This application is generally directed to surgical devices, and more particularly, to an access device adapted for use with a cap, that is useful in natural orifice single-port surgical procedures and which is particularly useful in vaginal surgical procedures.
Access devices are commonly used in surgery to facilitate the introduction of various surgical instruments into natural biological vessels, conduits, orifices, cavities, and other interior regions of the body. These access devices include, for example, devices that facilitate the introduction of a needle into a vessel, and trocars that facilitate the introduction of laparoscopic instruments into the abdomen of the body.
Some of these access devices are introduced into regions that include a fluid or gas under pressure. In the case of a needle access device, the pressure may be from a liquid, such as blood. In the case of a trocar, the pressure may be from a gas, such as an insufflation gas. In either case, it is desirable to provide for the introduction of the surgical instrument into the cavity without permitting the escape of the pressurized fluid or gas.
In the case of trocars, a cannula at the distal end of the trocar is typically connected to a seal housing at the proximal end of the trocar. Together the cannula and housing form a working channel through which various instruments can be inserted to access the cavity. Seal mechanisms are commonly disposed in the housing and include a septum valve that seals the working channel when an instrument is in place, and a zero closure valve that seals the working channel when the instrument is removed.
Current surgical access ports allow for single instrument access through each port, or allow for multiple instrument access through a rigid cannula. Some devices, such as transanal endoscopic microsurgery (TEMS) units require that the device be attached to the surgical table to support the weight of the device, as well as to locate the position of the device respective to the patient. These devices do not provide flexibility to the surgeon in selecting instrument size, and they restrict instrument movement with their rigid cannulas. Additionally, surgeons are performing laparoscopic surgical procedures through a single or a limited number of access ports. The procedures may be performed through a single two (2) centimeter incision at the umbilicus, or in certain cases, trans-vaginally or trans-anally. What is needed is a system that meets the needs of these new procedures, facilitating more flexible movement of laparoscopic instruments through a single or limited number of ports while preventing the escape of pressured fluids or gasses and permitting large specimen removal. What is particularly needed is an access system that can be deployed into a natural body cavity, such as the vagina, providing a sealed system for insufflation and a platform for the introduction of multiple surgical instruments of varying sizes, while maintaining sufficient stability for anchoring the system within the cavity without damaging the body cavity wall.
The invention is directed to a surgical access port system adapted for performing surgical procedures at a natural orifice comprising, an outer ring, wherein the outer ring is configured to be disposed proximate the natural orifice of the patient; a tubular body having a longitudinal axis, a proximal end and a distal end; a funnel segment extending between and coupling the outer ring and the proximal end of the tubular body, wherein the funnel segment provides a diametric reduction between the outer ring and the tubular body; and a flange disposed around the tubular body, the flange comprising a circular ridge circumscribing a channel, wherein the flange is adapted to secure the retractor within the body orifice. The flange may be disposed around the distal or the proximal end of the tubular body.
Optionally, the surgical access port system further comprises a removable gel cap, wherein the gel cap comprises a gel pad and a cap ring coupled with the gel pad, wherein the cap ring is engagable with the outer ring.
In another embodiment, the surgical access port system comprises an outer ring, wherein the outer ring is configured to be disposed proximate the natural orifice of the patient; a tubular body having a longitudinal axis, a proximal end and a distal end; a funnel segment extending between and coupling the outer ring and the proximal end of the tubular body, wherein the funnel segment provides a diametric reduction between the outer ring and the tubular body; and a frustoconical bolster disposed around the tubular body, the bolster comprising a first diameter at a distal end and a second diameter at a proximal end, the second diameter being larger than the first diameter, wherein the bolster is adapted to externally occlude the natural orifice.
In some embodiments, the bolster comprises at least one of a thermoset polymer and a thermoplastic elastomer. In some embodiments, the bolster is fixed around the proximal end of the tubular body. Optionally, the access system further comprises a flange disposed around the tubular body, distal to the bolster and/or an inflatable balloon disposed around the tubular body, distal to the bolster. In some embodiments, the bolster is slidably engaged with the tubular body.
In another embodiment, the surgical access port system comprises an outer ring, wherein the outer ring is configured to be disposed proximate the natural orifice of the patient; a tubular body having a longitudinal axis, a proximal end and a distal end; a funnel segment extending between and coupling the outer ring and the proximal end of the tubular body, wherein the funnel segment provides a diametric reduction between the outer ring and the tubular body; a mechanical balloon disposed around the tubular body, the mechanical balloon comprising a series of arms disposed along the longitudinal axis of the tubular body, each arm having a proximal end attached to a first ring and a distal end attached to a second ring, wherein the second ring is fixed to the tubular body; and a third ring disposed around the tubular body proximal to the first ring, the third ring adapted to move along the tubular body to engage the first ring and push the first ring toward the distal end of the tubular body, thereby placing a load on the arms and causing them to flare out from the tubular body. The mechanical balloon may also be used in combination with a compression flange or a bolster cone.
Optionally, the arms comprise a semi-rigid material. In some embodiments, each of the arms further comprises an articulating joint along the length of the arm.
In another embodiment, the surgical access port system comprises an outer ring, wherein the outer ring is configured to be disposed proximate the natural orifice of the patient; a tubular body having a longitudinal axis, a proximal end and a distal end; a funnel segment extending between and coupling the outer ring and the proximal end of the tubular body, wherein the funnel segment provides a diametric reduction between the outer ring and the tubular body; and an inflatable saddle-shaped balloon disposed around the tubular body, the saddle-shaped balloon comprising a first peak and a second peak, the second peak displaced from the first peak along the longitudinal axis of the tubular body. In some embodiments, the saddle-shaped balloon is adapted to compress the tissue of the natural orifice between the first peak and the second upon inflation to thereby occlude the natural orifice.
In another embodiment, the surgical access port system comprises an outer ring, wherein the outer ring is configured to be disposed proximate the natural orifice of the patient; a tubular body having an exterior surface, a longitudinal axis, a proximal end and a distal end; a funnel segment extending between and coupling the outer ring and the proximal end of the tubular body, wherein the funnel segment provides a diametric reduction between the outer ring and the tubular body; a retaining sleeve, the retaining sleeve comprising a longitudinal axis, a proximal end, a distal end, and a lumen, wherein the tubular body is disposed within the lumen and adapted to move along the longitudinal axis of the retaining sleeve; and at least two arms, each arm connected to the distal end of the retaining sleeve with an articulating hinge, wherein the arms are movable from a closed position to an open position as the distal end of the tubular body engages the arms.
Optionally, each arm further comprises an angled lead near the articulating hinge, the lead positioned to engage the distal end of the tubular body as the tubular body is moved through the retaining sleeve. In some embodiments, the access port further comprises an external thread wrapped around the exterior of the tubular body and an internal thread wrapped around an interior surface of the lumen of the retaining sleeve, wherein the external thread is adapted to engage the internal thread. In other embodiments, the access port further comprises a plurality of teeth disposed along the exterior surface of the tubular body and a plurality of pawls disposed along an interior surface of the lumen of the retaining sleeve, wherein the teeth are adapted to engage the pawls to facilitate unidirectional movement of the tubular body through the lumen of the retaining sleeve.
Similar components have similar reference numbers throughout.
Embodiments of a surgical instrument access device system are useful, for example, for single incision, single port, and/or limited port laparoscopic surgical procedures, for example, abdominal (
With the gel cap 6200 attached to the retractor 6100, the access device system allows the user to insufflate the orifice, such as the vaginal canal. The distention of the canal caused by the insufflation provides greater visualization of the anatomy (when compared, for example, to traditional vaginal hysterectomy) and removes the need for the use of rigid mechanical retractors which may cause damage to soft tissues. The gel cap may be detached at any point during the surgical procedure to allow for specimen removal.
The retractor 6100 is made of a semi-pliable thermoplastic elastomer or thermoset polymer. For use in vaginal procedures, a length of approximately 4 cm to 7 cm and a diameter of approximately 3 cm to 5 cm will suit a range of anatomies. The retractor retracts and occludes the vagina. Suture ties 6160 at proximal end 6152 and/or a flange 6110 along the tubular body may help prevent the retractor from dislodging once placed. The gel cap 6200 may be attached with the aid of a lever 6135 which locks under the proximal ring 6120 of the retractor 6100. This creates a pressure resistant seal and insufflation is possible through insufflation ports 6145 on the gel cap. Smoke evacuation is possible through the port not being used for insufflation. Instrument ports 6310 may be placed in the gel cap 6200 to allow for the use of various laparoscopic instruments. The gel cap may then be detached and specimens may be removed through the retractor 6100.
Turning to
With continued reference to
In the illustrated embodiment, the funnel segment 6140 provides a diametric reduction between the relatively large diameter of the outer ring 6120, which is sized and configured to be removably coupled to an access device such as a cap, and the relatively smaller diameter of the passage 6150, which is sized to fit within a natural orifice with minimal distention of the orifice. The funnel segment 6140 has an inner surface which can provide a bearing surface for an obturator or introducer used to advance to the retractor 6100 into a body cavity. In some embodiments, the funnel segment can have a substantially linear taper between the relatively large diameter and the relatively smaller diameter such that the inner surface is a frustoconical segment. In other embodiments, the funnel segment 5 can have a curved profile between the relatively large diameter and the relatively smaller diameter. In some embodiments, there is no funnel section at all, as where the tubular body connects directly to the outer ring.
It can be desirable that the outer ring 6120 is relatively stiff compared with the relatively flexible tubular body 6130 of the retractor 6100 so that the outer ring 6120 can sealingly engage an access device such as a cap. With reference to
While the illustrated embodiments of retractor 6100 include a reinforcing member to enhance the rigidity of the outer ring 6120, in other embodiments, the retractor 6100 can be formed in a multiple-shot molding process. For example, in some embodiments, an inner segment of the retractor defined by the tubular body 6130 and the flange 6110 is formed in one molding operation from a flexible material, and an outer segment of the retractor 6100 defined by the funnel segment 6140 and the outer ring 6120 is formed in another molding operation from a relatively rigid material such as a polycarbonate material or other suitable material.
With continued reference to
Various types of flanges may be used to help secure the retractor in the body orifice. One embodiment of the natural orifice access device retractor 6100 illustrated in
With reference to
With reference to
With reference to
In some embodiments, the sliding third ring is threaded along its interior surface and is adapted to engage with threads disposed around the channel. See
The sliding ring may comprise any rigid or semi-rigid material, plastic or metal, while the arms may comprise a semi-rigid metal or plastic sufficiently flexible to flare outwards under a load. Alternatively, the arms may comprise a rigid material with an articulating joint located approximately mid-length of each arm, facilitating a similar flaring.
The mechanical balloon has a diameter of approximately 2 inches to approximately 4 inches and is disposed around the tubular body at the distal end of the retractor. The mechanical balloon may be coated in a non-porous, flexible material to permit occlusion and prevent dislodging when expanded or non-coated to serve solely for fixation. The amount of expansion may be variable to accommodate different anatomies. The feature is initially unexpanded to ease insertion and is then expanded as needed.
In some embodiments, the mechanical balloon may be used in combination with a compression flange as shown in
In other embodiments, shown in
The channel 6136 runs through the tubular body, generally parallel to the longitudinal axis of the tubular body, with a proximal opening interacting with the inflation port 6134 and a distal opening 6139 into outer surface of the tubular body at the inflatable member. In one aspect, the inflation port 6134 may include a normally closed check valve having a spring-loaded plunger. In a further aspect, the check valve may include a Luer lock. It is contemplated that other inflation ports that are well known in the art may be used.
In this embodiment, the tubular body 6130 is preferably comprised of a relatively rigid material, such as a polycarbonate. The tubular body has an inflatable member at the distal end that may be created by heat shrinking polyolefin tubing around the outside of the tubular body. The distal end of the body/tubing assembly is then heated for approximately 30 to 40 seconds, and then placed inside a mold and injected with air to give the inflatable member an annular balloon shape as seen in
In one embodiment, the inflatable member 6132 may include a substantially toroid shape upon inflation (see
In use, the inflatable member may be inflated after the retractor is disposed within the natural orifice by inserting a syringe into the valve 6134 located at the proximal end 6138 of the channel within the tubular body (see
In still another embodiment, the bolster cone described herein may be combined with an inflatable member, as shown in
Another embodiment of the natural orifice access system, configured to provide retraction and access without using insufflation gases, is shown in
In the embodiment of
In an alternative embodiment, a ratcheting mechanism comprising teeth 6153 and a series of pawls 6155 may be used instead of internal and external threads (see
In use, the tubular body 6130 of the retractor 6100 is advanced forward through the lumen of the retaining sleeve 6143 until contact is made with the retracting arms 6146. The angled lead 6148 on the retracting arm allows for the opening to occur at an incremental rate to accommodate a variety of anatomies. The lip 6144 on the retaining sleeve ensures that the proximal end of the lumen will not enter the orifice and provides a holding point during the advancement of the retractor. As seen in
In some embodiments, a natural orifice access system can include a retractor 6100 and an optional obturator 6400 (
In an alternative embodiment, shown in
In embodiments having an inflatable member on the retractor, the optional obturator 6400 may be modified with an indent 6139 to provide clearance for the inflation port, as shown in
With reference to
With reference to
With reference to
With reference to
In the illustrated embodiments of
The port 6310 comprises a proximal end, a distal end, and a longitudinal axis. The port 6310 comprises a cannula 6620 extending along the longitudinal axis. A seal 6630 is disposed at the proximal end of the cannula 6620, contained within a housing 6640. A retainer 6650 is disposed at the distal end or tip of the cannula 6620.
The cannula 6620 comprises a tubular body dimensioned to accommodate an instrument or instruments received there through. In the illustrated embodiment, the cannula 6620 is a substantially cylindrical tube, and extends through the cap 6300 in use. In the illustrated embodiment, the cannula 6620 is comparatively short because the cannula need only traverse the cap 6300 (
The illustrated seal 6630 comprises an instrument or septum seal 6660 and a zero seal 6670. Optionally, a shield 6680 may be disposed within the instrument seal 6660. The instrument seal 6660 seals instruments passing there through, thereby maintaining pressurization in a body cavity such as pneumoperitoneum or pneumorectum. The zero seal 6670 provides a seal when no instrument passes through the seal 6630. The instrument seal 6660 and zero seal 6670 are received in a housing 6640 disposed at the proximal end of the cannula 6620 and secured therein by a seal cover 6690.
The retainer 6650 is disposed at or near the distal end of the cannula 6620. In some embodiments, the retainer 6650 and cannula 6630 are integrated, while in other embodiments, the retainer 6650 and cannula 6630 are not integrated. In the illustrated embodiment, the proximal end of the retainer 6650 comprises a flange 6655 that is generally flat and perpendicular to the longitudinal axis, while the distal end is tapered, narrowing toward the distal end of the cannula 6620. The flange 6655 reduces the likelihood of accidental or inadvertent removal of the port 6310 from the cap. Some embodiments of the proximal face of the flange 6655 comprise additional anchoring features, for example, at least one of barbs, spikes, ridges, texturing, and the like, which are configured to penetrate or bite into a distal face of the cap 6300. In some embodiments, a diameter of the flange 6655 is from about 1.2 to about 2.5 times wider, or from about 1.5 to about 2.0 times wider than an outer diameter of the cannula 6630. Some embodiments of the port 6310 are 5-mm trocars, in which the outer diameter of the cannula 6620 is from about 7 mm to about 8 mm.
The tapered end of the retainer 6650 facilitates insertion of the port 6310 through the cap, either by itself, or when assembled with the obturator 6600 extending there through. For example, in some embodiments, the retainer 6650 is inserted through a preformed opening in the cap 6300.
In some embodiments in which the retainer 6650 and cannula 6620 are not integrated, that is, are separate components, the retainer 6650 is secured to the cannula 6620 after the cannula 6620 is inserted through the cap. In some embodiments, the cannula 6620 and retainer 6650 are secured mechanically, for example, using latches, screw threads, clips, lock rings, ratchets, and the like. In some embodiments, the cannula 6620 and retainer 6650 are secured adhesively. In some embodiments, the position of the retainer 6650 is adjustable, for example, to accommodate caps of different thicknesses. In some embodiments, the cannula 6620 and/or retainer 6650 is secured to the cap, for example, adhesively.
The illustrated cap or cover 10500 is substantially circular. In other embodiment, the gel cap 10500 has another shape or footprint, for example, oval, elliptical, parabolic, square, rectangular, or another suitable curved or polygonal shape. In some embodiments, the outer ring 6120 of the retractor and cap ring 10510 of the cap have the same general shape or footprint. In other embodiments, the outer ring 6120 of the retractor and cap ring 10501 of the cap have substantially different shapes, for example, a generally circular outer ring 6120 and an oval cap ring 10510. In these embodiments, the outer ring 6120 is distorted or reshaped for coupling to the cap ring 10510, for example, by compressing opposed sides of the outer ring 6120. Non-circular shapes are useful, for example, for procedures in which space is limited. As discussed above, retracting a long, straight incision using an oval or elongated retractor requires less force than a similar procedure using a circular retractor.
In some embodiments, the pad 10530 comprises a gel. In such embodiments, the pad 10530 is referred to as a “gel pad” and the cap 10500 is referred to as a “gel cap”. Descriptions of gel pads and gel caps generally apply to embodiments in which the pad 10530 does not comprise gel unless otherwise specified. In some embodiments, the gel pad 10530 does not comprise any preformed access channels there through, for example, for instrument access. Instruments may be inserted directly through the gel pad 10530, puncturing the gel pad 10530, and thereby creating access channels or portions in the gel pad 10530. Each access portion forms an instrument seal in the presence of an instrument inserted there through and a zero seal in the absence of an instrument inserted there through. The gel provides a gas tight seal around a variety of shapes and sizes of instruments inserted there through. Some embodiments of the gel pad 10530 also provide trocar access directly there through, which also provide instrument access into the body cavity. Embodiments of the gel pad 10530 have a working diameter of from about 40 mm to about 120 mm, which is the diameter of a portion of the gel pad 10530 through which instruments and/or trocars may be inserted. Embodiments of the gel cap 10500 are typically from about 10 mm to 50 mm wider than the working diameter.
Accordingly, embodiments of the gel cap 10500 maintain pressurization within a body cavity such as pneumoperitoneum or pneumorectum during multiple instrument exchanges and substantially prevent unintentional loss of pressurization. Embodiments of the gel cap 10500 also provide substantially continuous access and visibility during surgery. Embodiments of the gel cap 10500 have a small profile for use in procedures with limited surgical space.
In some embodiments, the gel is an ultragel, which is characterized by an ultimate elongation greater than about 1000 percent and a durometer less than about 5 Shore A. Some embodiments of the ultragel comprising KRATON® and mineral oil exhibit an ultimate elongation exceeding about 1500 percent and improved sealing properties, for example, sealing with instruments of a wider size range than other seal materials. In some embodiments, the seals comprising ultragels also form zero seals when the instrument is removed therefrom. Accordingly, in some embodiments of seals comprising ultragels, a single seal is acts as both the instrument seal as well as the zero seal.
Some embodiments of the cap ring 10510 comprise a substantially cylindrical ring comprising a proximal portion, a distal portion, and a longitudinal axis extending from the proximal portion to distal portions. In other embodiments, the cap ring 10510 has another shape or footprint, for example, oval. As best seen in
The distal portion of the cap ring 10510 is substantially cylindrical in the illustrated embodiment, and is dimensioned and configured to receive the outer ring 6120 (
The cap ring 10510 in some embodiments comprises a polymer. Examples of suitable polymers include, at least one of polyethylene (PE), low density polyethylene (LDPE), high density polyethylene (HDPE), ultra high molecular weight polyethylene (UHMWPE), polycarbonate, thermoplastic elastomers (DYNAFLEX®, GLS Corp.; KRATON®, Kraton Polymers), polyphenylene oxide (PPO), polystyrene, and the like. The polymer component of the cap ring is fabricated by any suitable method, including injection molding, melt casting, blow molding, and the like.
Some embodiments of a process in which the gel pad 10530 is cast in the cap ring 10510 are include steps performed at temperatures above about 130° C. over several hours, for example, from about three (3) to about four (4) hours. Accordingly, in some of these embodiments, the cap ring 10510 does not deform under these conditions.
Some embodiments of the gel pad 10530 comprise an elastomeric gel. Examples of such gels are described in U.S. patent application Ser. No. 10/381,220, filed Mar. 20, 2003, the disclosure of which is hereby incorporated by reference as if set forth in full herein. Embodiments of the gel are prepared by mixing at least one triblock copolymer with a solvent that dissolves the midblocks of the triblock copolymer. The mixture is typically a slurry. The endblocks typically comprise a thermoplastic material, such as styrene, while the midblocks typically comprise a thermoset elastomer such as, ethylene/butylene, isoprene, or butadiene. Examples of the triblock copolymer include styrene-ethylene/butylene-styrene (SEBS), styrene-isoprene-styrene (SIS), and styrene-butadiene-styrene (SBS). In some embodiments, the solvent is an oil, for example, mineral oil. Upon heating a mixture or slurry of the triblock copolymer, the midblocks dissolve in the mineral oil, thereby forming a network of the insoluble endblocks. The resulting network has enhanced elastomeric properties compared with the parent copolymer. In some embodiments, the triblock copolymer used is KRATON® G1651, which has a styrene to rubber ratio of 33/67. Once formed, the gel is substantially permanent and, by the nature of the endblocks, processable as a thermoplastic elastomer henceforward. The mixture or slurry has a minimum temperature at which it becomes a gel, which is referred to as the minimum gelling temperature (MGT). This temperature typically corresponds to the glass transition temperature of the thermoplastic endblock plus a few degrees. For example, the MGT for a mixture of KRATON® G1651 and mineral oil is about 120° C. When the slurry reaches the MGT and the transformation to a gel state takes place, the gel becomes more transparent, thereby providing a visual endpoint confirming the complete transformation of the slurry to the gel state, whereupon the gel may be cooled. Some embodiments of the gel comprise a diblock copolymer, either instead of or in addition to the triblock copolymer. Embodiments of the diblock copolymer comprise a thermoplastic first endblock, for example, styrene, and a thermoset elastomeric second endblock, for example, ethylene/butylene, isoprene, or butadiene. An example of a suitable diblock copolymer is styrene-ethylene/butylene (SEB).
For a given mass of slurry to form a complete gel, the entire mass of the slurry is heated to or above the MGT and held at or above the MGT for a sufficient time for the end blocks to form a network or matrix of interconnections. The slurry will continue to form a gel at temperatures between the MGT and temperatures at which the components of the slurry/gel begin to decompose and/or oxidize. For example, when the slurry/gel is heated at temperatures above 250° C., the mineral oil in the slurry/gel will begin to be volatile and oxidize. Oxidizing may cause the gel to turn brown and become oily.
The speed at which a given volume of slurry forms a gel depends on the speed with which the entire mass of slurry reaches the MGT. Also, at temperatures higher than the MGT, the end block networks distribute and form more rapidly, thereby speeding the gel formation.
The various base gel formulas may also be mixed or alloyed with one another to provide gels with a variety of intermediate properties. For example, KRATON® G1701X is a mixture of seventy percent (70%) SEB and thirty percent (30%) SEBS, with an overall styrene to rubber ratio of 28/72. Those skilled in the art will appreciate that an almost unlimited number of combinations, alloys, and styrene to rubber ratios can be formulated, each providing and embodiment exhibiting one or more advantages, for example, low durometer, high elongation, and good tear strength.
Some embodiments of the gel material further comprise a polymer that, with a foaming agent, improves the sealing properties of the gel, for example, silicone, soft urethanes, and even harder plastics. Examples of suitable silicones include those used for electronic encapsulation. Examples of suitable harder plastics include polyvinylchloride (PVC), isoprene, KRATON® neat, and other KRATON®/oil mixtures. In the KRATON®/oil mixture, suitable oils include vegetable oils, petroleum oils, and silicone oils, as well as mineral oil.
Some embodiments of the gel comprise one or more additives that provide one or more desirable properties, for example, at least one of enhanced lubricity, improved appearance, and wound protection. Additives are incorporated directly into the gel and/or applied as a surface treatment. In some embodiments, other compounds are added to the gel to modify its physical properties and/or to assist in subsequent modification of the surface by providing bonding sites and/or surface charges. Additionally, oil-based colorants are added to the slurry to create gels of different colors in some embodiments.
Some embodiments of the gel pad 10530 comprise a layer of polyethylene on at least one surface. Polyethylene is dissolved in mineral oil and the solution applied to one or more surfaces of the gel pad 10530. The mineral oil does not evaporate, but instead, absorbs into the gel pad over time, leaving behind the polyethylene as a layer on the surface of the gel pad.
In some embodiments, the triblock copolymer/solvent mixture/slurry used to manufacture the gel pad 10530 comprises about ninety percent (90%) by weight of mineral oil and about ten percent (10%) by weight of KRATON® G1651. From a thermodynamic standpoint, this mixture behaves similarly to mineral oil. Because mineral oil has a relatively high heat capacity, transforming 0.45 kg (1 pound) of the slurry into a homogenous gel at about 130° C. may take from bout three (3) to about four (4) hours. Once formed, the gel can be cooled as quickly as practicable with no apparent deleterious effects on the gel. In some embodiments, the gel is cooled by cold-water immersion. In other embodiments, the gel is air-cooled. Those skilled in the art will recognize that other cooling techniques are used in other embodiments.
Certain properties of the KRATON®/oil gel will vary with the weight ratio of the components. In general, a higher proportion of mineral oil results in a softer gel, while a higher proportion of KRATON® results in a firmer gel. A too-soft gel exhibits excessive tenting or doming of the gel cap 10500 during surgery when a patient's body cavity is insufflated. Some embodiments of gels that are too soft also do provide an adequate instrument seal and/or zero seal. The gel should be sufficiently soft to provide an adequate seal both in the presence of an instrument and in the absence of an instrument, however.
On prolonged or extended sitting or standing, the copolymer, such as KRATON®, and the solvent, such as mineral oil, in the slurry may separate. The slurry may be mixed to greater homogeneity, for example, with a high shear mixer. Mixing the slurry may introduce or add air to the slurry, however. To remove air from the slurry, the slurry may be degassed. In some embodiments, the slurry is degassed under a vacuum, for example, within a vacuum chamber. In some embodiments, the applied vacuum is about 0.79 meters (about 29.9 inches) of mercury, or about one (1) atmosphere. Optionally, stirring or mixing the slurry under vacuum facilitates removal of the air. During degassing under vacuum, the slurry typically expands, then bubbles, and then reduces in volume. The vacuum is typically discontinued when the bubbling substantially ceases. Degassing the slurry in a vacuum chamber reduces the volume of the slurry by about ten percent (10%). Degassing the slurry also reduces oxidation of the finished gel in some embodiments.
Degassing the slurry tends to result in a firmer gel. A gel made from a degassed slurry comprising about 91.6% by weight of mineral oil and about 8.4% by weight of KRATON® G1651, an eleven-to-one ratio, has about the same firmness as a gel made from a slurry that is not degassed and that comprises about ninety percent (90%) by weight of mineral oil and about ten percent (10%) by weight of KRATON® G1651, a nine-to-one ratio.
Because mineral oil typically has a lower density than KRATON®, the two components will separate after mixing, with the less dense mineral oil rising to the top of the container. This phase separation typically occurs when transforming a static slurry into a gel over several hours. Consequently, the resulting gel is non-homogeneous, with a higher concentration of mineral oil at the top and a lower concentration at the bottom. The speed of separation is a function of the depth or head height of the slurry being heated. Factors relevant to the relative homogeneity of the gel include the mass of slurry, the head height, the temperature at which the gel sets, and the speed at which the energy is transferred to the gel.
The gel pad 10530 or gel cap 10500 are gamma sterilized in some embodiments, which is relatively and/or comparatively simpler to qualify compared with other sterilization process, for example, versus ethylene oxide. Gamma sterilization can cause large bubbles to form in the gel pad, however, which are cosmetic and/or aesthetic issues in the sterilized devices. Because bubbles typically comprise greater than ninety-nine percent (99%) room air, the dissolved air is advantageously removed from the slurry prior to transforming the slurry into a gel. For example, the slurry may be degassed under vacuum, as described above, then gelled by heating. Some bubbles may still form in the gel during gamma sterilization, but typically disappear over a period of from about twenty-four (24) hours to about seventy-two (72) hours. Typically, mineral oil at room temperature has about ten percent (10%) dissolved gas. As discussed above, removing air from the gel makes the gel firmer. This effect is counterbalanced by a softening of the gel by the gamma radiation during gamma sterilization, however.
In some embodiments in which the gel pad 10530 is gamma sterilized, the gel comprises about ninety percent (90%) mineral oil by weight and about ten percent (10%) KRATON® by weight. As stated above, degassing the slurry makes the gel firmer. The counteracting softening by the gamma radiation, however, results in a gel with substantially the same firmness as a gel comprising about ninety percent (90%) mineral oil by weight and about ten percent (10%) KRATON® by weight that is not degassed and gamma sterilized.
In some embodiments, the gel pad 10530 is coupled to, attached to, formed with, or integrated with the cap ring 10510 to provide a gas-tight seal between the cap ring 10510 and the tubular body 6130 (
Embodiments in which a gel pad support structure of the cap ring 10510 comprises a thermoplastic elastomer, for example, DYNAFLEX® or KRATON®, and the gel pad 10530 comprises a similar thermoplastic elastomer, for example, KRATON®, exhibit improved adhesion between the gel pad 10530 and the cap ring 10510. The polystyrene component of KRATON® in the gel pad 10530 improves adhesion with polyphenylene oxide (PPO), polystyrene, and other similar polymers.
In some embodiments of cap rings 10510 comprising polycarbonate, the polycarbonate component of the cap ring 10510 does not bond with the gel pad 10530 at 130° C., which is a typical manufacturing temperature for a gel pad 10530 comprising KRATON®. Raising the temperature to about 150° C. for a few minutes during casting, however, bonds the gel pad 10530 to the cap ring 10510. It is believed that heating the gel pad 10530 and cap ring 10510 to a temperature at which both the polystyrene component of the gel and the polycarbonate are simultaneously above their melt points allows bonds to form there between. In other embodiments, the uncured gel and the cap ring 10510 are heated to near or at the glass transition temperature of the polycarbonate in the cap ring 10510, thereby bonding the gel pad 10530 to the cap ring 10510.
In some embodiments, the gel comprises mineral oil and the cap ring 10510 comprises a polymer that dissolves in mineral oil under the manufacturing conditions, for example, polyethylene (PE), low density polyethylene (LDPE), high density polyethylene (HDPE), and ultra high molecular weight polyethylene (UHMWPE). Using polyethylene (PE) as an example, PE has a higher molecular weight than mineral oil and dissolves in mineral oil at the temperatures used to cast the gel pad 10530. As such, as a portion of the PE in the cap ring 10510 dissolves in the mineral oil in the gel pad 10530 at the processing temperatures, for example, above about 130° C., a bond between the PE in the cap ring 10510 and gel pad 10530 is formed.
In an embodiment of a method for manufacturing a gel cap, the cap ring 10510 is placed into a mold that together with the cap ring 10510 includes a negative space in the desired shape of the gel pad and uncured gel is added to the mold. Sufficient uncured gel is then added to the mold to cover and fill the apertures 10512. The uncured gel flows through, fills, and remains within the apertures. Also, in some embodiments, the mold is filled with sufficient uncured gel to extend into the distal portion of the cap ring 10510. After the gel cures, the gel in the apertures connects and couples the gel on a first side of each aperture 10512 to the gel on a second side of the aperture, thereby mechanically locking the gel pad 10530 to the cap ring 10510.
Some embodiments include another method for coupling the gel pad 10530 to the cap ring 10510, either in addition to or instead of the mechanical interlocking discussed above. Such methods are useful, for example, for coupling separately formed gel pads or gel slugs 10530 and cap rings 10510. Some embodiments use a glue or adhesive to couple the gel pad 10530 to the cap ring 10510, for example, cyanoacrylate (SUPERGLUE® or KRAZY GLUE®). The glue is believed to bond to either the rubber or the styrene component of the triblock copolymer with a bond is frequently stronger than the gel material itself. Some embodiments use solvent welding in which a solvent dissolves a plastic in the cap ring 10510 and the polystyrene in the gel pad 10530. The solvent is applied to the gel pad 10530 and cap ring 10510 by any suitable method, for example, by spraying and/or by dipping. In effect, the solvent melts both the plastic of the cap ring 10510 as well as the polystyrene in the gel pad 10530, thereby forming a bond between the two, which remains after the solvent evaporates.
In an embodiment for manufacturing a gel cap 10500, the gel pad 10530 is cast into the cap ring 10510 to form the gel cap 10500. The cap ring 10510 is positioned in or placed into a mold cavity of a casting mold. Embodiments of the mold cavity include support for the annular walls of the cap ring 10510. Embodiments of the mold comprise a material with sufficient heat dissipation properties, for example, at least one of aluminum, copper, and brass. Those skilled in the art will recognize that other mold materials with lower heat dissipation properties will produce acceptable parts in some embodiments. Furthermore, some embodiments of the mold comprise active cooling elements, for examples, channels through which coolants are pumped.
The mold cavity and cap ring 10510 assembly is then filled with a desired amount of the triblock copolymer/mineral oil slurry such that the slurry contacts the cap ring 10510. In some embodiments, the slurry is preheated, for example, to about 52° C. (125° F.), which facilitates a complete filling of the mold cavity by the slurry, thereby reducing the probability of voids in the gel. Preheating the slurry to a temperature below the MGT reduces the viscosity of the slurry and allows the slurry to flow more easily. As stated above, some embodiments of the slurry are degassed in a vacuum before casting. In some embodiments, the slurry is also degassed after it is filled in the mold cavity to remove any air that may have been introduced during the filling of the mold cavity, as well as to facilitate flow of the slurry into voids in the mold. The mold, cap ring, and slurry are heated, for example, in an oven, until the slurry reaches a temperature of about 150° C. As stated above, the slurry turns into gel at about 120° C.; however, at about 150° C., the gel bonds to a polycarbonate cap ring 10510. Depending on the material used in the cap ring 10510, bonding may take place at a temperature other than about 150° C. In embodiments in which the cap ring 10510 is comprises a material with a lower melting point than the MGT, for example 120° C., the gel pad 10530 is molded separately as a gel slug, which is then bonded to the cap ring 10510 as discussed above.
When the transformation of the slurry into a gel is complete, for example, when the temperature of the gel pad reaches about 150° C., the gel cap 10500 is cooled, for example, by air-cooling, cold-water immersion, or another suitable method. At 150° C. the gel pad 10530 is soft and easily distorted. Distortions in the gel pad 10530 present during cooling would be set after cooling. Accordingly, in some embodiments, the gel cap 10500 is cooled within the mold, thereby reducing the likelihood of distorting the gel pad 10530. Factors affecting the cooling time include the size and configuration of the mold, the quantity of gel, temperature and quantity of cooling medium, the properties of the cooling medium, and the mold material. As an example, the cooling time for a particular gel cap 10500 may be about two (2) hours for air cooling and about fifteen (15) minutes for water cooling. Whether cooling with air or water, the final properties of the gel are substantially the same. The gel cap 10500 is typically cooled to about ambient room temperature, but may be cooled to a lower temperature if desired. At about 0° C., the gel hardens, which is useful, for example, in secondary operations such as when coupling separately manufactured gel pads 10530 and cap rings 10510. The gel cap 10500 may be removed from the mold at any time after the gel has set.
When removed from the mold, the gel pad 10530 typically has a tacky surface. Coating the gel pad 10530 with a powder, such as cornstarch, substantially reduces or eliminates the tackiness of the cured gel pad 10530.
As stated above, in some embodiments, the gel pad 10530 is molded separately from the cap ring 10510, and coupled to the cap ring 10510 in a secondary operation, for example, bonding. In some embodiments, the gel pad 10530 is molded as a gel slug with an outer perimeter smaller than the perimeter of the inner cylindrical wall of the cap ring 10510 and a height greater than the height of the cap ring 10510. Because the gel pad 10530 is molded separate from the cap ring 10510, the slurry need only be heated to the MGT, for example, about 120° C., to complete the transformation of the slurry into a gel, whereupon the gel becomes substantially transparent. As discussed above, the gel slug may be cooled, for example, to about 0° C., then placed within the inner cylindrical wall of the cap ring 10510.
In some embodiments, the gel slug is coupled to the cap ring 10510 through compression molding, in which the gel slug is compressed longitudinally, thereby expanding the outer perimeter of the gel slug and compressing the gel slug against the inner cylindrical wall of the cap ring 10510. The compressed gel slug and cap ring 10510 are then heated to a sufficient temperature for the polystyrene in the gel and the polymer of the cap ring 10510 to form bonds there between. Molding the gel slug separately from the cap ring 10510 followed by heat bonding the gel slug to the cap ring is especially useful in embodiments in which the cap ring 10510 comprises a material with a melting temperature lower than the MGT of the gel. In such situations, the gel slug can be molded separately and heat bonded to the cap ring 10510 without melting the cap ring 10510.
An embodiment of a method for retracting an incision or body orifice using the retractor 6100, 7100 is discussed in detail above. The method results in the outer ring 6120 of the retractor substantially in contact with the exterior surface of the body wall. The gel cap 10510 is then coupled to the outer ring 6120 of the retractor, thereby sealing the opening between the body cavity and the area outside the body cavity and allowing the surgeon to insufflate the body cavity.
As discussed above, embodiments of the gel cap 10500 comprise no preformed access channels in the gel pad 10530. In use, instruments may be inserted directly through the gel pad 10530, thereby creating access channels through the gel pad 10530. Each access channel created in the gel cap forms an instrument seal in the presence of an instrument passing there through because the gel provides a gas tight seal around a variety of shapes and sizes of instruments. When the instrument is removed from the gel pad 10530, the channel created in the gel pad by the instrument closes to form a zero seal.
Some embodiments of the cap use access devices such as trocars inserted through the gel pad 10530 for instrument access, in particular, where an access channel experiences repeated instrument manipulation, for example, insertion, removal, advancement, retraction, rotation and/or other manipulation. Each trocar inserted through the gel pad 10530 permits repeated introduction, removal, and/or manipulation of instruments there through.
In some embodiments, the gel cap 10500 initially comprises no access channels, and the surgeon is at liberty to determine the placement of instruments there through. Moreover, the surgeon has unlimited flexibility in the placement and repositioning of ports within the area of the gel cap 10500, as well as the option of selecting different trocar sizes for different clinical procedures. Being detachable, the gel cap 10500 allows for the removal of large specimens. Once removed, the gel cap 10500 can be re-coupled to the outer ring 6120 of the retractor, thereby restoring the seal and allow the surgeon to re-insufflate the body cavity.
Moreover, embodiments of the gel are deformable without losing physical integrity, and while maintaining substantially gas tight instrument seals with any instruments extending there through, as well as gas tight zero seals for any access channels without any instruments extending there through. Accordingly, embodiments of the gel cap 10500 permit both translational or positional, and angular or pivotal “float” or degrees of freedom for the instruments passing through the gel pad 10530. This float permits instrument motion both relative to the cap ring 10510 as well as relative to other instruments. In contrast, other single or limited port systems do not exhibit one or both translational or angular float for instruments.
The gel cap 11500 further comprises a plurality of access ports 11540, at least a portion of which is disposed within or embedded within the gel pad 11530. In the illustrated embodiment, the access ports 11540 have a low profile, that is, do not protrude or protrude minimally above the proximal surface of the gel pad 11530 and/or below the distal surface of the gel pad 11530. Accordingly, the lengths of the access ports 11540 are similar to the thickness of the gel pad 11530, which is shorter than a length of a typical trocar inserted in the gel pad 11530, which comprises a seal assembly positioned above the gel pad 10530, and a cannula extending through the gel pad 11530. The reduced length of the access port 11540 allows increased angular or pivotal motion for instruments extending there through, and also permits the use of curved and/or angled instruments. In the illustrated embodiment, the access ports 11540 are substantially permanent or non-removable under the conditions under which the gel cap 11500 is used. Trocars can also be inserted through the gel pad 11530 if additional ports are desired.
Each port 11540 comprises longitudinal axis extending from a proximal side to a distal side of the gel pad 11530, a first seal 11542 disposed at the proximal side of the gel pad 11530, and a second seal 11544 disposed distal to the first seal 11542. A sight of each of the ports or seals 11540 has an aperture through the gel pad 11530 and coincides with the longitudinal axis. In the illustrated embodiment, the first seal 11542 forms an instrument seal with an instrument extending there through and the second seal 11544 forms a zero seal in the absence of an instrument extending there through.
In the illustrated embodiment, the first seal 11542 comprises a septum seal. Each septum seal comprises an aperture 11546 there through that is slightly smaller than a cross-section of the smallest instrument to be inserted there through. The aperture 11546 of the septum seal is substantially aligned with the aperture through the gel pad and the longitudinal axis of the port 11540. When an instrument is inserted through the aperture 11546 of the septum seal, the aperture 11546 expands and engages the outer surface of the instrument, thereby forming a seal therewith. The septum seal comprises an elastomeric material that biases the aperture against an instrument is inserted there through. Those skilled in the art will understand that other types of instrument seals are used in other embodiments.
In the illustrated embodiment, the second seal 11544 comprises a double-duckbill valve, which functions as a zero-closure seal that provides a zero seal in the absence of an instrument inserted there through. Those skilled in the art will understand that the second seal comprises another type of seal, for example, a duckbill valve, a flap valve, and the like. The double-duckbill valve comprises as elastomeric material. In some embodiments, each of the first seal 11542 and the second seal 11544 independently comprise an elastomeric material, for example, at least one of rubber, synthetic rubber, silicone, ethylene propylene diene monomer (EPDM), ethylene-propylene copolymer (EP rubber), polyisoprene, polybutadiene, polyurethane, styrene-butadiene, ethylene vinyl acetate (EVA), polychloroprene (NEOPRENE®), perfluorelastomer (KALREZ®), and the like
Thus, during use, the septum seal provides an instrument seal in the presence of an instrument inserted there through, and the duckbill valve provides a zero seal in the absence of an instrument inserted there through. The illustrated embodiment comprises ports or seals 11540 in the gel pad of different sizes. Each size of port 11540 sealing accommodates a different range of instrument sizes inserted there through. The size of a port is typically given as the diameter of the largest instrument that the port will accommodate, for example, 5 mm, 11 mm, or 12 mm.
The trocar 13800 comprises a proximal end, a distal end, and a longitudinal axis. The trocar 13800 comprises a cannula 13810 extending along the longitudinal axis. A trocar seal 13820 is disposed at the proximal end of the cannula 13810. A retainer 13830 is disposed at the distal end or tip of the cannula 13810. In the illustrated embodiment, the distal end or tip of the cannula 13810 is not angled. Other embodiments comprise an angled distal end or tip of the cannula 13810. The illustrated embodiment of the trocar 13800 does not comprise an insufflation gas inlet. Consequently, the trocar 13800 is typically used in procedures in which a body cavity is not insufflated, or in which insufflation is provided through another device. Other embodiments of trocars are disclosed in U.S. patent application Ser. No. 11/677,994, filed Feb. 22, 2007, the disclosure of which is incorporated by reference.
The cannula 13810 comprises an elongate, tubular cannula body 13812 dimensioned to accommodate an instrument or instruments received there through. In the illustrated embodiment, the cannula body 13812 is a substantially cylindrical tube, and extends through the gel pad 10530 in use. In the illustrated embodiment, the cannula body 13812 extends from the proximal end of the cannula 13810 to which the trocar seal 13820 is coupled, and which has a larger outer diameter than the cannula body 13812.
In some embodiments, the cannula 13810 is comparatively short because the cannula body 13812 need only traverse the gel pad 10530 (
The illustrated trocar seal 13820 comprises an instrument or septum seal 13822 and a zero seal 13824. The instrument seal 13822 seals instruments passing there through, thereby maintaining pressurization in a body cavity such as pneumoperitoneum or pneumorectum. The zero seal 13824 provides a seal when no instrument passes through the trocar seal 13820. The instrument seal 13822 and zero seal 13824 are received in a housing 13826 disposed at the proximal end of the cannula 13810 and secured therein by a seal cover 13828.
The retainer 13830 is disposed at or near the distal end of the cannula 13810. In the illustrated embodiment, the distal end of the cannula 13810 is generally perpendicular to the longitudinal axis thereof, or not angled. Other embodiments comprise an angled distal end or tip. In some embodiments, the retainer 13830 and cannula 13810 are integrated, while in other embodiments, the retainer 13830 and cannula 13810 are not integrated. In the illustrated embodiment, the proximal end of the retainer 13830 comprises a flange 13832 that is generally flat and perpendicular to the longitudinal axis, while the distal end is tapered, narrowing toward the distal end of the cannula 13810. The flange 13832 reduces the likelihood of accidental or inadvertent removal of the trocar 13800 from the gel pad. Some embodiments of the proximal face of the flange 13832 comprise additional anchoring features, for example, at least one of barbs, spikes, ridges, texturing, and the like, which are configured to penetrate or bite into a distal face of the gel pad 10530. In some embodiments, a diameter of the flange 13832 is from about 1.5 to about 2.5 times wider, or from about 2 to about 2.2 times wider than an outer diameter of the cannula body 13812. Some embodiments of the trocar 13800 are 5-mm trocars, in which the outer diameter of the cannula body 13812 is from about 7 mm to about 8 mm.
The tapered end of the retainer 13830 facilitates insertion of the trocar 13800 through the gel pad, either by itself, or when assembled with the obturator 13900 extending there through. For example, in some embodiments, the retainer 13830 is inserted through a preformed opening in the gel pad 10530. Because embodiments of the gel material of the gel pad 10530 have high elongation values, as discussed above, the retainer 13830 is insertable through a relatively small opening in the gel pad 10530, yet resists inadvertent removal, as discussed above.
In some embodiments in which the retainer 13830 and cannula 13810 are not integrated, that is, are separate components, the retainer 13830 is secured to the cannula 13810 after the cannula 13810 is inserted through the gel pad. In some embodiments, the cannula 13810 and retainer 13830 are secured mechanically, for example, using latches, screw threads, clips, lock rings, ratchets, and the like. In some embodiments, the cannula 13810 and retainer 13830 are secured adhesively. In some embodiments, the position of the retainer 13830 is adjustable, for example, to accommodate gel pads of different thicknesses. In some embodiments, the cannula 13810 and/or retainer 13830 is secured to the gel pad, for example, adhesively.
In the illustrated embodiment, the bolster 14840 comprises a torus or doughnut. A cannula body 14812 extends through an opening in the bolster 14840. A diameter of the opening of the bolster 14840 is sufficiently larger than an outer diameter of the cannula body 14812 to permit free movement along the cannula body 14812. The illustrated embodiment of the bolster 14840 comprises a deformable material, for example, a polymer resin and/or elastomer, as will be described in greater detail below. Examples of suitable materials include rubber, natural rubber, synthetic rubber, polyisoprene, styrene-butadiene rubber, silicone rubber, ethylene-propylene copolymer, ethylene-propylene-diene monomer rubber, polybutadiene, polychloroprene, polyurethane, and the like. Some embodiments of the bolster 14840 comprise a lubricious layer or coating in an area or region that contacts the cannula 14810, which facilitates movement along the cannula 14810.
An outer diameter of some embodiments of the bolster 14840 is from about 0.8 to about 2 times, or from about 1 to about 1.5 times a diameter of a flange 14832 of the retainer 14830. A thickness of the bolster is from about 3 mm (0.12 inch) to about 10 mm (0.4 inch), or from about 4 mm (0.16 inch) to about 6 mm (0.24 inch). In some embodiments, a distal face 14844 of the bolster is concave, thereby providing additional clamping or fixation force on the gel pad 10530, as well as conforming to gel pads 10530 with different and/or non-uniform thicknesses. The particular dimensions of the bolster 14830 are selected based on the properties of the bolster material and the gel material, and the dimensions of the cannula body 14812, the locking component 14850, and the gel pad 10530.
The locking component 14850 is disposed on the cannula body 14812 proximal of the retainer 14830, and comprises a lip 14852 proximal of an enlarged section 14854. The lip 14852 extends radially from the cannula body 14812 with a diameter greater than the diameter of the opening of the bolster 14840. The elastomeric material of the bolster 14840 permits the bolster 14840 to be urged over and past the lip 14852. In the illustrated embodiment, the lip 14852 comprises a ratchet dimensioned to facilitate the bolster 14840 sliding distally and to resist the bolster 14840 from sliding proximally. Also, in the illustrated embodiment, the lip 14852 is a continuous structure encircling the cannula body 14812. In other embodiments, the lip 14852 comprises a plurality of structures disposed around the cannula body 14812.
The enlarged section 14854 is generally cylindrical with a diameter that is about the same as or slightly larger than the diameter of the opening in the bolster 14840, thereby frictionally engaging the bolster 14840 thereto. In the illustrated embodiment, the enlarged section 14854 is longer than a thickness of the bolster 14840. In the illustrated embodiment, the enlarged section 14854 does not extend to or contact the flange 14832 of the retainer 14830, thereby not reducing a surface area of a proximal face thereof, and thereby improving the removal resistance thereof. In other embodiments, the enlarged section 14854 extends to the retainer 14830. Other embodiments do not comprise an enlarged section.
A distance between a distal end of the lip 14852 and a proximal face of the flange 14832 is equal to or slightly less than a sum of a thickness of the bolster 14840 and the gel pad 10530. In some embodiments, the gel pad is from about 5 mm (about 0.4 inch) to about 30 mm (about 1.2 inch) thick, or from about 13 mm (about 0.5 inch) to about 25 mm (about 1 inch) thick.
The trocar 14800 has at least two configurations: a first or insertion configuration illustrated in
In an embodiment of a method for using the trocar 14800, the trocar 14800 is placed in the insertion configuration in which the bolster 14840 is first positioned on the cannula body 14812. The trocar 14800 is placed in the artificial body wall either before the artificial body wall is coupled to a patient's body and/or after coupling thereto.
In the embodiment illustrated in
The distal end of the trocar 14800 is positioned on, then the retainer 14830 inserted through an artificial body wall, for example, a gel pad 10530. In some embodiments, an obturator 13900 (
The trocar 14800 is then converted into the fixation configuration illustrated in
In the fixation configuration, the trocar 14800 fixed relative to a local portion of the artificial body wall to which it is engaged. As discussed above, however, embodiments of artificial body walls exhibit high elongations. Accordingly, the trocar 14800 is translatable and/or pivotable relative to an original position and orientation by deforming the artificial body wall.
In embodiments using an obturator 13910, the obturator is withdrawn. The trocar 14800 serves as an access port for one or more instruments during a surgical procedure.
If desired, the trocar 14800 is removed from the artificial body wall, for example, by first disengaging the bolster 14840 from the locking component 14850, then pulling the retainer 14830 from the artificial body wall. In some embodiments, the trocar 14800 and artificial body wall are not disengaged and are disposed of as a unit. In some embodiments, the bolster 14840 is not disengagable from the locking component 14850.
In the illustrated embodiment, the locking component 15850 comprises an enlarged section 15854 on which are disposed screw threads 15852. The bolster 15840 comprises matching threads. Consequently, the bolster 15840 is threadably engagable to the locking component 15850. The threading also permits adjusting the relative positions of the bolster 15840 and a flange 15832 of the retainer in the fixation configuration of the trocar 15800, thereby permitting fixation to an artificial body wall with a non-uniform thickness and/or to artificial body walls of different thicknesses.
In the illustrated embodiment, the locking component 16850 comprises an enlarged section 16854 comprising a plurality of annular rings 16852 extending radially from the cannula body 16812, which define a plurality of annular slots 16856. In the illustrated embodiment, a proximal edge of each ring 16856 is beveled; however, some embodiments do not comprise a beveled edge.
In use, the retainer 16830 of the trocar is inserted through an artificial body wall as discussed above, and fixed therein by engaging the bolster 16840 in a slot 16856 providing a desired fixation force. The degree of fixation is adjustable by selecting a different slot.
In some embodiments, the bolster cut-out 16844 engages a plurality of slots, thereby providing additional stability in the fixation configuration. Other embodiments comprise a bolster through with the cannula body 16812 extends, similar to the embodiments discussed above. In some of these embodiments, the locking component 16850 serves as a ratchet. The bolster comprises one or more pawls, which are optionally disengagable, thereby enhancing adjustability.
The trocar 17800 comprises an elongate, tubular fixation cannula 17810 comprising a proximal end, a distal end, and a cannula body 17812; a seal assembly 17820 coupled to the proximal end of the cannula 17810; a retainer 17830 disposed on the cannula body 17812; and a locking component 17850 disposed at the distal end of the cannula 17810. The illustrated embodiment of the trocar 17800 is similar to the embodiment illustrated in
The locking component 17850 comprises an enlarged section 17854 comprising a plurality of annular rings 17852 extending radially from the cannula body 17812, which define a plurality of annular slots 17856.
In some embodiments for using the embodiment of the trocar 17800, the cannula 17810 is fixed to an artificial body wall before the artificial body wall is coupled to a patient's body. For example, in some embodiments, one or more trocars 17800 are fixed on a gel pad 10530 (
While certain embodiments have been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope thereof as defined by the following claims.
This application is a continuation of U.S. patent application Ser. No. 14/826,336 filed Aug. 14, 2015 entitled “Natural orifice surgery system,” which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/038,082, filed Aug. 15, 2014 entitled “Natural orifice surgery system,” the entire disclosures of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
52014 | Barlett | Jan 1866 | A |
202813 | Hall | Apr 1878 | A |
447761 | Clough | Mar 1891 | A |
558364 | Doolittle | Apr 1896 | A |
758535 | Howden | Apr 1904 | A |
929583 | Gibbs | Jul 1909 | A |
1056966 | Belding | Mar 1913 | A |
1157202 | Bates et al. | Oct 1915 | A |
1221123 | Westhaver | Apr 1917 | A |
1242972 | Petit | Oct 1917 | A |
1598284 | Kinney | Aug 1926 | A |
1690995 | Pratt | Nov 1928 | A |
1180466 | Deutsch | Jun 1931 | A |
1810466 | Deutsch | Jun 1931 | A |
2219564 | Reyniers | Oct 1940 | A |
2305289 | Coburg | Dec 1942 | A |
2313164 | Nelson | Mar 1943 | A |
2478586 | Krapp | Aug 1949 | A |
2669991 | Curutchet | Feb 1954 | A |
2695608 | Gibbon | Nov 1954 | A |
2812758 | Blumenschein | Nov 1957 | A |
2835253 | Borgeson | May 1958 | A |
2853075 | Hoffman et al. | Sep 1958 | A |
3039468 | Price | Jun 1962 | A |
3057350 | Cowley | Oct 1962 | A |
3108595 | Overment | Oct 1963 | A |
3111943 | Orndorff | Nov 1963 | A |
3129706 | Reynolds, Jr. | Apr 1964 | A |
3195934 | Parrish | Jul 1965 | A |
3244169 | Baxter | Apr 1966 | A |
3253594 | Matthews et al. | May 1966 | A |
3313299 | Spademan | Apr 1967 | A |
3329390 | Hulsey | Jul 1967 | A |
3332417 | Blanford et al. | Jul 1967 | A |
3347226 | Harrower | Oct 1967 | A |
3347227 | Harrower | Oct 1967 | A |
3397692 | Creager, Jr. et al. | Aug 1968 | A |
3402710 | Paleschuck | Sep 1968 | A |
3416520 | Creager, Jr. | Dec 1968 | A |
3447533 | Spicer | Jun 1969 | A |
3522800 | Lesser | Aug 1970 | A |
3523534 | Nolan | Aug 1970 | A |
3553862 | Hamu | Jan 1971 | A |
3570475 | Weinstein | Mar 1971 | A |
3656485 | Robertson | Apr 1972 | A |
3685786 | Woodson | Aug 1972 | A |
3703896 | Nuwayser | Nov 1972 | A |
3717151 | Collett | Feb 1973 | A |
3717883 | Mosher | Feb 1973 | A |
3729006 | Wilder et al. | Apr 1973 | A |
3729027 | Bare | Apr 1973 | A |
3762080 | Poole | Oct 1973 | A |
3774596 | Cook | Nov 1973 | A |
3782370 | McDonald | Jan 1974 | A |
3788318 | Kim et al. | Jan 1974 | A |
3789852 | Kim et al. | Feb 1974 | A |
3797478 | Walsh et al. | Mar 1974 | A |
3799166 | Marsan | Mar 1974 | A |
3807393 | McDonald | Apr 1974 | A |
3828764 | Jones | Aug 1974 | A |
3831583 | Edmunds et al. | Aug 1974 | A |
3841332 | Treacle | Oct 1974 | A |
3850172 | Cazalis | Nov 1974 | A |
3853126 | Schulte | Dec 1974 | A |
3853127 | Spademan | Dec 1974 | A |
3856021 | McIntosh | Dec 1974 | A |
3860274 | Ledstrom et al. | Jan 1975 | A |
3861416 | Wichterle | Jan 1975 | A |
3863639 | Kleaveland | Feb 1975 | A |
3907389 | Cox et al. | Sep 1975 | A |
3915171 | Shermeta | Oct 1975 | A |
3965890 | Gauthier | Jun 1976 | A |
3970089 | Saice | Jul 1976 | A |
3996623 | Kaster | Dec 1976 | A |
4000739 | Stevens | Jan 1977 | A |
4016884 | Kwan-Gett | Apr 1977 | A |
4024872 | Muldoon | May 1977 | A |
4030500 | Ronnquist | Jun 1977 | A |
4043328 | Cawood, Jr. et al. | Aug 1977 | A |
4069913 | Harrigan | Jan 1978 | A |
4082005 | Erdley | Apr 1978 | A |
4083370 | Taylor | Apr 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4112932 | Chiulli | Sep 1978 | A |
4117847 | Clayton | Oct 1978 | A |
4130113 | Graham | Dec 1978 | A |
4141364 | Schultze | Feb 1979 | A |
4177814 | Knepshield et al. | Dec 1979 | A |
4183357 | Bentley et al. | Jan 1980 | A |
4187849 | Stim | Feb 1980 | A |
4188945 | Wenander | Feb 1980 | A |
4189880 | Ballin | Feb 1980 | A |
4217664 | Faso | Aug 1980 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4228792 | Rhys-Davies | Oct 1980 | A |
4239036 | Krieger | Dec 1980 | A |
4240411 | Hosono | Dec 1980 | A |
4253201 | Ross et al. | Mar 1981 | A |
4254973 | Banjamin | Mar 1981 | A |
4306562 | Osborne | Dec 1981 | A |
4321915 | Leighton | Mar 1982 | A |
4331138 | Jessen | May 1982 | A |
4338934 | Spademan | Jul 1982 | A |
4338937 | Lerman | Jul 1982 | A |
4367728 | Mutke | Jan 1983 | A |
4369284 | Chen | Jan 1983 | A |
4399816 | Spangler | Aug 1983 | A |
4402683 | Kopman | Sep 1983 | A |
4411659 | Jensen et al. | Oct 1983 | A |
4421296 | Stephens | Dec 1983 | A |
4424833 | Spector et al. | Jan 1984 | A |
4428364 | Bartolo | Jan 1984 | A |
4430081 | Timmermans | Feb 1984 | A |
4434791 | Darnell | Mar 1984 | A |
4436519 | O'Neill | Mar 1984 | A |
4454873 | Laufenberg et al. | Jun 1984 | A |
4473067 | Schiff | Sep 1984 | A |
4475548 | Muto | Oct 1984 | A |
4485490 | Akers et al. | Dec 1984 | A |
4488877 | Klein | Dec 1984 | A |
4508355 | Ditcher | Apr 1985 | A |
4543088 | Bootman et al. | Sep 1985 | A |
4550713 | Hyman | Nov 1985 | A |
4553537 | Rosenberg | Nov 1985 | A |
4555242 | Saudagar | Nov 1985 | A |
4556996 | Wallace | Dec 1985 | A |
4601710 | Moll | Jul 1986 | A |
4610665 | Matsumoto et al. | Sep 1986 | A |
4626245 | Weinstein | Dec 1986 | A |
4634424 | O'Boyle | Jan 1987 | A |
4634432 | Kocak | Jan 1987 | A |
4644951 | Bays | Feb 1987 | A |
4649904 | Krauter | Mar 1987 | A |
4653476 | Bonnet | Mar 1987 | A |
4654030 | Moll et al. | Mar 1987 | A |
4655752 | Honkanen et al. | Apr 1987 | A |
4673393 | Suzuki et al. | Jun 1987 | A |
4673394 | Fenton | Jun 1987 | A |
4691942 | Ford | Sep 1987 | A |
4714749 | Hughes et al. | Dec 1987 | A |
4738666 | Fuqua | Apr 1988 | A |
4755170 | Golden | Jul 1988 | A |
4760933 | Christner et al. | Aug 1988 | A |
4776843 | Martinez et al. | Oct 1988 | A |
4777943 | Chvapil | Oct 1988 | A |
4784646 | Feingold | Nov 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4798594 | Hillstead | Jan 1989 | A |
4802694 | Vargo | Feb 1989 | A |
4808168 | Warring | Feb 1989 | A |
4809679 | Shimonaka et al. | Mar 1989 | A |
4828554 | Griffin | May 1989 | A |
4842931 | Zook | Jun 1989 | A |
4848575 | Nakamura et al. | Jul 1989 | A |
4856502 | Ersfeld et al. | Aug 1989 | A |
4863430 | Klyce et al. | Sep 1989 | A |
4863438 | Gauderer et al. | Sep 1989 | A |
4889107 | Kaufman | Dec 1989 | A |
4895565 | Hillstead | Jan 1990 | A |
4897081 | Poirier | Jan 1990 | A |
4903710 | Jessamine et al. | Feb 1990 | A |
4911974 | Shimizu et al. | Mar 1990 | A |
4915132 | Hodge et al. | Apr 1990 | A |
4926882 | Lawrence | May 1990 | A |
4929235 | Merry et al. | May 1990 | A |
4944732 | Russo | Jul 1990 | A |
4950222 | Scott et al. | Aug 1990 | A |
4950223 | Silvanov | Aug 1990 | A |
4984564 | Yuen | Jan 1991 | A |
4991593 | LeVahn | Feb 1991 | A |
4998538 | Charowsky et al. | Mar 1991 | A |
5000745 | Guest et al. | Mar 1991 | A |
5009224 | Cole | Apr 1991 | A |
5015228 | Columbus et al. | May 1991 | A |
5019101 | Purkait et al. | May 1991 | A |
5026366 | Leckrone | Jun 1991 | A |
5037379 | Clayman et al. | Aug 1991 | A |
5041095 | Littrell | Aug 1991 | A |
5045070 | Grodecki et al. | Sep 1991 | A |
D320658 | Quigley et al. | Oct 1991 | S |
5053009 | Herzberg | Oct 1991 | A |
5071411 | Hillstead | Dec 1991 | A |
5073169 | Raiken | Dec 1991 | A |
5074878 | Bark et al. | Dec 1991 | A |
5082005 | Kaldany | Jan 1992 | A |
5086763 | Hathman | Feb 1992 | A |
5092846 | Nishijima et al. | Mar 1992 | A |
5104389 | Deem | Apr 1992 | A |
5108420 | Marks | Apr 1992 | A |
5125396 | Ray | Jun 1992 | A |
5125897 | Quinn et al. | Jun 1992 | A |
5127626 | Hilal et al. | Jul 1992 | A |
5129885 | Green et al. | Jul 1992 | A |
5141498 | Christian | Aug 1992 | A |
5149327 | Oshiyama | Sep 1992 | A |
5156617 | Reid | Oct 1992 | A |
5158553 | Berry et al. | Oct 1992 | A |
5159921 | Hoover | Nov 1992 | A |
5161773 | Tower | Nov 1992 | A |
5167636 | Clement | Dec 1992 | A |
5167637 | Okada et al. | Dec 1992 | A |
5171223 | Herzberg | Dec 1992 | A |
5176648 | Holmes et al. | Jan 1993 | A |
5176662 | Bartholomew et al. | Jan 1993 | A |
5176697 | Hasson et al. | Jan 1993 | A |
5178162 | Bose | Jan 1993 | A |
5180365 | Ensminger et al. | Jan 1993 | A |
5183471 | Wilk | Feb 1993 | A |
5188595 | Jacobi | Feb 1993 | A |
5188607 | Wu | Feb 1993 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5197955 | Stephens et al. | Mar 1993 | A |
5197971 | Bonutti | Mar 1993 | A |
5207656 | Kranys | May 1993 | A |
5209737 | Rirchart et al. | May 1993 | A |
5211370 | Powers | May 1993 | A |
5211633 | Stouder, Jr. | May 1993 | A |
5213114 | Bailey, Jr. | May 1993 | A |
5226890 | Ianniruberto et al. | Jul 1993 | A |
5234455 | Mulhollan | Aug 1993 | A |
5241968 | Slater | Sep 1993 | A |
5242400 | Blake, III et al. | Sep 1993 | A |
5242409 | Buelna | Sep 1993 | A |
5242412 | Blake, III et al. | Sep 1993 | A |
5242415 | Kantrowitz et al. | Sep 1993 | A |
5248304 | Vigdorchik et al. | Sep 1993 | A |
5256150 | Quiachon et al. | Oct 1993 | A |
5257973 | Villasuso | Nov 1993 | A |
5257975 | Foshee | Nov 1993 | A |
5259366 | Reydel et al. | Nov 1993 | A |
5261883 | Hood et al. | Nov 1993 | A |
5262468 | Chen | Nov 1993 | A |
5263922 | Sova et al. | Nov 1993 | A |
5269763 | Boehmer et al. | Dec 1993 | A |
5269772 | Wilk | Dec 1993 | A |
5273449 | Mattis et al. | Dec 1993 | A |
5273545 | Hunt et al. | Dec 1993 | A |
D343236 | Quigley et al. | Jan 1994 | S |
5279575 | Sugarbaker | Jan 1994 | A |
5290310 | Makower et al. | Mar 1994 | A |
D346022 | Quigley et al. | Apr 1994 | S |
5299582 | Potts | Apr 1994 | A |
5300034 | Behnke | Apr 1994 | A |
5300035 | Clement | Apr 1994 | A |
5300036 | Mueller et al. | Apr 1994 | A |
5303486 | Dell | Apr 1994 | A |
5308336 | Hart et al. | May 1994 | A |
5309896 | Moll et al. | May 1994 | A |
5312391 | Wilk | May 1994 | A |
5314417 | Stephens et al. | May 1994 | A |
5316541 | Fischer | May 1994 | A |
5320611 | Bonutti et al. | Jun 1994 | A |
5330437 | Durman | Jul 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5330497 | Freitas et al. | Jul 1994 | A |
5331975 | Bonutti | Jul 1994 | A |
5334143 | Carroll | Aug 1994 | A |
5334646 | Chen | Aug 1994 | A |
5336192 | Palestrant | Aug 1994 | A |
5336708 | Chen | Aug 1994 | A |
5338313 | Mollenauer et al. | Aug 1994 | A |
5342315 | Rowe et al. | Aug 1994 | A |
5342385 | Norelli et al. | Aug 1994 | A |
5345927 | Bonutti | Sep 1994 | A |
5350364 | Stephens et al. | Sep 1994 | A |
5353786 | Wilk | Oct 1994 | A |
5354280 | Haber et al. | Oct 1994 | A |
5360417 | Gravener et al. | Nov 1994 | A |
5364345 | Lowery et al. | Nov 1994 | A |
5364372 | Danks et al. | Nov 1994 | A |
5366446 | Tal et al. | Nov 1994 | A |
5366473 | Winston et al. | Nov 1994 | A |
5366478 | Brinkerhoff | Nov 1994 | A |
5368545 | Schaller et al. | Nov 1994 | A |
5375588 | Yoon | Dec 1994 | A |
5380288 | Hart et al. | Jan 1995 | A |
5383861 | Hempel et al. | Jan 1995 | A |
5385552 | Haber et al. | Jan 1995 | A |
5385553 | Hart et al. | Jan 1995 | A |
5385560 | Wulf | Jan 1995 | A |
5389080 | Yoon | Feb 1995 | A |
5389081 | Castro | Feb 1995 | A |
5391153 | Haber et al. | Feb 1995 | A |
5391156 | Hildwein et al. | Feb 1995 | A |
5395367 | Wilk | Mar 1995 | A |
5403264 | Wohlers et al. | Apr 1995 | A |
5403336 | Kieturakis et al. | Apr 1995 | A |
5407433 | Loomas | Apr 1995 | A |
5411483 | Loomas | May 1995 | A |
5413571 | Katsaros et al. | May 1995 | A |
5423848 | Washizuka et al. | Jun 1995 | A |
5429609 | Yoon | Jul 1995 | A |
5431676 | Durdal et al. | Jul 1995 | A |
5437683 | Neumann et al. | Aug 1995 | A |
5439455 | Kieturakis et al. | Aug 1995 | A |
5441486 | Yoon | Aug 1995 | A |
5443452 | Hart et al. | Aug 1995 | A |
5454365 | Bonutti | Oct 1995 | A |
5456284 | Ryan et al. | Oct 1995 | A |
5460170 | Hammerslag | Oct 1995 | A |
5460616 | Weinstein et al. | Oct 1995 | A |
5468248 | Chin et al. | Nov 1995 | A |
5476475 | Gadberry | Dec 1995 | A |
5480410 | Cuschieri et al. | Jan 1996 | A |
5486426 | McGee et al. | Jan 1996 | A |
5490843 | Hildwein et al. | Feb 1996 | A |
5492304 | Smith et al. | Feb 1996 | A |
5496280 | Vandenbroek et al. | Mar 1996 | A |
5503112 | Luhman et al. | Apr 1996 | A |
5507758 | Thomason et al. | Apr 1996 | A |
5508334 | Chen | Apr 1996 | A |
5511564 | Wilk | Apr 1996 | A |
5514109 | Mollenauer et al. | May 1996 | A |
5514133 | Golub et al. | May 1996 | A |
5514153 | Bonutti | May 1996 | A |
5518278 | Sampson | May 1996 | A |
5520632 | Leveen | May 1996 | A |
5522791 | Leyva | Jun 1996 | A |
5522824 | Ashby | Jun 1996 | A |
5524644 | Crook | Jun 1996 | A |
5526536 | Cartmill | Jun 1996 | A |
5531758 | Uschold et al. | Jul 1996 | A |
5538509 | Dunlap et al. | Jul 1996 | A |
5540648 | Yoon | Jul 1996 | A |
5540658 | Evans | Jul 1996 | A |
5540711 | Kieturakis et al. | Jul 1996 | A |
5545150 | Danks et al. | Aug 1996 | A |
5545179 | Williamson, IV | Aug 1996 | A |
5549563 | Kronner | Aug 1996 | A |
5549637 | Crainich | Aug 1996 | A |
5554124 | Alvarado | Sep 1996 | A |
5555653 | Morgan | Sep 1996 | A |
5562632 | Davila et al. | Oct 1996 | A |
5562677 | Hildwein et al. | Oct 1996 | A |
5562688 | Riza | Oct 1996 | A |
5571115 | Nicholas | Nov 1996 | A |
5571137 | Marlow et al. | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5577993 | Zhu et al. | Nov 1996 | A |
5578048 | Pasqualucci et al. | Nov 1996 | A |
5580344 | Hasson | Dec 1996 | A |
5584850 | Hart et al. | Dec 1996 | A |
5601579 | Semertzides | Feb 1997 | A |
5601581 | Fogarty et al. | Feb 1997 | A |
5603702 | Smith et al. | Feb 1997 | A |
5607443 | Kieturakis et al. | Mar 1997 | A |
5620415 | Lucey et al. | Apr 1997 | A |
5620420 | Kriesel | Apr 1997 | A |
5628732 | Antoon, Jr. et al. | May 1997 | A |
5632284 | Graether | May 1997 | A |
5632979 | Goldberg et al. | May 1997 | A |
5634911 | Hermann et al. | Jun 1997 | A |
5634936 | Linden et al. | Jun 1997 | A |
5634937 | Mollenauer et al. | Jun 1997 | A |
5636645 | Ou | Jun 1997 | A |
5640977 | Leahy et al. | Jun 1997 | A |
5643301 | Mollenauer | Jul 1997 | A |
5649550 | Crook | Jul 1997 | A |
5651771 | Tangherlini et al. | Jul 1997 | A |
5653705 | de la Torre et al. | Aug 1997 | A |
5657963 | Hinchliffe et al. | Aug 1997 | A |
5658272 | Hasson | Aug 1997 | A |
5658306 | Kieturakis | Aug 1997 | A |
5662615 | Blake, III | Sep 1997 | A |
5672168 | de la Torre et al. | Sep 1997 | A |
5681341 | Lunsford et al. | Oct 1997 | A |
5683378 | Christy | Nov 1997 | A |
5685854 | Green et al. | Nov 1997 | A |
5685857 | Negus et al. | Nov 1997 | A |
5697914 | Brimhall | Dec 1997 | A |
5707703 | Rothrum et al. | Jan 1998 | A |
5709664 | Vandenbroek et al. | Jan 1998 | A |
5713858 | Heruth et al. | Feb 1998 | A |
5713869 | Morejon | Feb 1998 | A |
5720730 | Blake, III | Feb 1998 | A |
5725536 | Oberlin et al. | Mar 1998 | A |
5728103 | Picha et al. | Mar 1998 | A |
5730748 | Fogarty et al. | Mar 1998 | A |
5735791 | Alexander et al. | Apr 1998 | A |
5738628 | Sierocuk et al. | Apr 1998 | A |
5741234 | Aboul-Hosn | Apr 1998 | A |
5741298 | MacLeod | Apr 1998 | A |
5743884 | Hasson et al. | Apr 1998 | A |
5749882 | Hart et al. | May 1998 | A |
5753150 | Martin et al. | May 1998 | A |
5755660 | Tyagi | May 1998 | A |
5760117 | Chen | Jun 1998 | A |
5769783 | Fowler | Jun 1998 | A |
5782812 | Hart et al. | Jul 1998 | A |
5782817 | Franzel et al. | Jul 1998 | A |
5782859 | Nicholas et al. | Jul 1998 | A |
5788676 | Yoon | Aug 1998 | A |
5792119 | Marx | Aug 1998 | A |
5794528 | Gronig et al. | Aug 1998 | A |
5795290 | Bridges | Aug 1998 | A |
5803919 | Hart et al. | Sep 1998 | A |
5803921 | Bonadio | Sep 1998 | A |
5803923 | Singh-Derewa et al. | Sep 1998 | A |
5807350 | Diaz | Sep 1998 | A |
5810712 | Dunn | Sep 1998 | A |
5810721 | Mueller et al. | Sep 1998 | A |
5813409 | Leahy et al. | Sep 1998 | A |
5814026 | Yoon | Sep 1998 | A |
5817062 | Flom et al. | Oct 1998 | A |
5819375 | Kastner | Oct 1998 | A |
5820555 | Watkins, III et al. | Oct 1998 | A |
5820600 | Carlson et al. | Oct 1998 | A |
5830191 | Hildwein et al. | Nov 1998 | A |
5832925 | Rothrum | Nov 1998 | A |
5836871 | Wallace et al. | Nov 1998 | A |
5836913 | Orth | Nov 1998 | A |
5841298 | Huang | Nov 1998 | A |
5842971 | Yoon | Dec 1998 | A |
5848992 | Hart et al. | Dec 1998 | A |
5853395 | Crook et al. | Dec 1998 | A |
5853417 | Fogarty et al. | Dec 1998 | A |
5857461 | Levitsky et al. | Jan 1999 | A |
5860995 | Berkelaar | Jan 1999 | A |
5865728 | Moll et al. | Feb 1999 | A |
5865729 | Meehan et al. | Feb 1999 | A |
5865807 | Blake, III | Feb 1999 | A |
5865817 | Moenning et al. | Feb 1999 | A |
5871474 | Hermann et al. | Feb 1999 | A |
5876413 | Fogarty et al. | Mar 1999 | A |
5879368 | Hoskin et al. | Mar 1999 | A |
5882344 | Strouder, Jr. | Mar 1999 | A |
5884639 | Chen | Mar 1999 | A |
5894843 | Benetti et al. | Apr 1999 | A |
5895377 | Smith et al. | Apr 1999 | A |
5899208 | Bonadio | May 1999 | A |
5899913 | Fogarty et al. | May 1999 | A |
5904703 | Gilson | May 1999 | A |
5906577 | Beane et al. | May 1999 | A |
5913847 | Yoon | Jun 1999 | A |
5916198 | Dillow | Jun 1999 | A |
5916232 | Hart | Jun 1999 | A |
5919476 | Fischer et al. | Jul 1999 | A |
5931832 | Jensen | Aug 1999 | A |
5947922 | MacLeod | Sep 1999 | A |
5951467 | Picha et al. | Sep 1999 | A |
5951588 | Moenning | Sep 1999 | A |
5957888 | Hinchiffe et al. | Sep 1999 | A |
5957913 | de la Torre et al. | Sep 1999 | A |
5961539 | Northrup, III et al. | Oct 1999 | A |
5962572 | Chen | Oct 1999 | A |
5964781 | Mollenauer et al. | Oct 1999 | A |
5976174 | Ruiz | Nov 1999 | A |
5989232 | Yoon | Nov 1999 | A |
5989233 | Yoon | Nov 1999 | A |
5989266 | Foster | Nov 1999 | A |
5993471 | Riza et al. | Nov 1999 | A |
5993485 | Beckers | Nov 1999 | A |
5993839 | Mixon | Nov 1999 | A |
5994450 | Pearce | Nov 1999 | A |
5997515 | de la Torre et al. | Dec 1999 | A |
6004303 | Peterson | Dec 1999 | A |
6010494 | Schafer et al. | Jan 2000 | A |
6017355 | Hessel et al. | Jan 2000 | A |
6018094 | Fox | Jan 2000 | A |
6024736 | de la Torre et al. | Feb 2000 | A |
6025067 | Fay | Feb 2000 | A |
6030406 | Davis | Feb 2000 | A |
6033426 | Kaji | Mar 2000 | A |
6033428 | Sardella | Mar 2000 | A |
6035559 | Freed et al. | Mar 2000 | A |
6042573 | Lucey | Mar 2000 | A |
6045535 | Ben Nun | Apr 2000 | A |
6048309 | Flom et al. | Apr 2000 | A |
6050871 | Chen | Apr 2000 | A |
6053934 | Andrews et al. | Apr 2000 | A |
6059816 | Moenning | May 2000 | A |
6066117 | Fox et al. | May 2000 | A |
6068639 | Fogarty et al. | May 2000 | A |
6076560 | Stahle et al. | Jun 2000 | A |
6077288 | Shimomura | Jun 2000 | A |
6086603 | Termin et al. | Jul 2000 | A |
6090043 | Austin et al. | Jul 2000 | A |
6099506 | Macoviak et al. | Aug 2000 | A |
6110154 | Shimomura et al. | Aug 2000 | A |
6123689 | To et al. | Sep 2000 | A |
6142935 | Flom et al. | Nov 2000 | A |
6142936 | Beane et al. | Nov 2000 | A |
6149642 | Gerhart et al. | Nov 2000 | A |
6150608 | Wambeke et al. | Nov 2000 | A |
6154991 | Duncan et al. | Dec 2000 | A |
6159182 | Davis | Dec 2000 | A |
6162172 | Cosgrove et al. | Dec 2000 | A |
6162196 | Hart et al. | Dec 2000 | A |
6162206 | Bindokas | Dec 2000 | A |
6163949 | Neuenschwander | Dec 2000 | A |
6164279 | Tweedle | Dec 2000 | A |
6171282 | Ragsdale | Jan 2001 | B1 |
6183486 | Snow et al. | Feb 2001 | B1 |
6197002 | Peterson | Mar 2001 | B1 |
6217555 | Hart et al. | Apr 2001 | B1 |
6217590 | Levinson | Apr 2001 | B1 |
6224612 | Bates et al. | May 2001 | B1 |
6228063 | Aboul-Hosn | May 2001 | B1 |
6238373 | de la Torre et al. | May 2001 | B1 |
6241768 | Agarwal et al. | Jun 2001 | B1 |
6254533 | Fadem et al. | Jul 2001 | B1 |
6254534 | Butler et al. | Jul 2001 | B1 |
6258065 | Dennis et al. | Jul 2001 | B1 |
6264604 | Kieturakis et al. | Jul 2001 | B1 |
6267751 | Mangosong | Jul 2001 | B1 |
6276661 | Laird | Aug 2001 | B1 |
6287280 | Lampropoulos et al. | Sep 2001 | B1 |
6315770 | de la Torre et al. | Nov 2001 | B1 |
6319246 | de la Torre et al. | Nov 2001 | B1 |
6322541 | West | Nov 2001 | B2 |
6325384 | Berry, Sr. et al. | Dec 2001 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6355052 | Neuss et al. | Mar 2002 | B1 |
6358266 | Bonutti | Mar 2002 | B1 |
6371968 | Kogasaka et al. | Apr 2002 | B1 |
6378944 | Weisser | Apr 2002 | B1 |
6382211 | Crook | May 2002 | B1 |
6383162 | Sugarbaker | May 2002 | B1 |
6391043 | Moll et al. | May 2002 | B1 |
6413244 | Bestetti et al. | Jul 2002 | B1 |
6413458 | Pearce | Jul 2002 | B1 |
6420475 | Chen | Jul 2002 | B1 |
6423036 | Van Huizen | Jul 2002 | B1 |
6440061 | Wenner et al. | Aug 2002 | B1 |
6440063 | Beane et al. | Aug 2002 | B1 |
6443957 | Addis | Sep 2002 | B1 |
6447489 | Peterson | Sep 2002 | B1 |
6450983 | Rambo | Sep 2002 | B1 |
6454783 | Piskun | Sep 2002 | B1 |
6464686 | O'Hara et al. | Oct 2002 | B1 |
6468292 | Mollenauer et al. | Oct 2002 | B1 |
6482181 | Racenet et al. | Nov 2002 | B1 |
6482227 | Solovay | Nov 2002 | B1 |
6485435 | Bakal | Nov 2002 | B1 |
6485467 | Crook et al. | Nov 2002 | B1 |
6488620 | Segermark et al. | Dec 2002 | B1 |
6488692 | Spence et al. | Dec 2002 | B1 |
6494893 | Dubrul et al. | Dec 2002 | B2 |
6527787 | Fogarty et al. | Mar 2003 | B1 |
6533734 | Corley, III et al. | Mar 2003 | B1 |
6551270 | Bimbo et al. | Apr 2003 | B1 |
6551276 | Mann et al. | Apr 2003 | B1 |
6551344 | Thill | Apr 2003 | B2 |
6552109 | Chen | Apr 2003 | B1 |
6554793 | Pauker et al. | Apr 2003 | B1 |
6558371 | Dorn | May 2003 | B2 |
6560782 | Hourihan et al. | May 2003 | B2 |
6569120 | Green | May 2003 | B1 |
6578577 | Bonadio et al. | Jun 2003 | B2 |
6579281 | Palmer et al. | Jun 2003 | B2 |
6582364 | Butler et al. | Jun 2003 | B2 |
6585773 | Xie | Jul 2003 | B1 |
6589167 | Shimomura et al. | Jul 2003 | B1 |
6589208 | Ewers | Jul 2003 | B2 |
6589211 | MacLeod | Jul 2003 | B1 |
6607504 | Haarala et al. | Aug 2003 | B2 |
6613952 | Rambo | Sep 2003 | B2 |
6623426 | Bonadio et al. | Sep 2003 | B2 |
6627275 | Chen | Sep 2003 | B1 |
6663598 | Carrillo et al. | Dec 2003 | B1 |
6669674 | Macoviak et al. | Dec 2003 | B1 |
6676639 | Ternström | Jan 2004 | B1 |
6702787 | Racenet et al. | Mar 2004 | B2 |
6705989 | Cuschieri et al. | Mar 2004 | B2 |
6706050 | Giannadakis | Mar 2004 | B1 |
6714298 | Ryer | Mar 2004 | B2 |
6716201 | Blanco | Apr 2004 | B2 |
6723044 | Pulford et al. | Apr 2004 | B2 |
6723088 | Gaskill, III et al. | Apr 2004 | B2 |
6725080 | Melkent et al. | Apr 2004 | B2 |
6793621 | Butler et al. | Sep 2004 | B2 |
6794440 | Chen | Sep 2004 | B2 |
6796940 | Bonadio et al. | Sep 2004 | B2 |
6797765 | Pearce | Sep 2004 | B2 |
6800084 | Davison et al. | Oct 2004 | B2 |
6811546 | Callas et al. | Nov 2004 | B1 |
6814078 | Crook | Nov 2004 | B2 |
6814700 | Mueller et al. | Nov 2004 | B1 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6830578 | O'Heeron et al. | Dec 2004 | B2 |
6837893 | Miller | Jan 2005 | B2 |
6840946 | Fogarty et al. | Jan 2005 | B2 |
6840951 | de la Torre et al. | Jan 2005 | B2 |
6846287 | Bonadio et al. | Jan 2005 | B2 |
6860463 | Hartley | Mar 2005 | B2 |
6863674 | Kasahara et al. | Mar 2005 | B2 |
6866861 | Luhman | Mar 2005 | B1 |
6867253 | Chen | Mar 2005 | B1 |
6869393 | Butler | Mar 2005 | B2 |
6878110 | Yang et al. | Apr 2005 | B2 |
6884253 | McFarlane | Apr 2005 | B1 |
6890295 | Michels et al. | May 2005 | B2 |
6895965 | Scarberry et al. | May 2005 | B2 |
6901870 | Eklöf et al. | Jun 2005 | B2 |
6902541 | McNally et al. | Jun 2005 | B2 |
6902569 | Parmer et al. | Jun 2005 | B2 |
6908430 | Caldwell et al. | Jun 2005 | B2 |
6909220 | Chen | Jun 2005 | B2 |
6913609 | Yencho et al. | Jul 2005 | B2 |
6916310 | Sommerich | Jul 2005 | B2 |
6916331 | Mollenauer et al. | Jul 2005 | B2 |
6929637 | Gonzalez et al. | Aug 2005 | B2 |
6936005 | Poff et al. | Aug 2005 | B2 |
6936037 | Bubb et al. | Aug 2005 | B2 |
6939296 | Ewers et al. | Sep 2005 | B2 |
6945932 | Caldwell et al. | Sep 2005 | B1 |
6958037 | Ewers et al. | Oct 2005 | B2 |
6958069 | Shipp et al. | Oct 2005 | B2 |
6972026 | Caldwell et al. | Dec 2005 | B1 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
6991602 | Nakazawa et al. | Jan 2006 | B2 |
6997909 | Goldberg | Feb 2006 | B2 |
7001397 | Davison et al. | Feb 2006 | B2 |
7008377 | Beane et al. | Mar 2006 | B2 |
7014628 | Bousquet | Mar 2006 | B2 |
7033319 | Pulford et al. | Apr 2006 | B2 |
7041056 | Deslauriers et al. | May 2006 | B2 |
7052454 | Taylor | May 2006 | B2 |
7056304 | Bacher et al. | Jun 2006 | B2 |
7056321 | Pagliuca et al. | Jun 2006 | B2 |
7067583 | Chen | Jun 2006 | B2 |
7077852 | Fogarty et al. | Jul 2006 | B2 |
7081089 | Bonadio et al. | Jul 2006 | B2 |
7083626 | Hart et al. | Aug 2006 | B2 |
7093599 | Chen | Aug 2006 | B2 |
7100614 | Stevens et al. | Sep 2006 | B2 |
7101353 | Liu et al. | Sep 2006 | B2 |
7105009 | Johnson | Sep 2006 | B2 |
7105607 | Chen | Sep 2006 | B2 |
7112185 | Hart et al. | Sep 2006 | B2 |
7118528 | Piskun | Oct 2006 | B1 |
7134929 | Chen | Nov 2006 | B2 |
7153261 | Wenchell | Dec 2006 | B2 |
7163510 | Kahle et al. | Jan 2007 | B2 |
7192436 | Sing et al. | Mar 2007 | B2 |
7193002 | Chen | Mar 2007 | B2 |
7195590 | Butler et al. | Mar 2007 | B2 |
7214185 | Rosney et al. | May 2007 | B1 |
7217277 | Parihar et al. | May 2007 | B2 |
7222380 | Chen | May 2007 | B2 |
7223257 | Shubayev et al. | May 2007 | B2 |
7223278 | Davison et al. | May 2007 | B2 |
7226484 | Chen | Jun 2007 | B2 |
7235062 | Brustad | Jun 2007 | B2 |
7235084 | Skakoon et al. | Jun 2007 | B2 |
7238154 | Ewers et al. | Jul 2007 | B2 |
7244244 | Racenet et al. | Jul 2007 | B2 |
7276075 | Callas et al. | Oct 2007 | B1 |
7290367 | Chen | Nov 2007 | B2 |
7294103 | Bertolero et al. | Nov 2007 | B2 |
7297106 | Yamada et al. | Nov 2007 | B2 |
7300399 | Bonadio et al. | Nov 2007 | B2 |
7316699 | McFarlane | Jan 2008 | B2 |
7331940 | Sommerich | Feb 2008 | B2 |
7338473 | Campbell et al. | Mar 2008 | B2 |
7344546 | Wulfman et al. | Mar 2008 | B2 |
7344547 | Piskun | Mar 2008 | B2 |
7344568 | Chen | Mar 2008 | B2 |
7377898 | Ewers et al. | May 2008 | B2 |
7390317 | Taylor et al. | Jun 2008 | B2 |
7393322 | Wenchell | Jul 2008 | B2 |
7412977 | Fields et al. | Aug 2008 | B2 |
7445597 | Butler et al. | Nov 2008 | B2 |
7473221 | Ewers et al. | Jan 2009 | B2 |
7481765 | Ewers et al. | Jan 2009 | B2 |
7537564 | Bonadio et al. | May 2009 | B2 |
7540839 | Butler et al. | Jun 2009 | B2 |
7559893 | Bonadio et al. | Jul 2009 | B2 |
7578832 | Johnson | Aug 2009 | B2 |
7645232 | Shluzas | Jan 2010 | B2 |
7650887 | Nguyen et al. | Jan 2010 | B2 |
7661164 | Chen | Feb 2010 | B2 |
7704207 | Albrecht et al. | Apr 2010 | B2 |
7717847 | Smith | May 2010 | B2 |
7727146 | Albrecht et al. | Jun 2010 | B2 |
7727255 | Taylor et al. | Jun 2010 | B2 |
7736306 | Brustad et al. | Jun 2010 | B2 |
7749415 | Brustad et al. | Jul 2010 | B2 |
7753901 | Piskun et al. | Jul 2010 | B2 |
7758500 | Boyd et al. | Jul 2010 | B2 |
7766824 | Jensen et al. | Aug 2010 | B2 |
7811251 | Wenchell | Oct 2010 | B2 |
7815567 | Albrecht et al. | Oct 2010 | B2 |
7837612 | Gill et al. | Nov 2010 | B2 |
7841765 | Keller | Nov 2010 | B2 |
7850600 | Piskun | Dec 2010 | B1 |
7850667 | Gresham | Dec 2010 | B2 |
7867164 | Butler et al. | Jan 2011 | B2 |
7878974 | Brustad et al. | Feb 2011 | B2 |
7896889 | Mazzocchi et al. | Mar 2011 | B2 |
7909760 | Albrecht et al. | Mar 2011 | B2 |
7930782 | Chen | Apr 2011 | B2 |
8029522 | Ortiz | Oct 2011 | B2 |
8043329 | Khairkhahan | Oct 2011 | B2 |
8157833 | Au | Apr 2012 | B2 |
8262568 | Albrecht | Sep 2012 | B2 |
8343047 | Albrecht | Jan 2013 | B2 |
8414483 | Farrell | Apr 2013 | B2 |
8480675 | Betts | Jul 2013 | B2 |
8641758 | Anderson et al. | Feb 2014 | B1 |
8968191 | Pribanic | Mar 2015 | B2 |
9265526 | Abdou | Feb 2016 | B1 |
9289115 | Dang | Mar 2016 | B2 |
9289200 | Dang | Mar 2016 | B2 |
9364339 | Mayer | Jun 2016 | B2 |
9492197 | Juravic | Nov 2016 | B2 |
9554787 | McCarthy | Jan 2017 | B2 |
9585550 | Abel | Mar 2017 | B2 |
9662139 | Shipp | May 2017 | B2 |
9872702 | Dang | Jan 2018 | B2 |
20010037053 | Bonadio et al. | Nov 2001 | A1 |
20010047188 | Bonadio et al. | Nov 2001 | A1 |
20020002324 | McManus | Jan 2002 | A1 |
20020010389 | Butler et al. | Jan 2002 | A1 |
20020013542 | Bonadio et al. | Jan 2002 | A1 |
20020016607 | Bonadio et al. | Feb 2002 | A1 |
20020026230 | Moll et al. | Feb 2002 | A1 |
20020038077 | de la Torre et al. | Mar 2002 | A1 |
20020068879 | Lubock | Jun 2002 | A1 |
20020072762 | Bonadio et al. | Jun 2002 | A1 |
20020111536 | Cuschieri et al. | Aug 2002 | A1 |
20020156432 | Racenet | Oct 2002 | A1 |
20020162559 | Crook | Nov 2002 | A1 |
20030004253 | Chen | Jan 2003 | A1 |
20030014076 | Mollenauer et al. | Jan 2003 | A1 |
20030028179 | Piskun | Feb 2003 | A1 |
20030040711 | Racenet et al. | Feb 2003 | A1 |
20030059865 | Nelson | Mar 2003 | A1 |
20030078476 | Hill | Apr 2003 | A1 |
20030078478 | Bonadio et al. | Apr 2003 | A1 |
20030139756 | Brustad | Jul 2003 | A1 |
20030167040 | Bacher et al. | Sep 2003 | A1 |
20030167069 | Gonzales | Sep 2003 | A1 |
20030187376 | Rambo | Oct 2003 | A1 |
20030191371 | Smith et al. | Oct 2003 | A1 |
20030192553 | Rambo | Oct 2003 | A1 |
20030225392 | McMichael et al. | Dec 2003 | A1 |
20030236505 | Bonadio et al. | Dec 2003 | A1 |
20030236549 | Bonadio et al. | Dec 2003 | A1 |
20040015185 | Ewers et al. | Jan 2004 | A1 |
20040024363 | Goldberg | Feb 2004 | A1 |
20040049099 | Ewers et al. | Mar 2004 | A1 |
20040049100 | Butler | Mar 2004 | A1 |
20040054353 | Taylor | Mar 2004 | A1 |
20040063833 | Chen | Apr 2004 | A1 |
20040068232 | Hart et al. | Apr 2004 | A1 |
20040070187 | Chen | Apr 2004 | A1 |
20040072942 | Chen | Apr 2004 | A1 |
20040073090 | Butler | Apr 2004 | A1 |
20040092795 | Bonadio et al. | May 2004 | A1 |
20040092796 | Butler et al. | May 2004 | A1 |
20040093018 | Johnson | May 2004 | A1 |
20040097793 | Butler et al. | May 2004 | A1 |
20040106942 | Taylor et al. | Jun 2004 | A1 |
20040111061 | Curran | Jun 2004 | A1 |
20040127772 | Ewers et al. | Jul 2004 | A1 |
20040138529 | Wiltshire et al. | Jul 2004 | A1 |
20040143158 | Hart et al. | Jul 2004 | A1 |
20040154624 | Bonadio et al. | Aug 2004 | A1 |
20040167559 | Taylor et al. | Aug 2004 | A1 |
20040173218 | Yamada et al. | Sep 2004 | A1 |
20040215063 | Bonadio et al. | Oct 2004 | A1 |
20040230161 | Zeiner | Nov 2004 | A1 |
20040243144 | Bonadio et al. | Dec 2004 | A1 |
20040249248 | Bonadio et al. | Dec 2004 | A1 |
20040254426 | Wenchell | Dec 2004 | A1 |
20040260244 | Piechowicz et al. | Dec 2004 | A1 |
20040267096 | Caldwell et al. | Dec 2004 | A1 |
20050020884 | Hart et al. | Jan 2005 | A1 |
20050033246 | Ahlbert et al. | Feb 2005 | A1 |
20050033327 | Gainor et al. | Feb 2005 | A1 |
20050059865 | Kahle et al. | Mar 2005 | A1 |
20050065475 | Hart et al. | Mar 2005 | A1 |
20050065543 | Kahle et al. | Mar 2005 | A1 |
20050080319 | Dinkler, II et al. | Apr 2005 | A1 |
20050090713 | Gozales et al. | Apr 2005 | A1 |
20050090716 | Bonadio et al. | Apr 2005 | A1 |
20050090717 | Bonadio et al. | Apr 2005 | A1 |
20050096695 | Olich | May 2005 | A1 |
20050131349 | Albrecht et al. | Jun 2005 | A1 |
20050148823 | Vaugh et al. | Jul 2005 | A1 |
20050155611 | Vaugh et al. | Jul 2005 | A1 |
20050159647 | Hart et al. | Jul 2005 | A1 |
20050159650 | Raymond et al. | Jul 2005 | A1 |
20050165281 | Ravikumar et al. | Jul 2005 | A1 |
20050165432 | Heinrich | Jul 2005 | A1 |
20050192483 | Bonadio et al. | Sep 2005 | A1 |
20050192598 | Johnson et al. | Sep 2005 | A1 |
20050192608 | Moreno | Sep 2005 | A1 |
20050197537 | Bonadio et al. | Sep 2005 | A1 |
20050203346 | Bonadio et al. | Sep 2005 | A1 |
20050209510 | Bonadio et al. | Sep 2005 | A1 |
20050215863 | Ravikumar et al. | Sep 2005 | A1 |
20050222582 | Wenchell | Oct 2005 | A1 |
20050228447 | Rambo | Oct 2005 | A1 |
20050240082 | Bonadio et al. | Oct 2005 | A1 |
20050241647 | Nguyen | Nov 2005 | A1 |
20050251124 | Zvuloni et al. | Nov 2005 | A1 |
20050261720 | Caldwell et al. | Nov 2005 | A1 |
20050267419 | Smith | Dec 2005 | A1 |
20050277946 | Greenhalgh | Dec 2005 | A1 |
20050283050 | Gundlapalli et al. | Dec 2005 | A1 |
20050288558 | Ewers et al. | Dec 2005 | A1 |
20050288634 | O'Heeron et al. | Dec 2005 | A1 |
20060020164 | Butler et al. | Jan 2006 | A1 |
20060020241 | Piskun et al. | Jan 2006 | A1 |
20060030755 | Ewers et al. | Feb 2006 | A1 |
20060041270 | Lenker | Feb 2006 | A1 |
20060047284 | Gresham | Mar 2006 | A1 |
20060047293 | Haberland et al. | Mar 2006 | A1 |
20060052669 | Hart | Mar 2006 | A1 |
20060084842 | Hart et al. | Apr 2006 | A1 |
20060106402 | McLucas | May 2006 | A1 |
20060129165 | Edoga et al. | Jun 2006 | A1 |
20060149137 | Pingleton et al. | Jul 2006 | A1 |
20060149306 | Hart et al. | Jul 2006 | A1 |
20060161049 | Beane et al. | Jul 2006 | A1 |
20060161050 | Butler et al. | Jul 2006 | A1 |
20060241651 | Wilk | Oct 2006 | A1 |
20060247498 | Bonadio et al. | Nov 2006 | A1 |
20060247499 | Butler et al. | Nov 2006 | A1 |
20060247500 | Voegele et al. | Nov 2006 | A1 |
20060247516 | Hess et al. | Nov 2006 | A1 |
20060247586 | Voegele et al. | Nov 2006 | A1 |
20060247673 | Voegele et al. | Nov 2006 | A1 |
20060247678 | Weisenburgh, II et al. | Nov 2006 | A1 |
20060258899 | Gill et al. | Nov 2006 | A1 |
20060264706 | Piskun | Nov 2006 | A1 |
20060270911 | Voegele et al. | Nov 2006 | A1 |
20070004968 | Bonadio et al. | Jan 2007 | A1 |
20070049966 | Bonadio et al. | Mar 2007 | A1 |
20070088202 | Albrecht et al. | Apr 2007 | A1 |
20070088204 | Albrecht | Apr 2007 | A1 |
20070088258 | Wenchell | Apr 2007 | A1 |
20070093695 | Bonadio et al. | Apr 2007 | A1 |
20070106319 | Au | May 2007 | A1 |
20070118175 | Butler et al. | May 2007 | A1 |
20070142780 | Van Lue | Jun 2007 | A1 |
20070149859 | Albrecht | Jun 2007 | A1 |
20070151566 | Kahle et al. | Jul 2007 | A1 |
20070156023 | Frasier et al. | Jul 2007 | A1 |
20070156024 | Frasier et al. | Jul 2007 | A1 |
20070185387 | Albrecht et al. | Aug 2007 | A1 |
20070203398 | Bonadio et al. | Aug 2007 | A1 |
20070208312 | Norton | Sep 2007 | A1 |
20070239108 | Albrecht | Oct 2007 | A1 |
20070255219 | Vaugh et al. | Nov 2007 | A1 |
20070270654 | Pignato | Nov 2007 | A1 |
20070270752 | Labombard | Nov 2007 | A1 |
20070299387 | Williams et al. | Dec 2007 | A1 |
20080027476 | Piskun | Jan 2008 | A1 |
20080048011 | Weller | Feb 2008 | A1 |
20080086080 | Mastri | Apr 2008 | A1 |
20080097162 | Bonadio et al. | Apr 2008 | A1 |
20080097163 | Butler et al. | Apr 2008 | A1 |
20080103366 | Banchieri et al. | May 2008 | A1 |
20080200767 | Ewers et al. | Aug 2008 | A1 |
20080255519 | Piskun et al. | Oct 2008 | A1 |
20080281161 | Albrecht et al. | Nov 2008 | A1 |
20080281162 | Albrecht et al. | Nov 2008 | A1 |
20090012477 | Norton et al. | Jan 2009 | A1 |
20090036745 | Bonadio et al. | Feb 2009 | A1 |
20090069627 | Haindl | Mar 2009 | A1 |
20090069837 | Bonadio et al. | Mar 2009 | A1 |
20090093683 | Richard et al. | Apr 2009 | A1 |
20090093752 | Richard et al. | Apr 2009 | A1 |
20090131754 | Ewers et al. | May 2009 | A1 |
20090137879 | Ewers et al. | May 2009 | A1 |
20090149714 | Bonadio | Jun 2009 | A1 |
20090182279 | Wenchell | Jul 2009 | A1 |
20090182282 | Okihisa | Jul 2009 | A1 |
20090187079 | Albrecht | Jul 2009 | A1 |
20090227843 | Smith et al. | Sep 2009 | A1 |
20090292176 | Bonadio et al. | Nov 2009 | A1 |
20090326330 | Bonadio et al. | Dec 2009 | A1 |
20100063362 | Bonadio et al. | Mar 2010 | A1 |
20100063364 | Bonadio et al. | Mar 2010 | A1 |
20100063452 | Edelman et al. | Mar 2010 | A1 |
20100081880 | Widenhouse et al. | Apr 2010 | A1 |
20100081881 | Murray et al. | Apr 2010 | A1 |
20100081995 | Widenhouse et al. | Apr 2010 | A1 |
20100094227 | Albrecht et al. | Apr 2010 | A1 |
20100100043 | Racenet | Apr 2010 | A1 |
20100113882 | Widenhouse et al. | May 2010 | A1 |
20100198156 | Rosch | Aug 2010 | A1 |
20100211012 | Hathaway | Aug 2010 | A1 |
20100217087 | Bonadio et al. | Aug 2010 | A1 |
20100228091 | Widenhouse et al. | Sep 2010 | A1 |
20100228092 | Ortiz et al. | Sep 2010 | A1 |
20100228094 | Ortiz et al. | Sep 2010 | A1 |
20100240960 | Richard | Sep 2010 | A1 |
20100249523 | Spiegel et al. | Sep 2010 | A1 |
20100249524 | Ransden et al. | Sep 2010 | A1 |
20100249525 | Shelton, IV et al. | Sep 2010 | A1 |
20100249526 | Shelton, IV | Sep 2010 | A1 |
20100249694 | Choi et al. | Sep 2010 | A1 |
20100261972 | Widenhouse et al. | Oct 2010 | A1 |
20100261975 | Huey et al. | Oct 2010 | A1 |
20100262080 | Shelton, IV | Oct 2010 | A1 |
20100286483 | Bettuchi | Nov 2010 | A1 |
20100286484 | Stellon et al. | Nov 2010 | A1 |
20100298646 | Stellon et al. | Nov 2010 | A1 |
20100305407 | Farley | Dec 2010 | A1 |
20100312064 | Weisenburgh, II | Dec 2010 | A1 |
20110021877 | Fortier et al. | Jan 2011 | A1 |
20110021881 | Wenchell | Jan 2011 | A1 |
20110028891 | Okoniewski | Feb 2011 | A1 |
20110034935 | Kleyman | Feb 2011 | A1 |
20110034946 | Kleyman | Feb 2011 | A1 |
20110034947 | Kleyman | Feb 2011 | A1 |
20110040324 | McCarthy | Feb 2011 | A1 |
20110054260 | Albrecht et al. | Mar 2011 | A1 |
20110071462 | Ewers et al. | Mar 2011 | A1 |
20110071463 | Ewers et al. | Mar 2011 | A1 |
20110144443 | Shelton, IV et al. | Jun 2011 | A1 |
20110144590 | Sakai, Jr. | Jun 2011 | A1 |
20110160820 | Jackson et al. | Jun 2011 | A1 |
20120095297 | Dang | Apr 2012 | A1 |
20120130191 | Pribanic | May 2012 | A1 |
20120190933 | Kleyman | Jul 2012 | A1 |
20120238825 | Smith | Sep 2012 | A1 |
20120245425 | Okoniewski | Sep 2012 | A1 |
20130053863 | Juravic | Feb 2013 | A1 |
20130072759 | Li et al. | Mar 2013 | A1 |
20130190573 | Smith | Jul 2013 | A1 |
20130204092 | Hannaford | Aug 2013 | A1 |
20130245381 | Dang | Sep 2013 | A1 |
20130296655 | Hart | Nov 2013 | A1 |
20130317617 | Mayer | Nov 2013 | A1 |
20140142393 | Piskun | May 2014 | A1 |
20140142509 | Bonutti | May 2014 | A1 |
20140275801 | Menchaca | Sep 2014 | A1 |
20150087913 | Dang | Mar 2015 | A1 |
20150164552 | Chen et al. | Jun 2015 | A1 |
20150272564 | Piskun | Oct 2015 | A1 |
20160045220 | Wachli | Feb 2016 | A1 |
20160151087 | Dang | Jun 2016 | A1 |
20160157888 | Dang | Jun 2016 | A1 |
20160166282 | Juravic | Jun 2016 | A1 |
20190090904 | Wachli | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
202751416 | Feb 2013 | CN |
26 05 148 | Aug 1977 | DE |
33 36 279 | Jan 1986 | DE |
37 39 532 | Dec 1988 | DE |
37 37 121 | May 1989 | DE |
296 00 939 | Jun 1996 | DE |
1982809 | Dec 1999 | DE |
0 113 520 | Jul 1984 | EP |
0 142 262 | May 1985 | EP |
0 517 248 | Dec 1992 | EP |
0 537 768 | Apr 1993 | EP |
0 807 416 | Nov 1997 | EP |
0 849 517 | Jun 1998 | EP |
0 950 376 | Oct 1999 | EP |
1 118 657 | Jul 2001 | EP |
1 125 552 | Aug 2001 | EP |
1 312 318 | May 2003 | EP |
1 407 715 | Apr 2004 | EP |
1 609 429 | Dec 2005 | EP |
1 609 429 | Dec 2005 | EP |
2 044 889 | Apr 2009 | EP |
2 260 777 | Dec 2010 | EP |
2 272 450 | Jan 2011 | EP |
2 340 792 | Jul 2011 | EP |
2 486 882 | Aug 2012 | EP |
2 589 443 | May 2013 | EP |
2 609 880 | Jul 2013 | EP |
2 617 373 | Jul 2013 | EP |
1456623 | Sep 1966 | FR |
1151993 | May 1969 | GB |
1355611 | Jun 1974 | GB |
1372491 | Oct 1974 | GB |
1379772 | Jan 1975 | GB |
1400808 | Jul 1975 | GB |
1407023 | Sep 1975 | GB |
1482857 | Aug 1977 | GB |
1496696 | Dec 1977 | GB |
2071502 | Sep 1981 | GB |
2255019 | Oct 1992 | GB |
2275420 | Aug 1994 | GB |
2298906 | Sep 1996 | GB |
930649 | Sep 1993 | IE |
930650 | Sep 1993 | IE |
S940150 | Feb 1994 | IE |
S940613 | Aug 1994 | IE |
S940960 | Dec 1994 | IE |
S950055 | Jan 1995 | IE |
S950266 | Apr 1995 | IE |
S71634 | Feb 1997 | IE |
S75368 | Aug 1997 | IE |
S960196 | Aug 1997 | IE |
S970810 | Nov 1997 | IE |
991010 | Jul 2000 | IE |
990218 | Nov 2000 | IE |
990219 | Nov 2000 | IE |
990220 | Nov 2000 | IE |
990660 | Feb 2001 | IE |
990795 | Mar 2001 | IE |
10-108868 | Apr 1998 | JP |
11-290327 | Oct 1999 | JP |
2001-61850 | Mar 2001 | JP |
2002-28163 | Jan 2002 | JP |
02003 235879 | Aug 2003 | JP |
2004-195037 | Jul 2004 | JP |
2007-44395 | Feb 2007 | JP |
20140074622 | Jun 2014 | KR |
1342485 | Jan 1997 | RU |
WO 8606272 | Nov 1986 | WO |
WO 8606316 | Nov 1986 | WO |
WO 9211880 | Jul 1992 | WO |
WO 9221292 | Dec 1992 | WO |
WO 9305740 | Apr 1993 | WO |
WO 9314801 | Aug 1993 | WO |
WO 9404067 | Mar 1994 | WO |
WO 9422357 | Oct 1994 | WO |
WO 9505207 | Feb 1995 | WO |
WO 9507056 | Mar 1995 | WO |
WO 9522289 | Aug 1995 | WO |
WO 9524864 | Sep 1995 | WO |
WO 9527445 | Oct 1995 | WO |
WO 9527468 | Oct 1995 | WO |
WO 9636283 | Nov 1996 | WO |
WO 9711642 | Apr 1997 | WO |
WO 9732514 | Sep 1997 | WO |
WO 9732515 | Sep 1997 | WO |
WO 9742889 | Nov 1997 | WO |
WO 9819853 | May 1998 | WO |
WO 9835614 | Aug 1998 | WO |
WO 9848724 | Nov 1998 | WO |
WO 9903416 | Jan 1999 | WO |
WO 9915068 | Apr 1999 | WO |
WO 9916368 | Apr 1999 | WO |
WO 9922804 | May 1999 | WO |
WO 9925268 | May 1999 | WO |
WO 9929250 | Jun 1999 | WO |
WO 0032116 | Jun 2000 | WO |
WO 0032117 | Jun 2000 | WO |
WO 0032119 | Jun 2000 | WO |
WO 0032120 | Jun 2000 | WO |
WO 0035356 | Jun 2000 | WO |
WO 0047117 | Aug 2000 | WO |
WO 0054675 | Sep 2000 | WO |
WO 0054676 | Sep 2000 | WO |
WO 0054677 | Sep 2000 | WO |
WO 0108563 | Feb 2001 | WO |
WO 0108581 | Feb 2001 | WO |
WO 0126558 | Apr 2001 | WO |
WO 0126559 | Apr 2001 | WO |
WO 01045568 | Jun 2001 | WO |
WO 0149363 | Jul 2001 | WO |
WO 0191652 | Dec 2001 | WO |
WO 0207611 | Jan 2002 | WO |
WO 0217800 | Mar 2002 | WO |
WO 0234108 | May 2002 | WO |
WO 03011153 | Feb 2003 | WO |
WO 03011551 | Feb 2003 | WO |
WO 03026512 | Apr 2003 | WO |
WO 03032819 | Apr 2003 | WO |
WO 03034908 | May 2003 | WO |
WO 03061480 | Jul 2003 | WO |
WO 03077726 | Sep 2003 | WO |
WO 03103548 | Dec 2003 | WO |
WO 2004026153 | Apr 2004 | WO |
WO 2004030547 | Apr 2004 | WO |
WO 2004075730 | Sep 2004 | WO |
WO 2004075741 | Sep 2004 | WO |
WO 2004075930 | Sep 2004 | WO |
WO 2005009257 | Feb 2005 | WO |
WO 2005034766 | Apr 2005 | WO |
WO 2005089661 | Sep 2005 | WO |
WO 2006040748 | Apr 2006 | WO |
WO 2006057982 | Jun 2006 | WO |
WO 2006057982 | Jun 2006 | WO |
WO 2006059318 | Jun 2006 | WO |
WO 2006059318 | Jun 2006 | WO |
WO 2006100658 | Sep 2006 | WO |
WO 2007044849 | Apr 2007 | WO |
WO 2007083305 | Jul 2007 | WO |
WO 2007083305 | Jul 2007 | WO |
WO 2008011358 | Jan 2008 | WO |
WO 2008015566 | Feb 2008 | WO |
WO 2008045935 | Apr 2008 | WO |
WO 2008093313 | Aug 2008 | WO |
WO 2008121294 | Oct 2008 | WO |
WO 2009117435 | Sep 2009 | WO |
WO-2009117435 | Sep 2009 | WO |
WO 2010045253 | Apr 2010 | WO |
WO 2010082722 | Jul 2010 | WO |
WO 2010104259 | Sep 2010 | WO |
WO 2010141673 | Dec 2010 | WO |
WO 2012154845 | Nov 2012 | WO |
WO 2013106569 | Jul 2013 | WO |
WO 2014174031 | Oct 2014 | WO |
Entry |
---|
U.S. Appl. No. 10/381,220, filed Mar. 20, 2003; Title: Surgical Access Apparatus and Method, now U.S. Pat. No. 7,473,221 issued Jan. 6, 2009. |
U.S. Appl. No. 10/436,522, filed May 13, 2003; Title: Laparoscopic Illumination Apparatus and Method, now U.S. Pat. No. 6,939,296 issued Sep. 6, 2005. |
U.S. Appl. No. 10/399,209, filed Aug. 22, 2003; Title: Wound Retraction Apparatus and Method, now U.S. Pat. No. 6,958,037 issued Oct. 25, 2005. |
U.S. Appl. No. 11/218,412, filed Sep. 1, 2005; Title: Wound Retraction Apparatus and Method, now U.S. Pat. No. 7,238,154 issued Jul. 3, 2007. |
U.S. Appl. No. 10/399,057, filed Apr. 11, 2003; Title: Sealed Surgical Access Device, now U.S. Pat. No. 7,052,454 issued May 30, 2006. |
U.S. Appl. No. 10/666,579, filed Sep. 17, 2003; Title: Surgical Instrument Access Device, now U.S. Pat. No. 7,163,510 issued Jan. 16, 2007. |
U.S. Appl. No. 10/052,297, filed Jan. 18, 2002; Title: Hand Access Port Device, now U.S. Pat. No. 6,908,430 issued Jun. 21, 2005. |
U.S. Appl. No. 08/015,765, filed Feb. 10, 1993; Title: Gas-Tight Seal Accomodating Surgical Instruments With a Wide Range of Diameters, now U.S. Pat. No. 5,407,433 issued Apr. 18, 1995. |
U.S. Appl. No. 08/040,373, filed Mar. 30, 1993; Title: Gas-Tight Seal Accomodating Surgical Instruments With a Wide Range of Diameters, now U.S. Pat. No. 5,411,483 issued May 2, 1995. |
U.S. Appl. No. 10/902,756, filed Jul. 29, 2004; Title: Hand Access Port Device, now abandoned. |
U.S. Appl. No. 10/802,125, filed Mar. 15, 2004; Title: Surgical Guide Valve, now abandoned. |
U.S. Appl. No. 10/516,198, filed Nov. 30, 2004; Title: Wound Retractor, now U.S. Pat. No. 7,650,887 issued Jan. 26, 2010. |
U.S. Appl. No. 10/927,551, filed Aug. 25, 2004; Title: Surgical Access System, now abandoned. |
U.S. Appl. No. 11/244,647, filed Oct. 5, 2005; Title: Surgical Access Apparatus and Method, now U.S. Pat. No. 7,481,765 issued Jan. 27, 2009. |
U.S. Appl. No. 11/548,746, filed Oct. 12, 2006; Title: Method of Making a Hand Access Laparoscopic Device, now U.S. Pat. No. 7,749,415 issued Jul. 6, 2010. |
U.S. Appl. No. 11/548,765, filed Oct. 12, 2006; Title: Split Hoop Wound Retractor, now U.S. Pat. No. 7,815,567 issued Oct. 26, 2010. |
U.S. Appl. No. 11/548,767, filed Oct. 12, 2006; Title: Circular Surgical Retractor now U.S. Pat. No. 7,704,207 issued Apr. 27, 2010. |
U.S. Appl. No. 11/548,781, filed Oct. 12, 2006; Title: Wound Retractor With Gel Cap, now U.S. Pat. No. 7,727,146 issued Jun. 1, 2010. |
U.S. Appl. No. 11/548,955, filed Oct. 12, 2006; Title: Hand Access Laparoscopic Device, now U.S. Pat. No. 7,736,306 issued Jun. 15, 2010. |
U.S. Appl. No. 11/755,305, filed May 30, 2007; Title: Wound Retraction Apparatus and Method, now U.S. Pat. No. 7,377,898 issued May 27, 2008. |
U.S. Appl. No. 11/548,758, filed Oct. 12, 2007; Title: Split Hoop Wound Retractor With Gel Pad, now U.S. Pat. No. 7,909,760 issued Mar. 22, 2011. |
U.S. Appl. No. 12/693,242, filed Jan. 1, 2010; Title: Wound Retractor, now U.S. Pat. No. 7,913,697 issued Mar. 29, 2011. |
U.S. Appl. No. 12/768,328, filed Apr. 27, 2010; Title: Circular Surgical Retractor, now U.S. Pat. No. 7,892,172 issued Feb. 22, 2011. |
U.S. Appl. No. 12/791,666, filed Jun. 1, 2010; Title: Wound Retractor With Gel Cap, now U.S. Pat. No. 7,883,461 issued Feb. 8, 2011. |
U.S. Appl. No. 12/815,986, filed Jun. 15, 2010; Title: Hand Access Laparoscopic Device, now U.S. Pat. No. 7,878,974 issued Feb. 1, 2011. |
U.S. Appl. No. 10/695,295, filed Oct. 28, 2003; Title: Surgical Gel Seal. |
U.S. Appl. No. 11/132,741, filed May 18, 2005; Title: Gas-Tight Seal Accomodating Surgical Instruments With a Wide Range of Diameters. |
U.S. Appl. No. 11/245,709, filed Oct. 7, 2005; Title: Surgical Access System. |
U.S. Appl. No. 11/330,661, filed Jan. 12, 2006; Title: Sealed Surgical Access Device. |
U.S. Appl. No. 11/564,409, filed Nov. 29, 2006; Title: Surgical Instrument Access Device. |
U.S. Appl. No. 12/108,400, filed Apr. 23, 2008; Title: Wound Retraction Apparatus and Method. |
U.S. Appl. No. 12/119,371, filed May 12, 2008; Title: Surgical Retractor With Gel Pad. |
U.S. Appl. No. 12/119,414, filed May 12, 2008; Title: Surgical Retractor. |
U.S. Appl. No. 12/358,080, filed Jan. 22, 2009; Title: Surgical Instrument Access Device. |
U.S. Appl. No. 12/360,634, filed Jan. 27, 2009; Title: Surgical Access Apparatus and Method. |
U.S. Appl. No. 12/360,710, filed Jan. 27, 2009; Title: Surgical Access Apparatus and Method. |
U.S. Appl. No. 12/578,422, filed Oct. 13, 2009; Title: Single Port Access System. |
U.S. Appl. No. 12/905,932, filed Oct. 15, 2010; Title: Split Hoop Wound Retractor. |
U.S. Appl. No. 12/960,449, filed Dec. 3, 2010; Title: Surgical Access Apparatus and Method. |
U.S. Appl. No. 12/960,458, filed Dec. 3, 2010; Title: Surgical Access Apparatus and Method. |
U.S. Appl. No. 13/006,727, filed Jan. 14, 2011; Title: Hand Access Laparoscopic Device. |
U.S. Appl. No. 13/008,728, filed Jan. 18, 2011; Title: Wound Retractor With Gel Cap. |
U.S. Appl. No. 13/023,334, filed Feb. 8, 2011; Title: Circular Surgical Retractor. |
U.S. Appl. No. 13/031,892, filed Feb. 22, 2011; Title: Wound Retractor. |
U.S. Appl. No. 13/050,042, filed Mar. 17, 2011; Title: Split Hoop Wound Retractor With Gel Pad. |
U.S. Appl. No. 10/446,365, filed May 28, 2003; Title: Screw-Type Seal With Inflatable Membrane. |
U.S. Appl. No. 12/004,439, filed Dec. 20, 2007; Title: Skin Seal. |
U.S. Appl. No. 12/004,441, filed Dec. 20, 2007; Title: Screw-Type Skin Seal With Inflatable Membrane. |
U.S. Appl. No. 12/607,667, filed Oct. 28, 2009; Title: Screw-Type Skin Seal With Inflatable Membrane. |
U.S. Appl. No. 10/965,217, filed Oct. 15, 2004; Title: Surgical Sealing Device. |
U.S. Appl. No. 10/981,730, filed Nov. 5, 2004; Title: Surgical Sealing Device. |
U.S. Appl. No. 11/246,909, filed Oct. 11, 2005; Title: Instrument Access Device. |
U.S. Appl. No. 11/291,089, filed Dec. 1, 2005; Title: A Surgical Sealing Device. |
U.S. Appl. No. 11/486,383, filed Jul. 14, 2006; Title: Wound Retractor. |
U.S. Appl. No. 11/785,752, filed Apr. 19, 2007; Title: Instrument Access Device. |
U.S. Appl. No. 12/244,024, filed Oct. 2, 2008; Title: Seal Anchor for Use in Surgical Procedures. |
U.S. Appl. No. 12/578,832, filed Oct. 14, 2009; Title: Flexible Access Device for Use in Surgical Procedure. |
U.S. Appl. No. 12/706,043, filed Feb. 16, 2010; Title: Flexible Port Seal. |
U.S. Appl. No. 12/719,341, filed Mar. 8, 2010; Title: Foam Port and Introducer Assembly. |
U.S. Appl. No. 10/895,546, filed Jul. 21, 2004; Title: Laparoscopic Instrument and Cannula Assembly and Related Surgical Method. |
U.S. Appl. No. 10/913,565, filed Aug. 5, 2004; Title: Surgical Device With Tack-Free Gel and Method of Manufacture. |
Dexterity Protractor Instruction Manual by Dexterity Surgical, Inc., dated 1999. |
European Patent Office, European Search Report for European Application No. EP 10 18 4681, entitled “Wound Retraction Apparatus and Method”, dated Nov. 22, 2010. |
European Patent Office, European Search Report for European Application No. EP 10 18 4608, entitled “Wound Retraction Apparatus and Method”, dated Nov. 22, 2010. |
European Patent Office, European Search Report for European Application No. EP 10 18 4648, entitled “Wound Retraction Apparatus and Method”, dated Nov. 22, 2010. |
European Patent Office, European Search Report for European Application No. EP 10 18 4731, entitled “Wound Retraction Apparatus and Method”, dated Nov. 22, 2010. |
European Patent Office, European Search Report for European Application No. EP 10 18 4661, entitled “Wound Retraction Apparatus and Method”, dated Nov. 22, 2010. |
European Patent Office, European Search Report for European Application No. EP 10 18 4677, entitled “Wound Retraction Apparatus and Method”, dated Nov. 22, 2010. |
European Patent Office, European Search Report for European Application No. EP 10 18 9325, entitled “Split Hoop Wound Retractor”, dated Dec. 14, 2010. |
European Patent Office, European Search Report for European Application No. EP 10 18 9327, entitled “Split Hoop Wound Retractor”, dated Dec. 14, 2010. |
European Patent Office, European Search Report for European Application No. EP 10 18 9328, entitled “Split Hoop Wound Retractor”, dated Dec. 15, 2010. |
European Patent Office, European Search Report for European Application No. EP 04 00 2888, entitled “Hand Access Port Device”, dated Sep. 10, 2004. |
European Patent Office, European Search Report for European Application No. EP 04 00 2889, entitled “Hand Access Port Device”, dated Sep. 13, 2004. |
European Patent Office, International Search Report and The Written Opinion of the International Searching Authority for International Application No. PCT/US2006/040154, dated Jan. 30, 2007. |
European Patent Office, International Search Report and The Written Opinion of the International Searching Authority for International Application No. PCT/US2006/040073, dated Jan. 26, 2007. |
European Patent Office, International Search Report and The Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039905, dated Jan. 17, 2007. |
European Patent Office, International Search Report and The Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039883, dated Jan. 31, 2007. |
European Patent Office, International Search Report and The Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039800, dated Apr. 16, 2007. |
European Patent Office, International Search Report and The Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039799, dated Mar. 27, 2007. |
European Patent Office, European Search Report for European Application No. EP 08253236 dated Feb. 10, 2009. |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/037213, titled “Natural Orifice Surgery System” dated Jul. 3, 2013. |
Horigame, et al., Silicone Rumen Cannula with a Soft Cylindrical Part and a Hard Flange, Journal of Dairy Science, Nov. 1989, vol. 72, No. 11, pp. 3230-3232. |
Horigame, et al., Technical Note: Development of Duodoenal Cannula for Sheep, Journal of Animal Science, Apr. 1992, vol. 70, Issue 4, pp. 1216-1219. |
International Searching Authority/US, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US04/05484, dated Nov. 12, 2004. |
International Searching Authority/US, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US01/29682, dated Jun. 14, 2002. |
McSweeney, Cannulation of the Rumen in Cattle and Buffaloes, Australian Veterniary Journal, Aug. 1989, vol. 66, No. 8, pp. 266-268. |
Neil Sheehan, Supplemental Expert Report of Neil Sheehan, Re: U.S. Pat. No. 5,741,298, United States District Court for the Central District of California, Civil Action No. SACV 03-1322 JVS, Aug. 9, 2005. |
Office Action in co-pending U.S. Appl. No. 12/360,634, dated Jan. 24, 2011 in 12 pages. |
Office Action in co-pending U.S. Appl. No. 12/360,710, dated Jan. 24, 2011 in 12 pages. |
Technical Note: Development of Duodenal Cannula for Sheep, Faculty of Agriculture and School of Medicine Tohokju University, Sendai 981, Japan, dated 1992. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2004/028250, dated Aug. 29, 2006. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2006/039799, dated Apr. 16, 2008. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2006/039800 dated Apr. 16, 2008. |
Yamazaki, et al., Diurnal Changes in the Composition of Abomasal Digesta in Fasted and Fed Sheep, The Tohoki Journal of Agricultural Research, Mar. 1987, vol. 37, No. 3-4, pp. 49-58. |
Kagaya, Laparascopic cholecystecomy via two ports, using the “Twin-Port” system, J. Hepatobiliary Pancreat Surg (2001) 8:76-80, dated Feb. 20, 2001. |
Declaration of John R. Brustad dated Dec. 10, 2009, submitted in U.S. Appl. No. 11/548,955, including Appendices A-D regarding product sales brochures and production drawings from 2001 and 2005. |
International Search Report and Written Opinion for PCT/IE2005/000113, dated Feb. 22, 2006. |
International Searching Authority-US, International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US04/25511, dated Nov. 7, 2007. |
International Bureau of WIPO, International Report on Patentability for International Application No. PCT/US04/25511, dated Dec. 6, 2007. |
International Search Report and Written Opinion for PCT/IE2007/000050 dated Aug. 13, 2007. |
The International Searching Authority, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US08/63445, dated Sep. 29, 2008. |
The International Searching Authority, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US08/063463 dated Sep. 10, 2008. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2008/063463, entitled “Surgical Retractor”, dated Nov. 17, 2009. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US08/63445, entitled “Surgical Retractor with Gel Pad”, dated Nov. 17, 2009. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2011/054266, titled “Natural Orifice Surgery System”, dated Apr. 2, 2013. |
The International Bureau of WIPO, International Preliminary Report on Patentability for Application No. PCT/US2013/037213, titled “Natural Orifice Surgery System” dated Oct. 21, 2014. |
International Searching Authority—European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2011/054266, dated Feb. 9, 2012. |
European Patent Office, European Search Report for European Patent No. 11172709.5, dated Aug. 16, 2011. |
European Patent Office, European Search Report for European Patent No. 11172706.1, dated Aug. 16, 2011. |
European Patent Office, European Search Report for European Patent No. 12151288, dated Feb. 10, 2012. |
European Patent Office, European Search Report for European Patent No. 08755332, dated Apr. 18, 2012. |
European Patent Office, Supplementary European Search Report for European Patent Application No. 08755322, dated Apr. 18, 2012. |
European Patent Office, Supplementary European Search Report for European Patent Application No. 08755336, dated Jun. 15, 2012. |
Harold W. Harrower, M.D., Isolation of Incisions into Body Cavities, The American Journal of Surgery, vol. 116, pp. 824-826, Dec. 1968. |
International Searching Authority—European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2012/60997, dated Mar. 7, 2013. |
International Searching Authority—European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2015/045201, dated Sep. 25, 2015. |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2012/037111, “Wound Retractor,” dated Aug. 30, 2012, 21 pgs. |
European Patent Office, European Search Report for European Application No. 15173370.6, titled “Wound Retractor,” dated Aug. 7, 2015, 3 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2012/037111, titled “Wound Retractor” dated Nov. 12, 2013, 15 pgs. |
The International Searching Authority, International Search Report and Written Opinion of the International Searching Authority for PCT application No. PCT/US01/29682, titled “Surgical Access Apparatus and Method,” dated Jun. 14, 2002, 8 pgs. |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2015/045058, titled “Wound Retractor,” dated Nov. 12, 2015, 16 pgs. |
The International Searching Authority, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2015/062326, titled “Circumferential Wound Retraction with Support and Guidance Structures,” dated Jun. 21, 2016, 22 pgs. |
European Patent Office, European Search Report for European Patent No. 16167739.8, titled “Wound Retractor,” dated Aug. 10, 2016, 4 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/045058, dated Feb. 23, 2017, 12 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/045201, titled “Natural Orifice Surgery System”, dated Mar. 2, 2017, 9 pgs. |
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/049079, titled “Wound Retractors with Non-Circular, Non-Coplanar or Non-Parallel Inner Rings,” dated Apr. 5, 2017, 21 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/062326, titled “Circumferential Wound Retraction with Support and Guidance Structures,” dated Jun. 8, 2017, 16 pgs. |
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/056109, titled “Wound Retractor with Multi-Segment Outer Ring,” dated Jul. 10, 2017, 36 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/049079, titled “Wound Retractors with Non-Circular, Non-Coplanar or Non-Parallel Inner Rings,” dated Mar. 8, 2018, 12 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/056109, titled “Wound Retractor with Multi-Segment Outer Ring,” dated Apr. 19, 2018, 11 pgs. |
European Patent Office, European Search Report for European Application No. EP 10207981.4, entitled “Wound Retractor,” dated Jan. 2, 2019, 13 pgs. |
European Patent Office, Extended European Search Report for European Patent Application No. EP 19152405.7, titled “Natural Orifice Surgery System,” dated May 6, 2019, 7 pgs. |
Number | Date | Country | |
---|---|---|---|
20190090904 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62038082 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14826336 | Aug 2015 | US |
Child | 16204902 | US |