1. Field of the Invention
The present invention relates to navigation systems, and more particularly, to a navigation system with a touchpad remote.
2. Description of the Prior Art
A number of navigation methods have been employed over the centuries by sailors desiring to go from one place to another without getting lost on the way or passing through dangerous waters. Whereas in the past, navigation was typically of interest to navigators on marine vessels, as more advanced navigation systems are developed, drivers, hikers, and tourists are rapidly adopting Global Navigation Satellite System (GNSS) receivers as aids in their travels.
One key to navigation is positioning, or the art of knowing precisely where one is at any given moment. In the past, positioning was accomplished through use of a sextant, which measures angular positions of celestial bodies relative to the horizon. Today, positioning can be accomplished with fair accuracy by GNSS receivers. Currently, only the NAVSTAR Global Positioning System (GPS) developed by the United States Department of Defense offers comprehensive positioning satellite coverage around the globe, though other systems should become operational by the year 2010.
A typical GPS receiver will include an antenna for receiving electrical signals transmitted by GPS satellites, and positioning circuitry for determining a position of the GPS receiver from the electrical signals, and generating corresponding position data. The antenna can be integrated into the GPS receiver, or can be connected externally through a wire. A GPS device can integrate the GPS receiver and further means for providing functions that use the position data generated by the GPS receiver.
The GPS device will typically include an internal map, which can be used in conjunction with the position data to determine where the GPS device is located on the map. Based on this information, a navigator function of the GPS device can calculate a route along known roads from the position of the GPS device to another known location. The route can then be displayed on a display of the GPS device, and instructions on upcoming maneuvers can be displayed on the GPS device and played through a speaker of the GPS device to alert the user as to which maneuvers should be taken to reach their destination. As the GPS device travels along the route, the GPS device is also able to determine speed based on how far the GPS device travels over a period of time.
Please refer to
One typical problem encountered when utilizing a configuration such as that shown in
According to the present invention, a navigation system comprises a navigation device, a remote control, and means for establishing a data connection between the navigation device and the remote control. The navigation device comprises a housing, a display for displaying images, a GPS receiver for receiving GPS signals, and a processor coupled to the GPS receiver and the display for determining position according to the GPS signals and processing program code to control the display to display a graphical user interface. The remote control is external to the housing, and the means for establishing the data connection between the remote control and the navigation device are for sending an input signal from the remote control to the navigation device.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
In order to allow the driver to drive defensively while accessing useful functions of the navigation device, the present invention discloses a navigation system shown in
The remote control 210 may comprise a touchpad 211 for receiving touch inputs, and a touchpad processor 212 for processing the touch inputs. The touchpad may be strictly an input device, or the touchpad may display images. The remote control 210 may be mounted in a steering wheel of an automobile, in an armrest of a driver's seat, or in a center column between the driver's seat and a passenger seat. In each case, the remote control 210 would be easily accessible to the user. In addition to the touchpad 211, the remote control 210 may also comprise a button, or buttons, corresponding to functions of the navigation device 220. The button or buttons could be customizable, i.e. the user could map the buttons to functions of the navigation device 220 depending on their requirements. The remote control 210 may also comprise other types of input mechanisms, such as a roller button, a trackball, a joystick, etc. The remote control 210 may receive user inputs, and generate a corresponding input signal, which may be sent to the navigation device 220.
The navigation system further comprises means 230 for establishing a data connection between the remote control 210 and the navigation device 220 for sending the input signal mentioned above to the navigation device 220. The remote control 210, like the navigation device 220, may further comprise a transceiver 213 for sending and receiving data to and from another device, such as the navigation device 220. The means 230 for establishing the data connection between the remote control 210 and the navigation device 220 could comprise a cable or wire, or a wireless connection. The cable could be a serial cable, a universal serial bus (USB) cable, or another type of data cable. On the other hand, if the data connection were the wireless connection, then the means 230 could be a Bluetooth connection, wherein the transceiver 225 of the navigation device and the transceiver 213 of the navigation device both conform to the Bluetooth standard, and can be paired to each other. The means 230 could also be an 802.11-type wireless connection, or any other type of radio frequency (RF) connection. Use of the wireless connection would make the navigation system much easier to implement in the automobile, as installation would not require running the cable from the steering wheel, the armrest, or the column to a dedicated port, or to the navigation device 220 directly if the navigation device 220 were built into the dashboard of the automobile. Instead, by using the wireless connection, the remote control 210 and the navigation device 220 could be paired, and no wiring would be required.
Please refer to
The gesture input region 320 may be utilized to input various types of gesture inputs, such as combinations of points, lines, and curves. Please refer to
In summary, the present invention makes controlling the navigation device 220 while driving more convenient and safe through addition of the remote control 210 (or 300) and the means 230 for establishing the data connection between the remote control 210 and the navigation device 220. The remote control 210 can be installed conveniently in the steering wheel, armrest, or center column of the automobile, providing quick access, without requiring line of sight, to many commands and functions of the navigation device 220. This increases safety, and also makes it easier for the user to access the navigation device 220 whether driving or at a stop, without having to remove their seatbelt, or reach to find small buttons on the navigation device 220 itself.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention.