Near field transducer with high refractive index pin for heat assisted magnetic recording

Information

  • Patent Grant
  • 8971160
  • Patent Number
    8,971,160
  • Date Filed
    Thursday, March 27, 2014
    10 years ago
  • Date Issued
    Tuesday, March 3, 2015
    9 years ago
Abstract
An HAMR NFT pin and main body structure comprising a pin material with high index of refraction and low absorption coefficient is disclosed. The disclosed NFT pin provides a comparable media absorption efficiency to the conventional Au pin while improving on overall NFT reliability. The protrusion of the NFT pin is reduced and overall life of the writer is prolonged. The main body may comprise any noble metal or metal alloy suitable for achieving optical resonance in an HAMR NFT. The cladding material may be selected such that its coefficient of thermal expansion closely matches the coefficient of thermal expansion of the pin material.
Description
BACKGROUND

Heat-assisted magnetic recording (HAMR) writers have been developed to meet the growing demand for improved magnetic disk drive data capacity. HAMR writers heat high-stability magnetic compounds to apply changes in magnetic orientation. These materials can store bits in a much smaller areas without being limited by the superparamagnetic effect. In this regard, HAMR writers are a promising solution for pushing the data areal density of a hard disk to 1 Tbit/in2 and beyond.


One of the critical components of the HAMR is the Near-Field Transducer (NFT) which comprises an NFT pin and an NFT main body. The NFT focuses incoming light to a nano-sized highly concentrated optical spot and delivers enough energy through the NFT pin to the media to achieve HAMR writing. The NFT couples the light from a waveguide (WG) to a resonator (the main body portion), where the light wave excites a surface plasmon wave and becomes resonant. A node of the resonant light wave is aligned with the pin by turning the polarization of the NFT, for example, by adjusting two arms of the waveguide.



FIG. 1 illustrates the temperature distribution within the conventional NFT 100. A quadruple pole resonance is observed. Because the pin 101 takes the role to focus the resonant wave energy, it is the highest temperature component of the already hot NFT 100. In the conventional NFT 100, the temperature difference between the NFT pin 101 and NFT main body 102 can be as high as 100 K. The conventional NFT comprises a noble metal or metal alloy in the resonator portion (main body) 102 and pin portion 101. Generally, gold (Au) or silver (Ag) are used. A noble metal is one of the few known options for achieving optical resonance in the visible light range. However, noble metals such as gold have a high thermal conductivity. The very high temperature of the conventional NFT noble metal pin 101, in addition to reducing its life span, causes other problems.


As illustrated in FIG. 2, the conventional NFT pin 101 significantly protrudes because of the high mismatch between the coefficient of thermal expansion (CTE) of the pin 101 and the surrounding cladding material. The conventional NFT pin with Au-pin and SiO2 cladding material, for example, typically has a CTE of 14.2 ppm/K for the Au pin and a CTE of 0.8 ppm/K for the surrounding SiO2 cladding material. Scanning electron microscope (SEM) image 200 illustrates one example view of the protrusion. Atomic force microscope (AFM) image 210 illustrates another view of the protrusion. This protrusion can be as high as 10 nm. The protruding pin may break the thin layer of carbon overcoat (˜1-2 nm) on the ABS plane protecting the slider. This leads to burnishing of the magnetic writer against the media and significantly shortens the pin's lifespan. Eventually, the head-disk-interface is spoiled, and the driver loses function. Accordingly, it is desirable to manufacture an HAMR with NFT that does not exhibit this property.





BRIEF DESCRIPTION OF THE DRAWINGS

The present application is illustrated by way of example, and not limitation, in the figures of the accompanying drawings in which:



FIG. 1 is a thermal model illustrating the typical temperature distribution within the conventional NFT.



FIG. 2 includes SEM and AFM images illustrating the conventional NFT pin protrusion during heating.



FIGS. 3A-3B illustrate an exemplary HAMR head that may be manufactured in accordance with embodiments of the present disclosure.



FIGS. 4A-4C illustrate three exemplary implementations of an NFT structure.



FIG. 5A is a thermal model illustrating the normalized media absorption efficiency with respect to the NFT with an Au pin.



FIG. 5B is a thermal model illustrating the normalized NFT absorption efficiency with respect to the counterpart of the NFT with Au pin.



FIG. 5C is a thermal model illustrating the cross track full width half maximum spot size in the middle of the recording layer of a recording media.



FIG. 5D is a thermal model illustrating the down track full width half maximum spot size in the middle of the recording layer of a recording media.



FIGS. 6A-6C illustrate exemplary implementations of an NFT comprising an amorphous silicon pin and gold or gold alloy main body.



FIGS. 7A-7B are thermal models illustrating a two-dimensional temperature footprint in the recording layer of media when using high n materials.





DETAILED DESCRIPTION

In the following description, numerous specific details are set forth to provide a thorough understanding of various embodiment of the present disclosure. It will be apparent to one skilled in the art, however, that these specific details need not be employed to practice various embodiments of the present disclosure. In other instances, well known components or methods have not been described in detail to avoid unnecessarily obscuring various embodiments of the present disclosure.


In accordance with the present disclosure, an HAMR NFT with a high refractive index and low absorption coefficient pin material is disclosed. In some embodiments, the NFT main body, which serves as a resonator, comprises Au, an Au Alloy, or other noble metal. In some embodiments, the CTE of the pin's surrounding cladding material may be matched to the pin's CTE. The disclosed HAMR NFT provides the benefit of a more optically, thermally, and mechanically reliable NFT with stable performance and prolonged lifetime in comparison to the conventional NFT.



FIG. 3A illustrates a cross-sectional view of an exemplary HAMR head 300 that may be manufactured in accordance with embodiments of the present disclosure. HAMR head 300 may comprise a waveguide 312, a pole 314, a near-field transducer (NFT) 316, a grating 320, and a light (e.g. laser) spot 322 on the grating 320. FIG. 3B is a top view of NFT 316. NFT 316 includes a main body portion 316B and a pin portion 316A. Main body portion 316B may be shaped as a circle, a square, or another shape. The light or light energy from light spot 322 on grating 320 is coupled to waveguide 312, which guides the light energy to NFT 316 near air-bearing surface (ABS) 315. The main body portion of NFT 316 collects light energy from waveguide 312 and radiates it through the pin to media 330 on spot 332 to elevate the temperature of media 330 and reduce coercivity and change the magnetization of the media. HAMR 300 may then write data to the heated region of recording media 330 by energizing pole 314.


In some embodiments, the main body of the NFT structure may be modified to protect the NFT main body. FIGS. 4A-4C illustrate three exemplary alternative embodiments. In FIG. 4A, NFT 400 comprises a noble metal or alloy 401 (e.g. Au) that encases a central part 402 of the NFT. The noble metal 401 becomes a ring surrounding the main body to sustain the resonance wave. In FIG. 4B, a high n (n referring to the optical index of refraction of the material) main body and high n pin (together 411) are manufactured on top of a noble metal or alloy (e.g. Au) main body 412 to create NFT structure 410. In this embodiment, the energy is delivered through the high n pin of 411. This provides the benefit of encapsulating the noble metal main body, thereby eliminating the risk of the pin's protrusion. In FIG. 4C, NFT 420 comprises a high n disk 421 encapsulating a noble metal or alloy main body 422. In this embodiment, the resonant energy inside the main body 422 is delivered to the media by autofocusing.


Pin 316A materials that maintain desired NFT performance may be identified by mapping the material refractive index (n) and absorption coefficient (k) versus the media absorption efficiency. FIGS. 5A-5D are thermal models illustrating (A) the normalized media 330 absorption efficiency with respect to the NFT with Au pin; (B) the normalized NFT 316 absorption efficiency with respect to the counterpart of the NFT with Au pin; (C) the CT-FWHM (cross track full width half maximum) spot size (nm) in the middle of the recording layer of media 330; and (D) the DT-FWHM (down track full width half maximum) spot size (nm) in the middle of the recording layer of media 330.


As illustrated in FIGS. 5A-5D besides the low n high k materials (e.g. Au) used in the conventional NFT, high n low k materials (e.g., amorphous silicon, aluminum-doped zinc oxide, gallium zinc oxide, titanium dioxide, indium tin oxide) exhibit desirable performance properties such as high media absorption efficiency, high NFT absorption efficiency, and smaller FWHM spot sizes. These thermal models illustrate that the temperature field intensity is better confined (concentrated at the center) in the recording layer of media 330 in the n=4, k=0 case versus the conventional Au pin case. This provides the benefit of removing the uncertainty associated with Magnetic Thermal Offset (MTO), thereby improving the writing performance of the HAMR writer.


Table 1A, below, illustrates an exemplary list of various high n, low k materials (in addition to Au) that may be used to manufacture an NFT pin 316A in various embodiments of the present disclosure. The CTE of the materials is listed as well. Table 1B, below, illustrates two example materials (SiO2 and Ta2O5) that may be used as the surrounding cladding materials for the pin materials of Table 1A.









TABLE 1A







Pin Material












Pin

N @
k @
CTE



Material
Full Name
830 nm
830 nm
(ppm/k)
remarks















Ge
Germanium
4.65
0.29
6



Si
Silicon
3.67
0.005
2.6



a-Si
Amorphous
4.06
0.023
4.8




silicon






GaAs
Gallium
3.67
0.08
3.5




arsenide






AlSb
Aluminium
3.54
0.0002
4.2




antimonide






AlAs
Aluminium
2.99
0
5.2




arsenide






ITO
Indium tin
2.45
0
7.2
Indium-



oxide



Tin-Oxide


TiO2
Titanium
2.577
0
7.14




dioxide






TeO2
Tellurium
2.256
0
19.0/6.0 
anisotropic



dioxide






InP
Indium
3.369
0





phosphide






GaN
Gallium
2.35
0
5.5




nitride






ZrO2
Zirconium
2.206
0
 4.7/13.7
anisotropic



dioxide






AIN
Aluminum
2.137
0
4




nitride






Au
Gold
0.2
5.4
14.2
















TABLE 1B







Cladding Material











Cladding

N @
k @
CTE


Material
Full Name
830 nm
830 nm
(ppm/K)














SiO2
Silicon dioxide
1.45
0
0.8


Ta205
Tantalum pentoxide
2.1
0
5.4









The conventional NFT comprises an Au pin and SiO2 cladding material. As shown in Tables 1A-1B, the CTE mismatch in the conventional NFT is greater than a factor of 15 (14.2 versus 0.8 CTE). In accordance with embodiments the present disclosure, the NFT pin is manufactured using any suitable high n and low k material. For example, in some embodiments the index of refraction of the pin material is greater than 2 and the absorption coefficient of the pin material is less than 1. In one specific embodiment, amorphous silicon is used as the pin material. In another embodiment, Gallium arsenide may be used as the pin material. In yet another embodiment, germanium may be used as the pin material.


In some embodiments, the cladding material may be chosen such that its CTE closely matches the CTE of the pin material. In some embodiments, the coefficient of thermal expansion of the pin material is less than ten times the coefficient of thermal expansion of a cladding material surrounding the pin. For example, in one embodiment Ta2O5 (CTE 5.4) is used as a cladding material for pin material comprising a-Si (CTE of 4.8). In one embodiment, the noble metal of the disk is gold and the pin material is at least one of the group comprising Si, a-Si, Ge, AZO, and GZO. In one embodiment the cladding material is Ta2O5. In further embodiments, the pin material and cladding material may be selected such that they have approximately the same CTE.



FIGS. 6A-6C illustrate three exemplary implementations of an NFT comprising an amorphous silicon (a-Si) pin (602, 612, or 622) and gold or gold alloy main body (601, 611, or 621). In these embodiments, the NFT comprises a diffusion barrier between the a-Si pin material and the gold or gold alloy main body. NFT 600 is patterned on a narrow wedge bar, thereby creating pin 602 with width 603. In one embodiment, the width 603 is between 70 and 120 nm. In one specific embodiment, the width 603 is approximately 90 nm. NFT 610 is patterned on a medium width wedge bar, thereby creating pin 612 with width 613. In one embodiment, the width 613 is between 150 and 250 nm. In one exemplary embodiment, the width 613 is approximately 180 nm. NFT 620 is patterned on a wide wedge bar, thereby creating pin 622 with width 623. In one embodiment, the width 623 is greater than 550 nm. In one specific embodiment, the width 623 is 800 nm. In one embodiment, main body 601, 611, or 621 is a disk. In one implementation of this embodiment, the diameter of the disk is approximately 230 nm.



FIGS. 7A-7B are thermal models illustrating a two-dimensional temperature footprint in the recording layer of media 330 for the n=2, K=4.8 (700) and n=4, K=4.8 (710) cases. In these example models, the width of the modeled physical pin is 40 nm. The cross track isotherm footprint for the n=4, K=4.8 case is approximately 50 nm at 625K. This is less than the 75 nm footprint for the Au or Au alloy baseline case.


In the foregoing specification, embodiments of the disclosure have been described with reference to specific exemplary features thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the disclosure. The specification and figures are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A heat-assisted magnetic recording (HAMR) head, comprising: at least one waveguide; anda near-field transducer (NFT) comprising: a main body;a pin, wherein the pin comprises a pin material with a high index of optical refraction and a low thermal absorption coefficient; anda cladding material surrounding the pin materialwherein the index of optical refraction is greater than 2 and wherein the absorption coefficient is less than 1;wherein the pin material comprises at least one of: Ge, Si, a-Si, GaAs, AlSb, AZO, GZO, GaP, AlAs, ITO, TiO2, TeO2, GaN, ZrO2, and AlN;wherein the main body comprises gold or a gold alloy;wherein the NFT comprises a second main body, wherein the second main body comprises a material with a high index of optical refraction, and wherein the second main body and the pin are manufactured on top of the gold or gold alloy main body.
  • 2. The HAMR head of claim 1, wherein the pin material's coefficient of thermal expansion and the cladding material's coefficient of thermal expansion are within a factor of 10.
  • 3. The HAMR head of claim 2, wherein the pin material's coefficient of thermal expansion and the cladding material's coefficient of thermal expansion are within a factor of 4.
  • 4. The HAMR head of claim 3, wherein the pin material's coefficient of thermal expansion and the cladding material's coefficient of thermal expansion are approximately the same.
  • 5. The HAMR head of claim 1, wherein the cladding material comprises at least one of SiO2 or Ta2O5.
  • 6. The HAMR head of claim 5, wherein the index of optical refraction is greater than 3.4.
  • 7. The HAMR head of claim 5, wherein the pin material comprises a-Si and the cladding material comprises Ta2O5.
  • 8. The HAMR head of claim 1, wherein a central part of the main body comprises a material with a high index of optical refraction.
  • 9. The HAMR head of claim 1, wherein the pin encapsulates the main body.
  • 10. A heat-assisted magnetic recording (HAMR) head, comprising: at least one waveguide; anda near-field transducer (NFT) comprising: a main body;a pin, wherein the pin comprises a pin material with a high index of optical refraction and a low thermal absorption coefficient; anda cladding material surrounding the in materialwherein the index of optical refraction is greater than 2 and wherein the absorption coefficient is less than 1;wherein the pin material comprises at least one of: Ge, Si, a-Si, GaAs, AlSb, AZO, GZO, GaP, AlAs, ITO, TiO2, TeO2, GaN, ZrO2, and AlN;wherein the main body comprises gold or a gold alloy;wherein the pin material comprises a-Si, and wherein the NFT comprises a diffusion barrier between the a-Si pin material and the gold or gold alloy main body.
  • 11. A hard disk drive, comprising: a rotatable disk having a disk surface;a disk drive base;a spindle motor attached to the disk drive base and configured to support the disk for rotating the disk with respect to the disk drive base surface; andan HAMR head, comprising: at least one waveguide; anda near-field transducer (NFT) comprising: a main body;a pin, wherein the pin comprises a pin material with a high index of optical refraction and a low thermal absorption coefficient; anda second main body comprising a material with a high index of optical refraction, wherein the second main body and the pin are manufactured on top of the main body.
  • 12. The hard disk drive of claim 11, wherein the pin material comprises at least one of Ge, Si, a-Si, GaAs, AlSb, AZO, GZO, GaP, AlAs, ITO, TiO2, TeO2, GaN, ZrO2, or AlN.
  • 13. A near-field transducer (NFT) comprising: a main body; anda pin, wherein the pin comprises a pin material with a high index of optical refraction and a low thermal absorption coefficient; anda second main body comprising a material with a high index of optical refraction, wherein the second main body and the pin are manufactured on top of the main body.
  • 14. The NFT of claim 13, wherein the pin material comprises at least one of Ge, Si, a-Si, GaAs, AlSb, AZO, GZO, GaP, AlAs, ITO, TiO2, TeO2, GaN, ZrO2, or AlN.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Ser. No. 61/918,199, filed Dec. 19, 2013, which is incorporated herein by reference in its entirety.

US Referenced Citations (648)
Number Name Date Kind
4106975 Berkenblit et al. Aug 1978 A
4667395 Ahlgren et al. May 1987 A
5872684 Hadfield et al. Feb 1999 A
5940697 Yoo et al. Aug 1999 A
5994747 Wu Nov 1999 A
6016290 Chen et al. Jan 2000 A
6018441 Wu et al. Jan 2000 A
6025978 Hoshi et al. Feb 2000 A
6025988 Yan Feb 2000 A
6032353 Hiner et al. Mar 2000 A
6033532 Minami Mar 2000 A
6034851 Zarouri et al. Mar 2000 A
6043959 Crue et al. Mar 2000 A
6046885 Aimonetti et al. Apr 2000 A
6049650 Jerman et al. Apr 2000 A
6055138 Shi Apr 2000 A
6058094 Davis et al. May 2000 A
6069770 Cui et al. May 2000 A
6073338 Liu et al. Jun 2000 A
6078479 Nepela et al. Jun 2000 A
6081499 Berger et al. Jun 2000 A
6094803 Carlson et al. Aug 2000 A
6099362 Viches et al. Aug 2000 A
6103073 Thayamballi Aug 2000 A
6108166 Lederman Aug 2000 A
6118629 Huai et al. Sep 2000 A
6118638 Knapp et al. Sep 2000 A
6125018 Takagishi et al. Sep 2000 A
6130779 Carlson et al. Oct 2000 A
6134089 Barr et al. Oct 2000 A
6136166 Shen et al. Oct 2000 A
6137661 Shi et al. Oct 2000 A
6137662 Huai et al. Oct 2000 A
6160684 Heist et al. Dec 2000 A
6163426 Nepela et al. Dec 2000 A
6166891 Lederman et al. Dec 2000 A
6173486 Hsiao et al. Jan 2001 B1
6175476 Huai et al. Jan 2001 B1
6178066 Barr Jan 2001 B1
6178070 Hong et al. Jan 2001 B1
6178150 Davis Jan 2001 B1
6181485 He Jan 2001 B1
6181525 Carlson Jan 2001 B1
6185051 Chen et al. Feb 2001 B1
6185077 Tong et al. Feb 2001 B1
6185081 Simion et al. Feb 2001 B1
6188549 Wiitala Feb 2001 B1
6190764 Shi et al. Feb 2001 B1
6193584 Rudy et al. Feb 2001 B1
6195229 Shen et al. Feb 2001 B1
6198608 Hong et al. Mar 2001 B1
6198609 Barr et al. Mar 2001 B1
6201673 Rottmayer et al. Mar 2001 B1
6204998 Katz Mar 2001 B1
6204999 Crue et al. Mar 2001 B1
6212153 Chen et al. Apr 2001 B1
6215625 Carlson Apr 2001 B1
6219205 Yuan et al. Apr 2001 B1
6221218 Shi et al. Apr 2001 B1
6222707 Huai et al. Apr 2001 B1
6229782 Wang et al. May 2001 B1
6230959 Heist et al. May 2001 B1
6233116 Chen et al. May 2001 B1
6233125 Knapp et al. May 2001 B1
6237215 Hunsaker et al. May 2001 B1
6252743 Bozorgi Jun 2001 B1
6255721 Roberts Jul 2001 B1
6258468 Mahvan et al. Jul 2001 B1
6266216 Hikami et al. Jul 2001 B1
6271604 Frank, Jr. et al. Aug 2001 B1
6275354 Huai et al. Aug 2001 B1
6277505 Shi et al. Aug 2001 B1
6282056 Feng et al. Aug 2001 B1
6296955 Hossain et al. Oct 2001 B1
6297955 Frank, Jr. et al. Oct 2001 B1
6304414 Crue, Jr. et al. Oct 2001 B1
6307715 Berding et al. Oct 2001 B1
6310746 Hawwa et al. Oct 2001 B1
6310750 Hawwa et al. Oct 2001 B1
6317290 Wang et al. Nov 2001 B1
6317297 Tong et al. Nov 2001 B1
6322911 Fukagawa et al. Nov 2001 B1
6330136 Wang et al. Dec 2001 B1
6330137 Knapp et al. Dec 2001 B1
6333830 Rose et al. Dec 2001 B2
6340533 Ueno et al. Jan 2002 B1
6349014 Crue, Jr. et al. Feb 2002 B1
6351355 Min et al. Feb 2002 B1
6353318 Sin et al. Mar 2002 B1
6353511 Shi et al. Mar 2002 B1
6356412 Levi et al. Mar 2002 B1
6359779 Frank, Jr. et al. Mar 2002 B1
6369983 Hong Apr 2002 B1
6376964 Young et al. Apr 2002 B1
6377535 Chen et al. Apr 2002 B1
6381095 Sin et al. Apr 2002 B1
6381105 Huai et al. Apr 2002 B1
6389499 Frank, Jr. et al. May 2002 B1
6392850 Tong et al. May 2002 B1
6396660 Jensen et al. May 2002 B1
6399179 Hanrahan et al. Jun 2002 B1
6400526 Crue, Jr. et al. Jun 2002 B2
6404600 Hawwa et al. Jun 2002 B1
6404601 Rottmayer et al. Jun 2002 B1
6404706 Stovall et al. Jun 2002 B1
6410170 Chen et al. Jun 2002 B1
6411522 Frank, Jr. et al. Jun 2002 B1
6417998 Crue, Jr. et al. Jul 2002 B1
6417999 Knapp et al. Jul 2002 B1
6418000 Gibbons et al. Jul 2002 B1
6418048 Sin et al. Jul 2002 B1
6421211 Hawwa et al. Jul 2002 B1
6421212 Gibbons et al. Jul 2002 B1
6424505 Lam et al. Jul 2002 B1
6424507 Lederman et al. Jul 2002 B1
6428715 Abels et al. Aug 2002 B1
6430009 Komaki et al. Aug 2002 B1
6430806 Chen et al. Aug 2002 B1
6433965 Gopinathan et al. Aug 2002 B1
6433968 Shi et al. Aug 2002 B1
6433970 Knapp et al. Aug 2002 B1
6437945 Hawwa et al. Aug 2002 B1
6445536 Rudy et al. Sep 2002 B1
6445542 Levi et al. Sep 2002 B1
6445553 Barr et al. Sep 2002 B2
6445554 Dong et al. Sep 2002 B1
6447935 Zhang et al. Sep 2002 B1
6448765 Chen et al. Sep 2002 B1
6451514 Iitsuka Sep 2002 B1
6452742 Crue et al. Sep 2002 B1
6452765 Mahvan et al. Sep 2002 B1
6456465 Louis et al. Sep 2002 B1
6459552 Liu et al. Oct 2002 B1
6462920 Karimi Oct 2002 B1
6466401 Hong et al. Oct 2002 B1
6466402 Crue, Jr. et al. Oct 2002 B1
6466404 Crue, Jr. et al. Oct 2002 B1
6468436 Shi et al. Oct 2002 B1
6469877 Knapp et al. Oct 2002 B1
6477019 Matono et al. Nov 2002 B2
6479096 Shi et al. Nov 2002 B1
6483662 Thomas et al. Nov 2002 B1
6487040 Hsiao et al. Nov 2002 B1
6487056 Gibbons et al. Nov 2002 B1
6490125 Barr Dec 2002 B1
6496330 Crue, Jr. et al. Dec 2002 B1
6496334 Pang et al. Dec 2002 B1
6504676 Hiner et al. Jan 2003 B1
6512657 Heist et al. Jan 2003 B2
6512659 Hawwa et al. Jan 2003 B1
6512661 Louis Jan 2003 B1
6512690 Qi et al. Jan 2003 B1
6515573 Dong et al. Feb 2003 B1
6515791 Hawwa et al. Feb 2003 B1
6532823 Knapp et al. Mar 2003 B1
6535363 Hosomi et al. Mar 2003 B1
6552874 Chen et al. Apr 2003 B1
6552928 Qi et al. Apr 2003 B1
6577470 Rumpler Jun 2003 B1
6583961 Levi et al. Jun 2003 B2
6583968 Scura et al. Jun 2003 B1
6597548 Yamanaka et al. Jul 2003 B1
6611398 Rumpler et al. Aug 2003 B1
6618223 Chen et al. Sep 2003 B1
6629357 Akoh Oct 2003 B1
6633464 Lai et al. Oct 2003 B2
6636394 Fukagawa et al. Oct 2003 B1
6639291 Sin et al. Oct 2003 B1
6650503 Chen et al. Nov 2003 B1
6650506 Risse Nov 2003 B1
6654195 Frank, Jr. et al. Nov 2003 B1
6657816 Barr et al. Dec 2003 B1
6661621 Iitsuka Dec 2003 B1
6661625 Sin et al. Dec 2003 B1
6674610 Thomas et al. Jan 2004 B1
6680863 Shi et al. Jan 2004 B1
6683763 Hiner et al. Jan 2004 B1
6687098 Huai Feb 2004 B1
6687178 Qi et al. Feb 2004 B1
6687977 Knapp et al. Feb 2004 B2
6691226 Frank, Jr. et al. Feb 2004 B1
6697294 Qi et al. Feb 2004 B1
6700738 Sin et al. Mar 2004 B1
6700759 Knapp et al. Mar 2004 B1
6704158 Hawwa et al. Mar 2004 B2
6707083 Hiner et al. Mar 2004 B1
6713801 Sin et al. Mar 2004 B1
6721138 Chen et al. Apr 2004 B1
6721149 Shi et al. Apr 2004 B1
6721203 Qi et al. Apr 2004 B1
6724569 Chen et al. Apr 2004 B1
6724572 Stoev et al. Apr 2004 B1
6729015 Matono et al. May 2004 B2
6735850 Gibbons et al. May 2004 B1
6737281 Dang et al. May 2004 B1
6744608 Sin et al. Jun 2004 B1
6746877 Hornik et al. Jun 2004 B1
6747301 Hiner et al. Jun 2004 B1
6751055 Alfoqaha et al. Jun 2004 B1
6754049 Seagle et al. Jun 2004 B1
6756071 Shi et al. Jun 2004 B1
6757140 Hawwa Jun 2004 B1
6760196 Niu et al. Jul 2004 B1
6762910 Knapp et al. Jul 2004 B1
6765756 Hong et al. Jul 2004 B1
6775902 Huai et al. Aug 2004 B1
6778358 Jiang et al. Aug 2004 B1
6781927 Heanuc et al. Aug 2004 B1
6785955 Chen et al. Sep 2004 B1
6791793 Chen et al. Sep 2004 B1
6791807 Hikami et al. Sep 2004 B1
6795630 Challener et al. Sep 2004 B2
6798616 Seagle et al. Sep 2004 B1
6798625 Ueno et al. Sep 2004 B1
6801408 Chen et al. Oct 2004 B1
6801411 Lederman et al. Oct 2004 B1
6803615 Sin et al. Oct 2004 B1
6806035 Atireklapvarodom et al. Oct 2004 B1
6807030 Hawwa et al. Oct 2004 B1
6807332 Hawwa Oct 2004 B1
6809899 Chen et al. Oct 2004 B1
6816345 Knapp et al. Nov 2004 B1
6828897 Nepela Dec 2004 B1
6829160 Qi et al. Dec 2004 B1
6829819 Crue, Jr. et al. Dec 2004 B1
6833979 Knapp et al. Dec 2004 B1
6834010 Qi et al. Dec 2004 B1
6857937 Bajorek Feb 2005 B2
6859343 Alfoqaha et al. Feb 2005 B1
6859997 Tong et al. Mar 2005 B1
6861937 Feng et al. Mar 2005 B1
6870712 Chen et al. Mar 2005 B2
6873494 Chen et al. Mar 2005 B2
6873547 Shi et al. Mar 2005 B1
6879464 Sun et al. Apr 2005 B2
6888184 Shi et al. May 2005 B1
6888704 Diao et al. May 2005 B1
6891702 Tang May 2005 B1
6894871 Alfoqaha et al. May 2005 B2
6894877 Crue, Jr. et al. May 2005 B1
6906894 Chen et al. Jun 2005 B2
6909578 Missell et al. Jun 2005 B1
6912106 Chen et al. Jun 2005 B1
6934113 Chen Aug 2005 B1
6934129 Zhang et al. Aug 2005 B1
6940688 Jiang et al. Sep 2005 B2
6942824 Li Sep 2005 B1
6943993 Chang et al. Sep 2005 B2
6944938 Crue, Jr. et al. Sep 2005 B1
6947258 Li Sep 2005 B1
6950266 McCaslin et al. Sep 2005 B1
6954332 Hong et al. Oct 2005 B1
6958885 Chen et al. Oct 2005 B1
6961221 Niu et al. Nov 2005 B1
6969989 Mei Nov 2005 B1
6975486 Chen et al. Dec 2005 B2
6987643 Seagle Jan 2006 B1
6989962 Dong et al. Jan 2006 B1
6989972 Stoev et al. Jan 2006 B1
7006327 Krounbi et al. Feb 2006 B2
7007372 Chen et al. Mar 2006 B1
7012832 Sin et al. Mar 2006 B1
7023658 Knapp et al. Apr 2006 B1
7026063 Ueno et al. Apr 2006 B2
7027268 Zhu et al. Apr 2006 B1
7027274 Sin et al. Apr 2006 B1
7035046 Young et al. Apr 2006 B1
7041985 Wang et al. May 2006 B1
7046490 Ueno et al. May 2006 B1
7054113 Seagle et al. May 2006 B1
7057857 Niu et al. Jun 2006 B1
7059868 Yan Jun 2006 B1
7086931 Oyama et al. Aug 2006 B2
7092195 Liu et al. Aug 2006 B1
7110289 Sin et al. Sep 2006 B1
7111382 Knapp et al. Sep 2006 B1
7113366 Wang et al. Sep 2006 B1
7114241 Kubota et al. Oct 2006 B2
7116517 He et al. Oct 2006 B1
7124654 Davies et al. Oct 2006 B1
7126788 Liu et al. Oct 2006 B1
7126790 Liu et al. Oct 2006 B1
7131346 Buttar et al. Nov 2006 B1
7133253 Seagle et al. Nov 2006 B1
7134185 Knapp et al. Nov 2006 B1
7154708 Chhabra et al. Dec 2006 B2
7154715 Yamanaka et al. Dec 2006 B2
7170725 Zhou et al. Jan 2007 B1
7177117 Jiang et al. Feb 2007 B1
7193815 Stoev et al. Mar 2007 B1
7196880 Anderson et al. Mar 2007 B1
7199974 Alfoqaha Apr 2007 B1
7199975 Pan Apr 2007 B1
7211339 Seagle et al. May 2007 B1
7212384 Stoev et al. May 2007 B1
7238292 He et al. Jul 2007 B1
7239478 Sin et al. Jul 2007 B1
7248431 Liu et al. Jul 2007 B1
7248433 Stoev et al. Jul 2007 B1
7248449 Seagle Jul 2007 B1
7272079 Challener Sep 2007 B2
7280325 Pan Oct 2007 B1
7283327 Liu et al. Oct 2007 B1
7284316 Huai et al. Oct 2007 B1
7286329 Chen et al. Oct 2007 B1
7289303 Sin et al. Oct 2007 B1
7292409 Stoev et al. Nov 2007 B1
7296339 Yang et al. Nov 2007 B1
7307814 Seagle et al. Dec 2007 B1
7307818 Park et al. Dec 2007 B1
7310204 Stoev et al. Dec 2007 B1
7318947 Park et al. Jan 2008 B1
7333295 Medina et al. Feb 2008 B1
7337530 Stoev et al. Mar 2008 B1
7342752 Zhang et al. Mar 2008 B1
7349170 Rudman et al. Mar 2008 B1
7349179 He et al. Mar 2008 B1
7354664 Jiang et al. Apr 2008 B1
7363697 Dunn et al. Apr 2008 B1
7371152 Newman May 2008 B1
7372665 Stoev et al. May 2008 B1
7375926 Stoev et al. May 2008 B1
7379269 Krounbi et al. May 2008 B1
7386933 Krounbi et al. Jun 2008 B1
7389577 Shang et al. Jun 2008 B1
7417832 Erickson et al. Aug 2008 B1
7419891 Chen et al. Sep 2008 B1
7428124 Song et al. Sep 2008 B1
7430098 Song et al. Sep 2008 B1
7436620 Kang et al. Oct 2008 B1
7436638 Pan Oct 2008 B1
7440220 Kang et al. Oct 2008 B1
7443632 Stoev et al. Oct 2008 B1
7444740 Chung et al. Nov 2008 B1
7455332 Jose et al. Nov 2008 B2
7461447 Tzeng et al. Dec 2008 B2
7493688 Wang et al. Feb 2009 B1
7500255 Seigler et al. Mar 2009 B2
7508627 Zhang et al. Mar 2009 B1
7522377 Jiang et al. Apr 2009 B1
7522379 Krounbi et al. Apr 2009 B1
7522382 Pan Apr 2009 B1
7542246 Song et al. Jun 2009 B1
7551406 Thomas et al. Jun 2009 B1
7552523 He et al. Jun 2009 B1
7554767 Hu et al. Jun 2009 B1
7583466 Kermiche et al. Sep 2009 B2
7595967 Moon et al. Sep 2009 B1
7639457 Chen et al. Dec 2009 B1
7660080 Liu et al. Feb 2010 B1
7672080 Tang et al. Mar 2010 B1
7672086 Jiang Mar 2010 B1
7684160 Erickson et al. Mar 2010 B1
7688546 Bai et al. Mar 2010 B1
7691434 Zhang et al. Apr 2010 B1
7695761 Shen et al. Apr 2010 B1
7719795 Hu et al. May 2010 B2
7726009 Liu et al. Jun 2010 B1
7729086 Song et al. Jun 2010 B1
7729087 Stoev et al. Jun 2010 B1
7736823 Wang et al. Jun 2010 B1
7770285 Bonhote et al. Aug 2010 B2
7785666 Sun et al. Aug 2010 B1
7791839 Olson et al. Sep 2010 B2
7796356 Fowler et al. Sep 2010 B1
7800858 Bajikar et al. Sep 2010 B1
7819979 Chen et al. Oct 2010 B1
7829264 Wang et al. Nov 2010 B1
7846643 Sun et al. Dec 2010 B1
7855854 Hu et al. Dec 2010 B2
7869160 Pan et al. Jan 2011 B1
7872824 Macchioni et al. Jan 2011 B1
7872833 Hu et al. Jan 2011 B2
7910267 Zeng et al. Mar 2011 B1
7911735 Sin et al. Mar 2011 B1
7911737 Jiang et al. Mar 2011 B1
7916426 Hu et al. Mar 2011 B2
7918013 Dunn et al. Apr 2011 B1
7965464 Batra et al. Jun 2011 B2
7968219 Jiang et al. Jun 2011 B1
7982989 Shi et al. Jul 2011 B1
8008912 Shang Aug 2011 B1
8012804 Wang et al. Sep 2011 B1
8014101 Shimazawa et al. Sep 2011 B2
8015692 Zhang et al. Sep 2011 B1
8018677 Chung et al. Sep 2011 B1
8018678 Zhang et al. Sep 2011 B1
8024748 Moravec et al. Sep 2011 B1
8031561 Hellwig et al. Oct 2011 B2
8072705 Wang et al. Dec 2011 B1
8074345 Anguelouch et al. Dec 2011 B1
8077418 Hu et al. Dec 2011 B1
8077434 Shen et al. Dec 2011 B1
8077435 Liu et al. Dec 2011 B1
8077557 Hu et al. Dec 2011 B1
8079135 Shen et al. Dec 2011 B1
8081403 Chen et al. Dec 2011 B1
8091210 Sasaki et al. Jan 2012 B1
8097846 Anguelouch et al. Jan 2012 B1
8104166 Zhang et al. Jan 2012 B1
8107326 Hirano et al. Jan 2012 B1
8116043 Leng et al. Feb 2012 B2
8116171 Lee Feb 2012 B1
8125856 Li et al. Feb 2012 B1
8134794 Wang Mar 2012 B1
8136224 Sun et al. Mar 2012 B1
8136225 Zhang et al. Mar 2012 B1
8136805 Lee Mar 2012 B1
8141235 Zhang Mar 2012 B1
8146236 Luo et al. Apr 2012 B1
8149536 Yang et al. Apr 2012 B1
8151441 Rudy et al. Apr 2012 B1
8163185 Sun et al. Apr 2012 B1
8164760 Willis Apr 2012 B2
8164855 Gibbons et al. Apr 2012 B1
8164864 Kaiser et al. Apr 2012 B2
8165709 Rudy Apr 2012 B1
8166631 Tran et al. May 2012 B1
8166632 Zhang et al. May 2012 B1
8169473 Yu et al. May 2012 B1
8171618 Wang et al. May 2012 B1
8179636 Bai et al. May 2012 B1
8191237 Luo et al. Jun 2012 B1
8194365 Leng et al. Jun 2012 B1
8194366 Li et al. Jun 2012 B1
8196285 Zhang et al. Jun 2012 B1
8200054 Li et al. Jun 2012 B1
8203800 Li et al. Jun 2012 B2
8208350 Hu et al. Jun 2012 B1
8220140 Wang et al. Jul 2012 B1
8222599 Chien Jul 2012 B1
8225488 Zhang et al. Jul 2012 B1
8227023 Liu et al. Jul 2012 B1
8228633 Tran et al. Jul 2012 B1
8231796 Li et al. Jul 2012 B1
8233248 Li et al. Jul 2012 B1
8248891 Lee et al. Aug 2012 B2
8248896 Yuan et al. Aug 2012 B1
8254060 Shi et al. Aug 2012 B1
8257597 Guan et al. Sep 2012 B1
8259410 Bai et al. Sep 2012 B1
8259539 Hu et al. Sep 2012 B1
8262918 Li et al. Sep 2012 B1
8262919 Luo et al. Sep 2012 B1
8264797 Emley Sep 2012 B2
8264798 Guan et al. Sep 2012 B1
8270126 Roy et al. Sep 2012 B1
8276258 Tran et al. Oct 2012 B1
8277669 Chen et al. Oct 2012 B1
8279719 Hu et al. Oct 2012 B1
8284517 Sun et al. Oct 2012 B1
8286329 Zhao et al. Oct 2012 B1
8288204 Wang et al. Oct 2012 B1
8289821 Huber Oct 2012 B1
8291743 Shi et al. Oct 2012 B1
8307539 Rudy et al. Nov 2012 B1
8307540 Tran et al. Nov 2012 B1
8308921 Hiner et al. Nov 2012 B1
8310785 Zhang et al. Nov 2012 B1
8310901 Batra et al. Nov 2012 B1
8315019 Mao et al. Nov 2012 B1
8316527 Hong et al. Nov 2012 B2
8320076 Shen et al. Nov 2012 B1
8320077 Tang et al. Nov 2012 B1
8320219 Wolf et al. Nov 2012 B1
8320220 Yuan et al. Nov 2012 B1
8320722 Yuan et al. Nov 2012 B1
8322022 Yi et al. Dec 2012 B1
8322023 Zeng et al. Dec 2012 B1
8325569 Shi et al. Dec 2012 B1
8333008 Sin et al. Dec 2012 B1
8334093 Zhang et al. Dec 2012 B2
8336194 Yuan et al. Dec 2012 B2
8339738 Tran et al. Dec 2012 B1
8341826 Jiang et al. Jan 2013 B1
8343319 Li et al. Jan 2013 B1
8343364 Gao et al. Jan 2013 B1
8349195 Si et al. Jan 2013 B1
8351307 Wolf et al. Jan 2013 B1
8357244 Zhao et al. Jan 2013 B1
8373945 Luo et al. Feb 2013 B1
8375564 Luo et al. Feb 2013 B1
8375565 Hu et al. Feb 2013 B2
8381391 Park et al. Feb 2013 B2
8385157 Champion et al. Feb 2013 B1
8385158 Hu et al. Feb 2013 B1
8391108 Peng et al. Mar 2013 B2
8394280 Wan et al. Mar 2013 B1
8400731 Li et al. Mar 2013 B1
8404128 Zhang et al. Mar 2013 B1
8404129 Luo et al. Mar 2013 B1
8405930 Li et al. Mar 2013 B1
8409453 Jiang et al. Apr 2013 B1
8413317 Wan et al. Apr 2013 B1
8416530 Gao et al. Apr 2013 B2
8416540 Li et al. Apr 2013 B1
8419953 Su et al. Apr 2013 B1
8419954 Chen et al. Apr 2013 B1
8422176 Leng et al. Apr 2013 B1
8422342 Lee Apr 2013 B1
8422841 Shi et al. Apr 2013 B1
8424192 Yang et al. Apr 2013 B1
8441756 Sun et al. May 2013 B1
8443510 Shi et al. May 2013 B1
8444866 Guan et al. May 2013 B1
8449948 Medina et al. May 2013 B2
8451556 Wang et al. May 2013 B1
8451563 Zhang et al. May 2013 B1
8454846 Zhou et al. Jun 2013 B1
8455119 Jiang et al. Jun 2013 B1
8456961 Wang et al. Jun 2013 B1
8456963 Hu et al. Jun 2013 B1
8456964 Yuan et al. Jun 2013 B1
8456966 Shi et al. Jun 2013 B1
8456967 Mallary Jun 2013 B1
8456969 Mooney et al. Jun 2013 B1
8458892 Si et al. Jun 2013 B2
8462592 Wolf et al. Jun 2013 B1
8468682 Zhang Jun 2013 B1
8472288 Wolf et al. Jun 2013 B1
8480911 Osugi et al. Jul 2013 B1
8486285 Zhou et al. Jul 2013 B2
8486286 Gao et al. Jul 2013 B1
8488272 Tran et al. Jul 2013 B1
8491801 Tanner et al. Jul 2013 B1
8491802 Gao et al. Jul 2013 B1
8493693 Zheng et al. Jul 2013 B1
8493695 Kaiser et al. Jul 2013 B1
8495813 Hu et al. Jul 2013 B1
8498084 Leng et al. Jul 2013 B1
8506828 Osugi et al. Aug 2013 B1
8514517 Batra et al. Aug 2013 B1
8518279 Wang et al. Aug 2013 B1
8518832 Yang et al. Aug 2013 B1
8520336 Liu et al. Aug 2013 B1
8520337 Liu et al. Aug 2013 B1
8524068 Medina et al. Sep 2013 B2
8526275 Yuan et al. Sep 2013 B1
8531801 Xiao et al. Sep 2013 B1
8532450 Wang et al. Sep 2013 B1
8533937 Wang et al. Sep 2013 B1
8537494 Pan et al. Sep 2013 B1
8537495 Luo et al. Sep 2013 B1
8537502 Park et al. Sep 2013 B1
8545999 Leng et al. Oct 2013 B1
8547659 Bai et al. Oct 2013 B1
8547667 Roy et al. Oct 2013 B1
8547730 Shen et al. Oct 2013 B1
8555486 Medina et al. Oct 2013 B1
8559141 Pakala et al. Oct 2013 B1
8563146 Zhang et al. Oct 2013 B1
8565049 Tanner et al. Oct 2013 B1
8576517 Tran et al. Nov 2013 B1
8578594 Jiang et al. Nov 2013 B2
8582238 Liu et al. Nov 2013 B1
8582241 Yu et al. Nov 2013 B1
8582253 Zheng et al. Nov 2013 B1
8588039 Shi et al. Nov 2013 B1
8593914 Wang et al. Nov 2013 B2
8597528 Roy et al. Dec 2013 B1
8599520 Liu et al. Dec 2013 B1
8599657 Lee Dec 2013 B1
8603593 Roy et al. Dec 2013 B1
8607438 Gao et al. Dec 2013 B1
8607439 Wang et al. Dec 2013 B1
8611035 Bajikar et al. Dec 2013 B1
8611054 Shang et al. Dec 2013 B1
8611055 Pakala et al. Dec 2013 B1
8614864 Hong et al. Dec 2013 B1
8619512 Yuan et al. Dec 2013 B1
8625233 Ji et al. Jan 2014 B1
8625941 Shi et al. Jan 2014 B1
8628672 Si et al. Jan 2014 B1
8630068 Mauri et al. Jan 2014 B1
8634280 Wang et al. Jan 2014 B1
8638529 Leng et al. Jan 2014 B1
8643980 Fowler et al. Feb 2014 B1
8649123 Zhang et al. Feb 2014 B1
8665561 Knutson et al. Mar 2014 B1
8670211 Sun et al. Mar 2014 B1
8670213 Zeng et al. Mar 2014 B1
8670214 Knutson et al. Mar 2014 B1
8670294 Shi et al. Mar 2014 B1
8670295 Hu et al. Mar 2014 B1
8675318 Ho et al. Mar 2014 B1
8675455 Krichevsky et al. Mar 2014 B1
8681594 Shi et al. Mar 2014 B1
8689430 Chen et al. Apr 2014 B1
8693141 Elliott et al. Apr 2014 B1
8703397 Zeng et al. Apr 2014 B1
8705205 Li et al. Apr 2014 B1
8711518 Zeng et al. Apr 2014 B1
8711528 Xiao et al. Apr 2014 B1
8711662 Lee et al. Apr 2014 B2
8717709 Shi et al. May 2014 B1
8720044 Tran et al. May 2014 B1
8721902 Wang et al. May 2014 B1
8724259 Liu et al. May 2014 B1
8749790 Tanner et al. Jun 2014 B1
8749920 Knutson et al. Jun 2014 B1
8753903 Tanner et al. Jun 2014 B1
8760807 Zhang et al. Jun 2014 B1
8760818 Diao et al. Jun 2014 B1
8760819 Liu et al. Jun 2014 B1
8760822 Li et al. Jun 2014 B1
8760823 Chen et al. Jun 2014 B1
8763235 Wang et al. Jul 2014 B1
8780498 Jiang et al. Jul 2014 B1
8780505 Xiao Jul 2014 B1
8786983 Liu et al. Jul 2014 B1
8790524 Luo et al. Jul 2014 B1
8790527 Luo et al. Jul 2014 B1
8792208 Liu et al. Jul 2014 B1
8792312 Wang et al. Jul 2014 B1
8793866 Zhang et al. Aug 2014 B1
8797680 Luo et al. Aug 2014 B1
8797684 Tran et al. Aug 2014 B1
8797686 Bai et al. Aug 2014 B1
8797692 Guo et al. Aug 2014 B1
20030137772 Challener Jul 2003 A1
20050078565 Peng et al. Apr 2005 A1
20080068748 Olson et al. Mar 2008 A1
20080151427 Poon et al. Jun 2008 A1
20100104768 Xiao et al. Apr 2010 A1
20100123965 Lee et al. May 2010 A1
20100123967 Batra et al. May 2010 A1
20100165517 Araki et al. Jul 2010 A1
20100214685 Seigler et al. Aug 2010 A1
20100290157 Zhang et al. Nov 2010 A1
20110086240 Xiang et al. Apr 2011 A1
20110090588 Gao et al. Apr 2011 A1
20110146060 Han et al. Jun 2011 A1
20110205863 Zhao et al. Aug 2011 A1
20110299080 Peng Dec 2011 A1
20120008229 Zhou et al. Jan 2012 A1
20120045662 Zou et al. Feb 2012 A1
20120111826 Chen et al. May 2012 A1
20120140609 Huang et al. Jun 2012 A1
20120162811 Ishibashi et al. Jun 2012 A1
20120216378 Emley et al. Aug 2012 A1
20120237878 Zeng et al. Sep 2012 A1
20120298621 Gao Nov 2012 A1
20130170332 Gao et al. Jul 2013 A1
20130216702 Kaiser et al. Aug 2013 A1
20130216863 Li et al. Aug 2013 A1
20130257421 Shang et al. Oct 2013 A1
20140154529 Yang et al. Jun 2014 A1
20140175050 Zhang et al. Jun 2014 A1
Non-Patent Literature Citations (1)
Entry
Zhongyan Wang, et al., “An approach for nanometer trench and hole formation,” Optical Microlithography XXI, Proceedings of the SPIE, vol. 6924, pp. 692447-692447-8 (2008).
Provisional Applications (1)
Number Date Country
61918199 Dec 2013 US