The present invention relates to a navigation system for disabled persons, in particular visually impaired persons. The present invention also relates to a method for providing a navigation system infrastructure and to a transponder for a navigation system.
Pedestrian mobility for disabled persons, in particular visually impaired and unsighted persons, in an outdoor environment is often difficult and dangerous. This applies especially. to the environment of a large city. Different approaches have been found to help an affected person. The visually impaired commonly rely on a white stick and/or a guide dog to assist them in efficiently reaching a desired destination without harm. However, this approach is successful only if the majority of the path to the destination is already known to the affected person (or the guide dog).
Accordingly, various solutions have been proposed to increase the mobility and/or safety of disabled pedestrians. EP 0 338 997 for example discloses an information broadcast system comprising at least one transmitting station associated with a zone of interest and a portable receiving station actuated by the user to poll said transmitting station and adapted in order to deliver intelligible information on said zone of interest. In this way, an unsighted person can be informed on the status of a traffic light signal for example. While increasing safety, this approach is of little assistance in navigation.
A widespread approach for outdoor navigation relies on the Global Positioning System (GPS) based on orbital satellite signals. For civil purposes however, the precision of GPS applications is limited and considerable position determination delays may occur with GPS receivers. Accordingly, due to the lack of precision and real time ability, sufficient safety for a disabled pedestrian cannot be warranted by such a system. Another solution has been proposed in U.S. Pat. No. 5,144,294. This solution is based on a portable device having a radio transceiver and fixed base radio transceivers disposed at reference locations. Upon a command by the user, said portable device receives from said base transceiver a location indicating message signal to be vocalized. To support navigation the portable transceiver is provided with an electronic compass. Another approach has been described in U.S. Pat. No. 5,806,017. This solution uses a portable navigation unit and a plurality of location beacons. The described location beacons comprise infrared emitting diodes. A direct line of sight is therefore required between the navigation unit and the beacons. Another solution is proposed in U.S. Pat. No. 6,259,990. This solution uses a portable guidance apparatus and a plurality of markers which output a beam carrying location information and direction information of this beam.
A common disadvantage of the aforementioned solutions is the complexity of the devices employed for marking a location. Moreover, these devices being active transponders, they require a power supply. As a result, such devices are expensive in acquisition and operation. Another disadvantage is the susceptibility to damage of such devices, e.g. by environmental influences or vandalism.
EP 1 313 079 discloses a navigation system for the general public using RFID tags. The RFID tags are used as location markers e.g. in a shopping mall. A receiver is described which is capable of providing navigation instructions in accordance with a predetermined code read from such a RFID tag. The disclosed system does not require a power supply for each location marker, it is however not easily adapted for an outdoor use.
The object of the present invention is to provide a navigation system for disabled persons, in particular visually impaired persons, which overcomes the above disadvantages. Another object of the invention is to propose a method for providing a navigation system infrastructure. Yet another object of the invention is to provide a transponder for a navigation system.
In order to achieve the above object, the present invention proposes a navigation system for disabled persons, in particular visually impaired persons. According to the invention, this navigation system comprises a plurality of transponders with RFID tags, said transponders being installed at known locations and each of said RFID tags having a unique identifier and a database comprising a mapping of the unique identifiers to the known locations. This system also comprises a portable device having a transceiver for communication with at least one proximate transponder, a storage means for storing content of the database, a processing means for determining information in accordance with the database and the unique identifier of the proximate transponder and an interface for providing the information to the disabled persons. According to an important aspect of the invention, the transponders are embedded in footpaths and/or border surfaces of footpaths. Thereby the transponders are intrinsically protected against damage e.g. by environmental influences or vandalism. Additionally, the transponders are directly provided along the path, which reduces the requirements on the transceiver range.
In a preferred embodiment, the transponders further comprise a protection capsule safely enclosing the RFID tag so that they can be directly embedded in the footpaths and/or the border surfaces of footpaths.
Due to the protection capsule, the transponders can be directly inserted in a bore in a footpath or a border surface of a footpath, for example in an urban outdoor environment. The transponder may also be encased directly into concrete, e.g. during construction. In yet another variant the transponder may be embedded into a surface covering during construction of the latter for example. While increasing protection against damage, the protection capsule also facilitates installation of the transponders and thus the navigation system in general.
Advantageously, the protection capsule is a ceramic, synthetic or metallic protection capsule.
In a preferred embodiment, the transponders comprise passive RFID tags, preferably passive animal identification RFID tags. Such animal identification RFID tags can be easily recovered after use, thus reducing the cost of the transponder itself and possibly the additional cost for encapsulation. Furthermore, the cost for disposing of used animal identification RFID tags is avoided.
The transponders being directly embedded into the soil of a footpath such as a sidewalk or in close vicinity thereof, the antenna of the transceiver can be mounted in a white stick of a visually impaired person or in a wheelchair of a disabled person. Thereby, proximity between the RFID reader and the RFID tag is inherently warranted.
The aforementioned database preferably comprises additional information related to the environment of the known locations.
Advantageously, the navigation system further comprises active transponders at certain critical locations for delivering time dependant information related to the critical locations. Such active transponders can be used for example to identify traffic lights and inform about the current status thereof.
The present invention also proposes a method for providing a navigation system infrastructure comprising the steps of recovering an animal identification RFID tag, installing the RFID tag as a transponder at a predetermined location, associating a unique identifier of the RFID tag with the predetermined location and storing the thus obtained association in a database.
The above step of installing the recovered animal identification RFID tag as transponder preferably comprises directly embedding the animal identification RFID tag in a footpath and/or a border surface of a footpath.
As seen above, the present invention proposes the use of animal identification RFID tags as transponders in a navigation system for disabled persons, in particular visually impaired persons. Preferably, the animal identification RFID tags have been recovered after prior use in an animal.
Finally, the present invention proposes a transponder for a navigation system. According to an important aspect, this transponder comprises an animal identification RFID tag.
The present invention will be more apparent from the following description of a not limiting embodiment with reference to the attached drawings, wherein
As seen in
The RFID tag or transponder 14 consists of a passive emitter-receiver of conventional type for use in animal tracking (e.g. according to standards ISO 11784, ISO 11785). The passive RFID tag 14 does not require a power supply as it retrieves power for response transmission from the electro-magnetic field delivered by a corresponding RFID reader during interrogation. In a manner known per se, the RFID tag 14 comprises a permanent memory (not shown) storing a unique identifier specific to the tag and an antenna (not shown) for receiving and responding to radio-frequency queries from a RFID reader. The operational lifetime of such a tag is virtually unlimited and thus exceeds the lifetime of an animal carrying it. Therefore, after death of the animal, the RFID tag 14 can be recovered for future use. Moreover, such RFID tags 14 are easily reusable since they are free of maintenance and wear. The recovery can for instance be effected automatically during a slaughter process. Recommended steps before reusing recovered read-only tags are cleaning and functional testing. Where write-once-read-many (WORM) RFID tags or read/write RFID tags are used, additional reprogramming of the tags may be desirable.
Active transponders 100 are provided at crosswalks 80. Wherever applicable, the active transponders 100, besides warning of the presence of a crosswalk 80 provide information on the current status of the traffic lights 82 at this crosswalk. This allows the disabled persons 72, 78 to safely pass the crosswalk 80.
As an illustrative example, the navigation system comprising the infrastructure of transponders 10, 10′, 10″ and a portable device 50 may guide the disabled person 72 or 78 to a chemist's store 84. The chemist's store 84 is located through the position of the transponders 10′. As another example, specific transponders 10″ in the vicinity of a particular service provider 86 may have related database entries which provide additional information regarding the service provider 86 or specifics thereof. This additional information can be provided to a passing user 72, 78 either on request or spontaneously if desired. With an on-line connection of the portable device 50 to the database server 66, this information can be real time information.
Besides providing navigation information, the portable device 50 may also keep track of the current location or position of its user 72, 78. This information can be used to help emergency services to find the disabled person 72 or 78 for example if the concerned person has issued an emergency call due to an accident. To this effect, a specific emergency call function can be provided in the portable device 50.
The transponders 50 are preferably disposed in an area in such a way that there is constantly at least one transponder within the range of the RFID reader 40, i.e. the mesh size of a grid defined by the transponders 10, 10′, 10″ is adapted to the range of the RFID readers 40. Generally, this range is in the order of one to several meters. Due to this range, sufficient accuracy of the system is warranted by a sufficient number of transponders 10. As a large number of transponders 10 is accordingly required, the benefit of reusing animal identification RFID tags 14 as shown in
In conclusion, the present invention provides a reliable integrated system increasing personal independence, mobility and personal safety of disabled persons and in particular visually impaired persons. Moreover, a widespread use is favoured since this system can be implemented at moderate cost.
Number | Date | Country | Kind |
---|---|---|---|
91 115 | Oct 2004 | LU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/55569 | 10/26/2005 | WO | 00 | 9/25/2007 |