Nebuliser for the production of aerosolized medication

Information

  • Patent Grant
  • 8616195
  • Patent Number
    8,616,195
  • Date Filed
    Tuesday, April 27, 2004
    20 years ago
  • Date Issued
    Tuesday, December 31, 2013
    10 years ago
Abstract
A nebulizer to deliver a medicament that includes a housing having a reservoir for the medicament, an aerosol generator that can be supplied the medicament from the reservoir, where the generator aerosolizes at least a portion of the medicament into an aerosol, a gas venting inlet to permit a gas to enter the nebulizer and form a mixture with the aerosol, and a passage through which the mixture of the aerosol and the gas is delivered to an outlet port of the nebulizer.
Description
BACKGROUND OF THE INVENTION

This invention relates to a nebuliser for delivery of medicament to the respiratory system of a patient. Certain conditions such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis require that prescribed liquid medication be turned into a fine mist, called an aerosol, and then inhaled into the lungs.


Nebulisers for creating such an aerosol of medication are known. However, conventional nebulisers for home use are generally large and bulky and are inconvenient to use. Thus, there is a need for compact nebulisers that are more convenient for use at home.


Nebulisers have long been used to produce aerosols. There are three major classifications of nebulisers for home use. Compressor driven jet or pneumatic nebulisers utilise a reservoir in which medication is placed below the point of aerosol generation, so that medication is drawn up from the reservoir by the action of the jet, which then shears the fluid into small particles. Aerosol collects in and passes through a chamber above the medication reservoir, driven by the flow of gas that generates the aerosol. This constant flow of aerosol from the nebuliser often exceeds inspiratory flows and volumes generated by the patient and reduces the amount of aerosol available for inspiration, reducing the mass of drug inhaled by the patient. Thus, there remains a need for nebulisers that reduce the amount of flow gas needed to deliver aerosolized medication to a patient.


Ultrasonic nebulisers create standing waves in a medication reservoir, above a peizo ceramic element, generating aerosol that collects above the medication reservoir. Aerosol does not leave the collection chamber without active gas flow generated directly by the patient, or by a secondary flow of gas (e.g., fan). This reduces the ability of the ultrasonic to be used with an open aerosol mask. Thus there remains a need for nebulisers that can be used with an open aerosol mask.


In both jet and ultrasonic nebulisers droplets that do not leave the aerosol chamber remain on the walls of the chamber or return to the reservoir, contributing to a residual drug remaining in the nebuliser. Thus there remains a need for nebulisers that reduce the amount of residual drug that remains in the nebulizer.


A nebuliser is also known which has a medication reservoir connected to a transducer horn placed below a mesh plate. The vibration of the horn pushes the liquid medication through orifices in the mesh plate placed above it. Aerosol is directed up from the aerosol generator. Technical limitations of this technology result in relatively large particle sizes, low output, difficulty in aerosolizing suspensions, and a lack of reservoir to effectively collect aerosol between inspiratory efforts. Thus, there remains a need for nebulizers that generate fine aerosol mists with high output, and which also have a reservoir to collect aerosol between inspiratory efforts.


BRIEF SUMMARY OF THE INVENTION

The present invention includes a nebuliser for delivery of a medicament to a patient's respiratory system. The nebuliser may include a housing that forms a reservoir for a liquid medicament. The medicament may enter the reservoir through an inlet and exit the reservoir through an outlet coupled to an aerosol generator. The generator converts the medicament into an aerosol that may travel through an aerosol passage to an outlet port where the aerosol exits the nebuliser. The nebuliser may also include a gas venting inlet that allows gas (e.g., air) to enter the nebuliser and mix with the aerosolized medicament before the mixture of gas and entrained aerosol exits the nebuliser through the outlet port.


In one embodiment gravitational flow of a liquid medicament is supplied from the reservoir to the aerosol generator.


The gas venting inlet may be located in close proximity to the aerosol generator.


In another embodiment the housing has a baffle to direct gas and entrained aerosol to the outlet port. Said baffle may include an inclined surface oriented to cause aerosol to flow through the outlet. The baffle may be inclined towards the outlet port.


In another embodiment the nebuliser may include an aerosol rainout trap. The rainout trap may be adjacent to the outlet port.


In another embodiment the nebuliser may include an aerosol trap and aerosol rainout from the baffle is directed into the trap.


The aerosol generator may have a protector to protect the aerosol generator against physical damage. The protector may include an upper protector above the aerosol generator and/or a lower protector below the aerosol generator, which may be integral with the nebuliser housing. One or more of the protectors may include a mesh.


The nebuliser may include a respiratory connector for connecting the outlet port to a respiratory system. The respiratory connector may include a mouth piece. The respiratory connector may be selected from a group consisting of a mouthpiece, a face mask, and a nasal piece.


In another embodiment the nebuliser include an aerosol generator housing in which the aerosol generator is held. The aerosol generator housing may be fixed to the reservoir.


In another embodiment the aerosol generator may comprise a vibratable member having a plurality of apertures extending between a first surface and a second surface thereof. The apertures in the vibratable member are sized to aerosolise the medicament by ejecting droplets of medicament such that about 70% or more of the droplets by weight have a size in the range from about 1 to about 6 micrometers.


In another embodiment the nebuliser may include a drive circuit for the aerosol generator. The drive circuit may include a push-pull resonant power circuit. The resonant circuit may use an inductive element that has an impedance value substantially equal to the impedance of the piezoelectric element.


The resonant circuit may include an inductive element. For example, the resonant circuit may include a pair of MOSFET switches operated as a push-pull (alternate on-off) arrangement.


The nebuliser drive circuit may be adapted to be plugged directly to a wall outlet receiving an input of an alternating voltage in the range from 90V to 250V at a frequency range from 50 Hz-60 Hz and producing an alternating voltage output at a frequency range from 50 Khz to 300 Khz. The circuit may include an inductive element having substantially the same impedance of the nebuliser circuit at the operating frequency.


In another embodiment, the nebuliser drive circuit may be adapted for use with batteries receiving an input of voltage in the range from 1.5 to 12 Volt and producing an alternating voltage output at a frequency range from 50 Khz to 300 Khz. The circuit may include an inductive element having substantially the same impedance of the nebuliser circuit at the operating frequency.


Another aspect of the invention includes methods for nebulising a viscous liquid. In one embodiment, a method includes providing a vibratable thin shell member that includes a front surface, a rear surface and a plurality of tapered apertures extending therebetween, the apertures being tapered to narrow from the rear surface to the front surface, vibrating the thin shell member, and sweeping the frequency between two frequency values.


In another embodiment, a method for nebulising a viscous liquid includes providing a vibratable thin shell member that includes a front surface and a rear surface and a plurality of tapered apertures extending therebetween, the apertures being tapered to narrow from rear surface, to the front surface, vibrating the thin shell member, and supplying heat to a viscous liquid (e.g., a lipid).


Another embodiment of the invention provides an aerosol generator that includes an electrical connector for supplying electrical power to the aerosol generator, the electrical connector and the current carrying components of the aerosol generator being encased by electrically insulating material.


Embodiments of the invention also include an aerosol generator assembly that includes an aerosol generator and a power inlet, the assembly being structurally supported by elastomeric encasing, where the encasing may also provide electrical insulation to the assembly. The elastomeric encasing may be produced by a process of injection molding.


In another embodiment of the invention provides an aerosol generator assembly that includes an aerosol generator and a power inlet encased by an elastomeric structure. The aerosol generator may include a vibratory thin shell member having a rear surface and a front surface and a plurality apertures extending therebetween, the apertures having a size range of about 1 to about 6 microns at their smaller opening.


Additional novel features shall be set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the following specification or may be learned by the practice of the invention. The features and advantages of the invention may be realized and attained by means of the instrumentalities, combinations, and methods particularly pointed out in the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be more clearly understood from the following description thereof given by way of example, in which:



FIG. 1 is a perspective view of a nebuliser according to an embodiment of the invention;



FIG. 2 is a perspective view of a battery driven controller for use with the nebuliser;



FIG. 3 is a perspective view of a mains driven controller for use with the nebuliser;



FIG. 4 is a perspective view of a nebuliser according to an embodiment of the invention with a mouth piece fitted;



FIG. 5 is a cut-away view of the nebuliser of FIG. 4;



FIG. 6 is an exploded view of the nebuliser of FIGS. 4 and 5;



FIG. 7 is a perspective view from above of an upper part of the nebuliser;



FIG. 8 is a perspective view from below of the upper part of the nebuliser;



FIGS. 9(
a) to 9(d) are perspective views illustrating the mounting and overmoulding of a vibratable member and associated connector for a nebuliser according to an embodiment of the invention;



FIG. 10 is a block diagram of a drive for a piezoelectric element;



FIG. 11 is a circuit diagram of the drive and load stages of FIG. 10;



FIGS. 12(
a) to 12(d) are circuit diagrams showing operation of the drive of FIGS. 10 and 11 in four modes labelled mode I to mode 4;



FIGS. 13 to 15 are views similar to FIGS. 4 to 6 of a nebuliser according to an embodiment of the invention that includes a nasal piece fitted;



FIGS. 16 to 18 are views similar to FIGS. 4 to 6 of a nebuliser according to an embodiment of the invention with a face mask adaptor fitted; and



FIGS. 19 to 21 are views similar to FIGS. 4 to 6 of a nebuliser according to another embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION

Referring to the drawings and initially to FIGS. 1 to 8 thereof there is illustrated a nebuliser 1 according to an embodiment of the invention for delivery of a medicament to the respiratory system of a patient. The nebuliser 1 comprises a housing having a reservoir, which in this embodiment takes the form of medication cup 2 for liquid medicament. The medication cup 2 has an upper inlet 3 which is covered by a releasable cup 4. The cup 4 is transparent to allow a user to view the contents of the cup. The cup 2 also has a lower outlet to which the medicament flows by gravity. The cup 4 has a lower conical portion 6 to promote the flow of medicament to the outlet. An aerosol generator 7 is mounted at the outlet of the cup to aerosolise the liquid medicament. The aerosol generator 7 is protected against user access from above by a barrier mesh 10 which in this case is integrally formed with the medication cup. The aerosol generator 7 is also protected from below by a lower mesh 11 which is separately formed from the medication cup 2. The protector meshes 10, 11 are particularly apparent from FIGS. 5, 7 and 8.


Aerosol generated by the aerosol generator 7 is delivered into a vented aerosol passage 20 defined by a nebuliser body 19. Air passes into the passage 20 through air inlets 21. The air entrains the aerosolised medicament and the entrained aerosolised medicament is delivered from the nebuliser through an outlet port 22 from the passage 20. In this case the inlets 21 are formed by air vents which are located above the aerosol generator 7. The outlet port 22 has an extension or connector piece 23 which is inclined upwardly to direct flow into a respiratory system. In this case the outlet connector 23 is fitted with a releasable mouthpiece part 24 which is a push-fit on the connector 23.


The nebuliser 1 has a baffle to direct air and entrained aerosolised medicament to the outlet 22. In this case the baffle is formed by a floor 25 of the nebuliser body 19. It will be noted that the baffle 25 is inclined downwardly towards the outlet port 22. The arrangement of the inlet 21 on one side of the nebuliser housing, the outlet 22 on a generally opposite side of the housing and the baffle 25 optimises the flow of air and entrained aerosolised medicament to the outlet 22.


The nebuliser 1 has an aerosol rain-out trap 30 for collecting any larger droplets not entrained in the air. In this case the rain-out trap 30 is between the outlet port 22 and the baffle 25. Any droplets not entrained by the air impinge on the baffle 25 and flow down the incline into the trap 30. Similarly any droplets that may form at the outlet 22 or in the associated connectors are directed to flow into the trap 30. The trap 30 is readily emptied by opening the nebuliser housing and inverting the bottom of the housing.


Typically, the medication cup 2 is configured to accommodate up to about 6 ml to about 10 ml of liquid medicament.


The aerosol generator 7 comprises a vibratable member 40 and a piezoelectric element 41. The vibratable member 40 has a plurality of tapered apertures extending between a first surface and a second surface thereof, as described in U.S. Pat. No. 5,164,740 (the first '740 patent); U.S. Pat. No. 5,586,550 (the '550 patent); U.S. Pat. No. 5,758,637 (the '637 patent); and U.S. Pat. No. 6,085,740 (the second '740 patent), the entire contents of which are incorporated herein by this reference.


The first surface of the vibratable member 40, which in use faces upwardly, receives the liquid medicament from the medication cup 2, and the aerosolised medicament is generated at the second surface of the vibratable member 40 by ejecting droplets of medicament upon vibration of the member 40. In use the second surface faces downwardly. In one case, the apertures in the vibratable member 40 may be sized to produce an aerosol in which about 70% or more of the droplets by weight have a size in the range from about 1 to about 5 micrometers. In another embodiment, about 70% or more (by weight) of the droplets have sizes ranging from about 1 to about 6 micrometers.


The vibratable member 40 is non-planer, and is preferably dome-shaped in geometry.


The piezoelectric element 41 has an electrical connection socket 45 to which a connector plug element 46 is mounted as illustrated in FIGS. 9(a) and 9(b). The piezoelectric element 41 and the connection 45 and plug 46 is then overmoulded to form a sub-assembly 47 which defines a housing 48 for the piezoelectric element 41. The sub-assembly 47 is mounted in the nebuliser housing as illustrated.


The apparatus 1 also includes a controller as illustrated, to control operation of and to supply power to the aerosol generator 7. The plug element 46 defines a signal interface port 50 fixed to the nebuliser housing to receive a control signal from the controller. The controller may be connected to the signal interface port 50 by means of a control lead 52, which has a docking member 51 or connector for mating with the plug 46 at the interface port 50. A control signal and power may be passed from the controller through the lead 52 to the aerosol generator 7 to control the operation of and supply power to the aerosol generator 7.


As illustrated in FIG. 2 in one case a controller 55 may comprise a battery operated unit.


Alternatively, a controller 56 may have a mains plug 57 for connecting directly to a mains power source. In this case the controller has an integral AC-DC circuit as well as control circuitry mounted in a single housing.


Each controller 55 or 56 has a housing 60 and a user interface to selectively control operation of the aerosol generator 7. The user interface may be in the form of, for example, an on-off button 58.


Status indication means are also provided on the housing 60 to indicate the operational state of the aerosol generator 7. For example, the status indication means may be in the form of a visible LED 61, to indicate an operational state of the aerosol generator 7.


Referring to FIGS. 10 to 12 the piezo drive arrangement is illustrated. Power may be from an AC/DC power supply or a DC/DC power supply, in what is illustrated as a Stage 1. Where the former a Vbus level of 20V is provided by a universal input (85 Vac−264 Vac) AC/DC adapter. Where the latter, batteries may provide the power.


In a Stage 2 a push/pull resonant circuit provides the following output to the load:

    • Pout=1 W
    • fout=128 kHz
    • Vout=54 Vms


The resonant circuit comprises a resonant inductor Lres and the capacitive element (Cp) of the piezoelectric load, driven by two MOSFETs Q1 and Q2 in a push-pull arrangement. As shown in FIG. 11 the resonant circuit also comprises a 100 μF bulk capacitor Cbus and a DC blocking capacitor Cdc.


Referring particularly to FIGS. 12(a) to 12(d) switching period modes Mode 1 to Mode 4, respectively, are illustrated.

    • Mode 1
    • Cdc is neglected because its AC ripple is assumed negligible.
    • Q1 turned on, Q2 turned off.
    • Positive current flow in direction of arrow.
    • Mode equations solved using equation:

      Vbus=VLres+VCp(t)
    • Mode 2
    • Q1 turning off, Q2 off.
    • Current freewheels through anti-parallel diode of Q2.
    • Mode equation:

      VLres(t)+VCp(t)+VDQ2=0
    • Mode 3
    • Q1 turned off, Q2 turned on.
    • Positive current flow in direction of arrow.
    • Mode equation:

      VLres(t)+Vcp(t)=0
    • Mode 4
    • Q2 turning off, Q1 off.
    • Current freewheels through anti-parallel diode of Q1.
    • Mode equation:

      VCp(t)+VLres(t)−VDQI−VCbus=0


In use, the cap 4 is opened and medicament is delivered through the inlet port 3 into the medication cup 2. Typically a supply container, such as a nebule or a syringe, is used to deliver the liquid medicament through the inlet port 3 into the medication cup 2. The liquid medicament in the medication cup 2 flows by gravitational action towards the aerosol generator 7 at the lower medicament outlet.


By distancing the inlet port 11 to the reservoir 2 from the aerosol generator 3 at the outlet 16, this arrangement creates a sterile barrier between the delivery of the liquid medicament into medication cup 2 and the respiratory system of the patient.


The docking member of the control lead 52 is mated with the signal interface port 50 on the reservoir 2 to connect the controller 55 or 56 to the aerosol generator 7. The controller 50 may then be activated to supply power and a control signal to the aerosol generator 7, which causes the piezoelectric element 41 to vibrate the vibratable member 40.


This vibration of the vibratable member 40 causes the liquid medicament at the top surface of the member 40 to pass through the apertures to the lower surface where the medicament is aerosolised by the ejection of small droplets of medicament.


The aerosolised medicament passes from the aerosol generator 7 into the passage 20 of the housing 19. The aerosolised medicament is entrained with a gas, such as air, which passes into the passage 20 through the inlet 21. The entrained mixture of the aerosolised medicament and the gas then passes out through the outlet 22 and on to the respiratory system of the patient.


In this case, the mouthpiece 24 is gripped between the teeth of the user, with the lips sealed around the mouthpiece. The user breathes in and out slowly. On the exhale cycle, exhaled gas flows back along the mouthpiece and into the passage 20. Exhaust may pass through the gas inlets 21. Breathing is continued in this way until aerosol formation has stopped indicating that all the medicament in the medication cup 2 has been delivered into the patients respiratory system. The nebuliser is turned off by pressing the on/off button 58.


A suitable material for the various connectors and housings is ABS. An alternative material for the various connectors and housings is polycarbonate or polysulphone. By manufacturing these components of the apparatus from polysulphone or polycarbonate, this enables these components to be autoclaved for multiple use of the same apparatus.


Referring now to FIGS. 13 to 15 there is illustrated a nebuliser as described above with a nasal piece 70 attached. The nasal piece 70 is used to deliver the medicament through the users nose.


Referring now to FIGS. 16 to 18 there is illustrated a nebuliser as described above which in this case has an elbow connector 75 for connection to a face mask 76.


Referring to FIGS. 19 to 20 there is illustrated another nebuliser 80 which is similar in some respects to the nebulisers described above and like parts we assigned the same reference numerals. In this case air is supplemented by an oxygen supply which is connected through an inlet port 81. A holder 82 is releasably mounted to the nebuliser housing. The holder accepts an external filter which collects all exhaled aerosol. In addition, the holder serves as a diffuser to the jet of gas entering through the inlet port, reducing turbulence and impactive losses of aerosol within the nebuliser housing.


The invention provides a nebuliser which is relatively small, light weight and is easy to use. The controllers are also small and light weight. Aerosol is readily generated and efficiently entrained in a gas flow for ease and-efficiency of patient use without medical supervision. The nebuliser may be tilted significantly from the vertical (by up to 45°) without significantly effecting functionality. Thus, the nebuliser may be easily used by patients whilst sitting down or at least partially lying down. The gravity dependent orientation of the aerosol generator and the internal volume in the nebuliser provided by the chamber increases inhaled mass of aerosol in such a way that cough reflex is inhibited. The inclusion of the filter in a dependent position reduces risk of second hand aerosol exposure.


We have found that delivery of non-newtonian fluids can be aided by sweeping the driving frequency of the piezo across the aperture plates' delivery range. It is thought that the aperture plate alters its mode of vibration depending on the drive frequency. This change of motion applies additional stresses to the fluid which can thin it. The frequency sweep may be achieved by using one of the PWM (pulse width modulation) outputs of the microcontroller and routing this signal to the input of a half bridge or MOSFET driver.


In this method the frequency changes by the resolution of the system clock (in our case it is Tosc/4−20 Mhz crystal/14=5 Mhz. T=1/Fosc=0.2 μsec. So at approx 130 Khz the frequency can change by approx 3 kHz for each step.) The delivery range is about 120 kHz to 135 kHz. The rate of change of the sweep and range may be controlled using software in the micro controller.


The invention is not limited to the embodiments hereinbefore described which may be varied in construction and detail.


The words “comprise,” “comprising,” “include,” “including,” and “includes” when used in this specification and in the following claims are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, or groups.

Claims
  • 1. A nebuliser to deliver a medicament comprising: a housing having a reservoir for the medicament;an aerosol generator comprising a vibratable member having a plurality of apertures extending between a first surface and second surface of the member that can be supplied the medicament from the reservoir, wherein the generator aerosolizes at least a portion of the medicament into an aerosol;a gas venting inlet to permit a gas to enter the nebuliser and form a mixture with the aerosol;a passage through which the mixture of the aerosol and the gas is delivered to an outlet port of the nebulizer; anda drive circuit for the aerosol generator;wherein the drive circuit is configured to, substantially throughout aerosolization, repeatedly change a frequency of vibration of the vibratable member between a first frequency and a second frequency.
  • 2. A nebuliser according to claim 1, wherein the medicament is supplied from the reservoir to the aerosol generator by gravitational flow.
  • 3. A nebuliser according to claim 1, wherein the gas venting inlet is located in close proximity to the aerosol generator.
  • 4. A nebuliser according to claim 1, wherein the housing has a baffle to direct the mixture of the gas and the aerosol to the outlet port.
  • 5. A nebuliser according to claim 4, wherein the baffle comprises an inclined surface oriented to cause aerosol to flow through the outlet port.
  • 6. A nebuliser according to claim 4, wherein the baffle is inclined towards the outlet port.
  • 7. A nebuliser according to claim 1, wherein the nebuliser comprises an aerosol rainout trap.
  • 8. A nebuliser according to claim 7, wherein the rainout trap is adjacent to the outlet port.
  • 9. A nebuliser according to claim 1, wherein the aerosol generator has a protector to protect the aerosol generator against physical damage.
  • 10. A nebuliser according to claim 9, wherein the protector comprises an upper protector above the aerosol generator.
  • 11. A nebuliser according to claim 10 wherein the upper protector comprises a mesh.
  • 12. A nebuliser according to claim 9, wherein the protector comprises a lower protector below the aerosol generator.
  • 13. A nebuliser according to claim 12 wherein the lower protector comprises a mesh.
  • 14. A nebuliser according to claim 12, wherein the lower protector is integral with the nebuliser housing.
  • 15. A nebuliser according to claim 1, wherein the nebuliser comprises a respiratory connector configured to connect the outlet port to a respiratory system.
  • 16. A nebuliser according to claim 15, wherein the respiratory connector comprises a mouth piece.
  • 17. A nebuliser according to claim 15, wherein the respiratory connector is selected from a group consisting of a mouthpiece, a face mask, and a nasal piece.
  • 18. A nebuliser according to claim 1, wherein the nebuliser comprises an aerosol generator housing in which the aerosol generator is held.
  • 19. A nebuliser according to claim 18, wherein the aerosol generator housing is fixed to the reservoir.
  • 20. A nebuliser according to claim 1, wherein the apertures in the vibratable member are sized to aerosolize the medicament by ejecting droplets of medicament such that about 70% or more of the droplets by weight have a size in the range from about 1 to about 6 micrometers.
  • 21. A nebuliser according to claim 1, wherein the drive circuit comprises a push-pull resonant power circuit.
  • 22. A nebuliser according to claim 21, wherein the vibratable member comprises a piezoelectric element and the push-pull resonant power circuit comprises an inductive element having an impedance value substantially equal to an impedance of the piezoelectric clement.
  • 23. A nebuliser according to claim 21, wherein the push-pull resonant power circuit comprises an inductive element.
  • 24. A nebuliser according to claim 21, wherein the push-pull resonant power circuit comprises a pair of MOSFET switches operated in an on-off arrangement.
  • 25. A nebuliser according to claim 1, comprising an electrical connector for supplying electrical power to the aerosol generator.
  • 26. A nebuliser according to claim 1, comprising an aerosol generator assembly that includes a power inlet coupled to the aerosol generator, wherein at least a portion of the assembly is encased by an electrically insulating elastomeric casing.
  • 27. A nebuliser according to claim 26, wherein the elastomeric encasing is produced by a process of injection molding.
  • 28. A nebuliser according to claim 1, wherein the nebuliser comprises a drive circuit coupled to the aerosol generator and adapted to be plugged directly to a wall outlet receiving an input of an alternating voltage in the range from about 90V to about 250V at a frequency from about 50 Hz to about 60 Hz, and producing an alternating voltage output at an operating frequency range from about 50 Khz to about 300 Khz.
  • 29. A nebuliser according to claim 28, wherein the drive circuit includes an inductive element having a substantially same impedance of the nebuliser circuit at at least one operating frequency.
  • 30. A nebuliser according to claim 1, wherein the nebuliser comprises a drive circuit coupled to the aerosol generator adapted for use with batteries receiving an input of voltage in the range from 1.5 to 12 Volt and producing an alternating voltage output at an operating frequency range from 50 Khz to 300 Khz.
  • 31. A nebuliser according to claim 30, wherein the drive circuit comprises an inductive element having a substantially same impedance of said nebuliser circuit at at least one operating frequency.
  • 32. A nebuliser according to claim 1, wherein the gas entering the nebuliser comprises air.
  • 33. A method for nebulising a liquid comprising: providing a vibratable thin shell member comprising a front surface, a rear surface and a plurality of tapered apertures extending therebetween, said apertures being tapered to narrow from the rear surface to the front surface;vibrating the thin shell member; andsubstantially throughout nebulisation, repeatedly sweeping a frequency of vibration of the vibrating thin shell member across a delivery range of the vibratable member.
  • 34. A method according to claim 33, wherein changing a frequency of vibration of the vibrating thin shell member comprises changing a drive frequency of a drive circuit that controls the frequency of vibration of the vibrating thin shell, wherein the drive frequency goes from a first drive frequency to a second drive frequency in a plurality of incremental steps.
  • 35. A method according to claim 33, wherein the liquid is a lipid.
  • 36. A method for nebulising a liquid comprising: providing a vibratable thin shell member comprising a front surface and a rear surface and a plurality of tapered apertures extending therebetween, said apertures being tapered to narrow from rear surface, to the front surface;vibrating the thin shell member;substantially throughout nebulisation, repeatedly sweeping a frequency of vibration of the vibrating thin shell member across a delivery range of the vibratable member; andsupplying heat to the liquid.
  • 37. A method according to claim 36, wherein the liquid is a lipid..
CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/488,718, filed Jul. 18, 2003, which is incorporated herein by reference in its entirety.

US Referenced Citations (448)
Number Name Date Kind
550315 Allen Nov 1895 A
809159 Willis et al. Jan 1906 A
1680616 Horst Aug 1928 A
2022520 Philbrick Nov 1935 A
2101304 Wright Dec 1937 A
2158615 Wright May 1939 A
2187528 Wing Jan 1940 A
2223541 Baker Dec 1940 A
2266706 Fox et al. Dec 1941 A
2283333 Martin May 1942 A
2292381 Klagges Aug 1942 A
2360297 Wing Oct 1944 A
2375770 Dahlberg May 1945 A
2383098 Wheaton Aug 1945 A
2404063 Healy Jul 1946 A
2430023 Longmaid Nov 1947 A
2474996 Wallis Jul 1949 A
2512004 Wing Jun 1950 A
2521657 Severy Sep 1950 A
2681041 Zodtner et al. Jun 1954 A
2705007 Gerber Mar 1955 A
2735427 Sullivan Feb 1956 A
2764946 Henderson Oct 1956 A
2764979 Henderson Oct 1956 A
2779623 Eisenkraft Jan 1957 A
2935970 Morse et al. May 1960 A
3103310 Lang Sep 1963 A
3325031 Singler Jun 1967 A
3411854 Rosler et al. Nov 1968 A
3515348 Coffman, Jr. Jun 1970 A
3550864 East Dec 1970 A
3558052 Dunn Jan 1971 A
3561444 Boucher Feb 1971 A
3563415 Ogle Feb 1971 A
3680954 Frank Aug 1972 A
3719328 Hindman Mar 1973 A
3738574 Guntersdorfer et al. Jun 1973 A
3771982 Dobo Nov 1973 A
3790079 Berglund et al. Feb 1974 A
3804329 Martner Apr 1974 A
3812854 Michaels et al. May 1974 A
3838686 Szekely Oct 1974 A
3842833 Ogle Oct 1974 A
3865106 Palush Feb 1975 A
3903884 Huston et al. Sep 1975 A
3906950 Cocozza Sep 1975 A
3908654 Lhoest et al. Sep 1975 A
3950760 Rauch et al. Apr 1976 A
3951313 Coniglione Apr 1976 A
3958249 DeMaine et al. May 1976 A
3970250 Drews Jul 1976 A
3983740 Danel Oct 1976 A
3993223 Welker, III et al. Nov 1976 A
4005435 Lundquist et al. Jan 1977 A
4030492 Simbruner Jun 1977 A
4052986 Scaife Oct 1977 A
4059384 Holland et al. Nov 1977 A
D246574 Meierhoefer Dec 1977 S
4076021 Thompson Feb 1978 A
4083368 Freezer Apr 1978 A
4094317 Wasnich Jun 1978 A
4101041 Mauro, Jr. et al. Jul 1978 A
4106503 Rosenthal et al. Aug 1978 A
4109174 Hodgson Aug 1978 A
4113809 Abair et al. Sep 1978 A
D249958 Meierhoefer Oct 1978 S
4119096 Drews Oct 1978 A
4121583 Chen Oct 1978 A
4159803 Cameto et al. Jul 1979 A
4207990 Weiler et al. Jun 1980 A
4210155 Grimes Jul 1980 A
4226236 Genese Oct 1980 A
4240081 Devitt Dec 1980 A
4240417 Holever Dec 1980 A
4248227 Thomas Feb 1981 A
4261512 Zierenberg Apr 1981 A
D259213 Pagels May 1981 S
4268460 Boiarski et al. May 1981 A
4294407 Reichl et al. Oct 1981 A
4298045 Weiler et al. Nov 1981 A
4299784 Hense Nov 1981 A
4300546 Kruber Nov 1981 A
4301093 Eck Nov 1981 A
4319155 Makai et al. Mar 1982 A
4334531 Reichl et al. Jun 1982 A
4336544 Donald et al. Jun 1982 A
4338576 Takahashi et al. Jul 1982 A
4368476 Uehara et al. Jan 1983 A
4368850 Szekely Jan 1983 A
4374707 Pollack Feb 1983 A
4389071 Johnson, Jr. et al. Jun 1983 A
4408719 Last Oct 1983 A
4428802 Kanai et al. Jan 1984 A
4431136 Janner et al. Feb 1984 A
4454877 Miller et al. Jun 1984 A
4465234 Maehara et al. Aug 1984 A
4474251 Johnson, Jr. Oct 1984 A
4474326 Takahashi Oct 1984 A
4475113 Lee et al. Oct 1984 A
4479609 Maeda et al. Oct 1984 A
4512341 Lester Apr 1985 A
4530464 Yamamoto et al. Jul 1985 A
4533082 Maehara et al. Aug 1985 A
4539575 Nilsson Sep 1985 A
4544933 Heinzl Oct 1985 A
4546361 Brescia et al. Oct 1985 A
4550325 Viola Oct 1985 A
4566452 Farr Jan 1986 A
4582654 Karnicky et al. Apr 1986 A
4591883 Isayama May 1986 A
4593291 Howkins Jun 1986 A
4605167 Maehara Aug 1986 A
4613326 Szwarc Sep 1986 A
4620201 Heinzl et al. Oct 1986 A
4628890 Freeman Dec 1986 A
4632311 Nakane et al. Dec 1986 A
4658269 Rezanka Apr 1987 A
4659014 Soth et al. Apr 1987 A
4677975 Edgar et al. Jul 1987 A
4678680 Abowitz Jul 1987 A
4679551 Anthony Jul 1987 A
4681264 Johnson, Jr. Jul 1987 A
4693853 Falb et al. Sep 1987 A
4702418 Carter et al. Oct 1987 A
4722906 Guire Feb 1988 A
4753579 Murphy Jun 1988 A
4790479 Matsumoto et al. Dec 1988 A
4793339 Matsumoto et al. Dec 1988 A
4796807 Bendig et al. Jan 1989 A
4799622 Ishikawa et al. Jan 1989 A
4805609 Roberts et al. Feb 1989 A
4819629 Jonson Apr 1989 A
4819834 Thiel Apr 1989 A
4826080 Ganser May 1989 A
4826759 Guire et al. May 1989 A
4828886 Hieber May 1989 A
4843445 Stemme Jun 1989 A
4849303 Graham et al. Jul 1989 A
4850534 Takahashi et al. Jul 1989 A
4865006 Nogi et al. Sep 1989 A
4871489 Ketcham Oct 1989 A
4872553 Suzuki et al. Oct 1989 A
4877989 Drews et al. Oct 1989 A
4888516 Daeges et al. Dec 1989 A
4922901 Brooks et al. May 1990 A
4926915 Deussen et al. May 1990 A
4934358 Nilsson et al. Jun 1990 A
4954225 Bakewell Sep 1990 A
4957239 Tempelman Sep 1990 A
4964521 Wieland et al. Oct 1990 A
D312209 Morrow et al. Nov 1990 S
4968299 Ahlstrand et al. Nov 1990 A
4971665 Sexton Nov 1990 A
4973493 Guire Nov 1990 A
4976259 Higson et al. Dec 1990 A
4979959 Guire Dec 1990 A
4993411 Callaway Feb 1991 A
4994043 Ysebaert Feb 1991 A
5002048 Makiej, Jr. Mar 1991 A
5002582 Guire et al. Mar 1991 A
5007419 Weinstein et al. Apr 1991 A
5016024 Lam et al. May 1991 A
5021701 Takahashi et al. Jun 1991 A
5022587 Hochstein Jun 1991 A
5024733 Abys et al. Jun 1991 A
5046627 Hansen Sep 1991 A
5062419 Rider Nov 1991 A
5063396 Shiokawa et al. Nov 1991 A
5063921 Howe Nov 1991 A
5063922 Häkkinen Nov 1991 A
5073484 Swanson et al. Dec 1991 A
5076266 Babaev Dec 1991 A
5080093 Raabe et al. Jan 1992 A
5080649 Vetter Jan 1992 A
5086765 Levine Feb 1992 A
5086785 Gentile et al. Feb 1992 A
5115803 Sioutas May 1992 A
5115971 Greenspan et al. May 1992 A
D327008 Friedman Jun 1992 S
5122116 Kriesel et al. Jun 1992 A
5129579 Conte Jul 1992 A
5134993 Van der Linden et al. Aug 1992 A
5139016 Waser Aug 1992 A
5140740 Weigelt Aug 1992 A
5147073 Cater Sep 1992 A
5152456 Ross et al. Oct 1992 A
5157372 Langford Oct 1992 A
5164740 Ivri Nov 1992 A
5169029 Behar et al. Dec 1992 A
5170782 Kocinski Dec 1992 A
5180482 Abys et al. Jan 1993 A
5186164 Raghuprasad Feb 1993 A
5186166 Riggs et al. Feb 1993 A
5198157 Bechet Mar 1993 A
5201322 Henry et al. Apr 1993 A
5213860 Laing May 1993 A
5217148 Cater Jun 1993 A
5217492 Guire et al. Jun 1993 A
5227168 Chvapil et al. Jul 1993 A
5230496 Shillington et al. Jul 1993 A
5245995 Sullivan et al. Sep 1993 A
5248087 Dressler Sep 1993 A
5258041 Guire et al. Nov 1993 A
5261601 Ross et al. Nov 1993 A
5263992 Guire Nov 1993 A
5279568 Cater Jan 1994 A
5297734 Toda Mar 1994 A
5299739 Takahashi et al. Apr 1994 A
5303854 Cater Apr 1994 A
5309135 Langford May 1994 A
5312281 Takahashi et al. May 1994 A
5313955 Rodder May 1994 A
5319971 Osswald et al. Jun 1994 A
5320603 Vetter et al. Jun 1994 A
5322057 Raabe et al. Jun 1994 A
5342011 Short Aug 1994 A
5342504 Hirano et al. Aug 1994 A
5347998 Hodson et al. Sep 1994 A
5348189 Cater Sep 1994 A
5350116 Cater Sep 1994 A
5355872 Riggs et al. Oct 1994 A
5357946 Kee et al. Oct 1994 A
5372126 Blau Dec 1994 A
5383906 Burchett et al. Jan 1995 A
5388571 Roberts et al. Feb 1995 A
5388574 Ingebrethsen Feb 1995 A
5392768 Johansson et al. Feb 1995 A
5396883 Knupp et al. Mar 1995 A
5414075 Swan et al. May 1995 A
5415161 Ryder May 1995 A
5419315 Rubsamen May 1995 A
5426458 Wenzel et al. Jun 1995 A
5431155 Marelli Jul 1995 A
5435282 Haber et al. Jul 1995 A
5435297 Klein Jul 1995 A
5437267 Weinstein et al. Aug 1995 A
5445141 Kee et al. Aug 1995 A
D362390 Weiler Sep 1995 S
5449502 Igusa et al. Sep 1995 A
5452711 Gault Sep 1995 A
5458135 Patton et al. Oct 1995 A
5458289 Cater Oct 1995 A
5474059 Cooper Dec 1995 A
5477992 Jinks et al. Dec 1995 A
5479920 Piper et al. Jan 1996 A
5487378 Robertson et al. Jan 1996 A
5489266 Grimard Feb 1996 A
5497944 Weston et al. Mar 1996 A
D369212 Snell Apr 1996 S
5511726 Greenspan et al. Apr 1996 A
5512329 Guire et al. Apr 1996 A
5512474 Clapper et al. Apr 1996 A
5515841 Robertson et al. May 1996 A
5515842 Ramseyer et al. May 1996 A
5516043 Manna et al. May 1996 A
5518179 Humberstone et al. May 1996 A
5529055 Gueret Jun 1996 A
5533497 Ryder Jul 1996 A
5542410 Goodman et al. Aug 1996 A
5549102 Lintl et al. Aug 1996 A
5551416 Stimpson et al. Sep 1996 A
5560837 Trueba Oct 1996 A
5563056 Swan et al. Oct 1996 A
D375352 Bologna Nov 1996 S
5579757 McMahon et al. Dec 1996 A
5582330 Iba Dec 1996 A
5584285 Salter et al. Dec 1996 A
5586550 Ivri et al. Dec 1996 A
5588166 Burnett Dec 1996 A
5601077 Imbert Feb 1997 A
5609798 Liu et al. Mar 1997 A
5632878 Kitano May 1997 A
5635096 Singer et al. Jun 1997 A
5637460 Swan et al. Jun 1997 A
5647349 Ohki et al. Jul 1997 A
5653227 Barnes et al. Aug 1997 A
5654007 Johnson et al. Aug 1997 A
5654162 Guire et al. Aug 1997 A
5654460 Rong Aug 1997 A
5657926 Toda Aug 1997 A
5660166 Lloyd Aug 1997 A
5664557 Makiej, Jr. Sep 1997 A
5664706 Cater Sep 1997 A
5665068 Takamura Sep 1997 A
5666946 Langenback Sep 1997 A
5670999 Takeuchi et al. Sep 1997 A
5685491 Marks et al. Nov 1997 A
5692644 Gueret Dec 1997 A
5707818 Chudzik et al. Jan 1998 A
5709202 Lloyd et al. Jan 1998 A
5714360 Swan et al. Feb 1998 A
5714551 Bezwada et al. Feb 1998 A
5718222 Lloyd et al. Feb 1998 A
D392184 Weiler Mar 1998 S
5724957 Rubsamen et al. Mar 1998 A
5744515 Clapper Apr 1998 A
5752502 King May 1998 A
5755218 Johansson et al. May 1998 A
5758637 Ivri et al. Jun 1998 A
5775506 Grabenkort Jul 1998 A
5788665 Sekins Aug 1998 A
5788819 Onishi et al. Aug 1998 A
5790151 Mills Aug 1998 A
5810004 Ohki et al. Sep 1998 A
5819730 Stone et al. Oct 1998 A
5823179 Grychowski et al. Oct 1998 A
5823428 Humberstone et al. Oct 1998 A
5829723 Brunner et al. Nov 1998 A
5836515 Fonzes Nov 1998 A
5839617 Cater et al. Nov 1998 A
5842468 Denyer et al. Dec 1998 A
5862802 Bird Jan 1999 A
5865171 Cinquin Feb 1999 A
5878900 Hansen Mar 1999 A
5893515 Hahn et al. Apr 1999 A
5894841 Voges Apr 1999 A
5897008 Hansen Apr 1999 A
5910698 Yagi Jun 1999 A
5915377 Coffee Jun 1999 A
5918637 Fleischman Jul 1999 A
5925019 Ljungquist Jul 1999 A
5938117 Ivri Aug 1999 A
5950619 Van der Linden et al. Sep 1999 A
5954268 Joshi et al. Sep 1999 A
5960792 Lloyd et al. Oct 1999 A
5964417 Amann et al. Oct 1999 A
5970974 Van Der Linden et al. Oct 1999 A
5976344 Abys et al. Nov 1999 A
5993805 Sutton et al. Nov 1999 A
6000396 Melker et al. Dec 1999 A
6007518 Kriesel et al. Dec 1999 A
6012450 Rubsamen Jan 2000 A
6014970 Ivri et al. Jan 2000 A
6026809 Abrams et al. Feb 2000 A
6029666 Aloy et al. Feb 2000 A
6032665 Psaros Mar 2000 A
6037587 Dowell et al. Mar 2000 A
6039696 Bell Mar 2000 A
6045215 Coulman Apr 2000 A
6045874 Himes Apr 2000 A
6047818 Warby et al. Apr 2000 A
6055869 Stemme et al. May 2000 A
6060128 Kim et al. May 2000 A
6062212 Davison et al. May 2000 A
6068148 Weiler May 2000 A
6085740 Ivri et al. Jul 2000 A
6096011 Trombley, III et al. Aug 2000 A
6105877 Coffee Aug 2000 A
6106504 Urrutia Aug 2000 A
6116234 Genova et al. Sep 2000 A
6123413 Agarwal et al. Sep 2000 A
6139674 Markham et al. Oct 2000 A
6142146 Abrams et al. Nov 2000 A
6145963 Pidwerbecki et al. Nov 2000 A
6146915 Pidwerbecki et al. Nov 2000 A
6152130 Abrams et al. Nov 2000 A
6155676 Etheridge et al. Dec 2000 A
6158431 Poole Dec 2000 A
6161536 Redmon et al. Dec 2000 A
6163588 Matsumoto et al. Dec 2000 A
6182662 McGhee Feb 2001 B1
6186141 Pike et al. Feb 2001 B1
6196218 Voges Mar 2001 B1
6196219 Hess et al. Mar 2001 B1
6205999 Ivri et al. Mar 2001 B1
6216916 Maddox et al. Apr 2001 B1
6223746 Jewett et al. May 2001 B1
6235177 Borland et al. May 2001 B1
6254219 Agarwal et al. Jul 2001 B1
6269810 Brooker et al. Aug 2001 B1
6270473 Schwebel Aug 2001 B1
6273342 Terada et al. Aug 2001 B1
6318640 Coffee Nov 2001 B1
6328030 Kidwell et al. Dec 2001 B1
6328033 Avrahami Dec 2001 B1
6341732 Martin et al. Jan 2002 B1
6358058 Strupat et al. Mar 2002 B1
6394363 Arnott et al. May 2002 B1
6402046 Loser Jun 2002 B1
6405934 Hess et al. Jun 2002 B1
6427682 Klimowicz et al. Aug 2002 B1
6443146 Voges Sep 2002 B1
6443366 Hirota et al. Sep 2002 B1
6467476 Ivri et al. Oct 2002 B1
6530370 Heinonen Mar 2003 B1
6540153 Ivri Apr 2003 B1
6540154 Ivri et al. Apr 2003 B1
6543443 Klimowicz et al. Apr 2003 B1
6546927 Litherland et al. Apr 2003 B2
6550472 Litherland et al. Apr 2003 B2
6554201 Klimowicz et al. Apr 2003 B2
6581595 Murdock et al. Jun 2003 B1
6615824 Power Sep 2003 B2
6629646 Ivri Oct 2003 B1
6640804 Ivri Nov 2003 B2
6651650 Yamamoto et al. Nov 2003 B1
6705315 Sullivan et al. Mar 2004 B2
6732944 Litherland et al. May 2004 B2
6745768 Colla et al. Jun 2004 B2
6745770 McAuliffe et al. Jun 2004 B2
6755189 Ivri et al. Jun 2004 B2
6769626 Haveri Aug 2004 B1
6782886 Narayan et al. Aug 2004 B2
6810876 Berthon-Jones Nov 2004 B2
6814071 Klimowicz et al. Nov 2004 B2
6817361 Berthon-Jones et al. Nov 2004 B2
6830046 Blakley et al. Dec 2004 B2
6840240 Berthon-Jones et al. Jan 2005 B1
6845770 Klimowicz et al. Jan 2005 B2
6851626 Patel et al. Feb 2005 B2
6860268 Bohn et al. Mar 2005 B2
6983747 Gallem et al. Jan 2006 B2
7059320 Feiner et al. Jun 2006 B2
7195011 Loeffler et al. Mar 2007 B2
7322349 Power Jan 2008 B2
20010013554 Borland et al. Aug 2001 A1
20010015737 Truninger et al. Aug 2001 A1
20020011247 Ivri et al. Jan 2002 A1
20020023650 Gunaratnam et al. Feb 2002 A1
20020033178 Farrell et al. Mar 2002 A1
20020036601 Puckeridge et al. Mar 2002 A1
20020078958 Stenzler Jun 2002 A1
20020104530 Ivri et al. Aug 2002 A1
20020121274 Borland et al. Sep 2002 A1
20020134372 Loeffler et al. Sep 2002 A1
20020134374 Loeffler et al. Sep 2002 A1
20020134375 Loeffler et al. Sep 2002 A1
20020134377 Loeffler et al. Sep 2002 A1
20020162551 Litherland Nov 2002 A1
20030140921 Smith et al. Jul 2003 A1
20030145859 Bohn et al. Aug 2003 A1
20030150445 Power et al. Aug 2003 A1
20030150446 Patel et al. Aug 2003 A1
20030226906 Ivri Dec 2003 A1
20040000598 Ivri Jan 2004 A1
20040004133 Ivri et al. Jan 2004 A1
20040011358 Smaldone et al. Jan 2004 A1
20040035413 Smaldone et al. Feb 2004 A1
20040035490 Power Feb 2004 A1
20040050947 Power et al. Mar 2004 A1
20040139963 Ivri et al. Jul 2004 A1
20040139968 Loeffler et al. Jul 2004 A1
20040188534 Litherland et al. Sep 2004 A1
20040194783 McAuliffe et al. Oct 2004 A1
20040226561 Colla et al. Nov 2004 A1
20040226566 Gunaratnam et al. Nov 2004 A1
20040256488 Loeffler et al. Dec 2004 A1
20050284469 Tobia et al. Dec 2005 A1
Foreign Referenced Citations (50)
Number Date Country
477 885 Sep 1969 CH
555 681 Nov 1974 CH
11 03 522 Mar 1961 DE
0 049 636 Apr 1982 EP
0 103 161 Mar 1984 EP
0 134 847 Mar 1985 EP
0174862 Mar 1986 EP
0 178 925 Apr 1986 EP
0 387 222 Sep 1990 EP
0 432 992 Jun 1991 EP
0 476 991 Mar 1992 EP
0 480 615 Apr 1992 EP
0 510 648 Oct 1992 EP
0 516 565 Dec 1992 EP
0 542 723 May 1993 EP
0 933 138 Apr 1999 EP
0 923 957 Jun 1999 EP
1 142 600 Oct 2001 EP
973 458 Oct 1964 GB
1 454 597 Nov 1976 GB
2 073 616 Oct 1981 GB
2 101 500 Jan 1983 GB
2 177 623 Jan 1987 GB
2 240 494 Jul 1991 GB
2 272 389 May 1994 GB
57-023852 Feb 1982 JP
57-105608 Jul 1982 JP
58-061857 Apr 1983 JP
58-139757 Aug 1983 JP
59-142163 Aug 1984 JP
60-004714 Jan 1985 JP
61-008357 Jan 1986 JP
61-215059 Sep 1986 JP
02-135169 May 1990 JP
02-189161 Jul 1990 JP
60-07721 Jan 1994 JP
10-508251 Aug 1998 JP
2005277188 Oct 2005 JP
WO 8203548 Oct 1982 WO
WO 9207600 May 1992 WO
WO 9211050 Sep 1992 WO
WO 9217231 Oct 1992 WO
WO 9301404 Jan 1993 WO
WO 9310910 Jun 1993 WO
WO 9409912 May 1994 WO
WO 9609229 Mar 1996 WO
WO 9917888 Apr 1999 WO
WO 0037132 Jun 2000 WO
WO0264265 Jan 2002 WO
WO03041774 Oct 2002 WO
Non-Patent Literature Citations (31)
Entry
Abys, J.A. et al., “Annealing Behavior of Palladium-Nickel Alloy Electrodeposits,” Plating and Surface Finishing, Aug. 1996, pp. 1-7.
Allen T. Particle Size Measurement, Third Edition, Chapman and Hall pp. 167-169 (1981).
Ashgriz, N. et al. “Development of a Controlled Spray Generator” Rev. Sci. Instrum., 1987, pp. 1291-1296, vol. 58, No. 7.
Berggren, E. “Pilot Study of Nebulized Surfactant Therapy for Neonatal Respiratory Distress Syndrome”, Acta Paediatr 89: 460-464, Taylor & Francis, ISSN 0803-5253, 2000, Sweden.
Berglund, R.N., et al. “Generation of Monodisperse Aerosol Standards” Environ. Sci. Technology, Feb. 1973, pp. 147-153, vol. 7, No. 2.
Cipolla, D.C. et al., “Assessment of Aerosol Delivery Systems for Recombinant Human Deoxyribonuclease,” S.T.P. Pharma Sciences 4 (1) 50-62, 1994.
Cipolla, D.C. et al., “Characterization of Aerosols of Human Recombinant Deoxyribonuclease I (rhDNase) Generated by Neulizers,” Pharmaceutical Research II (4) 491-498, 1994.
Dogan, Aydin PhD, Thesis: “Flexional ‘Moonie and Cymbal’ Actuators”, Penn State University, 1994.
Duarte, Alexander G. et al. “Inhalation Therapy During Mechanical Ventilation” Respiratory Care Clinics of North America, Aerosol Therapy, Jun. 2001, pp. 233-259, vol. 7, No. 2.
Fink, James B. et al. “Aerosol Drug Therapy,” Clinical Practice in Respiratory Care; Chapter 12, pp. 308-342; 1999.
Fink, James B. et al. “Aerosol Therapy in Mechanically Ventilated Patients: Recent Advances and New Techniques” Seminars in Respiratory and Critical Care Medicine, 2000, pp. 183-201, vol. 21, No. 3.
Fink, James B. et al. Diagram from and abstract of article entitled “Optimizing efficiency of nebulizers during mechanical ventilation: The effect of placement and type of ventilator circuit” Chest, Oct. 1999, 116:312S.
Geiser Tool Company catalog, pp. 26, 29-30 (1990).
Gonda, I. “Therapeutic Aerosols,” Pharmaceutics, The Science of Dosage Form Design, Editor: M.E. Aulton, 341-358, 1988.
Hancock, B.C. et al., “Molecular Mobility of Amorphous Pharmaceutical Solids Below Their Glass Transition Temperatures,” Pharmaceutical Research 12, 799-806 (1995).
Heyder, J. et al., “Deposition of particles in the human respiratory tract in the size range 0.005-15 microns.” J Aerosol Sci 17: 811-825, 1986.
Hickey, Anthony J. “Pharmaceutical Inhalation Aerosol Technology,” Drugs and the Pharmaceutical Science, 1992, pp. 172-173, vol. 54.
Hikayama, H., et al. “Ultrasonic Atomizer with Pump Function” Tech. Rpt. IEICE Japan US88-74:25 (1988).
Jorch, G. Letter to the Editor, “Surfactant Aerosol Treatment of Respiratory Distress Syndrome in Spontaneously Breathing Premature Infants”, Pediatric Pulmonology 24: 222-224, 1997, Wiley-Liss.
Maehara, N. et al. “Atomizing rate control of a multi-pinhole-plate ultrasonic atomizer” J. Acoustical Soc. Japan, 1988, pp. 116-121, 44:2.
Maehara, N. et al. “Influence of the vibrating system of a multipinhole-plate ultrasonic nebulizer on its performance” Review of Scientific Instruments, Nov. 1986, p. 2870-2876, vol. 57, No. 1.
Maehara, N. et al. “Influences of liquid's physical properties on the characteristics of a multi-pinhole-plate ultrasonic atomizer” J. Acoustical Soc. Japan 1988, pp. 425-431, 44:6.
Maehara, N. et al. “Optimum Design Procedure for Multi-Pinhole-Plate Ultrasonic Atomizer” Japanese Journal of Applied Physics, 1987, pp. 215-217, vol. 26, Supplement 26-1.
Nogi, T. et al. “Mixture Formation of Fuel Injection System in Gasoline Engine” Nippon Kikal Gakkai Zenkoku Taikai Koenkai Koen Ronbunshu 69:660-662 (1991).
Palla Tech Pd an Pd Alloy Processes—Procedure for the Analysis of Additive IVS in Palla Tech Plating Solutions by HPLC, Technical Bulletin, Electroplating Chemicals & Services, 029-A, Lucent Technologies,, pp. 1-5, 1996.
Siemens, “Servo Ultra Nebulizer 345 Operating Manual,” pp. 1-23.
Smaldone, G. C. “Aerosolized Antibiotics: Current and Future”, Respiratory Care, 2000, vol. 45, No. 6, pp. 667-675.
Smedsaas-Löfvenbert, A. “Nebulization of Drugs in a Nasal CPAP System”, Scandinavian University Press, 1999, Acta Paediatr 88: 89-92, Sweden.
TSI Incorporated product catalog. Vibrating Orifice Aerosol Generator (1989).
Ueha, S., et al. “Mechanism of Ultrasonic Atomization Using a Multi-Pinhole Plate” J. Acoust. Soc. Jpn., 1985, pp. 21-26, (E)6,1.
Wehl, Wolfgang R. “Ink-Jet Printing: The Present State of the Art” for Siemens AG, 1989.
Related Publications (1)
Number Date Country
20050011514 A1 Jan 2005 US
Provisional Applications (1)
Number Date Country
60488718 Jul 2003 US