol fatty acid esters suitable for use as hydrophobic syndetics include diglycerol monooleate, polyglycerol-3 monooleate, diglycerol monolaurate, polyglycerol-3 monolaurate, diglycerol stearate, polyglycerol-3 stearate, diglycerol monoricinoleate and polyglycerol-3 monoricinoleate.


Other suitable hydrophobic syndetics are the alkyl polypentosides in which the alkyl chain length is C14 or greater, up to about C22. A commercially available example of an alkyl polypentoside suitable as a hydrophobic syndetic is Radia® Easysurf 6669.


Suitably, hydrophobic syndetics are present in the cleaning composition in an amount ranging from about 0.01 to about 10 weight percent, or about 0.01 to about 5.0 weight percent, about 0.01 to about 4.0 weight percent, about 0.01 to about 3.0 weight percent, about 0.01 to about 2.0 weight percent, or about 0.01 to about 1.0 weight percent, or about 0.01 to about 0.5 weight percent, or about 0.01 to about 0.20 weight percent.


Base Surfactant

The term “base surfactant”, as used herein, refers to a surfactant or amphiphile that exhibits a strong tendency to adsorb at interfaces in a relatively ordered fashion, oriented perpendicular to the interface. Anionic surfactants with hydrophobic tails longer than 10 carbon atoms and a charged ionic head group tend to act as base surfactants. A base surfactant is able to facilitate the expansion of the interface between an aqueous solution and an oily substance due to its strong tendency to adsorb at the interface, which eliminates the direct contact (on the molecular size scale) between the aqueous solution and the oily substance or oily phase, which in turn is necessary for the removal of oily soils from, for example, fabrics in laundry applications. A well-known shortcoming of surfactants (amphiphiles) that exhibit a very strong ability to adsorb at interfaces (sometimes referred to as exhibiting “strong” amphiphilicity) is the tendency to interact with themselves, as well, thereby reducing the interaction between the aqueous solution and the surfactant. When the interaction between the aqueous phase and the “self-interacting” or “self-aggregated” surfactant is inadequate the surfactant forms a separate, sometimes ill-defined coacervate-like phase, a liquid crystal phase, a vesicle phase, or a mixture of these phases, and is hence no longer available for adsorption at the interface between the aqueous phase and the oily substance or oily soil phase, and hence the detergency performance is poor. In such cases, it is then important to adjust the “strength” of the amphiphilicity of the surfactant to bring it into a preferred range, thereby achieving improved cleaning performance. It was surprisingly found that combinations of hydrophilic and hydrophobic syndetics are able to provide the necessary adjustment, and that incorporation of syndetics provides a significant improvement in the overall detergency performance of formulations that are significantly more natural and/or sustainable than those used in products currently available.


Interfacial Tension (“IFT”)

One aspect of the invention involves tuning the IFT between the aqueous cleaning composition at use dilution and a suitable oil, representing the oily soil of interest. The tuning of the IFT can be achieved by selecting the appropriate ratio between the base surfactant(s) and the hydrophilic and hydrophobic syndetics. Canola oil has been found useful in representing the oily soils of significant concern to consumers in a variety of cleaning tasks, including laundering of garments and cleaning of dishes, tableware and the like. However, it is also contemplated that formulation of some natural cleaners in which the oily soil of interest could be significantly chemically different from canola oil could also specifically benefit from a tuning of the IFT via the use of hydrophilic and hydrophobic syndetics. In such cases, substitution of canola oil with a different model oil, for example, common motor oil, a mineral oil, etc. in the IFT experiments could readily be achieved by one skilled in the art. The formulations described herein below were diluted 1:1150 with water containing 100 ppm hardness for use as the aqueous phase in contact with the canola oil. Such a dilution rate corresponds to the usage rates of liquid laundry detergents with which consumers are familiar. The interfacial tensions were measured with a spinning drop tensiometer. Experimental aspects of spinning drop tensiometry have been described in A. W. Adamson and A. P. Gast: Physical Chemistry of Surfaces, 6th ed. Wiley & Sons, Inc., New York, 1997. IFT values between the diluted formulations in hard water and the canola oil below 0.3 mN/m were found to be necessary in order for the formulations to exhibit good to excellent overall detergency performance on a wide variety of common stains a consumer might encounter on garments.


Those skilled in the art realize that the overall average surfactant mixture hydrophilicity has a direct influence on the IFT. In conventional compositions, if the surfactant mixture selected is too hydrophilic for a given oil of interest, the IFT increases, resulting in a decline in the detergency performance. Thus, a reduction in the hydrophilicity of the formulation is typically sought and an improvement in the detergency performance achieved. One of the novel features of the instant invention is that a new and surprising way becomes available to further reduce the IFT via the adjustment of the ratio between the base surfactant(s) and the total syndetic amphiphile(s). As a consequence, it is possible to decrease IFT of a formulation by increasing the concentration of the most hydrophilic component, the hydrophilic syndetic, which is in direct contrast to results obtained when the formulations contain ordinary surfactants and no syndetics. Applicants have also observed an additional benefit which, without being bound by theory, is believed to be due to the small molecular size of the hydrophilic syndetic amphiphiles used in the invention. The small hydrophilic syndetic molecules have high mobility in the aqueous environment, and consequently reach interfaces quickly and therefore achieve a rapid IFT reduction. It is believed that for improved detergency performance it is important to achieve not only a low equilibrium IFT below 0.3 mN/m, but also to achieve it quickly relative to the time scale of the particular cleaning application. Therefore, two key benefits provided by the invention are the low equilibrium IFT and the rapid IFT reduction, both of which help improve cleaning performance. These benefits can be realized by appropriately selecting the ratio of the syndetics and the base surfactant(s).


In one embodiment, the base surfactant, the hydrophilic syndetic and the hydrophobic syndetic reduce the interfacial tension between water and a canola oil below about 0.35 mN/m, as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting said composition with said canola oil. In another embodiment, the base surfactant, the hydrophilic syndetic and the hydrophobic syndetic reduce the interfacial tension between water and a canola oil below about 0.3 mN/m, as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting said composition with said canola oil. In another embodiment, the base surfactant, the hydrophilic syndetic and the hydrophobic syndetic reduce the interfacial tension between water and a canola oil below about 0.25 mN/m, as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting said composition with said canola oil. In another embodiment, the base surfactant, the hydrophilic syndetic and the hydrophobic syndetic reduce the interfacial tension between water and a canola oil below about 0.20 mN/m, as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting said composition with said canola oil.


Ratios

Certain ratios of components can further define the present invention. One measurement is to evaluate and analyze the ratio of the total syndetics:total base surfactant weight ratios. The term “total syndetics” refers to sum of the weight percentages of hydrophilic syndetics and hydrophobic syndetics in a composition. The term “total base surfactant” refers to the sum of the weight percentages of anionic surfactant and any applicable nonionic and/or amphoteric surfactants in the composition. In one aspect of the invention, the total syndetics:total base surfactant weight ratio is between about 0.001 to about 1.0, or about 0.001 to about 0.9, or about 0.001 to about 0.8, or about 0.001 to about 0.7, or about 0.001 to about 0.6, or about 0.001 to about 0.5, or about 0.001 to about 0.4, or about 0.001 to about 0.3, or about 0.001 to about 0.2, or about 0.001 to about 0.1. If the total syndetics:total base surfactant weight ratio fall into any of disclosed ranges above, then the base surfactant, the hydrophilic syndetic and the hydrophobic syndetic reduce the interfacial tension between water and a canola oil below about 0.30 mN/m, as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting said composition with said canola oil.


Depending on the composition of the base surfactant or total base surfactant mixture selected, adjustment of the ratio of the hydrophilic to hydrophobic syndetic or syndetics may be necessary, in order to deliver the most rapid reduction in IFT between the aqueous solution and oil. The hydrophilic syndetic is the sum of weight percentages of hydrophilic syndetics in a composition. The hydrophobic syndetic is the sum of weight percentages of hydrophobic syndetics in a composition. In one aspect of the invention, the hydrophilic syndetic:hydrophobic syndetic weight ratio is between about 0.01 to about 3.0, or about 0.01 to about 2.5, or about 0.01 to about 2.0, or about 0.01 to about 1.5, or about 0.01 to about 1.0, or about 0.01 to about 0.9, or about 0.01 to about 0.8, or about 0.01 to about 0.7, or about 0.01 to about 0.6, or about 0.01 to about 0.5, or about 0.01 to about 0.4, or about 0.01 to about 0.3, or about 0.01 to about 0.2, or about 0.01 to about 0.1. If the hydrophilic syndetic:hydrophobic syndetic weight ratio fall into any of disclosed ranges above, then the surfactant, the hydrophilic syndetic and the hydrophobic syndetic reduce the interfacial tension between water and a canola oil below about 0.30 mN/m, as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting said composition with said canola oil.


Chelating Agents

One aspect of the invention is a 2-hydroxycarboxylic acid or mixture of 2-hydroxycarboxylic acids or derivatives. Examples of 2-hydroxycarboxylic acids include tartaric acid, citric acid, malic acid, mandelic acid, glycolic acid, and lactic acid. Polymeric forms of 2-hydroxycarboxylic acid, such as polylactic acid, may also be employed.


Another aspect of the invention is the use of gluconate as an organic chelating agent. Examples of gluconate include, but not limited to, sodium gluconate, potassium gluconate, lithium gluconate, zinc gluconate, ferrous gluconate, and mixtures thereof.


Another aspect of the invention is the use of chelating agents such as, but not limited to, trimethyl glycine (“TMG”), diethylene triamine pentaacetic acid (“DTPA”), glutamic acid-N,N-diacetate (“GLDA”), and [S,S]-Ethylenediamine-disuccinic acid (“EDDS”), Tiron, all of which, individually or collectively, can improve the stain removal performance of formulations containing a hydrophilic syndetic, a hydrophobic syndetic, and a base anionic surfactant package. It has been found that TMG is particularly useful in improving the storage stability of liquid formulations at lower temperatures, i.e., below 10 C. Thus, TMG is useful as a component of desirably high RCI that can replace synthetic adjuvants such as the alkanolamines, for example, mono-, di-, or triethanolamine in liquid formulations.


Suitable amino carboxylates chelating agents include ethanol-diglycines, disodium cocoyl glutamatic acid, and methyl glycine di-acetic acid (MGDA), both in their acid form, or in their alkali metal, ammonium, and substituted ammonium salt forms. Further carboxylate chelating agents for use herein include salicylic acid, aspartic acid, glutamic acid, glycine, malonic acid or mixtures and derivatives thereof.


The compositions contain substantially no additional organic chelating agents. Suitable compositions comprise chelating agents in concentrations of about 0.5 to about 10.0% by weight, or about 0.5 to about 5.0% by weight, or about 0.5 to about 4.0% by weight, or about 0.5 to about 3.0% by weight, or about 0.5 to about 2.0% by weight.


Solvent

The cleaning compositions can optionally contain limited amounts of organic solvents, such as ethanol, sorbitol, glycerol, propylene glycol, glycerol, 1,3-propanediol, and mixtures thereof. These solvents may be less than 10% of the composition; in more preferred embodiments, these solvents may be less than 5% of the composition. The incorporation of these solvents in cleaner formulations is quite useful for controlling aesthetic factors of the undiluted products, such as viscosity, and/or for controlling the stability of important adjuncts such as enzymes, and/or for controlling the stability of the undiluted formulations at temperatures significantly above or below ambient temperature. It is believed that the solvents mentioned above have essentially no role in the reduction of the IFT of the formulations, especially at the use dilutions used in the IFT measurements performed. Thus, it is also believed that these solvents have no significant effect on the cleaning performance of the formulations. The compositions preferably contain solvents from natural sources rather than solvents from synthetic petrochemical sources, such as glycol ethers, hydrocarbons, and polyalkylene glycols. Water insoluble solvents such as terpenoids, terpenoid derivatives, terpenes, terpenes derivatives, or limonene can be mixed with a water-soluble solvent when employed. Methanol and propylene glycol may be incidental components in the cleaning compositions.


The compositions should be free of other organic solvents (or only trace amounts of less than 0.5% or 0.1%) other than the ones already enumerated above including. The compositions should be free of the following alkanols: n-propanol, isopropanol, butanol, pentanol, and hexanol, and isomers thereof. The compositions should be free of the following diols: methylene glycol, ethylene glycol, and butylene glycols. The compositions should be free of the following alkylene glycol ethers which include, but are not limited to, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monohexyl ether, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol n-propyl ether, propylene glycol monobutyl ether, propylene glycol t-butyl ether, di- or tri-polypropylene glycol methyl or ethyl or propyl or butyl ether, acetate and propionate esters of glycol ethers. The compositions should be free of the following short chain esters which include, but are not limited to, glycol acetate, and cyclic or linear volatile methylsiloxanes. The composition should not contain any alkyl glycol ethers, alcohol alkoxylates, alkyl monoglycerolether sulfate, or alkyl ether sulfates.


Water

When the composition is an aqueous composition, water can be a predominant ingredient. The water should be present at a level of less than 90 weight percent, more preferably less than about 80 weight percent, and most preferably, less than about 70 weight percent. Deionized or filtered water is preferred.


Fragrances

The cleaning compositions can contain a fragrance. In a preferred embodiment, the cleaning compositions contain fragrances containing essential oils, and especially fragrances containing d-limonene or lemon oil; or natural essential oils or fragrances containing d-limonene or lemon oil. Lemon oil and d-limonene compositions which are useful in the invention include mixtures of terpene hydrocarbons obtained from the essence of oranges, e.g., cold-pressed orange terpenes and orange terpene oil phase ex fruit juice, and the mixture of terpene hydrocarbons expressed from lemons and grapefruit. The essential oils may contain minor, non-essential amounts of hydrocarbon carriers. Suitably, the fragrance contains essential oil or lemon oil or d-limonene in the cleaning composition in an amount ranging from about 0.01 to about 5.0 weight percent, about 0.01 to about 4.0 weight percent, about 0.01 to about 3.0 weight percent, about 0.01 to about 2.0 weight percent, about 0.01 to about 1.0 weight percent, or about 0.01 to about 0.50 weight percent, or about 0.01 to about 0.40 weight percent, or about 0.01 to about 0.30 weight percent, or about 0.01 to about 0.25 weight percent, or about 0.01 to about 0.20 weight percent, or about 0.01 to about 0.10 weight percent, or about 0.05 to about 2.0 weight percent, or about 0.05 to about 1.0 weight percent, or about 0.5 to about 1.0 weight percent, or about 0.05 to about 0.40 weight percent, or about 0.05 to about 0.30 weight percent, or about 0.05 to about 0.25 weight percent, or about 0.05 to about 0.20 weight percent, or about 0.05 to about 0.10 weight percent.


Natural Thickener

The present compositions can also comprise an auxiliary nonionic or anionic polymeric thickening component, especially cellulose thickening polymers, especially a water-soluble or water dispersible polymeric materials, having a molecular weight greater than about 20,000. By “water-soluble or water dispersible polymer” is meant that the material will form a substantially clear solution in water at a 0.5 to 1 weight percent concentration at 25° C. and the material will increase the viscosity of the water either in the presence or absence of surfactant. Examples of water-soluble polymers which may desirably be used as an additional thickening component in the present compositions, are hydroxyethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, dextrans, for example Dextran purified crude Grade 2P, available from D&O Chemicals, carboxymethyl cellulose, plant exudates such as acacia, ghatti, and tragacanth, seaweed extracts such as sodium alginate, and sodium carrageenan. Preferred as the additional thickeners for the present compositions are natural polysaccharide or cellulose materials. Examples of such materials include, but are limited to, guar gum, locust bean gum, xanthan gum, and mixtures thereof. The thickeners are generally present in amounts of about 0.05 to about 2.0 weight percent, or about 0.1 to about 2.0 weight percent.


The present invention may contain an anti-redeposition polymer. Examples of anti-redeposition polymers of neutral or anionic charge include, but are not limited to, inulin, and derivatized inulin (i.e. carboxymethyl inulin), and guar, or anionically derivatized guar. In addition to preventing deposition of particulate soils onto fabric surface, anionic derivatives of inulin and guar are useful in the sequestration of certain ions, such as Ca++, present in hard water used for dilution of the formulations. In addition to sequestering ions, these polymers may also serve to prevent or delay the growth of calcium carbonate crystals when the formulations are diluted in hard water in use, and hence can prevent the encrustation of fabrics and/or hard surfaces such as glass with calcium carbonate crystals. Use of these polymers of desirably high RCI reduces or eliminates the need for other materials, such as phosphates, which are well known to be detrimental to the environment when released into waste water streams. Also suitable herein preferred is hydroxyethyl cellulose having a molecular weight of about 700,000. Derivatized saccharides and polysaccharides containing alkoxy groups derived from reaction with ethylene oxide, propylene oxide, or butylene oxide are not used, due to the possibility of contamination by certain undesirable materials such as 1,4 dioxane and/or undesirably low RCI.


The present invention may also contain a cationic polymer, to aid in greasy soil removal and/or as an anti-redeposition aid. The addition of cationic polymers to cleaning compositions for the improvement of greasy soil removal by laundry detergent formulations is known, for example in EP 1146110 A2. However, in formulating natural cleaners with desirably high RCI values, the addition of synthetic polymers derived from petrochemicals is significantly restricted. Many synthetic cationic polymers, although exhibiting acceptable toxicological profiles, do not exhibit acceptable biodegradation properties. In addition, it is desirable that the natural cleaner formulations do not contain trace amounts of materials, inherent to their route of manufacture, which could be carcinogens, mutagens, or irritants to consumers, or which contribute to an environmental burden of these materials upon use of the products.


A significant part of the cleaning performance of the formulations herein depends upon the rapid adsorption of the main surfactants and the hydrophilic and hydrophobic syndetics onto oily soils such as canola oil. In addition to the constraints mentioned above, the selection of any cationic polymers for use in the formulations must also ensure that interactions between the anionic surfactants and/or syndetics in the formulation do not inhibit adsorption onto oily soil surfaces. In fact, properly selected cationic polymers can actually enhance the adsorption of anionic syndetics or surfactants onto the oily soils through electrostatic interactions between the cationic groups of the polymers and the anionic headgroups of the surfactants or syndetics, leading to slightly reduced repulsion between the anionic headgroups at the oily soil-water interface. Improperly selected cationic polymers will, instead, cause the formation of precipitates and/or coacervates in the washing bath, which can drive adsorption of the polymers onto some surfaces, but which also negatively affect the kinetics of adsorption of the surfactants and/or syndetics onto the oily soil, decreasing cleaning performance. Applicants have found that the use of even low concentrations of homo- or copolymers of diallyl dimethyl ammonium chloride (so-called poly-(DADMAC) negatively affect the cleaning performance of the syndetic-based systems, and thus should not be used. Without being bound by theory, these polymers exhibit charge densities (for a DADMAC homopolymer, about 6.2 meg/gram) which are so large that the polymers successfully interact electrostatically with the anionic surfactants and/or syndetics of the present invention, significantly slowing, or eliminating the adsorption of these materials onto oily soils. Polymers such as the DADMAC derivatives or other synthetic, nitrogen-containing polymers such as poly(ethyleneimine) and its derivatives are also of undesirably low RCI, and hence negatively impact the RCI of formulations incorporating them, and are not preferred.


Applicants have found good cleaning performance when the cationic polymers used are cationically modified poly(saccharides) of charge density less than about 2 meq/gram. Some of these polymers are capable of thickening cleaning compositions, but in the present invention, the concentrations of these polymers used typically do not significantly increase the viscosity of liquid formulations. A nonlimiting example of suitable cationic polymers include the class of cationically modified guars known as guar hydroxypropyl trimonium chloride, for example the materials marketed by Aqualon (Hercules) as N-Hance®. A particularly useful grade of cationic guar is also marketed by Aqualon as Aquacat CG 581® and its relatives, since this material is relatively low molecular weight and thus does not thicken the formulations efficiently.


Dyes, Colorants, and Preservatives

The cleaning compositions optionally contain dyes, colorants and preservatives, or contain one or more, or none of these components. These dyes, colorants and preservatives can be natural (occurring in nature or slightly processed from natural materials) or synthetic. Natural preservatives include benzyl alcohol, potassium sorbate and bisabalol; sodium benzoate and 2-phenoxyethanol. Preservatives, when used, include, but are not limited to, mildewstat or bacteriostat, methyl, ethyl and propyl parabens, bisguanidine compounds (e.g. Dantagard and/or Glydant). The mildewstat or bacteriostat includes, but is not limited to, mildewstats (including non-isothiazolone compounds) including Kathon GC, a 5-chloro-2-methyl-4-isothiazolin-3-one, KATHON ICP, a 2-methyl-4-isothiazolin-3-one, and a blend thereof, and KATHON 886, a 5-chloro-2-methyl-4-isothiazolin-3-one, all available from Rohm and Haas Company; BRONOPOL, a 2-bromo-2-nitropropane 1,3 diol, from Boots Company Ltd., PROXEL CRL, a propyl-p-hydroxybenzoate, from ICI PLC; NIPASOL M, an o-phenyl-phenol, Na+ salt, from Nipa Laboratories Ltd., DOWICIDE A, a 1,2-Benzoisothiazolin-3-one, from Dow Chemical Co., and IRGASAN DP 200, a 2,4,4′-trichloro-2-hydroxydiphenylether, from Ciba-Geigy A.G. Dyes and colorants include synthetic dyes such as Liquitint® Yellow or Blue or natural plant dyes or pigments, such as a natural yellow, orange, red, and/or brown pigment, such as carotenoids, including, for example, beta-carotene and lycopene. The compositions can additionally contain fluorescent whitening agents or bluing agents.


Adjuncts

The cleaning compositions optionally contain one or more of the following adjuncts: enzymes such as protease, amylase, mannanase, and lipase, stain and soil repellants, lubricants, odor control agents, perfumes, builders, cobuilders/soil suspension polymers, such as the water-soluble random copolymers of styrene and acrylic acid, an example of which is Alcosperse 747, available from Akzo Nobel, co-surfactants, fragrances and fragrance release agents, reducing agents such as sodium sulfite, and bleaching agents. Builders include, but are not limited to, zeolites, sulfates, silicates and carbonates. Cobuilders/soil suspension polymers include but are not limited to, carboxy methyl cellulose, carboxylated polymers (inulin, starch, polysaccharide) and poly(aspartic acid). Co-surfactants include, but are limited to, saponins and alkylamide ethanolamines. Bleaching agents include, but are not limited to, perborate, percarbonate, persulfate, peroxides, activators, catalysts, and mixtures thereof. Other adjuncts include, but are not limited to, acids, pH adjusting agents, electrolytes, dyes and/or colorants, solubilizing materials, stabilizers, thickeners, defoamers, hydrotropes, cloud point modifiers, preservatives, and other polymers. Electrolytes, when used, include, calcium, sodium and potassium chloride. Optional pH adjusting agents include inorganic acids and bases such as sodium hydroxide, and organic agents such as monoethanolamine, diethanolamine, and triethanolamine. Thickeners, when used, include, but are not limited to, polyacrylic acid, xanthan gum, calcium carbonate, aluminum oxide, alginates, guar gum, methyl, ethyl, clays, and/or propyl hydroxycelluloses. Defoamers, when used, include, but are not limited to, silicones, aminosilicones, silicone blends, and/or silicone/hydrocarbon blends. For compressed solid forms, a disintegrant, such as a swelling material (for example, cellulose, crosslinked cellulose, polymer, or clay) or a rapidly dissolving salt, may be included. For predosed liquids, a water soluble film can be used to contain a nonaqeuous liquid or powder composition or combination thereof until dilution in water; such films are known in the art and may consist of polyvinyl alcohol, starches, celluloses, or derivatives of these materials. Bleaching agents, when used, include, but are not limited to, peracids, hypohalite sources, hydrogen peroxide, and/or sources of hydrogen peroxide, such as catalysts and activators. In a preferred embodiment, the present invention includes a builder such as ethylenediamine disuccinate. The present invention may also include a disulfonated catechol (i.e. Tiron, or 1,2 dihydroxybenzene 3,5 disodium sulfonate).


In a suitable embodiment the compositions contain an effective amount of one or more of the following non-limiting enzymes: protease, lipase, amylase, cellulase, mannanase, pectinase and mixtures thereof. Suitable enzymes are available from manufacturers including, but not limited to, Novozymes® and Genencor®.


pH


The pH of the cleaning composition is measured at 10% dilution. The cleaning compositions can have a pH of between 7 and 13, between 2 and 13, or between 7 and 10, or between 7 and 9, or between 7.5 and 8.5.


Disinfectant or Sanitizer

The cleaning compositions contain no, or substantially no, additional disinfectants or sanitizers, such as quaternary ammonium antimicrobials or biguanides. Although the compositions may contain minor amounts of traditional antimicrobials as preservatives or other uses, the compositions are without the use of traditional quaternary ammonium compounds or phenolics. Non-limiting examples of these quaternary compounds include benzalkonium chlorides and/or substituted benzalkonium chlorides, di(C6-C14)alkyl di short chain (C1-C4 alkyl and/or hydroxylalkl) quaternaryammonium salts, N-(3-chloroallyl) hexaminium chlorides, benzethonium chloride, methylbenzethonium chloride, and cetylpyridinium chloride. Other quaternary compounds include the group consisting of dialkyldimethyl ammonium chlorides, alkyl dimethylbenzylammonium chlorides, dialkylmethyl-enzylmmonium chlorides, and mixtures thereof. Biguanide antimicrobial actives including, but not limited to polyhexamethylene biguanide hydrochloride, p-chlorophenyl biguanide; 4-chlorobenzhydryl biguanide, halogenated hexidine such as, but not limited to, chlorhexidine (1,1′-hexamethylene-bis-5-(4-chlorophenyl biguanide) and its salts are also in this class.


Surface Modifying Agents

Although the compositions contain surfactants which lower the surface energy during cleaning, the compositions generally contain no surface modifying agents, which provide a lasting modification to the cleaned surface. The surface modifying agents are generally polymers other than the cellulosic thickening polymers and the others mentioned above and provide spreading of the water on the surface or beading of water on the surface, and this effect is seen when the surface is rewetted and even when subsequently dried after the rewetting. Examples of surface modifying agents include polymers and co-polymers of N,N-dimethyl acrylamide, acrylamide, and certain monomers containing quaternary ammonium groups or amphoteric groups that favor substantivity to surfaces, along with co-monomers that favor adsorption of water, such as, for example, acrylic acid and other acrylate salts, sulfonates, betaines, and ethylene oxides. Other examples include organosilanes and organosilicone polymers, hydrophobic amphoteric polymers, nanoparticles and hydrophobic organic polymers, such as waxes.


Cleaning Substrate

The cleaning composition is generally not impregnated in a cleaning substrate. Because of the limited number of ingredients, these compositions tend to perform better when used with a substrate at the time of application or use, and not sold as a pre-wetted substrate. Examples of unsuitable substrates include, nonwoven substrates, woven substrates, hydroentangled substrates, foams and sponges and similar materials which can be used alone or attached to a cleaning implement, such as a floor mop, handle, or a hand held cleaning tool, such as a toilet cleaning device. The terms “nonwoven” or “nonwoven web” means a web having a structure of individual fibers or threads which are interlaid, but not in an identifiable manner as in a knitted web.


EXAMPLES

The compositions are simple, natural, high performance cleaning formulations with a minimum of essential natural ingredients. Competitive cleaners are either natural and inferior in performance or contain additional ingredients that make them non-natural, such as surfactants based on nonrenewable petrochemicals. Because preservatives, dyes and colorants are used in such small amounts, these may be synthetic and the entire composition may still be characterized as natural. Preferably, the compositions contain only natural preservatives, dyes, and colorants, if any.


Table I illustrates natural heavy duty cleaners of the invention. Table II illustrates less concentrated natural heavy duty cleaners of the invention. All numbers are in weight percent of active ingredients.















TABLE I





Natural








Heavy Duty
A
B
C
D
E
F





















Sodium lauryl
16.6

5.7

10.0



sulfate


MES1

11.1



10.0


Glucopon ®



5.0
10.0


600UP2


Glucopon ®
7.8
8.0
2.7


425N3


Ammonyx
1.9
2.0
0.7


LMDO4


Ammonyx LO5





10.0


AG 62066
2.9
1.0
1.0
2.0


AG 62027




0.5
1.0


Oleic Acid
1.5
5.0
1.0

0.5
1.0


Sodium Citrate
3.0
6.0
2.0
2.0
1.0
1.0


dihydrate


Sodium



1.0


gluconate


Boric acid
1.5
1.5
3.0
3.0

0.5


Ca chloride
0.1
0.1
0.1
0.1

0.1


Propylene
7.0
5.0


glycol


Ethanol


2.0

5.0
2.0


Glycerol


8.0
10.0


1,3-Propane


diol


Protease
0.6
1.0
0.2
0.2
1.0
1.0


Amylase
0.3
0.6


Sodium sulfite


0.05


Dye




0.1
0.1


Preservative
0.1
0.1
0.1
0.1
0.1
0.1


FWA




0.05


Thickener


0.1
0.05


Fragrance
0.5
0.2
0.2
0.15
7.5
9.0


NaOH to pH
8.5
8.5
8.5
8.5


Water
balance
balance
balance
balance
balance
balance






1ALPHA-STEP ® MC-48 from Stepan Company.




2Coco glucoside from Cognis.




3from Cognis.




4from Lonza.




5from Lonza.




6from Akzo.




7from Akzo.




















TABLE II





Natural








Heavy Duty
G
H
I
J
K
L





















Sodium lauryl
16.9



17.5



sulfate


MES

11.1
14.0
14.0


Glucopon ®


7.0
7.0


625N


Glucopon ®
8.0
8.0


8.0
4.0


425N


Ammonyx
2.0
2.0


LMDO


AG 6206
3.0
1.0
3.0


Hexyl sulfate




1.0
3.0


Oleic Acid


5.0
5.0

0.5


Glycerol
1.5


monooleate


Sorbitan

1.5


0.5


monooleate


Sodium Citrate


6.0
6.0


dihydrate


Ca chloride


0.1
0.1


NaCl


1.0
1.0
1.0
0.5


Propylene


5.0
5.0


glycol


Glycerol
1.0


1,3-Propane

1.0


3.0
3.0


diol


Preservative
0.1
0.1
0.1
0.1


Fragrance

0.2


0.1
0.1


NaOH to pH
8.5
8.5
8.5
8.5
10.0
7.0


Water
balance
balance
balance
balance
balance
balance









Formula A was compared for laundry wash performance with a leading commercial liquid laundry detergent containing non-natural ingredients. Stain removal was tested by washing coffee, tea, red wine, chocolate pudding, and gravy stains applied to four replicates of 100% cotton fabric at water of 93° F. and 100 ppm hardness in a 12-minute wash cycle in a Whirlpool top-load washing machine and reflectance of the stains via the L,a,b scale was then converted to a stain removal percentage. Formula A was superior to commercial detergent on coffee, tea, red wine, chocolate pudding, and gravy.


Formula D was compared for pretreatment performance against a leading commercial pretreatment product containing non-natural ingredients. Formulas were evaluated in a wash study using hand applied stains on pre-scoured white cotton T-shirts. 5 mL of product was pipetted onto each stain, allowed to sit for 5 minutes, and then washed in hot water with Tide® liquid detergent and dried in a standard dryer. Formula D showed parity stain removal performance on several stains and was superior to the commercial pretreatment product on wine stain.


Table III illustrates the effect of the hydrophilic syndetic in lowering the interfacial tension (IFT) of the composition for improved performance. Interfacial tension of the formulations at use dilution in the presence of 100 ppm hardness against canola oil was measured using a spinning drop tensiometer at room temperature. Composition I with the hydrophilic syndetic AG6206 achieves a lower IFT at faster times than Composition J, which doesn't have AG6206, and much faster that the commercial detergent ALL®.













TABLE III







IFT, 2 min
IFT, 7 min
IFT 12 min





















Compositon I
0.20
0.18
0.22



Composition J
0.26
0.25
0.28



All Detergent
0.46
0.32
0.51

















TABLE IV







Example formulations with LMDO and AG 6206













Natural







Heavy Duty
M
N
O
P

















Sodium lauryl
7.43
7.43
7.43
7.43



sulfate



MES
7.65
7.65
7.65
7.65



Glucopon ®
7.07
7.07
7.07
7.07



425N



Ammonyx
4.46
2.48
3.63
4.62



LMDO



AG 6206
1.13
5.63
8.25
10.49



Water
balance
balance
balance
balance

















TABLE IVa







Example formulations and interfacial tension (IFT, mN/m) with Canola oil at 25° C.













Total







syndetic:Total
Hydrophilic



base
Syndetic:Hydrophobic



surfactant,
syndetic


Formulation
weight ratio
Weight ratio
IFT @ 5 mins
IFT @ 10 mins
IFT @ 15 mins















M
0.252
0.253
0.219
0.259
0.281


N
0.366
2.270
0.293
0.292
0.285


O
0.536
2.273
0.228
0.257
0.201


P
0.682
2.271
0.196
0.185
0.221









Table IV illustrates compositions in which an amido amine oxide is the hydrophobic syndetic and a C6 alkyl polyglucoside is the hydrophilic syndetic. Table IVa illustrates compositions with a total syndetic:total base surfactant weight ratio between 0.252-0.682 produce an optimum reduction in the interfacial tension below 0.3 mN/m as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting the composition with said canola oil. Table IVa also illustrates compositions with a hydrophilic syndetic:hydrophobic syndetic weight ratio between 0.253-2.273 produce an optimum reduction in the interfacial tension below 0.3 mN/m as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting the composition with said canola oil. These data indicate that, surprisingly, the addition of a hydrophilic syndetic, when incorporated into formulations at the appropriate levels and ratios described, delivers a rapid decrease in IFT that is quite useful for boosting the detergency process. Those skilled in the art would realize that such a decrease is not expected nor achieved by utilizing a relatively more hydrophilic base surfactant package alone.









TABLE V







Example formulations with Oleic Acid













Natural







Heavy Duty
Q
R
S
T







Sodium lauryl
7.43
7.43
7.43
7.43



sulfate



MES
7.65
7.65
7.65
7.65



Glucopon ®
7.07
7.07
7.07
7.07



425N



Ammonyx
1.74
1.74
1.74
1.74



LMDO



AG 6206
2.66
2.66
2.66
2.66



Oleic Acid
0.00
0.50
1.00
5.00



Water
balance
balance
balance
balance

















TABLE Va







Example formulations and interfacial tension (IFT, mN/m) with Canola oil at 25° C.













Total







syndetic:total
Hydrophilic



base
Syndetic:Hydrophobic



surfactant
syndetic


Formulation
weight ratio
Weight ratio
IFT @ 5 mins
IFT @ 10 mins
IFT @ 15 mins















Q
0.199
1.533
0.231
0.239
0.242


R
0.199
1.190
0.223
0.229
0.226


S
0.199
0.973
0.215
0.225
0.219


T
0.199
0.395
0.169
0.183
0.208









Table V illustrates compositions in which oleic acid and an amido amine oxide are the hydrophobic syndetics, and a C6 alkyl polyglucoside is the hydrophilic syndetic. Table Va illustrates compositions with a total syndetic:total base surfactant weight ratio of 0.199 produce an optimum reduction in the interfacial tension below 0.3 mN/m as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting the composition with said canola oil. Table Va also illustrates that compositions with a hydrophilic syndetic:hydrophobic syndetic weight ratio between 0.395-1.533 produce an optimum reduction in the interfacial tension below 0.3 mN/m as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting said composition with said canola oil. This data also illustrate the surprising utility of adjustment of the ratios described above by changing the level of only one of the hydrophobic syndetics, even when the base surfactant mixture remains constant. Even though oleic acid, as a hydrophobic syndetic, might be thought to act by partitioning into the oil phase (here, the canola oil), when combined with a hydrophilic syndetic, a significant benefit in the extent and rapidity of the reduction of the IFT can be realized. In practice, work with formulations in which a limited number of materials with appropriate RCI values are to be used, and in which other aesthetic factors such as viscosity of the undiluted formulation, or stability of important adjuncts such as enzymes are to be simultaneously optimized, the adjustment of the extent of and rapidity of the reduction of IFT via adjustment of the ratios defined above, sometimes via changing only one of the syndetics, can be very useful.









TABLE VI







Example formulations with Span ® 20 (Sorbitan Monolaurate)













Natural







Heavy Duty
U
V
W
X







Sodium lauryl
7.43
7.43
7.43
7.43



sulfate



MES
7.65
7.65
7.65
7.65



Glucopon ®
7.07
7.07
7.07
7.07



425N



Ammonyx
1.74
1.74
1.74
1.74



LMDO



AG 6206
2.66
2.66
2.66
2.66



Span ® 20
0.00
0.55
1.40
2.00



(Sorbitan



Monolaurate)



Water
balance
balance
balance
balance

















TABLE VIa







Example formulations and interfacial tension (IFT, mN/m) with Canola oil at 25° C.













Total







syndetic:total



base
Hydrophilic



surfactant
Syndetic:Hydrophobic



weight
syndetic


Formulation
ratio
Weight ratio
IFT @ 5 mins
IFT @ 10 mins
IFT @ 15 mins















U
0.199
1.533
0.231
0.239
0.242


V
0.223
1.164
0.184
0.206
0.226


W
0.262
0.849
0.182
0.195
0.212


X
0.289
0.721
0.157
0.169
0.179









Table VI illustrates compositions in which sorbitan monolaurate and an amido amine oxide are the hydrophobic syndetics and C6 alkyl polyglucoside is the hydrophilic syndetic. Table VIa illustrates compositions with a total syndetic:total base surfactant weight ratio between 0.199-0.289 produce an optimum reduction in the interfacial tension below 0.3 mN/m as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting the composition with said canola oil. Table VIa also illustrates compositions with a hydrophilic syndetic:hydrophobic syndetic weight ratio between 0.721-1.533 produce an optimum reduction in the interfacial tension below 0.3 mN/m as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting said composition with said canola oil.









TABLE VII







Example formulations with Oleyl Alcohol











Natural





Heavy Duty
Y
Z







Sodium lauryl
7.43
7.43



sulfate



MES
7.65
7.65



Glucopon ®
7.07
7.07



425N



Ammonyx
1.74
1.74



LMDO



AG 6206
2.66
2.66



Oleyl Alcohol
0.50
1.00



Water
balance
Balance

















TABLE VIIa







Example formulations and interfacial tension (IFT, mN/m) with Canola oil at 25° C.













Total







syndetic:total



base
Hydrophilic



surfactant
Syndetic:Hydrophobic



weight
syndetic


Formulation
ratio
Weight ratio
IFT @ 5 mins
IFT @ 10 mins
IFT @ 15 mins















Y
0.221
1.190
0.189
0.198
0.198


Z
0.244
0.973
0.216
0.205
0.205









Table VII illustrates compositions in which oleyl alcohol and an amido amine oxide are the hydrophobic syndetics and C6 alkyl polyglucoside is the hydrophilic syndetic. Table VIIa illustrates compositions with a total syndetic:total base surfactant weight ratio between 0.221-0.244 produce an optimum reduction in the interfacial tension below 0.3 mN/m as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting the composition with said canola oil. Table VIIa also illustrates that compositions with a hydrophilic syndetic:hydrophobic syndetic weight ratio between 0.973-1.190 produce an optimum reduction in the interfacial tension below 0.3 mN/m as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting said composition with said canola oil.









TABLE VIII







Example formulations with Texapon ® 842 (a sodium octyl sulfate)













Natural







Heavy Duty
AA
BB
CC
DD







Sodium lauryl
5.18
5.06
5.63
5.63



sulfate



MES
6.24
6.24
6.94
6.94



Glucopon ®
5.30
5.30
5.30
5.30



425N



Ammonyx
1.30
1.30
1.30
1.30



LMDO



Span ® 20
1.50
1.50
1.50
1.50



(Soribitan



Monolaurate)



Texapon ® 842
0.00
0.30
0.90
1.74



(Sodium Octyl



Sulfate)



Calcium
0.07
0.07
0.07
0.07



Chloride



Sodium Citrate
2.24
2.24
2.24
2.24



Dihydrate



Boric Acid
1.13
1.13
1.13
1.13



Sodium
0.37
0.37
0.37
0.37



Hydroxide to



pH 8.5



Sorbitol 70%
1.87
1.87
1.87
1.87



in Water



Protease
0.69
0.69
0.69
0.69



Amylase
0.36
0.36
0.36
0.36



Water
balance
balance
balance
balance

















TABLE VIIIa







Example formulations and interfacial tension (IFT, mN/m) with Canola oil at 25° C.













Total







syndetic:Total



base
Hydrophilic



surfactant
Syndetic:Hydrophobic



weight
syndetic
IFT @
IFT
IFT


Formulation
ratio
Weight ratio
5 mins
@ 10 mins
@ 15 mins















AA
0.167
0
0.291
0.241
0.237


BB
0.187
0.107
0.198
0.196
0.184


CC
0.207
0.321
0.150
0.151
0.167


DD
0.254
0.621
0.211
0.167
0.197









Table VIII illustrates compositions in which sodium octyl sulfate is the hydrophilic syndetic and an amido amine oxide and sorbitan monolaurate are the hydrophobic syndetics. Table VIIIa illustrates compositions with a total syndetic:total base surfactant weight ratio between 0.167-0.254 produce an optimum reduction in the interfacial tension below 0.3 mN/m as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting the composition with said canola oil. Table VIIIa also illustrates compositions with a hydrophilic syndetic:hydrophobic syndetic weight ratio between 0-0.621 produce an optimum reduction in the interfacial tension below 0.3 mN/m as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting said composition with said canola oil. The data also illustrate that a significant decrease in the IFT is achieved by increasing the concentration of the hydrophilic syndetic, which is a trend not expected or achieved through the use of base surfactant mixtures only, in the absence of a hydrophilic and hydrophobic syndetic.









TABLE IX







Example formulations with Texapon ® 842 (a sodium octyl sulfate)










Natural




Heavy Duty
EE







Sodium lauryl
6.75



sulfate



MES
8.33



Glucopon ®
7.07



425N



Ammonyx
1.74



LMDO



Span ® 20
2.00



(Sorbitan



Monolaurate)



Texapon ® 842
1.20



(Sodium Octyl



Sulfate)



Calcium
0.10



Chloride



Sodium Citrate
2.99



Dihydrate



Boric Acid
1.50



Sodium
0.50



Hydroxide to



pH 8.5



Sorbitol 70%
2.49



in Water



Protease
0.92



Amylase
0.48



Water
balance

















TABLE IXa







Example formulations and interfacial tension (IFT, mN/m) with Canola oil at 25° C.













Total







syndetic:total
Hydrophilic



base
Syndetic:Hydrophobic



surfactant
syndetic
IFT @


Formulation
weight ratio
Weight ratio
5 mins
IFT @ 10 mins
IFT @ 15 mins















EE
0.223
0.321
0.197
0.200
0.200


2X Ultra


0.229
0.226
0.276


Tide ® HE









Table IX illustrates compositions in which Texapon® 842 (a sodium octyl sulfate) is the hydrophilic syndetic and sorbitan monolaurate and an amido amine oxide are the hydrophobic syndetics. Table IXa illustrates a composition with a total syndetic:total base surfactant weight ratio of 0.223 produces an optimum reduction in the interfacial tension below 0.3 mN/m as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting the composition with said canola oil. Table IXa also illustrates a composition with a hydrophilic syndetic:hydrophobic syndetic weight ratio 0.321 produces an optimum reduction in the interfacial tension below 0.3 mN/m as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting said composition with said canola oil. Table IXa also shows a lower IFT when formulation EE is compared with a synthetic (non-natural) detergent 2×Ultra Tide® HE at 5, 10 and 15 minute intervals.









TABLE X







Example formulations comprising a Single


Anionic Surfactant in the Base Surfactant Mixture












Natural







Heavy Duty
FF
GG
HH
II
JJ















Sodium lauryl
16.91
14.37
14.37
0.00
0.00


sulfate


MES
0.00
0.00
0.00
11.10
11.10


Glucopon ®
8.00
6.80
6.80
8.00
8.00


425N


Ammonyx
1.98
1.68
1.68
1.98
1.98


LMDO


AG 6206
3.00
2.55
2.55
0.98
0.98


Calcium
0.10
0.10
0.10
0.10
0.10


Chloride


Sodium Citrate
3.00
3.00
3.00
6.00
6.00


Dihydrate


Boric Acid
1.50
1.50
1.50
1.50
1.50


Sodium
0.50
0.50
0.50
0.50
0.50


Hydroxide to


pH 8.5


Oleic Acid
1.50
1.28
1.28
5.00
5.00


Sorbitol 70%
0.00
0.00
3.00
0.00
2.50


in Water


Protease
0.51
0.00
0.00
0.00
0.00


Amylase
0.26
0.00
0.00
0.00
0.00


Ethanol
0.00
3.00
3.00
2.50
2.50


Glycerol
0.00
3.00
0.00
2.50
0.00


Propyelene
7.00
0.00
0.00
0.00
0.00


Glycol


Preservative
0.10
0.03
0.10
0.10
0.10


Fragrance
0.50
0.50
0.50
0.50
0.50


Water
balance
balance
balance
balance
balance
















TABLE Xa







Example formulations and interfacial tension (IFT, mN/m) with Canola oil at 25° C.













Total







Hydrophilic +



Hydrophobic
Hydrophilic



Syndetic/Total
Syndetic:Hydrophobic



Base
syndetic


IFT @


Formulation
Surfactant
Weight ratio
IFT @ 5 min.
IFT @ 10 min.
15 min.















FF
0.260
0.862
0.138
0.132
0.132


GG
0.260
0.862
0.117
0.115
0.100


HH
0.260
0.862
0.086
0.113
0.131


II
0.416
0.140
0.220
0.206
0.21


JJ
0.416
0.140
0.170
0.158
0.160









Table X illustrates compositions comprising a single anionic surfactant (either sodium lauryl sulfate or MES) in the base surfactant mixture comprising the anionic and a nonionic alkyl glucoside (Glucopon® 425N). Table Xa illustrates compositions with a total syndetic:total base surfactant weight ratio between 0.260-0.416 produce an optimum reduction in the interfacial tension below 0.3 mN/m as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting the composition with said canola oil. Table Xa also illustrates compositions with a hydrophilic syndetic:hydrophobic syndetic weight ratio between 0.140-0.862 produce an optimum reduction in the interfacial tension below 0.3 mN/m as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting said composition with said canola oil.









TABLE XI







Formulations with Anionically Modified Inulin









Formulation












KK
LL
MM
NN

















Sodium Lauryl
5.63
5.63
5.63
5.63



Sulfate



Glucopon ®
5.30
5.30
5.30
5.30



425N



MES
6.94
6.94
6.94
6.94



Ammonyx
1.30
1.30
1.30
1.30



LMDO



Span 20
1.5
1.5
1.5
1.5



Texapon 842
0.9
0.9
0.9
0.9



Calcium
0.1
0.1
0.1
0.1



Chloride



Boric Acid
1.5
1.5
1.5
1.5



Anionic Inulin
0.0
0.51
3.91
6.12



(Dequest PB



11620)



Sodium
0.5
0.5
0.5
0.5



Hydroxide



Sorbitol
2.49
2.49
2.49
2.49



DI Water
balance
Balance
balance
balance

















TABLE XIa







Example Formulations and Interfacial Tension (IFT mN/m) with Canola Oil, 25° C.













Total







Hydrophilic +



Hydrophobic
Hydrophilic



Syndetic/Total
Syndetic:Hydrophobic



Base
syndetic


IFT @


Formulation
Surfactant
Weight ratio
IFT @ 5 min.
IFT @ 10 min.
15 min.















KK
0.207
0.321
0.24
0.138
0.087


LL
0.207
0.321
0.234
0.127
0.091


MM
0.207
0.321
0.224
0.107
0.133


NN
0.207
0.321
0.252
0.156
0.086









Table XIa illustrates compositions with a total syndetic:total base surfactant weight ratio of 0.207 produce a reduction in the interfacial tension below 0.3 mN/m as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting the compositions with said canola oil, even though the compositions contain varying amounts of the anionically modified inulin. Table XIa also illustrates compositions with a hydrophilic syndetic:hydrophobic syndetic weight ratio of 0.321 produce a reduction in the interfacial tension below 0.3 mN/m as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting said composition with said canola oil. Thus, anionically modified inulin can be incorporated over a wide range of concentrations into the formulations containing syndetics, in order to deliver cleaning compositions with varying degrees of robustness toward calcium carbonate encrustation and/or deposition. Such formulations can be useful as liquid laundry products or dish cleaning products.


The compositions of this invention may be of various forms, including (but not restricted to) aqueous liquids, nonaqeuous liquids, gels, foams, powders, tablets, and sachets comprising a formulation within a water-soluble film. Mixtures of forms (for example, solid particles within a liquid matrix, or encapsulated liquids within a solid or liquid matrix) are within the scope of the invention as well. Such examples are listed in Table XII.

















TABLE XII





Ingredient
OO
PP
QQ
RR
SS
TT
UU
VV







Product form
Aq
Aq.
Nonaq
Gel
Foam*
Powder
Tablet
Sachet



liq.
Liq.
Liq.


Sodium methyl ester
7.5


sulfonate


Sodium lauryl
7.5
3.5
12.8
3.0
15.0
10.0
10.0
12.8


sulfate


Sodium octyl sulfate

3.0
2.5
1.0
1.0
2.0
2.0
2.5


C8-C10
7.0
7.0

7.0
5.0


alkylpolyglucoside


C12

7.0



5.0
6.0


Alkylpolyglucoside


C6
2.7


Alkylpolyglucoside


Oleic acid
3.0
3.0
12.7
1.0

1.5
2.5
12.7


Polyglycerol ether


38.2




38.2


(C14, 10 glycerin


units)


Lauryl/myristyl ami-
1.7



2.0


dopropyl amine oxide


C18 polypentoside

1.0


Calcium chloride


Sodium chloride


Glycerol


25.5
5.0
10.0


25.0


Sodium silicate





5.0


Sodium carbonate





30.0
30.0
0.5*


Sodium sulfate





25.0
20.0


Sodium citrate
1.0

7.6
2.0
1.0


7.6


Sodium gluconate

1.0


Zeolite A





20.0
20.0


Xanthan gum



0.5


Clay






3.0


Water-soluble film







As










required


Fragrance
0.5
0.5
0.5
0.5
0.5
0.5
0.5


Preservative
0.1
0.1

0.1
0.1


Sodium, potassium,


or ammonium


hydroxide (to


desired pH)


Water (deionized)
To 100%
To 100%

To 100%
To 100%








*as suspended speckle


Note that in examples OO and PP, an organic solvent is not required.






In Table XIII, an example formulation is disclosed wherein one added alkyl polyglucoside with a C8-C14 alkyl chain distribution serves as both the hydrophilic syndetic and the nonionic surfactant.












TABLE XIII







Ingredient
Weight %



















Sodium lauryl sulfate
15.0%



C8-C14 alkyl polyglucoside
5.0%



Lauryl dimethyl amine oxide
4.0%



Ethanol
1.0%



Glycerin
3.5%



Citric Acid or Sodium Citrate
To desired pH



Preservative
0.1%



Fragrance
0.4%



Deionized water
To 100%










Without departing from the spirit and scope of this invention, one of ordinary skill can make various changes and modifications to the invention to adapt it to various usages and conditions. As such, these changes and modifications are properly, equitably, and intended to be, within the full range of equivalence of the following claims.

Claims
  • 1. A natural cleaning composition consisting essentially of: a. an anionic surfactant selected from the group consisting of sodium lauryl sulfate, sodium alkyl α-sulfomethyl ester, and combinations thereof;b. a hydrophilic syndetic selected from the group consisting of C6 alkyl polyglucoside, C6 to C8 alkyl polyglucoside, C8 alkyl polyglucoside, a C4 to C8 alkyl polypentoside and combinations thereof;c. a hydrophobic syndetic selected from an amine oxide;d. an organic chelating agent from the group consisting of 2-hydroxyacids, 2-hydroxyacid derivatives, glutamic acid, glutamic acid derivatives, gluconate, and mixtures thereof;e. optionally a solvent selected from the group consisting of propylene glycol, 1,3-propanediol, ethanol, sorbitol, glycerol and combinations thereof;f. optionally a nonionic surfactant selected from the group consisting of alkyl polyglucosides having chain lengths greater than C8, and combinations thereof; andg. optional ingredients selected from pH adjusting agents, builders, calcium salts, boric acid or borate, enzymes, dyes, colorants, fragrances, preservatives, fluorescent whitening agents, bluing agents, defoamers, bleaches, thickeners, anti-redeposition polymers, DTPA, GLDA, EDDS, TMG, Tiron and combinations thereof.
  • 2. The composition of claim 1, wherein said anionic surfactant, said hydrophilic syndetic and said hydrophobic syndetic reduce the interfacial tension between water and a canola oil below about 0.3 mN/m, as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting said composition with said canola oil.
  • 3. The composition of claim 1, wherein the composition does not contain alkyl glycol ethers, alcohol alkoxylates, alkyl monoglycerolether sulfate, alkyl ether sulfates, alkanolamines, alkyl ethoxysulfates, phosphates, EDTA, linear alkylbenzene sulfonate (“LAS”), linear alkylbenzene sulphonic acid (“HLAS”) or nonylphenol ethoxylate (“NPE”).
  • 4. The composition of claim 1, wherein the solvent is selected from the group consisting of propylene glycol, sorbitol, glycerol, and combinations thereof.
  • 5. The composition of claim 1, wherein the organic chelating agent is gluconate.
  • 6. The composition of claim 1, wherein the composition is a natural composition, wherein said natural composition has a) at least 95% of the components of the natural composition are derived from plant and mineral based materials;b) the natural composition is biodegradable;c) the natural composition is minimally toxic to humans;d) the natural composition has a LD50>5000 mg/kg; ande) the natural composition does not contain non-plant based ethoxylated surfactants, linear alkylbenzene sulfonates, ether sulfates surfactants or nonylphenol ethoxylate.
  • 7. The composition of claim 6, the composition is an ecofriendly composition, wherein said ecofriendly composition has a) at least 99% of the components of the ecofriendly composition are derived from plant and mineral based materials;b) the ecofriendly composition is biodegradable;c) the ecofriendly composition is minimally toxic to humans;d) the ecofriendly composition has a LD50>5000 mg/kg; ande) the ecofriendly composition does not contain non-plant based ethoxylated surfactants, linear alkylbenzene sulfonates, ether sulfate surfactants or nonylphenol ethoxylate.
  • 8. A natural cleaning composition consisting essentially of: a. an anionic surfactant selected from the group consisting of a fatty alcohol sulfate, an alkyl α-sulfomethyl ester, and combinations thereof;b. a hydrophilic syndetic selected from the group consisting of C6 alkylpolyglucoside, C6 to C8 alkylpolyglucoside, C8 alkylpolyglucoside, C6 alkyl sulfate, C6 to C8 alkyl sulfate, C8 alkyl sulfate, C4 to C8 alkyl polypentoside, and combinations thereof;c. a hydrophobic syndetic selected from the group consisting of an amine oxide, a fatty acid, a fatty alcohol, a sterol, a sorbitan fatty acid ester, a glycerol fatty acid ester, a polyglycerol fatty acid ester, a C14 to C22 alkyl polypentoside, and combinations thereof;d. an organic chelating agent from the group consisting of 2-hydroxyacids, 2-hydroxyacid derivatives, glutamic acid, glutamic acid derivatives, gluconate and mixtures thereof;e. optionally a solvent selected from the group consisting of propylene glycol, 1,3-propanediol, ethanol, sorbitol, glycerol and combinations thereof;f. optionally a nonionic surfactant selected from the group consisting of an alkylpolyglucoside having chain lengths from C10 to C20, alkyldiethanolamide, alkylethanolamide, an alkyl(poly glycerol ether), a C8 to C14 alkyl polypentoside, and combinations thereof;g. optionally an amphoteric surfactant selected from the group consisting of sarcosinate, tauride, betaine, sulfobetaine and combinations thereof; andh. optional ingredients selected from pH adjusting agents, calcium salts, boric acid, enzymes, dyes, colorants, fragrances, preservatives, fluorescent whitening agents, bluing agents, defoamers, bleaches, thickeners, anti-redeposition polymers, DTPA, GLDA, EDDS, TMG, Tiron and combinations thereof.
  • 9. The composition of claim 8, wherein said anionic surfactant, said hydrophilic syndetic and said hydrophobic syndetic reduce the interfacial tension between water and a canola oil below about 0.3 mN/m, as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting said composition with said canola oil.
  • 10. The composition of claim 8, wherein the composition does not contain alkyl glycol ethers, alcohol alkoxylates, alkyl monoglycerolether sulfate, alkyl ether sulfates, alkanolamines, alkyl ethoxysulfates, phosphates, EDTA, linear alkylbenzene sulfonate (“LAS”), linear alkylbenzene sulphonic acid (“HLAS”) or nonylphenol ethoxylate (“NPE”).
  • 11. The composition of claim 8, wherein the composition is a natural composition, wherein said natural composition has a) at least 95% of the components of the natural composition are derived from plant and mineral based materials;b) the natural composition is biodegradable;c) the natural composition is minimally toxic to humans;d) the natural composition has a LD50>5000 mg/kg; ande) the natural composition does not contain non-plant based ethoxylated surfactants, linear alkylbenzene sulfonates, ether sulfates surfactants or nonylphenol ethoxylate.
  • 12. The composition of claim 11, the composition is an ecofriendly composition, wherein said ecofriendly composition has a) at least 99% of the components of the ecofriendly composition are derived from plant and mineral based materials;b) the ecofriendly composition is biodegradable;c) the ecofriendly composition is minimally toxic to humans;d) the ecofriendly composition has a LD50>5000 mg/kg; ande) the ecofriendly composition does not contain non-plant based ethoxylated surfactants, linear alkylbenzene sulfonates, ether sulfates surfactants or nonylphenol ethoxylate.
  • 13. The composition of claim 8, wherein the anionic surfactant is sodium alkyl α-sulfomethyl ester.
  • 14. The composition of claim 8, wherein the hydrophobic syndetic is the amine oxide.
  • 15. The composition of claim 8, wherein the hydrophilic syndetic is an alkyl polyglucoside.
  • 16. A natural cleaning composition comprising: a. an anionic surfactant selected from the group consisting of a fatty alcohol sulfate, an alkyl α-sulfomethyl ester, and combinations thereof;b. a hydrophilic syndetic selected from the group consisting of C6 alkylpolyglucoside, C6 to C8 alkylpolyglucoside, C8 alkylpolyglucoside, C6 alkyl sulfate, C6 to C8 alkyl sulfate, C8 alkyl sulfate, C4 to C8 alkyl polypentoside, and combinations thereof;c. a hydrophobic syndetic selected from the group consisting of an amine oxide, a fatty acid, a fatty alcohol, a sterol, a sorbitan fatty acid ester, a glycerol fatty acid ester, a polyglycerol fatty acid ester, a C14 to C22 alkyl polypentoside, and combinations thereof;d. optionally a solvent selected from the group consisting of 1,3-propanediol, sorbitol, glycerol and combinations thereof;e. optionally a nonionic surfactant selected from the group consisting of an alkoxylated amine, alkylpolyglucoside having chain lengths from C8 to C20, alkyldiethanolamide, alkylethanolamide, an alkyl(poly glycerol ether), a C8 to C14 alkyl polypentoside, and combinations thereof;f. optionally an amphoteric surfactant selected from the group consisting of sarcosinate, tauride, betaine, sulfobetaine and combinations thereof;g. optionally an organic chelating agent from the group consisting of 2-hydroxyacids, 2-hydroxyacid derivatives, glutamic acid, glutamic acid derivatives, gluconate, and mixtures thereof; andh. optional ingredients selected from pH adjusting agents, calcium salts, boric acid, enzymes, dyes, colorants, fragrances, preservatives, fluorescent whitening agents, bluing agents, defoamers, bleaches, thickeners, anti-redeposition polymers, ethanol, propylene glycol, DTPA, GLDA, EDDS, TMG, Tiron, and combinations thereof,wherein the composition does not contain alkyl glycol ethers, alcohol alkoxylates, alkyl monoglycerolether sulfate, alkyl ether sulfates, alkanolamines, alkyl ethoxysulfates, phosphates, EDTA, linear alkylbenzene sulfonate (“LAS”), linear alkylbenzene sulphonic acid (“HLAS”) or nonylphenol ethoxylate (“NPE”).
  • 17. The composition of claim 16, wherein said anionic surfactant, said hydrophilic syndetic and said hydrophobic syndetic reduce the interfacial tension between water and a canola oil below about 0.3 mN/m, as measured via spinning drop tensiometry at 25° C., in less than 15 minutes after contacting said composition with said canola oil.
  • 18. The composition of claim 16, wherein the composition is a natural composition, wherein said natural composition has a) at least 95% of the components of the natural composition are derived from plant and mineral based materials;b) the natural composition is biodegradable;c) the natural composition is minimally toxic to humans;d) the natural composition has a LD50>5000 mg/kg; ande) the natural composition does not contain non-plant based ethoxylated surfactants, linear alkylbenzene sulfonates, ether sulfates surfactants or nonylphenol ethoxylate.
  • 19. The composition of claim 18, the composition is an ecofriendly composition, wherein said ecofriendly composition has a) at least 99% of the components of the ecofriendly composition are derived from plant and mineral based materials;b) the ecofriendly composition is biodegradable;c) the ecofriendly composition is minimally toxic to humans;d) the ecofriendly composition has a LD50>5000 mg/kg; ande) the ecofriendly composition does not contain non-plant based ethoxylated surfactants, linear alkylbenzene sulfonates, ether sulfates surfactants or nonylphenol ethoxylate.
  • 20. The composition of claim 16, wherein the hydrophilic syndetic is a C6 alkyl polyglucoside.
  • 21. The composition of claim 20, wherein the hydrophobic syndetic is selected from the group consisting of an amine oxide, sorbitan fatty acid ester, glycerol fatty acid ester and combinations thereof.
  • 22. The composition of claim 16, wherein the anionic surfactant is a fatty alcohol sulfate and the hydrophobic syndetic is a fatty acid.
  • 23. The composition of claim 22, wherein the composition requires a solvent wherein the solvent is glycerol.
  • 24. The composition of claim 23, wherein the composition requires an organic chelating agent wherein the organic chelating agent is gluconate.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation-in-part of co-pending of U.S. Ser. No. 12/343,202, filed on Dec. 23, 2008, which is a continuation-in-part of both co-pending applications U.S. Ser. No. 12/198,677 and U.S. Ser. No. 12/198,685, both filed on Aug. 26, 2008, all of which are incorporated herein by reference.

Continuation in Parts (2)
Number Date Country
Parent 12343202 Dec 2008 US
Child 12558795 US
Parent 12198677 Aug 2008 US
Child 12343202 US