The present invention related to devices used to locate the site of a biopsy and, more specifically, to a near-infrared marker for locating the site of a breast tumor biopsy.
When an area of breast tissue is deemed to be abnormal, a biopsy may be performed to remove a tissue sample from the suspicious area so that the sample may be evaluated for cancerous tumor. The procedure is typically performed under local anesthesia and, after removal of the tissue sample, a small marker may be placed at the site of the biopsy to mark the location in the even that surgery is required.
One approach to marking the biopsy site involves the use of a wire having a barbed end that is threaded through a cannula positioned with its distal end at the location to be marked. The barbed end of the wire is attached to the tissue of the patient at the biopsy location and the cannula is withdrawn, leaving a length of wire attached to the breast tissue. In the event that surgery is required, the surgeon can follow the wire back to the attachment location to locate the site where the suspicious tissue was biopsied. This approach is problematic, however, because the surgery must be scheduled at nearly the same time as the marking to avoid leaving the barbed wire in place for an extended period of time. In another approach, a tiny clip or coil may be affixed to tissue at the site of the biopsy. The clip is usually radiopaque or formed from a material that is detectable via ultrasound. While the location of the clip may thus be determining using x-ray imaging or an ultrasound, this approach does not allow a surgeon to easily locate the clip at the time of the surgical procedure to remove cancerous tissue. Accordingly, there is a need in the art for a biopsy marker that can be installed and then easily located during a future surgical procedure.
The present invention comprises a biopsy marker that may be stimulated to emit near infrared fluorescence in situ for the rapid location of a biopsy site. In a first embodiment, the present invention is a biopsy marker having a body formed from a polymer and a quantity of a near infrared fluorescent dye embedded in the polymer. The near infrared fluorescent dye may comprise indocyanine green. In another embodiment, the present invention is a system for locating the site of a biopsy comprised of a biopsy marker comprised of a polymer and a quantity of a near infrared fluorescent dye embedded in the polymer at a biopsy location, a near infrared energy source configured to excite the near infrared fluorescent dye, and a near infrared energy detector configured to detect any near infrared emissions from the biopsy marker. The near infrared energy source may be a laser or a light emitting diode. In a further embodiment, the present invention is a method of marking the location of a biopsy that involves the steps of depositing a biopsy marker comprised of a polymer and a quantity of a near infrared fluorescent dye embedded in the polymer at a biopsy location, exciting the biopsy marker with a near infrared energy source, and detecting any fluorescent emitted from the biopsy marker.
The present invention will be more fully understood and appreciated by reading the following Detailed Description in conjunction with the accompanying drawings, in which:
Referring to the figures, wherein like numeral refer to like parts throughout, there is seen in
One acceptable near-infrared fluorescent dye is indocyanine green dye (ICG), although may other fluorescent dyes may be safely used. The polymer may comprise any biocompatible polyurethanes, silicones, and resins, such as poly(caprolactone), Steralloyâ„¢ elastomers, etc., that are safe for implantation into a patient. Biopsy marker 10 may include additional compounds, such as those known to enhance the amount of near-infrared fluorescence from a dye. For example, the fluorescence of ICG may be enhanced through the use of organic and inorganic compounds, such as milk, dried milk, tapioca, gelatin, pasta, whey, semolina flour, and Intralipid(r) emulsion.
As ICG is well known, the amount of fluorescence produced by a solution of ICG in ethanol at a concentration of four (4) parts per million provides an objective benchmark against which the fluorescence of other dyes and dye-polymer mixtures may be evaluated for the production of a sufficient amount of fluorescence so that biopsy marker 10 can be readily identified. Table 1 below has a list of various dye and substrate combinations that may be used for a medical device according to the present invention along with their relative fluorescence as compared to a solution of 4 ppm ICG in ethanol.
It should be recognized by those of skill in the art that the particular concentration of dye that is embedded into a polymer may be varied according to the present invention to produce different amounts of fluorescence, which may then be attenuated to produce the requisite amount of fluorescence. For example, a dye with greater near infrared fluorescence than ICG may be used at a lower concentration in the polymer used for marker 10 to provide a comparable amount of fluorescence with the same amount excitation delivered during use, or in the same concentration with less excitation needed during use.
Referring to
Referring to
Referring to
System 40 further includes a near infrared detector 44 tuned to the particular fluorescence of biopsy markers 10. Detector 44 is positioned to detect the location of any biopsy markers 10 that fluoresce when illuminated by near infrared source 22. Detector 44 may comprise a dedicated near-infrared sensor. Detector 44 may also be a broad-spectrum sensor, such as a CCD, CMOS, EMCCD, InGaAS (SWIR) or other optical sensor capable of detecting the emittance wavelength in combination with filters to identify the target emission bandwidth of the particular near infrared dye. System 40 may further include a display 46 coupled to detector 44 to provide the surgeon with a visual representation of any near infrared emissions from biopsy markers 10. For example, display 46 may comprise an LCD screen with a digital color enhanced representation of the field of view for identification of any detected biopsy markers 10 within the surrounding tissue in the field of view so that the surgeon can quickly locate any and all biopsy markers 10 in the patient.
System 40 may comprise a conventional near infrared sensing apparatus associated with a robotic surgical system, such as the FIREFLY(r) Fluorescence Imaging Vision System available with a DA VINCI(r) surgical system, to provide a visual spectrum rendering of any fluorescence emitted from biopsy marker 10. Similarly, conventional NIR microscopes and imaging systems, such as the Zeiss Pentero OR microscope system with NIRF capability, may also be used, as well as laparoscopic systems such as the Storz, Novadaq, and Stryker laparoscopic systems having NIRF capabilities.
Referring to
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US21/29535 | 4/28/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63018562 | May 2020 | US |