Near infrared imaging

Information

  • Patent Grant
  • 9877654
  • Patent Number
    9,877,654
  • Date Filed
    Tuesday, August 14, 2012
    12 years ago
  • Date Issued
    Tuesday, January 30, 2018
    7 years ago
Abstract
Endoscopes and wands, useful for near infrared imaging, particularly for medical purposes, have transmitting members that transmit between about 95% and 99.5% of the energy at a wavelength within the infrared spectrum. The wands and endoscopes have at least one channel for transmitting and receiving light in the visible spectrum and at least one channel for transmitting and receiving light in the infrared spectrum.
Description
TECHNICAL FIELD

This application relates to endoscopes and similar devices.


BACKGROUND OF THE INVENTION

An endoscope or wand viewing apparatus is usually configured in a way that is well suited for illumination and imaging in visible light.


In this background section endoscopes and wand like devices shall be described in terms of their internal working components. In the second portion of the background section the shortcomings of these predicate devices shall be described with respect to their use for laser induced fluorescence imaging.


An endoscope is an opto-mechanical imaging device characterized by the following: an objective lens assembly containing an optional deviating prism assembly, a relay system forming a plurality of intermediate images for the case of a rigid endoscope, an ocular, a camera system containing multiple detectors with a prism assembly directing sections of the electromagnetic spectrum to dedicated sensors, or in the case of chip-on-a-stick endoscope where there are no intermediate images; an objective lens assembly coupled directly to the camera detector which is embedded in the distal most portion of the device. In either case the optical elements are contained in an inner most tube member which is surrounded by other tube members which may include fiber optics for illumination in the annulus formed by two or more of the tubes and may contain other tubes for the passage of instruments and or irrigation.


An objective lens assembly in the distal most portion of the device forms a real image of the scene coincident with the plane of the detector in the case of a chip-on-a-stick endoscope or intraoral camera, or distal most plane of a relay system that is contained within the shaft portion of the endoscope.


In an endoscope with a relay system (the second case above), there are 2 basic forms of relays, those of lenses and those using coherent imaging fibers.


In both examples the role of the relay is to reform the image produced by the objective lens through the length of the shaft by producing intermediate images in the case of a rigid endoscope to a new position where the ocular, in the case of a visual endoscope or camera lens group in the case of a digital or electronic imaging device, may then reform the image originally produced by the objective lens group for the eye or to a camera detector.


The shaft portions of all endoscopes are made to facilitate the insertion of the device into a body cavity or body lumen, that is to say diameter is the dimension being minimized. In the case of a body cavity insertion, the shaft is often rigid and comprised of thin walled stainless steel tubes. This tube within tube construction allows for an innermost tube to contain the optical train and then surrounding tubes can contain fiber optics to transmit illumination to the scene in the form of an annulus. Additional tubes can be contained within the assembly for the introduction of surgical instruments for various purposes.


For the case of an endoscope that utilizes coherent imaging fibers for the relay system the functional concept being optimized in the device is flexibility, and to some degree what is being compromised is resolution, particularly when the diameter of the tip is small. However, large diameter flexible endoscopes often use detectors directly behind the objective lens assembly and are therefore considered “chip-on-a-stick” configurations. These flexible endoscopes often have internal channels, instrument and irrigation channels, to pass forceps, etc. and have internal guide wires and steering mechanisms at the tip controlled by levers at the proximal end of the device.


There is a class of smaller diameter endoscopes utilizing coherent imaging fibers as relays whose shafts have a limited amount of flexibility, and these devices are commonly called semi-flexible. Often configured with a working channel, called a forceps channel, used for instruments and are often used in Urology.


Whether rigid, flexible, or semi-flexible, endoscopes have a proximal eyepiece section for viewing and or coupling to a camera system. An eyepiece is not present on chip-on-a-stick endoscopes or intraoral cameras, often called dental cameras, as the camera is imbedded into the distal portion of the device.


Where eyepieces are used, manufacturers have almost universally adopted a nominal 32 mm eye cup for blocking room light from the physician's view, and this eye cup serves to support the coupling mechanism to the camera. There are some commercial applications of directly coupling the camera and optical assemblies included in the shaft mechanism and or coupling mechanism but this has not found wide acceptance, except in Orthopedics for Arthroscopy. The fear among users has been that if the electronics of the camera fail for some reason then the doctor is left with no means to view within the patient, hence the continuing presence of endoscopes with eyepieces.


The class of endoscopes not utilizing eyepieces is commonly called chip-on-a-stick. The intraoral dental camera shares the lack of eyepiece or ocular, as well. Both instruments send a video signal to a monitor or computer for viewing.


Endoscopes are most commonly fixed focus imaging devices. There is a broad distance from the tip of the device to the subject that is in focus due to the relatively small aperture of the optical system. A small aperture allows only a small amount of light to be imagined for any point in the scene. Should focusing be required it is accomplished by repositioning the optics in the camera module proximal to the endoscope, or in some cases the detector itself is moved.


Such low levels of return signal in the visible spectrum require endoscopes to have large light sources such as xenon, halogen, and metal halide.


In the case of an endoscope, commonly called a chip-on-a-stick which contain a distal most detector (CCD, CMOS, or other sensor), the change in image plane position for a near object of interest versus a far object of interest is usually ameliorated by installing a very small aperture in the objective lens assembly to increase depth of field at the expense of a bright field or higher potential resolution.


This is a distinction between endoscopes and chip-on-a-stick endoscopes regarding focus. Endoscopes with proximal cameras do provide a means for focus even if they themselves are fixed focus. Chip-on-a-stick endoscopes usually do not provide a focus means. However, large diameter flexible endoscopes used in gastroenterology do often have moveable detectors or lenses providing focus.


For smaller chip-on-a-stick endoscopes, all of the optical elements in the objective lens assembly are optimized for the small aperture which allows great depth of field. It is not the case that the aperture could be removed for increased brightness. The advantage is that no motion (focus) is required and when provided with powerful illumination systems in the visible light the overall system can perform well given the constraint of illumination.


A focus means becomes an area of distinction between a chip-on-a-stick endoscope and a wand imaging device, referred to as an intraoral or dental camera, as well. Both chip-on-a-stick endoscope and a wand imaging devices contain the detector plane in the distal or forward portion of the device directly behind the objective lens assembly. The intraoral or dental camera is often required to be used in stand off mode, a distance that is greater than endoscopy requires. The distinction results from the use; endoscopy is done in closed surgical or diagnostic sites, the intraoral devices are used external to the body or inserted in natural cavities such as the mouth. In such stand off modes, not the mouth but full face views, great amounts of illumination would be required to satisfy the large change in s and s′ (the optical path length on either side of the objective lens) in the intraoral or dental camera where to be fixed focus. Therefore, intraoral or wand like dental cameras frequently contain a means to move the detector plane, or focus the device. Using a faster F number, with inherently less depth of field but higher sensitivity, and by moving the detector plane a lower powered illumination system is required. This allows a wand with near IR capabilities to accommodate large changes in distances to the object of interest, thereby allowing a faster optical system to be designed, a characteristic that requires variable focus, but provides higher inherent resolution, and more conservative illumination sources.


Endoscopes and wands are generally designed to visualize in the visible spectrum. However, fluorescent dyes, such as indocyanine green (ICG) (Akorn, Inc., Buffalo Grove, Ill.) are commonly being used to image anatomy in the infra red spectrum. Use of ICG is described in, for example, U.S. Pat. No. 6,915,154, which is incorporated herein by reference in its entirety. Once excited, ICG emits in the infra red spectrum at about 825 to about 835 nm. FIG. 1 shows the excitation and emission spectrum of the ICG composition sold by Akorn, Inc. There is therefore a need for endoscope and wand devices that are capable of imaging and visualizing in the infrared spectrum.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the excitation and emission spectrum of the ICG composition sold by Akorn, Inc.



FIG. 2 illustrates an endoscopic system.



FIG. 3 illustrates an endoscope.



FIG. 4 illustrates certain endoscope components. The left side of FIG. 4 illustrates multiple examples of objective assemblies, only one of which would commonly be used in any particular endoscope. The middle of FIG. 4 illustrates multiple examples of relays, of which only one would commonly be used in a particular endoscope. The right hand side of FIG. 4 illustrates a 2 channel prism or a 4 channel prism (the bottom two drawings showing the same 4 channel prism from different views). Commonly only one of a 2 or a 4 channel prism would be used in any particular endoscope.



FIG. 5 illustrates deviating prisms.



FIG. 6 illustrates representative scans of prior art coatings.



FIGS. 7 and 8 each illustrate details of coatings.



FIG. 9 illustrates a 2 chip prism assembly. Angles shown are merely exemplary.



FIG. 10 illustrates a 4 chip prism assembly. Angles shown are merely exemplary.



FIG. 11 illustrates a light source.



FIG. 12 illustrates a second embodiment of the light source.





MODES FOR CARRYING OUT THE INVENTION AND INDUSTRIAL APPLICABILITY

The invention provides endoscope and wand devices and systems for imaging in the infrared spectrum, and preferably in multiple spectrums at least one of which is infrared. Imaging of fluorescent emissions in the infrared spectrum is particularly difficult because the near infrared light emitted by a fluorescent dye may be an order of magnitude or more lower than the visible light reflected or emitted by a subject. A “device” is any hand-held instrument designed to view or image anatomy, either inside or outside a patient's body.


In certain embodiments, the invention provides an endoscope or wand device having relay optics such as glasses. The transmitting members have a coating that transmits between about 95% and about 99.5% of energy at a wavelength within the infra red spectrum.


In some embodiments, the invention provides a prism assembly for separating visible light from infra red light. The prism assembly contains at least one channel configured to receive and transmit light in the visible spectrum and at least a second channel configured to receive and transmit light in the infra red spectrum.


Hereinafter, aspects in accordance with various embodiments of the invention will be described. As used herein, any term in the singular may be interpreted to be in the plural, and alternatively, any term in the plural may be interpreted to be in the singular.


Definitions

“Approximately”, “substantially” and “about” each mean within 10%, preferably within 6%, more preferably within 4% even more preferably within 2%, and most preferably within 0.5% of the stated number or range


“Computer” as used herein, refers to a conventional computer as understood by the skilled artisan. For example, a computer generally includes a central processing unit that may be implemented with a conventional microprocessor, a random access memory (RAM) for temporary storage of information, and a read only memory (ROM) for permanent storage of information. A memory controller is provided for controlling RAM. A bus interconnects the components of the computer system. A bus controller is provided for controlling the bus. An interrupt controller is used for receiving and processing various interrupt signals from the system components. Mass storage may be provided by diskette, CD ROM, DVD, USB stick, or hard drive. Data and software may be exchanged with computer system via removable media such as the diskette, USB stick, or CD ROM. A CD ROM or DVD drive is connected to the bus by the controller. The hard disk is part of a fixed disk drive that is connected to the bus by a controller. User input to the computer may be provided by a number of devices. For example, a keyboard and mouse may be connected to the bus by a controller. An audio transducer that might act as both a microphone and a speaker may be connected to the bus by an audio controller. It will be obvious to those reasonably skilled in the art that other input devices, such as a pen and/or tablet may be connected to the bus and an appropriate controller and software, as required. A visual display can be generated by a video controller that controls a video display. Preferably, the computer further includes a network interface that allows the system to be interconnected to a local area network (LAN) or a wide area network (WAN). Operation of the computer is generally controlled and coordinated by operating system software, such as the Solaris operating system, commercially available from Sun Microsystems, the UNIX® operating system, commercially available from The Open Group, Cambridge, Mass., the OS-X® operating system, commercially available from Apple, Inc., Cupertino Calif. or the Windows XP® or VISTA® operating system, commercially available from Microsoft Corp., Redmond, Wash., or the Linux open source operating system available from multiple sources. The operating system controls allocation of system resources and performs tasks such as processing scheduling, memory management, networking, and I/O services, among things. In particular, an operating system resident in system memory and running on the CPU coordinates the operation of the other elements of computer.


“Subject” as used herein, refers to any animal. The animal may be a mammal. Examples of suitable mammals include, but are not limited to, humans, non-human primates, dogs, cats, sheep, cows, pigs, horses, mice, rats, rabbits, and guinea pigs.


As used herein, “wavelength of interest” refers to light in both the visible and infra red spectrum. In some embodiments, it refers to light in only the infra red spectrum. In some embodiments, it includes light at the wavelength at which ICG fluoresces. In some embodiments, it includes light between about 825 and about 835 nm. In some embodiments, it includes light wavelength(s) at which one or more other fluorescent dyes emit energy when excited. The invention is drawn to endoscopes and wands that can advantageously be used for visualizing and imaging in the infrared spectrum, and preferably in both the infrared and visible spectrums.


The term “endoscope”, as used herein, will be understood to encompass wands and laparoscopes, as well as endoscopes and other similar devices.



FIG. 2 illustrates a highly schematic view of an endoscopic system. The endoscope 260 is placed in the proximity of a subject's tissue or inside a natural or surgically created opening in the subject.


An endoscope may have one or more illumination sources 220. Preferably, the illumination 220 source emits radiation having wavelengths in the infrared spectrum, and images in the infrared spectrum. Infrared radiation at certain wavelengths can excite a fluorescent dye that has been administered to the patient and cause the fluorescent dye to emit radiation. In certain embodiments, imaging may be performed in multiple discrete bands of the spectrum. For example, imaging may occur in two distinct infrared bands, in the infrared and visible spectrum, or in the infrared and ultraviolet spectrum. In preferred embodiments, both visible and infrared light is emitted by one or more illumination sources 220 for imaging in both the visible or infrared spectrums.


The one or more illumination sources 220 is in electrical communication with the computer 360. Through a computer interface, a user causes an illumination source(s) 220, such as an HPLD, to fire or otherwise emit radiation.


The illumination source 220 can be coupled to the existing fiber optics in the endoscope or wand or coupled to an external cannula embedded with fiber optics or containing a working channel with sufficient diameter to place a fiber optic or fiber optic probe for the transmission of an excitation wavelength. The endoscope itself may contain a working channel sufficiently large for a laser fiber to be inserted and in that case a supplementary cannula or sheath for an excitation source would not be required. Other suitable illumination sources are described below.


In some embodiments, the illumination source 220 is in optical communication with endoscope 260 by cable(s)/cannula(s) 280. If the illumination source 220 is a single emitter laser then it could be coupled to one cable 280. Alternately, a bar laser would require multiple fibers, which might be packed in the same or in multiple cables. Cable(s) 280 may connect to fibers integrated into the tubular portion of the endoscope 260 or to a sheath surrounding part or all of the endoscope 260. Fibers in the tubular portion or sheath then relay the illumination to the patient's tissue.


Light from the illumination source(s) 220 is transmitted to the subject's tissue. Reflected or emitted light from the subject's tissue is then transmitted to one or more detectors. These detector(s) are in electrical communication with computer 360, which receives the images collected by the detector(s) and causes them to be displayed on a display 365. The computer 360 may further include software for image processing.


I. Illumination Sources 220


The first step in imaging a dye (that is administered to a patient) that emits in the infrared spectrum is to excite the dye. The dye may be excited in the visible, ultraviolet or infrared spectrum. Preferably, the dye is a fluorescent dye. More preferably, the dye is a tricarbocyanine dye. Most preferably, the dye is ICG. In some embodiments, multiple dyes may be used for imaging.


In one embodiment, the light source only emits light in the infrared spectrum. In some embodiments, light in both the visible and infrared spectrum is emitted. In some embodiments, the device of the invention, such as an endoscope or wand includes one or more LEDs that emits light in the infrared spectrum and groups of 3 LEDs, producing red, green, or blue illumination, respectively, for visible imaging. In certain embodiments, the device includes LEDs producing or restricted to infrared illumination combined with one or more white light LEDs. Light sources may be bulbs or arc sources of metal halides, halogens and xenon that emit in the blue, green and red and infra red wavelengths. LEDs and other light sources that emit in both the visible and infrared spectrums are well known to the skilled artisan.


High power laser diodes (HPLDs) may also be used within the scope of the invention. Examples of HPLDs include AlInGaAsP lasers and GaAs lasers which are well known in the art. Such sources can be single diodes (single emitters), or diode-laser bars, which are made from edge emitting semiconductor chips. Such sources can be operated in continuous mode (CW), quasi-CW, or pulsed mode.


These sources are capable of being remotely mounted in the system and can be brought to the optical system used for viewing fluorescence via fiber coupling. This removes the HPLD, a powerful electrical device, from intimate contact with the patient, physician or technician.


The excitation wavelength, λe, of ICG is 805 nm in whole blood. The range of excitation wavelengths capable of exciting ICG ranges from approximately 710 nanometers to 840 nanometers, or more. This range overlaps the fluorescence range of ICG whose peak, λf, is 835 nanometers. It is therefore necessary to use a narrow source such as an HPLD or similarly filtered Metal halide, Xenon, or Tungsten halogen sources of radiation by means of an excitation or primary filter or filters to excite the ICG.


HPLDs, made of AlInGaAsP/GaAs, have as their peak nominal output a wavelength of 808 nm, with a tolerance of +/−3 nanometers. A driving circuit is necessary to provide power to the HPLD, the current and voltage of which can be varied to lower the peak wavelength to 805 nm, the peak absorption of ICG.


Within the endoscope proper, an illumination pathway may take one of two forms or a combination of the following: an integrated annulus of fiber optic fibers encircling the optical elements for the transmission of visible light, and or an annulus of fiber optic fibers transmitting the energy from an IR excitation source contained within a sheath or cannula into which the imaging device is inserted.


II. Endoscopes and Wands


For example, endoscope 260 is shown in FIG. 3, and certain components are shown in FIG. 4. The endoscope 260 may include a distal section 3, a relay section 2, and a proximal section 29. Light travels from an illumination source 220 (not shown) to fiber cable 28 through the relay section 2 and to the distal section 3. Reflected or emitted light travels from the distal section 3 having the objective assembly, through the relay section 2 and then through the proximal section 29 having prisms to the detector(s) 33 (shown in FIGS. 9 and 10) in proximal section 29. The detector(s) 33 detect the light and can form an image. The endoscope 260 may include an ocular and camera optics in the proximal section 29 to magnify or focus the image.


All the optical elements along the 3 segments of the longitudinal axis of the endoscope and wand are required to be coated for low reflectivity for (preferably all) transmitting elements across all the wavelengths of interest, high reflectivity in all wavelengths of interest for reflecting surfaces contained within the distal section, and high separation ratios in the proximal beam-splitting section. An embodiment for a wand configuration contains in its distal portion both a deviating and a beam-splitting prism assembly. Preferably each optical coating on a transmitting optical element is optimized for an angle of incidence of light that is orthogonal or substantially orthogonal to each surface along a vector describing the opto-mechanical axis of the system within a range of plus or minus 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 degrees. This does not apply to the objective lens assembly where the departure from normal to the surface is greater.


The wand has the same components as shown in FIGS. 3 and 4, but generally has a different form factor since it is optimized for use outside a person's body while an endoscope is optimized for insertion into a person's body.


A. Distal Section 3


The distal section 3 of the inventive device may include an optical assembly taking the form of an inverse telephoto with a distal negative power lens group, a prism assembly 18 to deviate the line of sight within this deviating assembly and a positive lens group. A deviating prism assembly 18 is contained between the distal lens group characterized by its negative optical power and a proximal lens group characterized by its positive power. This optical form (− +) is commonly called an inverse telephoto. Distal sections of endoscopes and other devices are well known in the art, and are described in, for example, U.S. Pat. No. 4,655,557 that is incorporated herein by reference in its entirety.


Deviating prism assemblies 18 are routinely placed within the space between the two powers of endoscopes used in visible wavelengths, as described, for example, in U.S. Pat. No. 4,917,457, which is incorporated herein by reference in its entirety. Such deviating prisms allow the endoscope to be rotated around the shaft axis for a larger effective field of view. Examples of deviating prisms 18 are shown in FIG. 5. The angles shown are exemplary since a skilled artisan may design deviating prisms to facilitate the passage of the full beam diameter or substantially the full beam diameter of the objective lens assembly through the prism with the following constraints, first that the ray path axis exiting the negative group of the objective lens be coincident or approximately coincident with the optical axis of the prism assembly group, second that the ray path enter the front face of the prism assembly perpendicular or approximately perpendicular to the face of the first surface of the prism assembly, thirdly, that the ray path exit the last surface of the deviating prism assembly perpendicular or approximately perpendicular or normal to the face of the last prism component, and fourthly that the exit ray path optical axis be coincident or approximately coincident with the optical axis of the following optical components.


The deviating prisms of the invention must displace or deviate the line of sight. For example, the first prism (FIG. 5(a)) has a zero percent deviation, meaning that the wavelengths of interest are transmitted through each of the surfaces 19a, 19b, 19c and 19d.


In FIG. 5(b), the line of sight is deviated thirty degrees. This means that the line of sight and coincident beam path is transmitted through surface 19e, 19f, 19g, reflected by surface 19h and 19i, and then transmitted through surfaces 19j and 19k.



FIG. 5(c) shows an example of a 45° deviating prisms. The line of sight and coincident beam path is transmitted through surfaces 19l, 19m and 19n, reflected by surfaces 19o and 19p, and then transmitted by surfaces 19q and 19r.


A final example, FIG. 5d, shows an exemplary 70° deviating prism. The line of sight and coincident beam path is transmitted through surfaces 19s and 19t, reflected by surfaces 19u and 19v, and then transmitted through surfaces 19w and 19x.


Thus, the reflective surfaces (e.g., 19h, 19i, 19o, 19p, 19u and 19v) must be coated with a substance that reflects light in the infrared in preference to one that is optimized for the reflection of visible only. In preferred embodiments, in which the wavelengths of interest are in the emission range of ICG, the reflective surfaces are coated so that they reflect light between about 800 and about 850 nm, preferably between about 825 nm and about 835 nm. Most preferably, the reflecting surfaces reflect both infrared and visible light. This high reflectance of wavelengths in the infra red spectrum, and preferably in both the visible and infra red spectrums, is achieved with a coating of gold, silver or aluminum. Gold is particularly preferred for reflecting only wavelengths in the near infra red spectrum. Silver is particularly preferred for reflecting wavelengths in the visible and near infra red spectrums. These coatings can be applied directly to the reflecting prism surface and are between about 1 and about 20 micrometers in thickness, and preferably between about 1 and about 10 micrometers in thickness. They can be purchased from, for example, TYDEX J.S. Co. (St. Petersburg, Russia) and vapor deposited onto the surface of interest by any number of thin film coaters in the world using vacuum deposition chambers. Gold coatings are especially preferred because they are known to reflect well in the near IR and withstand autoclaving processes. In some embodiments, any coating that reflects at least 80%, preferably at least 90% and most preferably at least 95% of light energy that is within the wavelengths of interest may be used. A second coating, such silicon dioxide (SiO2), magnesium fluoride, silicon monoxide or a dielectric overcoat may be applied. Such coatings can be purchased from, for example, OFR, Inc., Caldwell, N.J.


The transmitting prism surfaces (e.g., 19a, 19b, 19c, 19d, 19e, 19f, 19j, 19k, 29l, 19m, 19q, 19r, 19s, 19t, 19w and 19x each transmit wavelengths of light in the infrared and the visible spectrums. Any surface that is glued and not air-glass does not need an anti-reflecting coating applied.


B. Transmitting Members


The vast majority of optical surfaces that are used for transmitting the wavelengths of interest (“transmitting members”) are in the relay section. The discussion of transmission coatings, below, is framed in reference to transmitting members in the relay section, though it is equally applicable to transmitting members in other parts of the endoscope or wand.


The positive lens group in the objective lens assembly forms a real image from the energy received from outside the device for relay to the relay section 2. The relay section 2 includes multiple relay optics (not shown) that relay the image by producing a series of intermediate images to the proximal section 29. The proximal section 29 will be further described below.


The prior art optical coatings on devices such as endoscopes and wands having relay optics are optimized for the visible spectrum and are biased towards the blue as shown in the representative scans of such coatings on optical glasses, such as F2 and SF6 in FIG. 6. However, such prior art coatings reflect more than 5% of the infrared energy at each glass/air surface. Since a typical relay section 2 could have a large number (e.g., 30-40) glass/air surfaces, the resulting reflectance makes the devices unusable for infrared imaging.


Devices of the invention must have coatings in the relay and other sections that transmit wavelengths in the infrared spectrum that are of interest. Preferably, the coatings have a reflectance of the wavelengths of interest that are no more than about 0.5%, no more than about 0.4%, no more than about 0.3%, no more than about 0.2% and most preferably no more than about 0.5%. In some embodiments, coated relay optics each reflect between about 0.5% and about 5% of the wavelengths of interest, and preferably between about 0.5% and about 3%.


The wavelengths of interest will depend on the application. For example, if ICG is injected into and excited in a human being, the wavelengths of interest will include the wavelengths at which ICG emits energy. In such an application, the wavelengths of interest might be 825-830 nm. In a preferred embodiment, the coating is optimized to minimize reflectance both in the infrared and visible spectrums, thus allowing viewing in both the infrared and visible spectrums. The visible spectrum is commonly considered to be between about 400 nm and about 700 nm.


The coating preferably includes alternating layers or pairs of layers. These pairs include a high and a low index coating material that together make up a pair. Suitable pairs include TiO2 and MgF2, TiO2 and SiO2, Zirconium Oxide (ZrO2) and MgF2, and tantulum pentoxide (Ta2O5) and SiO2. The number of repeating pairs that may be used is between about 2 and about 100, preferably between about 2 and about 50, between about 2 and about 40, between about 2 and about 30, and between about 2 and about 20 for any optical surface. In some embodiments, the coating has a minimum of 6, 7, or 8 pairs. In certain embodiments, the coating has a minimum of 4 pairs. In some embodiments, the coating has a minimum of 10 pairs. A coating may have one or more different pairs. A useful low index material is SiO2 with an index of refraction of approximately 1.45 in the visible. SiO2 would be paired with a high index material such as Ta2O5, which has an index of 2.4 in the visible, in slightly different ratio when placed on a low index of refraction glass, such as BK7, than on a high index glass, such as N-SF57. In some embodiments, a high refractive index material is one having an index of refraction from about 1.9 to about 2.4 in the visible spectrum as measured at 633 nm. A low refractive index, in some embodiments, is one having an index of refraction from about 1.45 to about 1.8 as measured at 633 nm.



FIG. 7 illustrates an example of one such coating that is optimized to have low reflectance around the emission range of ICG. It is comprised of alternating layers of MgF2 and TiO2.



FIG. 8 illustrates another example of a low reflectance coating suitable for use in the relay optics of the invention. This coating has alternating layers of SiO2 and TiO2, and one pair of MgF2 and TiO2.


In choosing glasses or optical surfaces, the skilled artisan considers a number of factors to favorably correct the optical aberrations and cover the desired field of view on the detector chosen with a minimum of uncorrected residual aberrations. In choosing the glass type, factors to consider are measure of bending power, index, a measure for their dispersing power, and geometric variables such as radius of curvature, thickness of glass and thickness of air, the order of glasses through the system and other factors well within the ability of the skilled artisan. Glasses used in the relay sections of the devices of the invention could, for example, cover a range of about 1.5 to about 2.0 as a measured by their index of refraction. While there are many air-glass surfaces in a device of the invention, not every one will represent a distinct coating choice. There may be groupings of glasses with similar indices that will be coated in the same vacuum deposition chamber run. For example, a grouping might be made of glasses with an index range of 1.5 to 1.65, 1.65 to 1.7, and so forth. The judgment will be made based on performance of the whole stack of pairs used for the particular coating design. The criteria for the design goals will include wavelengths and or range of interest chosen and their relative weighing at measurable points, angles of incidence chosen and their relative weighing, environmental considerations, and cost.


The thin film designer, in designing a coating suitable for one or more relay glasses, considers, for example, pairs of high and low index material, their individual thickness (in optical terms, i.e. they are wavelength dependent because they have an index of refraction), their pair thickness, and the substrate glass index. Antireflective coatings and dielectric mirrors are discussed in the publication Electromagnetic Waves and Antennas, published by Sophocles J. Orfanidis on the website <http://www.ece.rutgers.edu/˜orfanidi/ewa> which are attached at the end of this specification.


In some embodiments, devices such as a “chip-on-a-stick” do not use relay optics, but rather pass light energy from the distal section 3 to the proximal section 29 through fiber optics. In such embodiments, the skilled artisan will understand that there are no relay optics to be coated. Chip-on-a-stick designs eliminate the proximal position of the detector and move said detector plane to the image plane of the objective lens assembly. The preferred inventive chip-on-a-stick design only images in the infra red spectrum though those that image in both the infra red and visible spectrum are within the scope of the invention.


C. Summary of Dichroic Filter and Cameras


Referring to FIGS. 3, 4, 5, 9, 10, and 11, the beam splitting proximal prisms/dichroic filters 31 receive light from relay section 2 or the exit pupil of a distal section 3 and focuses light onto the detectors 33. In some embodiments, the relayed image only includes light in the infra red spectrum. This image is directed to detector 33b which may be a single charge coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) or any other type of detector that can detect infrared light. While infrared blocking filters are commonly used to block out infrared light in endoscopes that do not obtain infrared images, the skilled artisan will understand that such filters should not be used in this embodiment.


In certain embodiments, the device is configured to visualize both in the infrared and visible spectrum. Thus, the light energy received from the distal and relay sections is in both the visible and infrared spectrum. In this embodiment, the proximal prisms 31 separate the wavelengths and relay them to detectors capable of detecting appropriate wavelengths.


The proximal prisms 31 must have substantially equal path lengths to each detector 33 to yield similar magnifications for such comparisons or superimposed imaging. These proximal prisms 31 could take many forms, but they share approximately equal path lengths per detector and the use of dichroic filters that substantially enhance the optical efficiency or throughput of the system when compared with metalized beam splitter coatings.


Preferably, the ratio of the unfolded optical path length to diameter ratio in each light pathway through the proximal prism assembly is given by:

1.75W≦L≦3W

    • where
    • W is the diagonal of the exit face of the unfolded path of any or all of the prisms
    • L is the path length along the optical axis and corresponds to the focal length of the focusing optics minus an air space on either side of L


As described above, ICG has a peak excitation wavelength at 805 nm. The range of excitation wavelengths capable of exciting ICG ranges from approximately 710 nanometers to 840 nanometers, or more. This range overlaps the fluorescence range of ICG whose peak, λf, is 835 nanometers. The challenge is that the fluorescent return signal, in the near infrared (NIR) for example, can be significantly lower than that of the visible channels which are transmitting a scattered return. This differential between low fluorescent return and normal visible return requires not only highly efficient coatings not found on normal endoscopes and wands but also improvements associated with the detector assembly. An optical design optimized for the visible is slightly different than that of an optical design for visible (VIS) plus NIR imaging. However, a comparable design can be used for both regions, if the back focus is allowed to vary in length along the z or optical axis. A NIR image is formed behind that of a visible wavelength of either Red, Green or Blue because NIR wavelengths are longer; hence we want to vary the back focus of the NIR image found exiting the face of the proximal prism assembly.


In certain embodiments, the proximal prism assembly 31 is organized by wavelength in a short to long or long to short order by means of dichroic beam-splitting coatings contained within the prism assembly. For example, in the case of a 4 channel prisms associated with three detectors that detect in the visible range, and one detector that detects in the infrared range, λ1<λ2<λ3<λ4. Thus, λ1, λ2, and λ3 are associated with 400 nm to 700 nm and λ4 is dedicated to 810 nm to 870 nm, approximately for the long pass configuration.


An imaging pathway will require a barrier or secondary filter required to block the excitation radiation from reaching the detectors. This barrier filter is a dichroic filter made up of high and low index materials evaporated onto a substrate whose arrangement disposes the filter to have a lower and upper cutoff encompassing a range of wavelengths above that of the excitation wavelength, λe, whose peak is 805 nm for ICG. The skilled artisan will understand that other dyes will have other λe and will hence require different filters for imaging. Wavelength ranges below the cutoff frequency must be blocked to an optical density of 5 or more so that the detector does not view any portion of the energy from the illumination source, as it may be 2 or more orders of magnitude more intense than the fluorescent response. The dichroic filter may be positioned as a plane parallel plate orthogonal to the optical axis or at some preferential angle to minimize ghost images.


To maximize the lens coupling efficiency to the detector it is important to design the focusing optics and beamsplitting prism assembly to produce a marginal ray angle in the corner of the field which departs from the opto-mechanical axis by 10 or 15 degrees or less from the last optical element in the focusing optics to the detector. It is in this path that the prism assembly 31 is placed. By possessing a shallow marginal ray angle, the ray paths from the various fields within the prism reflect or pass the dichroic filters 31 at a nearly common angle or over a small range of angles. The more similar these angles, the better optical efficiency or throughput for each wavelength range, as dichroic filters by their nature are angle sensitive. Preferably, these angles do not differ from each other by more than 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 degrees.


Moreover, due to the low signal strength in the NIR path of the weak fluorescent scenes the f-number of the combined NIR VIS focusing and beamsplitting assembly should be as fast as possible for increased sensitivity. The increased sensitivity yields a larger cone angle from the last focusing element through the beamsplitting assembly creating a larger angle range than would be required for VIS imaging alone. Likewise, it is important to make each channel's ray path similar in length so that the resulting image height, magnification, on all detectors is comparable.


In the case of exceptionally weak NIR fluorescent signals, a cooled or intensified detector may be used on the NIR path. The improved sensitivity may be provided by an intensified CCD (ICCD) or electron multiplying CCD (EMCCD). Similarly, an intensifier or cooler means may be integrated to the infrared detector or beamsplitting assembly associated with the detector to make an integrated and compact system. A barrier filter may be used adjacent to an infrared detector to remove wavelengths outside those of interest.


In certain embodiments, a total of two detectors 33 are used (see e.g., the top prism 31 in FIG. 4 and FIG. 9). One detector 33a detects light in the visible spectrum and the second detector 33b detects light in the infrared spectrum. Proximal prism assembly 31 includes a first channel 31a and a second channel 31b.


Light from the relay section 2 enters channel 31a through surface 34a. Visible light is transmitted through surface 34b and 34c to a polychromatic detector 33a. The polychromatic detector 33a may be a single CCD or CMOS detector with an integrated color filter, such as a Bayer pattern directly on the detector.


Infrared light from relay section 2 is reflected by surface 34b and 34c onto surface 34d, through which it is transmitted to infrared detector 33b. Acceptable infrared detectors for any embodiments described herein include silicon. Silicon is the base material of almost all detectors commonly used, and it has a peak efficiency in the near infra red spectrum.


In certain embodiments (FIGS. 4 and 10), a 4 channel prism assembly 31 is used. Prism assembly 31 includes a channel for each of red, green, blue, and infrared, and is coupled to a detector capable of detecting such light. In the case of the 4 channel prism the 4th detector is into the page and not seen.


Thus, in certain embodiments, multiple detectors are present in an endoscope of the invention. Preferably, the diagonal of the infrared detector or intensifier associated with the infrared detector is approximately the same length as the diagonal of one or more of the other detectors that image in another spectrum.


Acceptable dichroic coatings which may be used within the context of the 2 and 4 channel prisms (31) may be purchased from Feldmann Optics in Wetzlar Germany, for example. Prism surfaces designed to transmit the wavelengths of interest are preferably coated as described in the transmitting members section, above.


The detectors 33a and 33b are synchronized and the frame grabber sends signals from all detectors to a computer. The sent data is input in video RAM. The user can access one or both of the visible and/or infrared images. Preferably, the computer includes computer program code that, when executed, gives the user the choice to either see (a) the visible image, (b) the infra red image, (c) both simultaneously (i.e., one superimposed over the other) with controls to dim the visible image, for example, so there is some color information in the displayed image, (d) alternating display of visible and infra red images, and/or (e) side by side viewing in different windows. Preferably, when both infra red and visible images are obtained, the two sets of images are viewed with perfect or substantially perfect registration.


In certain embodiments, field sequential illumination technology, such as described in U.S. Pat. No. 6,960,165, U.S. Pat. No. 6,388,702, and U.S. Pat. No. 6,907,527 may be used. These patents are incorporated herein by reference in their entirety.


A number of functionalities are made possible because detectors 33 detect one or both of infrared and visible light. For example, in embodiments where multiple detectors 33 are used (e.g., an infrared and a visible light detector), the detectors may have an automatic gain function. For example, the two detectors may send information to the computer 360 indicating the amount of energy detected by each. The computer 360 may have computer code for adjusting the gain of each camera based on this information. In some embodiments, the user may adjust the gain of the detectors through a computer interface.


CMOS sensors allow gain manipulation of individual photodiodes, region-of-interest read-out, high speed sampling, electronic shuttering and exposure control. They have a large dynamic range as well as a format for the computer interface. The skilled artisan will understand that the gain of individual pixels may be asynchronously modified in CMOS detectors. For example, areas for which greater performance is required may be made more sensitive. Similarly, in certain areas, response from the detectors may be decreased to, for example, counteract blooming. Such fine-tuning may be effected by the user or automatically as described above.


In certain embodiments, the detectors may be used to regulate the amount of illumination emitted by the illumination source(s) 220. This is particularly important as infrared energy may be harmful to humans, and while the photo bleaching properties of dyes such as ICG provide an upper limit on the energy applied to the tissue and require low dosages of wavelengths not unlike red in amounts of approximately 50 milliwatts per cm squared. Nonetheless, the perception of NIR as wavelengths which produce a substantial amount of heat is well founded. For example, detectors 33b and 33a automatically sense exposure levels of infra red energy and visible energy, respectively, and electronically communicate this information to the computer 360. Software on the computer may then compare the energy level indications received from the different detectors 33a and 33b. If the software determines that the level of infrared energy exceeds the level of visible light energy, the software may instruct the computer 360 to decrease the output of the infrared illumination source. In certain embodiments, the software may have a pre-set threshold or may allow a user to set a threshold as to an acceptable difference in energy output between different power sources. If a determination is made that the infrared detected energy exceeds the detected visible light energy by the threshold amount, the computer will then instruct the illumination source 220 to decrease output.


In some embodiment, if the software on the computer 360 determines that no infrared energy is being detected by the infrared detector, it may instruct the infrared camera to cease transmitting information to the computer or no longer use information transmitted from the infrared detector in calculations and imaging.


In some embodiments, proximal section 29 comprises an ocular member with an exit window. Such a window is useful to a physician who wishes to look through the endoscope without a camera. Proximal prisms will be provided to relay a visible image to the window, or the visible/infra red proximal prism camera invention may be used.


In certain embodiments, the physician may not wish to image in the infrared spectrum. In such embodiments, the infrared camera may be turned off, powered down or removed from the endoscope. In preferred embodiments, such turning off, powering down or removal will activate sensors or be otherwise detected by the computer, which will then send a shut off command to the infrared illumination source.


Preferably, where the aspect ratio of the prism contained within the focused beam path to the detector is defined by the exit face to the prism, the face in near proximity to the detector, and its length, as defined by the path along the optical axis, yields:

0.167<D/L<0.25

    • where:
    • D is defined by the diameter of the exit face, and
    • L is the path along the optical axis contained within the prism


In certain embodiments, the proximal prism assembly is removable from the endoscope eyepiece or last optical relay member, thus requiring a focusing lens assembly that focuses the relayed light from the relay section of endoscope 260 to an external exit pupil. This focusing lens assembly is preferably color corrected to produce comparably sized images free of dominating aberrations in each of the desired color bands and corrected to compensate for the positioning of the compact proximal color splitting prism assembly. The focusing assembly must be telecentric in object space, that space between the endoscope relay and the detachable compact prism assembly first optical element. In the case of a proximal prism assembly detachable from an endoscope eyepiece the focusing lens assembly must have an external entrance pupil that maps or is positioned in close proximity to the exit pupil of the endoscope eyepiece.


In the later case an endoscope exit pupil cannot be designed much larger than the human eye pupil that views it. The mismatch between human eye pupil and endoscope exit pupil would be seen as a reduction in brightness by the user of the endoscope when used without a camera, whereas the larger the pupil the faster the f-number of the focusing lens assembly and more sensitive the system from the camera or detector's point of view.


III. Light Sources


The invention further provides a non-laser infra-red light source that can be used with endoscopes, wands, macro telephoto imagers, or any other imaging device that is capable of receiving an optical fiber. Thus, the dangers associated with lasers, such as damage to a user's or subject's retina are removed or minimized. In some embodiments, the non-laser source is part of a combined illumination source comprised of both VIS and NIR illumination. In certain other embodiments, the non-laser source is contained in a distinct housing (e.g., a light box) in optical communication with the imaging device through fiber optics.


Referring now to FIG. 11, the light source includes light emitting member. Light emitting member is any light emitter that emits light energy in the infra red spectrum. Examples include tungsten halogen, xenon, and metal halide bulbs or arcs. In some embodiments, a member that emits in multiple wavelength ranges (e.g, infra red and visible) is chosen.


The light source includes an integrated reflector. Preferably, the reflector captures a significant portion of the total source power of the bulb or arc. An elliptical reflector captures a significant portion of the solid angle of the source when the reflector is positioned at one of the two foci of the ellipse, where the reflector can then redirect energy from the source arc or filament to the second foci defined by the elliptical reflector. In other embodiments, the reflector is parabolic.


The reflector has a coating that reflects infra red light to the beamsplitter that separates light of different wavelength. Infra red light from beamsplitter is then focused onto light fiber by optical assembly. The light fiber for NIR has a diameter and acceptance angle to favorably capture a substantial portion of the infra red light. Preferably, the beamsplitter routes light in the range of about 750 nm and about 800 nm to the optical assembly. In one embodiment, the numerical aperature is between about 0.4 and about 0.66. In some embodiments, the numerical aperture is between about 0.55 and about 0.66 NA. Such a combined VIS and NIR source can be used to provide illumination for endoscopes, wands, and macrotelephoto imaging devices used for NIR fluorescent imaging or combined VIS and NIR fluorescent imaging in either mono or stereo viewing mode.


In cases where the reflector is elliptical, the light member will be positioned approximately at the first foci of the ellipse, and the light fiber will be positioned approximately at the second foci which may be reimaged by a condenser lens assembly with a collimated or nearly collimated section between the said condenser lenses. Preferably, an assembly of collimating and focusing lenses is positioned between the member and the light beam splitter to collimate the light directed to beamsplitter 320. The advantage of the above configuration is the creation of near parallel paths of rays, the collimated condition, when intersecting a dichroic coating. The cut on cut off slope of such a coating is steeper if all rays are more or less parallel when interacting with the coating, therefore making it more efficient at dividing a spectrum.


In certain embodiments, the integrated reflector is parabolic. In these embodiments, the reflected light will be approximately collimated, and a collimating assembly may not be necessary to collimate the reflected light. A focusing lens or lens assembly is required to focus the energy from the source to the fiber optic cable.


Reflectors of other shapes may be used. Examples include: a reflector whose shape is modified to compensate for the aberrations of the glass envelope surrounding an arc source.


As discussed above, reflector has a coating for preferentially reflecting light in the infra red spectrum. Preferably, light at wavelengths between about 750 nm-about 820 nm is reflected. In certain embodiments, light between about 750 nm and about 800 nm is reflected. In some embodiments, light having a wavelength of between about 770 and 800 nm is reflected. In some embodiments, a coating is chosen that reflects significant amounts of light in multiple spectrums (e.g., ultraviolet, visible and/or infrared) and/or within multiple ranges within one or more of these spectrums.


In some embodiments, the coating is one of gold, silver or aluminum. Gold is particularly preferred for reflecting only wavelengths in the near infra red spectrum. Silver is particularly preferred for reflecting wavelengths in the visible and near infra red spectrums. These coatings can be preferably applied directly to the reflecting reflector 310 and are between about 1 and about 20 micrometers in thickness, and preferably between about 1 and about 10 micrometers in thickness. They can be purchased from, for example, TYDEX J.S. Co. (St. Petersburg, Russia) and vapor deposited onto the surface of interest by any number of thin film coaters in the world using vacuum deposition chambers. Gold coatings are especially preferred because they reflect well in the near IR. In some embodiments, any coating that reflects at least 80%, preferably at least 90% and most preferably at least 95% of light energy that is within the wavelengths of interest may be used. A second coating, such silicon dioxide (SiO2), magnesium fluoride, silicon monoxide or a dielectric overcoat may be applied. Such coatings can be purchased from, for example, OFR, Inc., Caldwell, N.J. In some embodiments, the coating is a dichroic coating or mirror (provided by a coating supplier such as Omega Optical Inc. Brattleboro, Vt. or Chroma Technology Corp., Rockingham, Vt.) A coating of gold, silver or aluminum is preferred over dichoroic coatings for efficiency since they are angle sensitive and such coatings could, over the collecting surface of the reflector, vary in efficiency.


Referring now to the beamsplitter, it routes energy in the infra red spectrum to light fiber. The light energy routed to light fiber is within the spectrum desired for imaging. In other words, if the dye being used is ICG, the beamsplitter will direct light to the light guide that is capable of exciting the ICG. For example, it may have a wavelength between about 750-about 820 nm, and more preferably between about 750 nm and 800 nm, or between about 770 nm and about 800 nm. The beam splitter may be an optical plate coated with, or cube containing a dichroic coating or interference filter such as a high/low index pair coating described above in relation to the endoscope relay section. The configuration of such an interference filter varies from transmission filters in selection and placement of high/low index pairs to optimize blockage and spectral width. In some embodiments, the beamsplitter assembly may require an absorptive filter that absorbs light rays that are at a wavelength above or below the wavelengths of interest. If the energy is sufficiently intense there may be excess heating that can be ameliorated with the addition of a fan.



FIG. 12 shows another embodiment of the light source. It is similar to the previously described light source except that the light member includes a second optical fiber that provides light at different wavelengths than the first optical fiber. Thus, it can be used for multimodal imaging (e.g., simultaneous imaging in the infra red spectrum and also imaging in the visible spectrum). In this embodiment, light emitting member is chosen such that it produces light both in the infra red and in the second desired range. Preferably, the second range is within the visible spectrum of about 400 nm to about 700 nm. Reflector includes a coating that reflects light in both the infra red and in the second desired range, e.g., silver. The beam splitter than routes light within the second desired range to second light fiber.


In some embodiments, additional absorptive filters may be placed between beamsplitter and one or more of the first and second light fibers to further reduce unwanted energy. Locating these filters in this position has several advantages. The first is; there is physically more room than the earlier case where the absorbing filters were located between the first and second foci of the elliptical reflector. The second advantage is also associated with more space, as the beam diameter may be larger than in the converging beam path between the two foci. This results in less flux density on the filter and less substrate heating in the filter. Thirdly, more room results in freedom to use more filters of differing configurations. Fourthly, more room permits the use of thicker more efficient absorptive filters.


In certain embodiments, the alpha angle of the light emitting member, the reflector and focusing lens in a one-dimensional direction satisfy the condition of 0.42 for the ratio of D/L<tan alpha<1.4D/L where alpha is the angle of the marginal ray and where D is one half of the effective diameter of the reflector adjacent to the light emitting member 300 or focusing lens to insert energy from light emitting member 300 to the light fiber and L is the distance from the limiting aperture of either the reflector or focusing lens.


Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only and are not meant to be limiting in any way. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Claims
  • 1. An elongated lens system in an endoscope or wand for fluorescence and visible light imaging, comprising: a first lens group comprising an objective assembly;a second lens group comprising a relay lens group; andan ocular lens group,wherein the relay lens group comprises a plurality of light transmitting members each comprising a transmitting glass surface facing an air space and an optical coating on the transmitting glass surface, wherein each coated light transmitting member is configured to reflect between 0.5% and 5% of first and second wavelengths of interest, wherein the first wavelength of interest is in the infrared spectrum and the second wavelength of interest is in the visible spectrum.
  • 2. The elongated lens system of claim 1, where the relay lens group comprises at least 30 air glass surfaces.
  • 3. The elongated lens system of claim 1, wherein the first wavelength of interest is between 825 nm and 835 nm.
  • 4. The elongated lens system of claim 1, wherein the plurality of light transmitting members comprise glasses with an index of refraction ranging from 1.5 to 1.65.
  • 5. The elongated lens system of claim 1, wherein the plurality of light transmitting members comprise glasses with an index of refraction ranging from 1.65 to 1.7.
  • 6. The elongated lens system of claim 1, further comprising a filter configured to block light at an excitation wavelength.
  • 7. The elongated lens system of claim 1, wherein the optical coating comprises layers of a high index coating material and a low index coating material.
  • 8. The elongated lens system of claim 1, wherein the optical coating comprises layers of TiO2 and MgF2.
  • 9. The elongated lens system of claim 1, wherein the optical coating comprises layers of TiO2 and SiO2.
  • 10. The elongated lens system of claim 1, wherein the optical coating comprises layers of ZrO2 and MgF2.
  • 11. The elongated lens system of claim 1, wherein the optical coating comprises layers of Ta2O5 and SiO2.
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 12/278,740, having a 371(c) date of Dec. 10, 2008, now abandoned, which is a national stage application of International Application No. PCT/US2007/061810, filed Feb. 7, 2007, which claims priority to U.S. Provisional Application Ser. No. 60/771,288 filed on Feb. 7, 2006, and entitled “Endoscopes and Wands”, U.S. Provisional Application Ser. No. 60/793,979 filed on Apr. 20, 2006 and entitled “Endoscopes and wands”, and U.S. Provisional Ser. Application No. 60/828,627 filed on Oct. 6, 2006 and entitled “Endoscopes and Wands”. Each of these applications is hereby incorporated by reference in its entirety.

US Referenced Citations (245)
Number Name Date Kind
3215029 Woodcock Nov 1965 A
3257902 Hopkins Jun 1966 A
3971068 Gerhardt et al. Jul 1976 A
4037866 Price Jul 1977 A
4066330 Jones Jan 1978 A
4115812 Akatsu Sep 1978 A
4149190 Wessler et al. Apr 1979 A
4200801 Schuresko Apr 1980 A
4318395 Tawara Mar 1982 A
4355325 Nakamura et al. Oct 1982 A
4378571 Handy Mar 1983 A
4449535 Renault May 1984 A
4471766 Terayama Sep 1984 A
4532918 Wheeler Aug 1985 A
4556057 Hiruma et al. Dec 1985 A
4611888 Prenovitz et al. Sep 1986 A
4638365 Kato Jan 1987 A
4655557 Takahashi Apr 1987 A
4660982 Okada Apr 1987 A
4768513 Suzuki Sep 1988 A
4786813 Svanberg et al. Nov 1988 A
4821117 Sekiguchi Apr 1989 A
4837625 Douziech et al. Jun 1989 A
4856495 Tohjoh et al. Aug 1989 A
4895145 Joffe Jan 1990 A
4917457 Iizuka Apr 1990 A
4930516 Alfano et al. Jun 1990 A
4951135 Sasagawa et al. Aug 1990 A
4954897 Ejima et al. Sep 1990 A
4974936 Ams et al. Dec 1990 A
5001556 Nakamura et al. Mar 1991 A
5005960 Heimbeck Apr 1991 A
5007408 Ieoka Apr 1991 A
5034888 Uehara et al. Jul 1991 A
5134662 Bacus et al. Jul 1992 A
5142410 Ono et al. Aug 1992 A
5165079 Schulz-Hennig Nov 1992 A
5205280 Dennison, Jr. et al. Apr 1993 A
5214503 Chiu et al. May 1993 A
5225883 Carter et al. Jul 1993 A
5255087 Nakamura et al. Oct 1993 A
5278642 Danna et al. Jan 1994 A
5305759 Kaneko et al. Apr 1994 A
5334191 Poppas Aug 1994 A
5365057 Morley et al. Nov 1994 A
5371355 Wodecki Dec 1994 A
5377686 O'Rourke et al. Jan 1995 A
5379756 Pileski et al. Jan 1995 A
5408263 Kikuchi et al. Apr 1995 A
5410363 Capen et al. Apr 1995 A
5419323 Kittrell et al. May 1995 A
5420628 Poulsen et al. May 1995 A
5421337 Richards-Kortum et al. Jun 1995 A
5424841 Van Gelder et al. Jun 1995 A
5430476 Hafele et al. Jul 1995 A
5460166 Yabe et al. Oct 1995 A
5485203 Nakamura et al. Jan 1996 A
5490015 Umeyama et al. Feb 1996 A
5507287 Palcic et al. Apr 1996 A
5536236 Yabe et al. Jul 1996 A
5576882 Kanamori Nov 1996 A
5585846 Kim Dec 1996 A
5590660 MacAulay et al. Jan 1997 A
5596654 Tanaka Jan 1997 A
5646680 Yajima Jul 1997 A
5647368 Zeng et al. Jul 1997 A
5647840 D'Amelio et al. Jul 1997 A
5667472 Finn et al. Sep 1997 A
5684629 Leiner Nov 1997 A
5695049 Bauman Dec 1997 A
5697373 Richards-Kortum et al. Dec 1997 A
5697888 Kobayashi et al. Dec 1997 A
5713364 DeBaryshe et al. Feb 1998 A
5722962 Garcia Mar 1998 A
5749830 Kaneko et al. May 1998 A
5772355 Ross et al. Jun 1998 A
5772580 Utsui et al. Jun 1998 A
5827190 Palcic et al. Oct 1998 A
5833617 Hayashi Nov 1998 A
5852498 Youvan et al. Dec 1998 A
5891016 Utsui et al. Apr 1999 A
5892625 Heimer Apr 1999 A
5897269 Ross et al. Apr 1999 A
5910816 Fontenot et al. Jun 1999 A
5941815 Chang Aug 1999 A
5952768 Strok et al. Sep 1999 A
5971918 Zanger Oct 1999 A
5976146 Ogawa et al. Nov 1999 A
5984861 Crowley Nov 1999 A
5986271 Lazarev et al. Nov 1999 A
5986642 Lazarev et al. Nov 1999 A
5990996 Sharp Nov 1999 A
5999240 Sharp et al. Dec 1999 A
6002137 Hayashi Dec 1999 A
6004263 Nakaichi et al. Dec 1999 A
6008889 Zeng et al. Dec 1999 A
6021344 Lui et al. Feb 2000 A
6028622 Suzuki Feb 2000 A
6030339 Tatsuno et al. Feb 2000 A
6059719 Yamamoto et al. May 2000 A
6059720 Furusawa et al. May 2000 A
6061591 Freitag et al. May 2000 A
6069689 Zeng et al. May 2000 A
6070096 Hayashi May 2000 A
6095982 Richards-Kortum et al. Aug 2000 A
6099466 Sano et al. Aug 2000 A
6110103 Donofrio Aug 2000 A
6110106 MacKinnon et al. Aug 2000 A
6120435 Eino Sep 2000 A
6148227 Wagnieres et al. Nov 2000 A
6161035 Furusawa Dec 2000 A
6166496 Lys et al. Dec 2000 A
6192267 Scherninski et al. Feb 2001 B1
6212425 Irion et al. Apr 2001 B1
6258576 Richards-Kortum et al. Jul 2001 B1
6280378 Kazuhiro et al. Aug 2001 B1
6293911 Imaizumi et al. Sep 2001 B1
6332092 Deckert et al. Dec 2001 B1
6347010 Chen et al. Feb 2002 B1
6351663 Flower et al. Feb 2002 B1
6364829 Fulghum Apr 2002 B1
6364831 Crowley Apr 2002 B1
6388702 Konomura et al. May 2002 B1
6419628 Rudischhauser et al. Jul 2002 B1
6422994 Kaneko et al. Jul 2002 B1
6433102 Suzuki et al. Aug 2002 B1
6443976 Flower et al. Sep 2002 B1
6461330 Miyagi Oct 2002 B1
6490085 Zobel Dec 2002 B1
6526213 Ilenda et al. Feb 2003 B1
6527709 Matsumoto Mar 2003 B2
6529768 Hakamata Mar 2003 B1
6537211 Wang et al. Mar 2003 B1
6544102 Schafer et al. Apr 2003 B2
6571119 Hayashi May 2003 B2
6603552 Cline et al. Aug 2003 B1
6639664 Haan et al. Oct 2003 B2
6772003 Kaneko et al. Aug 2004 B2
6773392 Kikuchi et al. Aug 2004 B2
6786865 Dhindsa Sep 2004 B2
6821245 Cline et al. Nov 2004 B2
6853485 Hoogland Feb 2005 B2
6898458 Zeng et al. May 2005 B2
6899675 Cline et al. May 2005 B2
6907527 Wu Jun 2005 B1
6911005 Ouchi et al. Jun 2005 B2
6915154 Docherty et al. Jul 2005 B1
6944493 Alam et al. Sep 2005 B2
6958035 Friedman et al. Oct 2005 B2
6960165 Ueno et al. Nov 2005 B2
7033314 Kamrava et al. Apr 2006 B2
7043291 Sendai May 2006 B2
7235045 Wang et al. Jun 2007 B2
7236815 Richards-Kortum et al. Jun 2007 B2
7324674 Ozawa et al. Jan 2008 B2
7341557 Cline et al. Mar 2008 B2
7364574 Flower Apr 2008 B2
7385772 Forkey et al. Jun 2008 B2
7704206 Suzuki et al. Apr 2010 B2
7722534 Cline et al. May 2010 B2
7724430 Kasai May 2010 B2
7733583 Fujiwara Jun 2010 B2
7733584 Kazakevich Jun 2010 B2
7798955 Ishihara et al. Sep 2010 B2
7862504 Kura et al. Jan 2011 B2
7918559 Tesar Apr 2011 B2
8408269 Fengler et al. Apr 2013 B2
8506555 Ruiz Morales Aug 2013 B2
8630698 Fengler et al. Jan 2014 B2
8780445 Inoue Jul 2014 B2
8961403 Cline et al. Feb 2015 B2
9241615 Yoshida et al. Jan 2016 B2
9386909 Fengler et al. Jul 2016 B2
20010016679 Futatsugi et al. Aug 2001 A1
20020035330 Cline et al. Mar 2002 A1
20020057501 Lei May 2002 A1
20020072736 Tierney et al. Jun 2002 A1
20020087047 Remijan Jul 2002 A1
20020103439 Zeng et al. Aug 2002 A1
20020138008 Tsujita et al. Sep 2002 A1
20020161283 Sendai Oct 2002 A1
20020161284 Tanaka Oct 2002 A1
20020175993 Ueno et al. Nov 2002 A1
20020177778 Averback et al. Nov 2002 A1
20020186478 Watanabe et al. Dec 2002 A1
20030002036 Haan et al. Jan 2003 A1
20030042493 Kazakevich Mar 2003 A1
20030153811 Muckner Aug 2003 A1
20030219383 Weissleder et al. Nov 2003 A1
20030229270 Suzuki et al. Dec 2003 A1
20040010183 Dhindsa Jan 2004 A1
20040021859 Cunningham Feb 2004 A1
20040037454 Ozawa et al. Feb 2004 A1
20040046865 Ueno et al. Mar 2004 A1
20040054255 Pilgrim et al. Mar 2004 A1
20040125445 Hoogland Jul 2004 A1
20040133073 Berci et al. Jul 2004 A1
20040142485 Flower et al. Jul 2004 A1
20040143162 Krattiger et al. Jul 2004 A1
20040148141 Tsujita et al. Jul 2004 A1
20040156124 Okada Aug 2004 A1
20040186383 Rava et al. Sep 2004 A1
20040204671 Stubbs et al. Oct 2004 A1
20040218115 Kawana et al. Nov 2004 A1
20050027166 Matsumoto et al. Feb 2005 A1
20050075575 Vo-Dinh Apr 2005 A1
20050096505 Imaizumi et al. May 2005 A1
20050143627 Cline et al. Jun 2005 A1
20050152027 Armstrong et al. Jul 2005 A1
20050154319 Cline et al. Jul 2005 A1
20050182291 Hirata Aug 2005 A1
20050256373 Bar-Or et al. Nov 2005 A1
20050267331 Secrest et al. Dec 2005 A1
20050275057 Breen et al. Dec 2005 A1
20060017913 Kawamata et al. Jan 2006 A1
20060089554 Ishihara et al. Apr 2006 A1
20060146322 Komachi et al. Jul 2006 A1
20060211915 Takeuchi et al. Sep 2006 A1
20060217594 Ferguson Sep 2006 A1
20060239921 Mangat et al. Oct 2006 A1
20060241496 Fengler et al. Oct 2006 A1
20060258910 Stefanchik et al. Nov 2006 A1
20080021274 Bayer et al. Jan 2008 A1
20080081948 Weisenburgh et al. Apr 2008 A1
20080239070 Westwick et al. Oct 2008 A1
20080273247 Kazakevich Nov 2008 A1
20090012361 MacKinnon et al. Jan 2009 A1
20090209813 Lubowski et al. Aug 2009 A1
20090290236 Wang et al. Nov 2009 A1
20090303317 Tesar Dec 2009 A1
20100081988 Kahle et al. Apr 2010 A1
20100125164 LaBombard May 2010 A1
20100168588 Matsumoto et al. Jul 2010 A1
20100198010 Cline et al. Aug 2010 A1
20100277817 Durell Nov 2010 A1
20110230719 Katakura et al. Sep 2011 A1
20110249323 Tesar et al. Oct 2011 A1
20120316394 Yoshida et al. Dec 2012 A1
20130184591 Tesar Jul 2013 A1
20130194667 Inoue Aug 2013 A1
20140187859 Leeuw et al. Jul 2014 A1
20140194687 Fengler et al. Jul 2014 A1
20140343362 Tesar Nov 2014 A1
20150230698 Cline et al. Aug 2015 A1
20160270640 Fengler et al. Sep 2016 A1
Foreign Referenced Citations (127)
Number Date Country
2 404 600 Oct 2001 CA
200987662 Dec 2007 CN
101115995 Jan 2008 CN
201048936 Apr 2008 CN
201085616 Jul 2008 CN
102004309 Apr 2011 CN
103091829 May 2013 CN
195 35 114 Mar 1996 DE
196 08 027 Sep 1996 DE
0 512 965 Nov 1992 EP
0 672 379 Sep 1995 EP
0 774 685 May 1997 EP
0 774 865 May 1997 EP
0 792 618 Sep 1997 EP
1 232 764 Aug 2002 EP
1 374 755 Jan 2004 EP
1 883 337 Feb 2008 EP
2 051 603 Apr 2009 EP
2106739 Oct 2009 EP
2 671 405 Jul 1992 FR
S60-246733 Dec 1985 JP
S61-159936 Jul 1986 JP
H01-135349 May 1989 JP
H02-272513 Nov 1990 JP
03-97439 Apr 1991 JP
03-97441 Apr 1991 JP
03-97442 Apr 1991 JP
H03-136630 Jun 1991 JP
H05-005101 Jan 1993 JP
H05-115435 May 1993 JP
6-63164 Mar 1994 JP
06-125911 May 1994 JP
H06-068702 Sep 1994 JP
H07-155285 Jun 1995 JP
H07-155286 Jun 1995 JP
H07-155290 Jun 1995 JP
H07-155291 Jun 1995 JP
H07-155292 Jun 1995 JP
H07-184832 Jul 1995 JP
H07-204156 Aug 1995 JP
H07-222712 Aug 1995 JP
H07-250804 Oct 1995 JP
H07-250812 Oct 1995 JP
H07-327913 Dec 1995 JP
H08-056894 Mar 1996 JP
H08-094928 Apr 1996 JP
H08-126605 May 1996 JP
08-140928 Jun 1996 JP
08-140929 Jun 1996 JP
H08-168465 Jul 1996 JP
H08-224208 Sep 1996 JP
H08-224209 Sep 1996 JP
H08-224210 Sep 1996 JP
H08-224240 Sep 1996 JP
H08-228998 Sep 1996 JP
H08-252218 Oct 1996 JP
09-066023 Mar 1997 JP
09-070384 Mar 1997 JP
H10-127563 May 1998 JP
H10-151104 Jun 1998 JP
H10-192297 Jul 1998 JP
10-201707 Aug 1998 JP
10-225427 Aug 1998 JP
H10-201700 Aug 1998 JP
H10-225426 Aug 1998 JP
H10-243915 Sep 1998 JP
H10-243920 Sep 1998 JP
H10-262907 Oct 1998 JP
H10-308114 Nov 1998 JP
H10-309281 Nov 1998 JP
H10-309282 Nov 1998 JP
H10-328129 Dec 1998 JP
11-047079 Feb 1999 JP
11-089789 Apr 1999 JP
H11-104059 Apr 1999 JP
H11-104060 Apr 1999 JP
H11-104061 Apr 1999 JP
H11-104070 Apr 1999 JP
H11-113839 Apr 1999 JP
H11-155812 Jun 1999 JP
H11-244220 Sep 1999 JP
H11-322819 Dec 1999 JP
2000-504968 Apr 2000 JP
2000-245693 Sep 2000 JP
2000-287915 Oct 2000 JP
2000-354583 Dec 2000 JP
2001-212245 Aug 2001 JP
2002-244122 Aug 2002 JP
2004-024611 Jan 2004 JP
2004-057520 Feb 2004 JP
2004-094043 Mar 2004 JP
2004-163902 Jun 2004 JP
2004-247156 Sep 2004 JP
2004-292722 Oct 2004 JP
2005-010315 Jan 2005 JP
2005-058618 Mar 2005 JP
2005-058619 Mar 2005 JP
2005-058620 Mar 2005 JP
2005-080819 Mar 2005 JP
2005-081079 Mar 2005 JP
2005-292404 Oct 2005 JP
2007-143624 Jun 2007 JP
2008-511341 Apr 2008 JP
2009-048085 Mar 2009 JP
2009-247566 Oct 2009 JP
2010-526342 Jul 2010 JP
2012-050618 Mar 2012 JP
5089168 Dec 2012 JP
2412800 Feb 2011 RU
WO-199304648 Mar 1993 WO
WO-199526673 Oct 1995 WO
WO-199824360 Jun 1998 WO
WO-199901749 Jan 1999 WO
WO-199953832 Oct 1999 WO
WO-200006013 Feb 2000 WO
WO-200042910 Jul 2000 WO
WO-200054652 Sep 2000 WO
WO-200207587 Jan 2002 WO
WO-2003059159 Jul 2003 WO
WO-2003059159 Jul 2003 WO
WO-2005110196 Nov 2005 WO
WO-2006116634 Nov 2006 WO
WO-2006116847 Nov 2006 WO
WO-2006119349 Nov 2006 WO
WO-2008011722 Jan 2008 WO
WO-2013021704 Feb 2013 WO
WO-2014199236 Dec 2014 WO
Non-Patent Literature Citations (93)
Entry
Bennett, Jean M. et al, Infrared Reflectance and Emittance of Silver and Gold Evaporated in Ultrahigh Vacuum, Feb. 1965, Applied Optics, vol. 4, No. 2, pp. 221-224.
M.E. Arregui et al, Principles of Laparoscopic Surgery, 1996, Springer-Verlag New York, 35 Visualization, pp. 767-794.
Donald O'Shea et al, Handbook of Optics Fundamentals, Techniques and Design, 1995, McGraw-Hill, Inc., 33 Aberration Curves in Lens Design, pp. 33.1-33.6.
International Search Report from International Application No. PCT/US07/061810 dated Feb. 26, 2008.
Non-Final Office Action dated Jun. 14, 2011, for U.S. Appl. No. 12/278,740, filed Dec. 10, 2008; 15 pages.
Final Office Action dated Feb. 14, 2012, for U.S. Appl. No. 12/278,740, filed Dec. 10, 2008; 6 pages.
Orfanidis, S. J. (Jun. 21, 2004) “Multilayer Structures,” Chapt 5 in Electromagnetic Waves and Antennas, published by Sophocoles; <http://www.ece.rutgers.edu/˜orfanidi/ewa>, 25 pages.
Alfano, R.R. et al. (Oct. 1987). “Fluorescence Spectra From Cancerous and Normal Human Breast and Lung Tissues,” IEEE Journal of Quantum Electronics QE-23(10):1806-1811.
Andersson-Engels, S. et al. (1989). “Tissue Diagnostics Using Laser-Induced Fluorescence,” Ber. Bunsenges Physical Chemistry 93:335-342.
Bhunchet, E. et al. (2002). “Fluorescein Electronic Endoscopy: A Novel Method for Detection of Early Stage Gastric Cancer Not Evident to Routine Endoscopy,” Gastrointestinal Endoscopy 55(4):562-571.
Hung, J. et al. (1991). “Autofluorescence of Normal and Malignant Bronchial Tissue,” Lasers in Surgery and Medicine 11:99-105.
Schott AG's Catalog for Optical Glasses. (Feb. 2016). “As the source of the SCHOTT Table.” (No Translation).
Sherwinter, D.A. (Aug. 2013, e-published on Oct. 11, 2012). “A Novel Adaptor Converts a Laparoscope Into a high-Definition Rigid Sigmoidoscope,” Surgical Innovation 20(4):411-413.
Tomkinson, T.H. et al. (Dec. 1, 1996). “Rigid Endoscopic Relay Systems: A Comparative Study,” Applied Optics35:6674-6683.
Canadian Office Action dated Dec. 30, 2015, for Canadian Patent Application No. 2,896,267, filed on Sep. 22, 2014, four pages.
Canadian Office Action dated Nov. 29, 2016, for Canadian Patent Application No. 2,896,267, filed on Sep. 22, 2014, four pages.
Canadian Office Action dated Jan. 4, 2017 for Canadian Application No. 2,911,861, filed on May 15, 2014, four pages.
Chinese First Office Action dated Aug. 3, 2016 for Chinese Application No. 201380073686.0, filed on Dec. 24, 2013, eight pages.
Chinese First Office Action dated Nov. 2, 2016 for Chinese Application Number 201480027537.5, filed on May 15, 2014, 17 pages.
Chinese Second Office Action dated Mar. 9, 2017, for Chinese Application No. 201380073686.0, filed on Dec. 24, 2013, nineteen pages.
European Communication pursuant to Rules 70(2) and 70a(2) EPC dated Aug. 4, 2016 for European Application No. 13871081.9, filed on Dec. 24, 2013, one page.
European Extended Search Report dated Dec. 16, 2016 for EP Application No. 14810752.7, filed on Sep. 8, 2016, eight pages.
European Office Action dated Nov. 19, 2015, for EP Application No. 07 785 001.4, filed on Jul. 30, 2007, four pages.
European Supplementary Search Report dated Oct. 9, 2013, for European Patent Application No. 06721854.5, filed on May 4, 2005, six pages.
European Supplementary Search Report dated Jan. 24, 2012 for EP Application No. 07 785 001.4, filed on Jul. 30, 2007, seven pages.
Extended European Search Report dated Jul. 18, 2016 for European Application No. 13871081.9, filed on Dec. 24, 2013, seven pages.
International Preliminary Report on Patentability dated Feb. 3, 2009, for International Application No. PCT/CA2007/001335, filed on Jul. 30, 2007, five pages.
International Preliminary Report on Patentability dated Nov. 6, 2007, for International Application No. PCT/CA2006/000669, filed on Apr. 27, 2006, nine pages.
International Search Report and Written Opinion dated Sep. 22, 2014, for International Application No. PCT/IB2013/003243, filed on Dec. 24, 2013, six pages.
International Search Report dated Aug. 3, 2006, for International Application No. PCT/CA2006/000669, filed on Apr. 27, 2006, three pages.
International Search Report dated Dec. 7, 2007, for International Application No. PCT/CA2007/001335, filed on Jul. 30, 2007, two pages.
International Search Report dated Jan. 21, 2002, for International Application No. PCT/US2001/022198, filed on Jul. 13, 2001, three pages.
Japanese Final Office Action dated Aug. 2, 2013, for Japanese Patent Application No. 2008-509275, filed on Apr. 27, 2006, four pages.
Japanese Office Action dated Feb. 17, 2012, for Japanese Patent Application No. 2008-509275, filed on Apr. 27, 2006, six pages.
Japanese Office Action dated Jul. 4, 2016, for Japanese Patent Application No. 2015-550160, filed on Dec. 24, 2013, ten pages.
Japanese Office Action dated Nov. 11, 2011, for Japanese Patent Application No. 2009-521077, filed on Jul. 30, 2007, four pages.
Japanese Office Action dated Dec. 5, 2016 for Japanese Patent Application No. 2016-513460, filed on May 15, 2014, nine pages.
Japanese Office Action dated Mar. 3, 2017 for Japanese Patent Application No. 2015-550160, filed on Jun. 24, 2015, nine pages.
Japanese Office Action dated Sep. 14, 2012, for Japanese Patent Application No. 2008-509275, filed on Apr. 27, 2006, seven pages.
Japanese Office Action dated Sep. 19, 2014, for Japanese Patent Application No. 2013-246636, filed on Apr. 27, 2006, six pages.
Korean Final Office Action dated Feb. 13, 2017, for Korean Patent Application No. 2015-7019659, filed on Jul. 20, 2015, twelve pages.
Korean Office Action dated Jan. 6, 2017 for Korean Patent Application No. 10- 2015-7035138, filed on Dec. 10, 2015, ten pages.
Korean Office Action dated Jul. 15, 2016 for Korean Patent Application No. 10-2015-7019659, filed Dec. on 24, 2013, twelve pages.
Korean Notice of Allowance dated Aug. 14, 2017, for Korean Application No. 10-2015-7035138, filed on Dec. 10, 2015, three pages.
Russian Office Action dated Dec. 29, 2016, for Russian Application No. 2015124802, filed on Dec. 24, 2013, thirteen pages.
U.S. Final Office Action dated Aug. 8, 2016 for U.S. Appl. No. 14/278,833, filed May 15, 2014, seven pages.
U.S. Final Office Action dated Jan. 23, 2017 for U.S. Appl. No. 14/140,370, filed Dec. 24, 2013, twelve pages.
U.S. Final Office Action dated Mar. 3, 2016 for U.S. Appl. No. 14/140,370, filed Dec. 24, 2013, ten pages.
U.S. Final Office Action dated Oct. 6, 2016 for U.S. Appl. No. 14/629,473, filed Feb. 23, 2015, seventeen pages.
U.S. Final Office Action dated Jul. 23, 2008, for U.S. Appl. No. 11/122,267, filed May 4, 2005, six pages.
U.S. Final Office Action dated Jun. 18, 2015, for U.S. Appl. No. 14/154,177, filed Jan. 13, 2014, eight pages.
U.S. Final Office Action dated Jun. 5, 2014, for U.S. Appl. No. 12/761,462, filed Apr. 16, 2010, fourteen pages.
U.S. Final Office Action dated May 11, 2011, for U.S. Appl. No. 11/412,715, filed Apr. 26, 2006, eight pages.
U.S. Final Office Action dated May 19, 2017, for U.S. Appl. No. 14/975,707, filed Dec. 18, 2015, six pages.
U.S. Final Office Action dated Nov. 24, 2009, for U.S. Appl. No. 11/009,965, filed Dec. 10, 2004, fourteen pages.
U.S. Non Final Office Action dated Dec. 31, 2015 for U.S. Appl. No. 14/278,833, filed May 15, 2014, seven pages.
U.S. Non Final Office Action dated Oct. 23, 2015 for U.S. Appl. No. 14/140,370, filed Dec. 24, 2013, eight pages.
U.S. Non-Final Office Action dated Apr. 2, 2009, for U.S. Appl. No. 11/009,965, filed Dec. 10, 2004, thirteen pages.
U.S. Non-Final Office Action dated Aug. 16, 2013, for U.S. Appl. No. 12/761,462, filed Apr. 16, 2010, ten pages.
U.S. Non-Final Office Action dated Aug. 16, 2013, for U.S. Appl. No. 12/761,523, filed Apr. 16, 2010, nine pages.
U.S. Non-Final Office Action dated Dec. 10, 2010, for U.S. Appl. No. 11/412,715, filed Apr. 26, 2006, ten pages.
U.S. Non-Final Office Action dated Dec. 14, 2011, for U.S. Appl. No. 11/412,715, filed Apr. 26, 2006, eight pages.
U.S. Non-Final Office Action dated Jan. 2, 2008, for U.S. Appl. No. 11/122,267, filed May 4, 2005, five pages.
U.S. Non-Final Office Action dated Jan. 20, 2016, for U.S. Appl. No. 14/629,473, filed Feb. 23, 2015, fourteen pages.
U.S. Non-Final Office Action dated Jul. 17, 2003, for U.S. Appl. No. 09/905,642, filed Jul. 13, 2001, six pages.
U.S. Non-Final Office Action dated Jul. 5, 2016, for U.S. Appl. No. 14/975,707, filed Dec. 18, 2015, four pages.
U.S. Non-Final Office Action dated Jun. 1, 2007, for U.S. Appl. No. 10/899,648, filed Jul. 26, 2004, seven pages.
U.S. Non-Final Office Action dated Jun. 20, 2008, for U.S. Appl. No. 11/009,398, filed Dec. 10, 2004, fifteen pages.
U.S. Non-Final Office Action dated Jun. 23, 2010, for U.S. Appl. No. 11/009,965, filed Dec. 10, 2004, fourteen pages.
U.S. Non-Final Office Action dated Jun. 9, 2011, for U.S. Appl. No. 11/830,323, filed Jul. 30, 2007, five pages.
U.S. Non-Final Office Action dated May 18, 2004, for U.S. Appl. No. 10/050,601, filed Jan. 15, 2002, eight pages.
U.S. Non-Final Office Action dated Nov. 23, 2009, for U.S. Appl. No. 11/969,974, filed Jan. 7, 2008, seven pages.
U.S. Non-Final Office Action dated Oct. 23, 2015, for U.S. Appl. No. 14/140,370, filed Dec. 24, 2013, eight pages.
U.S. Non-Final Office Action dated Sep. 27, 2016, for U.S. Appl. No. 14/140,370, filed Dec. 24, 2013, nine pages.
U.S. Non-Final Office Action dated Sep. 12, 2014, for U.S. Appl. No. 14/154,177, filed Jan. 13, 2014, four pages.
U.S. Non-Final Office Action with Restriction Requirement dated Mar. 4, 2011, for U.S. Appl. No. 11/830,323, filed Jul. 30, 2007, nine pages.
U.S. Notice of Allowability dated Jan. 2, 2008, for U.S. Appl. No. 10/899,648, filed Jul. 26, 2004, three pages.
U.S. Notice of Allowance dated Apr. 7, 2004, for U.S. Appl. No. 09/905,642, filed Jul. 13, 2001, six pages.
U.S. Notice of Allowance dated Aug. 26, 2004, for U.S. Appl. No. 10/050,601, filed Jan. 15, 2002, four pages.
U.S. Notice of Allowance dated Aug. 6, 2015, for U.S. Appl. No. 13/853,656, filed Mar. 29, 2013, seven pages.
U.S. Notice of Allowance dated Feb. 25, 2010, for U.S. Appl. No. 11/969,974, filed Jan. 7, 2008, four pages.
U.S. Notice of Allowance dated Jul. 28, 2017, for U.S. Appl. No. 14/629,473, filed Feb. 23, 2015, ten pages.
U.S. Notice of Allowance dated Mar. 28, 2016, for U.S. Appl. No. 13/853,656, filed Mar. 29, 2013, eight pages.
U.S. Notice of Allowance dated Nov. 23, 2015, for U.S. Appl. No. 13/853,656, filed Mar. 29, 2013, seven pages.
U.S. Notice of Allowance dated Oct. 10, 2014, for U.S. Appl. No. 12/761,462, filed Apr. 16, 2010, ten pages.
U.S. Notice of Allowance dated Oct. 5, 2007, for U.S. Appl. No. 10/899,648, filed Jul. 26, 2004, six pages.
U.S. Notice of Allowance dated Jan. 5, 2017, for U.S. Appl. No. 14/278,833, filed May 15, 2014, seven pages.
U.S. Notice of Allowance dated Sep. 10, 2013, for U.S. Appl. No. 11/412,715, filed Apr. 26, 2006, eight pages.
U.S. Notice of Allowance dated Sep. 14, 2012, for U.S. Appl. No. 11/830,323, filed Jul. 30, 2007, eight pages.
U.S. Supplemental Notice of Allowability dated Mar. 10, 2005, for U.S. Appl. No. 10/050,601, filed Jan. 15, 2002, five pages.
Written Opinion of the International Searching Authority dated Aug. 3, 2006, for International Application No. PCT/CA2006/000669, filed on Apr. 27, 2006, eight pages.
Written Opinion of the International Searching Authority dated Dec. 7, 2007, for International Application No. PCT/CA2007/001335, filed on Jul. 30, 2007, four pages.
U.S. Appl. No. 15/073,259, filed Mar. 17, 2016, thirty nine pages. (Copy not attached).
Related Publications (1)
Number Date Country
20130184591 A1 Jul 2013 US
Provisional Applications (3)
Number Date Country
60771288 Feb 2006 US
60793979 Apr 2006 US
60828627 Oct 2006 US
Continuations (1)
Number Date Country
Parent 12278740 US
Child 13585824 US