Near-Optimal Low-Complexity Decoding of Space-Time Codes for Fixed Wireless Applications

Information

  • Patent Application
  • 20090180569
  • Publication Number
    20090180569
  • Date Filed
    March 24, 2009
    15 years ago
  • Date Published
    July 16, 2009
    15 years ago
Abstract
An improved multi-antenna receiver is realized for detecting signals transmitted by a multi-antenna transmitter by summing signals received at the plurality of receiver antennas after multiplying each by a respective constant. The summed signal is applied to a maximum likelihood detector. The respective constants, λj, where j is an index designating a particular receiver antenna, are determined by evaluating the largest eigenivector of the matrix A, where Λ is a vector containing values λj, and A is a matrix containing elements αij, which is the transfer function between the ith transmitter antenna to the jth receiver antenna. The αij terms are determined in the receiver in conventional ways.
Description
BACKGROUND

This invention relates to wireless systems and, more particularly, to systems having more than one antenna at the receiver and at the transmitter.


Physical constraints as well as narrow bandwidth, co-channel interference, adjacent channel interference, propagation loss and multi-path fading limit the capacity of cellular systems. These are severe impairments, which liken the wireless channel to a narrow pipe that impedes the flow of data. Nevertheless, interest in providing high speed wireless data services is rapidly increasing. Current cellular standards such as IS-136 can only provide data rates up to 9.6 kbps, using 30 kHz narrowband channels. In order to provide wideband services, such as multimedia, video conferencing, simultaneous voice and data, etc., it is desirable to have data rates in the range of 64-144 kbps.


Transmission schemes for multiple antenna systems may be part of a solution to the problem of the currently available low data rates. Such schemes were first proposed in papers by Wittneben, and by Seshadri and Winters, where the problem was addressed in the context of signal processing.


One prior art arrangement having a single transmitter antenna and multiple receiver antennas is shown in FIG. 1. Each of the receiver antennas receives the transmitted signal via a slightly different channel, where each channel i is characterized by transfer function αi. Using an approach known as “Maximum Ratio Combining,” the prior art approach to detection contemplates multiplying each received signal that had been influenced by αi, by the complex conjugate signal, αi*, summed, and then processed.


In U.S. Pat. No. 6,115,427 titled “Method and Apparatus for Data Transmission Using Space-Time Codes and Multiple Transmit Antennas,” filed on May 6, 1997, a coding perspective was adopted to propose space-time coding using multiple transmit and receive antennas. Space-time coding integrates channel coding, modulation, and multiple transmit antennas to achieve higher data rates, while simultaneously providing diversity that combats fading. It may be demonstrated that adding channel coding provides significant gains over the schemes of Wittneben and Seshadri and Winters. In said co-pending application, space-time codes were designed for transmission using 2-4 transmit antennas. These codes perform extremely well in slowly varying fading environments (such as indoor transmission media). The codes have user bandwidth efficiencies of up to 4 bits/sec/Hz which are about 3-4 times the efficiency of current systems. Indeed, it can be shown that the designed codes are optimal in terms of the trade-off between diversity advantage, transmission rate, decoding complexity and constellation size.


It can also be shown that as the number of antennas is increased, the gain increases in a manner that is not unlike a multi-element antenna that is tuned to, say, a particular direction. Unfortunately, however, when maximum likelihood detection is employed at the receiver, the decoding complexity increases when the number of transmit and receive antennas is increased. It would be advantageous to allow a slightly sub-optimal detection approach that substantially reduces the receiver's computation burden.


SUMMARY

Such an approach is achieved with a receiver arrangement where signals received at a plurality of antennas are each multiplied by a respective constant and then summed prior to being applied to a maximum likelihood detector. The respective constants, λj, where j is an index designating a particular receiver antenna, are derived from a processor that determines the largest eigenvector of the matrix A, where Λ is a vector containing the values λj, and A is a matrix containing elements αij, which is the transfer function between the ith transmitter antenna to the jth receiver antenna. The αij terms are determined in the receiver in conventional ways.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 presents a block diagram of prior Maximal Ratio Combining detection; and



FIG. 2 presents a block diagram of an embodiment including a transmitter having a plurality of antennas, and a receiver having a plurality of antennas coupled to an efficient detection structure.





DETAILED DESCRIPTION


FIG. 2 presents a block diagram of a receiver in accord with an embodiment of the invention. It includes a transmitter 10 that has an n plurality of transmitting antenna 1, 2, 3, 4, and a receiver 20 that has an iii plurality of receiver antennas 21, 22, 23, 24. The signals received by the receiver's antennas are multiplied in elements 25, 26, 27, and 28, and summed in adder 30. More specifically, the received signal of antenna j is multiplied by a value, λj, and summed. The collection of factors λj can be viewed as a vector Λ. The outputs of the receiver antennas are also applied to processor 40 which, employing conventional techniques, determines the transfer functions αij for i=1, 2, 3, . . . , n and j=1, 2, 3, . . . , m. These transfer functions can be evaluated, for example, through the use of training sequences that are sent by the different transmitter antennas, one antenna at a time.


The evaluated αij signals of processor 40 are applied to processor 45 in FIG. 2 where the multiplier signals λj, j=1, 2, 3, . . . , m are computed. Processor 45 also evaluates a set of combined transfer function Values γi, i=1, 2, 3, . . . , n (which are described in more detail below). Signals γi of processor 45 and the output signal of adder 30 are applied to detector 50 which detects the transmitted symbols in accordance with calculations disclosed below.


It is assumed that the symbols transmitted by the antennas of transmitter 10 have been encoded in blocks of L time frames, and that fading is constant within a frame. A codeword comprises all of the symbols transmitted within a frame, and it corresponds, therefore, to





c11c12c13 . . . c14c21c22c23 . . . c24c31c32c33 . . . c34 . . . cm1cm2cm3 . . . cm4,  (1)


where the superscript designates the transmitter's antennas and the subscript designates the time of transmission (or position within a frame).


From the standpoint of a single transmitting antenna, e.g., antenna 1, the signal that is received from antenna 1 in response to a transmitted symbol ci1 at time interval t is:













R
t

=




c
t
1



(



α
11



λ
1


+


α
12



λ
2


+


α
13



λ
3


+

+


α

1

m




λ
m



)








=




c
t
1






j
=
1

m








λ
j



α

1

j











=




c
t
1



γ
1









(
2
)







(when noise is ignored). If each λj value is set to α*1j, (where α*1j is the complex conjugate of α1j) then the received signal would simply be










R
t

=


c
t
1






j
=
1

m






α

1

j




2







(
3
)







yielding a constructive addition.


Of course, the values of λj cannot be set to match α*ij and concurrently to match the values of αij where i≈1; and therein lies the difficulty. When all n of the transmitting antennas are considered, then the received signal is










R
t

=





j
=
1

n







(


c
t
i






j
=
1

m




λ
j



α
ij




)










=




i
=
1

n








c
t
i



γ
i








(
4
)







In accordance with the present disclosure, the objective is to maximize














i
=
1

n






γ
i



2






because by doing so, signal Rt contains as much information about cti, i=1, 2, 3, . . . as is possible. However, it can be easily shown that if a matrix A is constructed such that










A
=




i
-
1

n





(

Ω
i
*

)

T



Ω
i




,






where






Ω
i


=

(


α

i





1


,

α

i





2


,


α

i





3




…α
im



)


,




then




(
5
)










i
=
1

n






γ
i



2


=

Λ








A


(

Λ
*

)


T

.






(
6
)







The receiver, thus, has to maximize ΛA(Λ*)T, subject to the constraint ∥Λ∥2=1. The solution to this problem is to choose Λ to be the eigenvector of A which corresponds to the maximum eigenvalue of A. Accordingly, processor 45 develops the matrix A from the values of αij, finds the eigenvalues of A in a conventional manner, selects the maximum eigenvalue of A, and creates the vector Λ. Once Λ is known, processor 45 develops signals γi for i=1, 2, 3, . . . , n, where












γ
i

=




j
=
1

m








λ
j



α
ij








and applies them to detector 50. Finally, detector 50 minimizes the metric














t
=
1

L











R
t

-




i
=
1

n








c
t
i



γ
i







2











from amongst all possible codewords in a conventional manner. As can be seen, this approach reduces the complexity of decoding by almost a factor of m.



FIG. 2 depicts separate multipliers to multiply received signals by multiplication factors λi, and it depicts separate blocks for elements 30, 40, 45, and 50. It should be understood, however, that different embodiments are also possible. For example, it is quite conventional to incorporate all of the above-mentioned elements in a single special purpose processor, or in a single stored program controlled processor (or a small number of processors). Other modifications and improvements may also be incorporated, without departing from the spirit and scope of the invention, which is defined in the following claims.

Claims
  • 1. A method for operating a receiver with an M number of antennas, the method comprising: obtaining n signals at the n plurality of antennas, transmitted from m antennas of a transmitter;developing, by a processor associated with the receiver, a sum signal that corresponds to the addition of the n signals that are each pre-multiplied by a respective factor λj, where j is an index integer specifying that factor λj multiplies the signal received from antenna j of the n plurality of antennas,developing, by the processor, values for transfer functions αij, where i is an index that references the transmitting antennas, and j is an index that references the receiving antennas;developing, by the processor, the λj factors from the transfer functions αij; anddetecting, by the processor, symbols transmitted by the m transmitter antennas embedded in the sum signal,where the λj factors are components of a vector Λ, where Λ is an eigenvalue of ΛA(Λ*)T, and where A is a matrix containing the elements αij.
  • 2. The method of claim 1, wherein detecting, by the processor, symbols transmitted by the m transmitter antennas embedded in the sum signal comprises, comparing the sum signal to a signal corresponding to symbols ci possibly transmitted by transmitting antenna i of said m transmitting antennas multiplied by corresponding factors γi.
  • 3. The method of claim 2, wherein comparing the sum signal to a signal corresponding to symbols ci possibly transmitted by transmitting antenna i of said m transmitting antennas multiplied by corresponding factors γi comprises, comparing the sum signal to a signal corresponding to symbols ci possibly transmitted by transmitting antenna i of said m transmitting antennas multiplied by corresponding factors γi, wherein the corresponding factor γi is related to said factors λj, for j=1, 2, 3, . . . , m, and αij.
  • 4. The method of claim 2, wherein detecting, by the processor, symbols transmitted by the m transmitter antennas embedded in the sum signal comprises, minimizing the metric
  • 5. A method for operating a signal processing apparatus for use in a wireless receiver, wherein the wireless receiver forms part of a wireless system having a wireless transmitter employing multiple transmitting antennas, and wherein the wireless receiver includes two or more receiving antennas for receiving signals transmitted from the multiple transmitting antennas, the method comprising: receiving, at an input section of the signal processing apparatus, multiple signals provided by the two or more receiving antennas;developing, at a processing section of the signal processing apparatus, multiplying values from transfer function values that are associated with the multiple transmitting antennas and the two or more receiving antennas;developing, at the processing section of the signal processing apparatus, a matrix from the transfer function values;finding, at the processing section of the signal processing apparatus, eigenvalues of the matrix;creating, at the processing section of the signal processing apparatus, a maximum eigenvector of the matrix;generating, at the processing section of the signal processing apparatus, a subset of the set of all possible values of the received encoded symbols from the maximum eigenvector;multiplying, at a multiplying section of the signal processing apparatus, the received signals by the multiplying values to produce multiplied received signals; andsumming, at a summing section of the signal processing apparatus, the multiplied received signals.
  • 6. The method of claim 5, wherein receiving, at the input section, multiple signals provided by the two or more receiving antennas comprises, receiving from the multiple transmitting antennas, encoded symbols in blocks of multiple time frames and, wherein a codeword comprises all encoded symbols transmitted within a time frame.
  • 7. A method for operating a system for processing wireless data, the method comprising: receiving, at an m number of receiving antennas associated with a system processor, a wireless signal, wherein the wireless signal represents multiple codewords; andprocessing, at the system processor under a less than optimal computational process, the wireless signal to determine the codewords, wherein a number of computations is reduced by approximately a factor of m, at an increase in less than a factor of m in frame error probability from an optimal computational process, and wherein the optimal computational process computes all codewords.
  • 8. The method of claim 7, wherein receiving, at the m number of receiving antennas, the wireless signal comprises, the wireless signal is transmitted by multiple transmitting antennas and is encoded under a space-time modulation scheme.
  • 9. The method of claim 7 further comprising computing, at the system processor, eigenvectors based on the m number of receiving antennas.
  • 10. The method of claim 7, wherein receiving, at the no number of receiving antennas, the wireless signal comprises, the wireless signal is transmitted by multiple transmitting antennas that transmit encoded symbols in blocks of multiple time frames and, wherein a codeword comprises all encoded symbols transmitted within a time frame.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/371,173 filed Mar. 8, 2006, which is a continuation of U.S. patent application Ser. No. 10/838,553, filed May 4, 2004 (now U.S. Pat. No. 7,046,737), which is a continuation of U.S. patent application Ser. No. 10/234,407, filed Sep. 3, 2002 (now U.S. Pat. No. 6,741,635), which is a continuation of U.S. patent application Ser. No. 09/690,542, filed Oct. 17, 2000 (now U.S. Pat. No. 6,470,043), which is a continuation of U.S. patent application Ser. No. 09/063,765, filed Apr. 21, 1998 (now U.S. Pat. No. 6,188,736), which claims the benefit of U.S. Provisional Application No. 60/068,613, filed Dec. 23, 1997.

Provisional Applications (1)
Number Date Country
60068613 Dec 1997 US
Continuations (5)
Number Date Country
Parent 11371173 Mar 2006 US
Child 12410291 US
Parent 10838553 May 2004 US
Child 11371173 US
Parent 10234407 Sep 2002 US
Child 10838553 US
Parent 09690542 Oct 2000 US
Child 10234407 US
Parent 09063765 Apr 1998 US
Child 09690542 US