This invention relates to a nebuliser for delivery of medicament to the respiratory system of a patient. Certain conditions such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis require that prescribed liquid medication be turned into a fine mist, called an aerosol, and then inhaled into the lungs.
Nebulisers for creating such an aerosol of medication are known. However, conventional nebulisers for home use are generally large and bulky and are inconvenient to use. Thus, there is a need for compact nebulisers that are more convenient for use at home.
Nebulisers have long been used to produce aerosols. There are three major classifications of nebulisers for home use. Compressor driven jet or pneumatic nebulisers utilise a reservoir in which medication is placed below the point of aerosol generation, so that medication is drawn up from the reservoir by the action of the jet, which then shears the fluid into small particles. Aerosol collects in and passes through a chamber above the medication reservoir, driven by the flow of gas that generates the aerosol. This constant flow of aerosol from the nebuliser often exceeds inspiratory flows and volumes generated by the patient and reduces the amount of aerosol available for inspiration, reducing the mass of drug inhaled by the patient. Thus, there remains a need for nebulisers that reduce the amount of flow gas needed to deliver aerosolized medication to a patient.
Ultrasonic nebulisers create standing waves in a medication reservoir, above a peizo ceramic element, generating aerosol that collects above the medication reservoir. Aerosol does not leave the collection chamber without active gas flow generated directly by the patient, or by a secondary flow of gas (e.g., fan). This reduces the ability of the ultrasonic to be used with an open aerosol mask. Thus there remains a need for nebulisers that can be used with an open aerosol mask.
In both jet and ultrasonic nebulisers droplets that do not leave the aerosol chamber remain on the walls of the chamber or return to the reservoir, contributing to a residual drug remaining in the nebuliser. Thus there remains a need for nebulisers that reduce the amount of residual drug that remains in the nebulizer.
A nebuliser is also known which has a medication reservoir connected to a transducer horn placed below a mesh plate. The vibration of the horn pushes the liquid medication through orifices in the mesh plate placed above it. Aerosol is directed up from the aerosol generator. Technical limitations of this technology result in relatively large particle sizes, low output, difficulty in aerosolizing suspensions, and a lack of reservoir to effectively collect aerosol between inspiratory efforts. Thus, there remains a need for nebulizers that generate fine aerosol mists with high output, and which also have a reservoir to collect aerosol between inspiratory efforts.
The present invention includes a nebuliser for delivery of a medicament to a patient's respiratory system. The nebuliser may include a housing that forms a reservoir for a liquid medicament. The medicament may enter the reservoir through an inlet and exit the reservoir through an outlet coupled to an aerosol generator. The generator converts the medicament into an aerosol that may travel through an aerosol passage to an outlet port where the aerosol exits the nebuliser. The nebuliser may also include a gas venting inlet that allows gas (e.g., air) to enter the nebuliser and mix with the aerosolized medicament before the mixture of gas and entrained aerosol exits the nebuliser through the outlet port.
In one embodiment gravitational flow of a liquid medicament is supplied from the reservoir to the aerosol generator.
The gas venting inlet may be located in close proximity to the aerosol generator.
In another embodiment the housing has a baffle to direct gas and entrained aerosol to the outlet port. Said baffle may include an inclined surface oriented to cause aerosol to flow through the outlet. The baffle may be inclined towards the outlet port.
In another embodiment the nebuliser may include an aerosol rainout trap. The rainout trap may be adjacent to the outlet port.
In another embodiment the nebuliser may include an aerosol trap and aerosol rainout from the baffle is directed into the trap.
The aerosol generator may have a protector to protect the aerosol generator against physical damage. The protector may include an upper protector above the aerosol generator and/or a lower protector below the aerosol generator, which may be integral with the nebuliser housing. One or more of the protectors may include a mesh.
The nebuliser may include a respiratory connector for connecting the outlet port to a respiratory system. The respiratory connector may include a mouth piece. The respiratory connector may be selected from a group consisting of a mouthpiece, a face mask, and a nasal piece.
In another embodiment the nebuliser include an aerosol generator housing in which the aerosol generator is held. The aerosol generator housing may be fixed to the reservoir.
In another embodiment the aerosol generator may comprise a vibratable member having a plurality of apertures extending between a first surface and a second surface thereof. The apertures in the vibratable member are sized to aerosolise the medicament by ejecting droplets of medicament such that about 70% or more of the droplets by weight have a size in the range from about 1 to about 6 micrometers.
In another embodiment the nebuliser may include a drive circuit for the aerosol generator. The drive circuit may include a push-pull resonant power circuit. The resonant circuit may use an inductive element that has an impedance value substantially equal to the impedance of the piezoelectric element.
The resonant circuit may include an inductive element. For example, the resonant circuit may include a pair of MOSFET switches operated as a push-pull (alternate on-off) arrangement.
The nebuliser drive circuit may be adapted to be plugged directly to a wall outlet receiving an input of an alternating voltage in the range from 90V to 250V at a frequency range from 50 Hz-60 Hz and producing an alternating voltage output at a frequency range from 50 Khz to 300 Khz. The circuit may include an inductive element having substantially the same impedance of the nebuliser circuit at the operating frequency.
In another embodiment, the nebuliser drive circuit may be adapted for use with batteries receiving an input of voltage in the range from 1.5 to 12 Volt and producing an alternating voltage output at a frequency range from 50 Khz to 300 Khz. The circuit may include an inductive element having substantially the same impedance of the nebuliser circuit at the operating frequency.
Another aspect of the invention includes methods for nebulising a viscous liquid. In one embodiment, a method includes providing a vibratable thin shell member that includes a front surface, a rear surface and a plurality of tapered apertures extending therebetween, the apertures being tapered to narrow from the rear surface to the front surface, vibrating the thin shell member, and sweeping the frequency between two frequency values.
In another embodiment, a method for nebulising a viscous liquid includes providing a vibratable thin shell member that includes a front surface and a rear surface and a plurality of tapered apertures extending therebetween, the apertures being tapered to narrow from rear surface, to the front surface, vibrating the thin shell member, and supplying heat to a viscous liquid (e.g., a lipid).
Another embodiment of the invention provides an aerosol generator that includes an electrical connector for supplying electrical power to the aerosol generator, the electrical connector and the current carrying components of the aerosol generator being encased by electrically insulating material.
Embodiments of the invention also include an aerosol generator assembly that includes an aerosol generator and a power inlet, the assembly being structurally supported by elastomeric encasing, where the encasing may also provide electrical insulation to the assembly. The elastomeric encasing may be produced by a process of injection molding.
In another embodiment of the invention provides an aerosol generator assembly that includes an aerosol generator and a power inlet encased by an elastomeric structure. The aerosol generator may include a vibratory thin shell member having a rear surface and a front surface and a plurality apertures extending therebetween, the apertures having a size range of about 1 to about 6 microns at their smaller opening.
Additional novel features shall be set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the following specification or may be learned by the practice of the invention. The features and advantages of the invention may be realized and attained by means of the instrumentalities, combinations, and methods particularly pointed out in the appended claims.
The invention will be more clearly understood from the following description thereof given by way of example, in which:
a) to 9(d) are perspective views illustrating the mounting and overmoulding of a vibratable member and associated connector for a nebuliser according to an embodiment of the invention;
a) to 12(d) are circuit diagrams showing operation of the drive of
Referring to the drawings and initially to
Aerosol generated by the aerosol generator 7 is delivered into a vented aerosol passage 20 defined by a nebuliser body 19. Air passes into the passage 20 through air inlets 21. The air entrains the aerosolised medicament and the entrained aerosolised medicament is delivered from the nebuliser through an outlet port 22 from the passage 20. In this case the inlets 21 are formed by air vents which are located above the aerosol generator 7. The outlet port 22 has an extension or connector piece 23 which is inclined upwardly to direct flow into a respiratory system. In this case the outlet connector 23 is fitted with a releasable mouthpiece part 24 which is a push-fit on the connector 23.
The nebuliser 1 has a baffle to direct air and entrained aerosolised medicament to the outlet 22. In this case the baffle is formed by a floor 25 of the nebuliser body 19. It will be noted that the baffle 25 is inclined downwardly towards the outlet port 22. The arrangement of the inlet 21 on one side of the nebuliser housing, the outlet 22 on a generally opposite side of the housing and the baffle 25 optimises the flow of air and entrained aerosolised medicament to the outlet 22.
The nebuliser 1 has an aerosol rain-out trap 30 for collecting any larger droplets not entrained in the air. In this case the rain-out trap 30 is between the outlet port 22 and the baffle 25. Any droplets not entrained by the air impinge on the baffle 25 and flow down the incline into the trap 30. Similarly any droplets that may form at the outlet 22 or in the associated connectors are directed to flow into the trap 30. The trap 30 is readily emptied by opening the nebuliser housing and inverting the bottom of the housing.
Typically, the medication cup 2 is configured to accommodate up to about 6 ml to about 10 ml of liquid medicament.
The aerosol generator 7 comprises a vibratable member 40 and a piezoelectric element 41. The vibratable member 40 has a plurality of tapered apertures extending between a first surface and a second surface thereof, as described in U.S. Pat. No. 5,164,740 (the first '740 patent); U.S. Pat. No. 5,586,550 (the '550 patent); U.S. Pat. No. 5,758,637 (the '637 patent); and U.S. Pat. No. 6,085,740 (the second '740 patent), the entire contents of which are incorporated herein by this reference.
The first surface of the vibratable member 40, which in use faces upwardly, receives the liquid medicament from the medication cup 2, and the aerosolised medicament is generated at the second surface of the vibratable member 40 by ejecting droplets of medicament upon vibration of the member 40. In use the second surface faces downwardly. In one case, the apertures in the vibratable member 40 may be sized to produce an aerosol in which about 70% or more of the droplets by weight have a size in the range from about 1 to about 5 micrometers. In another embodiment, about 70% or more (by weight) of the droplets have sizes ranging from about 1 to about 6 micrometers.
The vibratable member 40 is non-planer, and is preferably dome-shaped in geometry.
The piezoelectric element 41 has an electrical connection socket 45 to which a connector plug element 46 is mounted as illustrated in
The apparatus 1 also includes a controller as illustrated, to control operation of and to supply power to the aerosol generator 7. The plug element 46 defines a signal interface port 50 fixed to the nebuliser housing to receive a control signal from the controller. The controller may be connected to the signal interface port 50 by means of a control lead 52, which has a docking member 51 or connector for mating with the plug 46 at the interface port 50. A control signal and power may be passed from the controller through the lead 52 to the aerosol generator 7 to control the operation of and supply power to the aerosol generator 7.
As illustrated in
Alternatively, a controller 56 may have a mains plug 57 for connecting directly to a mains power source. In this case the controller has an integral AC-DC circuit as well as control circuitry mounted in a single housing.
Each controller 55 or 56 has a housing 60 and a user interface to selectively control operation of the aerosol generator 7. The user interface may be in the form of, for example, an on-off button 58.
Status indication means are also provided on the housing 60 to indicate the operational state of the aerosol generator 7. For example, the status indication means may be in the form of a visible LED 61, to indicate an operational state of the aerosol generator 7.
Referring to
In a Stage 2 a push/pull resonant circuit provides the following output to the load:
The resonant circuit comprises a resonant inductor Lres and the capacitive element (Cp) of the piezoelectric load, driven by two MOSFETs Q1 and Q2 in a push-pull arrangement. As shown in
Referring particularly to
In use, the cap 4 is opened and medicament is delivered through the inlet port 3 into the medication cup 2. Typically a supply container, such as a nebule or a syringe, is used to deliver the liquid medicament through the inlet port 3 into the medication cup 2. The liquid medicament in the medication cup 2 flows by gravitational action towards the aerosol generator 7 at the lower medicament outlet.
By distancing the inlet port 11 to the reservoir 2 from the aerosol generator 3 at the outlet 16, this arrangement creates a sterile barrier between the delivery of the liquid medicament into medication cup 2 and the respiratory system of the patient.
The docking member of the control lead 52 is mated with the signal interface port 50 on the reservoir 2 to connect the controller 55 or 56 to the aerosol generator 7. The controller 50 may then be activated to supply power and a control signal to the aerosol generator 7, which causes the piezoelectric element 41 to vibrate the vibratable member 40.
This vibration of the vibratable member 40 causes the liquid medicament at the top surface of the member 40 to pass through the apertures to the lower surface where the medicament is aerosolised by the ejection of small droplets of medicament.
The aerosolised medicament passes from the aerosol generator 7 into the passage 20 of the housing 19. The aerosolised medicament is entrained with a gas, such as air, which passes into the passage 20 through the inlet 21. The entrained mixture of the aerosolised medicament and the gas then passes out through the outlet 22 and on to the respiratory system of the patient.
In this case, the mouthpiece 24 is gripped between the teeth of the user, with the lips sealed around the mouthpiece. The user breathes in and out slowly. On the exhale cycle, exhaled gas flows back along the mouthpiece and into the passage 20. Exhaust may pass through the gas inlets 21. Breathing is continued in this way until aerosol formation has stopped indicating that all the medicament in the medication cup 2 has been delivered into the patients respiratory system. The nebuliser is turned off by pressing the on/off button 58.
A suitable material for the various connectors and housings is ABS. An alternative material for the various connectors and housings is polycarbonate or polysulphone. By manufacturing these components of the apparatus from polysulphone or polycarbonate, this enables these components to be autoclaved for multiple use of the same apparatus.
Referring now to
Referring now to
Referring to
The invention provides a nebuliser which is relatively small, light weight and is easy to use. The controllers are also small and light weight. Aerosol is readily generated and efficiently entrained in a gas flow for ease and-efficiency of patient use without medical supervision. The nebuliser may be tilted significantly from the vertical (by up to 45°) without significantly effecting functionality. Thus, the nebuliser may be easily used by patients whilst sitting down or at least partially lying down. The gravity dependent orientation of the aerosol generator and the internal volume in the nebuliser provided by the chamber increases inhaled mass of aerosol in such a way that cough reflex is inhibited. The inclusion of the filter in a dependent position reduces risk of second hand aerosol exposure.
We have found that delivery of non-newtonian fluids can be aided by sweeping the driving frequency of the piezo across the aperture plates' delivery range. It is thought that the aperture plate alters its mode of vibration depending on the drive frequency. This change of motion applies additional stresses to the fluid which can thin it. The frequency sweep may be achieved by using one of the PWM (pulse width modulation) outputs of the microcontroller and routing this signal to the input of a half bridge or MOSFET driver.
In this method the frequency changes by the resolution of the system clock (in our case it is Tosc/4−20 Mhz crystal/14=5 Mhz. T=1/Fosc=0.2 μsec. So at approx 130 Khz the frequency can change by approx 3 kHz for each step.) The delivery range is about 120 kHz to 135 kHz. The rate of change of the sweep and range may be controlled using software in the micro controller.
The invention is not limited to the embodiments hereinbefore described which may be varied in construction and detail.
The words “comprise,” “comprising,” “include,” “including,” and “includes” when used in this specification and in the following claims are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, or groups.
This application claims the benefit of U.S. Provisional Application No. 60/488,718, filed Jul. 18, 2003, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
550315 | Allen | Nov 1895 | A |
809159 | Willis et al. | Jan 1906 | A |
1680616 | Horst | Aug 1928 | A |
2022520 | Philbrick | Nov 1935 | A |
2101304 | Wright | Dec 1937 | A |
2158615 | Wright | May 1939 | A |
2187528 | Wing | Jan 1940 | A |
2223541 | Baker | Dec 1940 | A |
2266706 | Fox et al. | Dec 1941 | A |
2283333 | Martin | May 1942 | A |
2292381 | Klagges | Aug 1942 | A |
2360297 | Wing | Oct 1944 | A |
2375770 | Dahlberg | May 1945 | A |
2383098 | Wheaton | Aug 1945 | A |
2404063 | Healy | Jul 1946 | A |
2430023 | Longmaid | Nov 1947 | A |
2474996 | Wallis | Jul 1949 | A |
2512004 | Wing | Jun 1950 | A |
2521657 | Severy | Sep 1950 | A |
2681041 | Zodtner et al. | Jun 1954 | A |
2705007 | Gerber | Mar 1955 | A |
2735427 | Sullivan | Feb 1956 | A |
2764946 | Henderson | Oct 1956 | A |
2764979 | Henderson | Oct 1956 | A |
2779623 | Eisenkraft | Jan 1957 | A |
2935970 | Morse et al. | May 1960 | A |
3103310 | Lang | Sep 1963 | A |
3325031 | Singler | Jun 1967 | A |
3411854 | Rosler et al. | Nov 1968 | A |
3515348 | Coffman, Jr. | Jun 1970 | A |
3550864 | East | Dec 1970 | A |
3558052 | Dunn | Jan 1971 | A |
3561444 | Boucher | Feb 1971 | A |
3563415 | Ogle | Feb 1971 | A |
3680954 | Frank | Aug 1972 | A |
3719328 | Hindman | Mar 1973 | A |
3738574 | Guntersdorfer et al. | Jun 1973 | A |
3771982 | Dobo | Nov 1973 | A |
3790079 | Berglund et al. | Feb 1974 | A |
3804329 | Martner | Apr 1974 | A |
3812854 | Michaels et al. | May 1974 | A |
3838686 | Szekely | Oct 1974 | A |
3842833 | Ogle | Oct 1974 | A |
3865106 | Palush | Feb 1975 | A |
3903884 | Huston et al. | Sep 1975 | A |
3906950 | Cocozza | Sep 1975 | A |
3908654 | Lhoest et al. | Sep 1975 | A |
3950760 | Rauch et al. | Apr 1976 | A |
3951313 | Coniglione | Apr 1976 | A |
3958249 | DeMaine et al. | May 1976 | A |
3970250 | Drews | Jul 1976 | A |
3983740 | Danel | Oct 1976 | A |
3993223 | Welker, III et al. | Nov 1976 | A |
4005435 | Lundquist et al. | Jan 1977 | A |
4030492 | Simbruner | Jun 1977 | A |
4052986 | Scaife | Oct 1977 | A |
4059384 | Holland et al. | Nov 1977 | A |
D246574 | Meierhoefer | Dec 1977 | S |
4076021 | Thompson | Feb 1978 | A |
4083368 | Freezer | Apr 1978 | A |
4094317 | Wasnich | Jun 1978 | A |
4101041 | Mauro, Jr. et al. | Jul 1978 | A |
4106503 | Rosenthal et al. | Aug 1978 | A |
4109174 | Hodgson | Aug 1978 | A |
4113809 | Abair et al. | Sep 1978 | A |
D249958 | Meierhoefer | Oct 1978 | S |
4119096 | Drews | Oct 1978 | A |
4121583 | Chen | Oct 1978 | A |
4159803 | Cameto et al. | Jul 1979 | A |
4207990 | Weiler et al. | Jun 1980 | A |
4210155 | Grimes | Jul 1980 | A |
4226236 | Genese | Oct 1980 | A |
4240081 | Devitt | Dec 1980 | A |
4240417 | Holever | Dec 1980 | A |
4248227 | Thomas | Feb 1981 | A |
4261512 | Zierenberg | Apr 1981 | A |
D259213 | Pagels | May 1981 | S |
4268460 | Boiarski et al. | May 1981 | A |
4294407 | Reichl et al. | Oct 1981 | A |
4298045 | Weiler et al. | Nov 1981 | A |
4299784 | Hense | Nov 1981 | A |
4300546 | Kruber | Nov 1981 | A |
4301093 | Eck | Nov 1981 | A |
4319155 | Makai et al. | Mar 1982 | A |
4334531 | Reichl et al. | Jun 1982 | A |
4336544 | Donald et al. | Jun 1982 | A |
4338576 | Takahashi et al. | Jul 1982 | A |
4368476 | Uehara et al. | Jan 1983 | A |
4368850 | Szekely | Jan 1983 | A |
4374707 | Pollack | Feb 1983 | A |
4389071 | Johnson, Jr. et al. | Jun 1983 | A |
4408719 | Last | Oct 1983 | A |
4428802 | Kanai et al. | Jan 1984 | A |
4431136 | Janner et al. | Feb 1984 | A |
4454877 | Miller et al. | Jun 1984 | A |
4465234 | Maehara et al. | Aug 1984 | A |
4474251 | Johnson, Jr. | Oct 1984 | A |
4474326 | Takahashi | Oct 1984 | A |
4475113 | Lee et al. | Oct 1984 | A |
4479609 | Maeda et al. | Oct 1984 | A |
4512341 | Lester | Apr 1985 | A |
4530464 | Yamamoto et al. | Jul 1985 | A |
4533082 | Maehara et al. | Aug 1985 | A |
4539575 | Nilsson | Sep 1985 | A |
4544933 | Heinzl | Oct 1985 | A |
4546361 | Brescia et al. | Oct 1985 | A |
4550325 | Viola | Oct 1985 | A |
4566452 | Farr | Jan 1986 | A |
4582654 | Karnicky et al. | Apr 1986 | A |
4591883 | Isayama | May 1986 | A |
4593291 | Howkins | Jun 1986 | A |
4605167 | Maehara | Aug 1986 | A |
4613326 | Szwarc | Sep 1986 | A |
4620201 | Heinzl et al. | Oct 1986 | A |
4628890 | Freeman | Dec 1986 | A |
4632311 | Nakane et al. | Dec 1986 | A |
4658269 | Rezanka | Apr 1987 | A |
4659014 | Soth et al. | Apr 1987 | A |
4677975 | Edgar et al. | Jul 1987 | A |
4678680 | Abowitz | Jul 1987 | A |
4679551 | Anthony | Jul 1987 | A |
4681264 | Johnson, Jr. | Jul 1987 | A |
4693853 | Falb et al. | Sep 1987 | A |
4702418 | Carter et al. | Oct 1987 | A |
4722906 | Guire | Feb 1988 | A |
4753579 | Murphy | Jun 1988 | A |
4790479 | Matsumoto et al. | Dec 1988 | A |
4793339 | Matsumoto et al. | Dec 1988 | A |
4796807 | Bendig et al. | Jan 1989 | A |
4799622 | Ishikawa et al. | Jan 1989 | A |
4805609 | Roberts et al. | Feb 1989 | A |
4819629 | Jonson | Apr 1989 | A |
4819834 | Thiel | Apr 1989 | A |
4826080 | Ganser | May 1989 | A |
4826759 | Guire et al. | May 1989 | A |
4828886 | Hieber | May 1989 | A |
4843445 | Stemme | Jun 1989 | A |
4849303 | Graham et al. | Jul 1989 | A |
4850534 | Takahashi et al. | Jul 1989 | A |
4865006 | Nogi et al. | Sep 1989 | A |
4871489 | Ketcham | Oct 1989 | A |
4872553 | Suzuki et al. | Oct 1989 | A |
4877989 | Drews et al. | Oct 1989 | A |
4888516 | Daeges et al. | Dec 1989 | A |
4922901 | Brooks et al. | May 1990 | A |
4926915 | Deussen et al. | May 1990 | A |
4934358 | Nilsson et al. | Jun 1990 | A |
4954225 | Bakewell | Sep 1990 | A |
4957239 | Tempelman | Sep 1990 | A |
4964521 | Wieland et al. | Oct 1990 | A |
D312209 | Morrow et al. | Nov 1990 | S |
4968299 | Ahlstrand et al. | Nov 1990 | A |
4971665 | Sexton | Nov 1990 | A |
4973493 | Guire | Nov 1990 | A |
4976259 | Higson et al. | Dec 1990 | A |
4979959 | Guire | Dec 1990 | A |
4993411 | Callaway | Feb 1991 | A |
4994043 | Ysebaert | Feb 1991 | A |
5002048 | Makiej, Jr. | Mar 1991 | A |
5002582 | Guire et al. | Mar 1991 | A |
5007419 | Weinstein et al. | Apr 1991 | A |
5016024 | Lam et al. | May 1991 | A |
5021701 | Takahashi et al. | Jun 1991 | A |
5022587 | Hochstein | Jun 1991 | A |
5024733 | Abys et al. | Jun 1991 | A |
5046627 | Hansen | Sep 1991 | A |
5062419 | Rider | Nov 1991 | A |
5063396 | Shiokawa et al. | Nov 1991 | A |
5063921 | Howe | Nov 1991 | A |
5063922 | Häkkinen | Nov 1991 | A |
5073484 | Swanson et al. | Dec 1991 | A |
5076266 | Babaev | Dec 1991 | A |
5080093 | Raabe et al. | Jan 1992 | A |
5080649 | Vetter | Jan 1992 | A |
5086765 | Levine | Feb 1992 | A |
5086785 | Gentile et al. | Feb 1992 | A |
5115803 | Sioutas | May 1992 | A |
5115971 | Greenspan et al. | May 1992 | A |
D327008 | Friedman | Jun 1992 | S |
5122116 | Kriesel et al. | Jun 1992 | A |
5129579 | Conte | Jul 1992 | A |
5134993 | Van der Linden et al. | Aug 1992 | A |
5139016 | Waser | Aug 1992 | A |
5140740 | Weigelt | Aug 1992 | A |
5147073 | Cater | Sep 1992 | A |
5152456 | Ross et al. | Oct 1992 | A |
5157372 | Langford | Oct 1992 | A |
5164740 | Ivri | Nov 1992 | A |
5169029 | Behar et al. | Dec 1992 | A |
5170782 | Kocinski | Dec 1992 | A |
5180482 | Abys et al. | Jan 1993 | A |
5186164 | Raghuprasad | Feb 1993 | A |
5186166 | Riggs et al. | Feb 1993 | A |
5198157 | Bechet | Mar 1993 | A |
5201322 | Henry et al. | Apr 1993 | A |
5213860 | Laing | May 1993 | A |
5217148 | Cater | Jun 1993 | A |
5217492 | Guire et al. | Jun 1993 | A |
5227168 | Chvapil et al. | Jul 1993 | A |
5230496 | Shillington et al. | Jul 1993 | A |
5245995 | Sullivan et al. | Sep 1993 | A |
5248087 | Dressler | Sep 1993 | A |
5258041 | Guire et al. | Nov 1993 | A |
5261601 | Ross et al. | Nov 1993 | A |
5263992 | Guire | Nov 1993 | A |
5279568 | Cater | Jan 1994 | A |
5297734 | Toda | Mar 1994 | A |
5299739 | Takahashi et al. | Apr 1994 | A |
5303854 | Cater | Apr 1994 | A |
5309135 | Langford | May 1994 | A |
5312281 | Takahashi et al. | May 1994 | A |
5313955 | Rodder | May 1994 | A |
5319971 | Osswald et al. | Jun 1994 | A |
5320603 | Vetter et al. | Jun 1994 | A |
5322057 | Raabe et al. | Jun 1994 | A |
5342011 | Short | Aug 1994 | A |
5342504 | Hirano et al. | Aug 1994 | A |
5347998 | Hodson et al. | Sep 1994 | A |
5348189 | Cater | Sep 1994 | A |
5350116 | Cater | Sep 1994 | A |
5355872 | Riggs et al. | Oct 1994 | A |
5357946 | Kee et al. | Oct 1994 | A |
5372126 | Blau | Dec 1994 | A |
5383906 | Burchett et al. | Jan 1995 | A |
5388571 | Roberts et al. | Feb 1995 | A |
5388574 | Ingebrethsen | Feb 1995 | A |
5392768 | Johansson et al. | Feb 1995 | A |
5396883 | Knupp et al. | Mar 1995 | A |
5414075 | Swan et al. | May 1995 | A |
5415161 | Ryder | May 1995 | A |
5419315 | Rubsamen | May 1995 | A |
5426458 | Wenzel et al. | Jun 1995 | A |
5431155 | Marelli | Jul 1995 | A |
5435282 | Haber et al. | Jul 1995 | A |
5435297 | Klein | Jul 1995 | A |
5437267 | Weinstein et al. | Aug 1995 | A |
5445141 | Kee et al. | Aug 1995 | A |
D362390 | Weiler | Sep 1995 | S |
5449502 | Igusa et al. | Sep 1995 | A |
5452711 | Gault | Sep 1995 | A |
5458135 | Patton et al. | Oct 1995 | A |
5458289 | Cater | Oct 1995 | A |
5474059 | Cooper | Dec 1995 | A |
5477992 | Jinks et al. | Dec 1995 | A |
5479920 | Piper et al. | Jan 1996 | A |
5487378 | Robertson et al. | Jan 1996 | A |
5489266 | Grimard | Feb 1996 | A |
5497944 | Weston et al. | Mar 1996 | A |
D369212 | Snell | Apr 1996 | S |
5511726 | Greenspan et al. | Apr 1996 | A |
5512329 | Guire et al. | Apr 1996 | A |
5512474 | Clapper et al. | Apr 1996 | A |
5515841 | Robertson et al. | May 1996 | A |
5515842 | Ramseyer et al. | May 1996 | A |
5516043 | Manna et al. | May 1996 | A |
5518179 | Humberstone et al. | May 1996 | A |
5529055 | Gueret | Jun 1996 | A |
5533497 | Ryder | Jul 1996 | A |
5542410 | Goodman et al. | Aug 1996 | A |
5549102 | Lintl et al. | Aug 1996 | A |
5551416 | Stimpson et al. | Sep 1996 | A |
5560837 | Trueba | Oct 1996 | A |
5563056 | Swan et al. | Oct 1996 | A |
D375352 | Bologna | Nov 1996 | S |
5579757 | McMahon et al. | Dec 1996 | A |
5582330 | Iba | Dec 1996 | A |
5584285 | Salter et al. | Dec 1996 | A |
5586550 | Ivri et al. | Dec 1996 | A |
5588166 | Burnett | Dec 1996 | A |
5601077 | Imbert | Feb 1997 | A |
5609798 | Liu et al. | Mar 1997 | A |
5632878 | Kitano | May 1997 | A |
5635096 | Singer et al. | Jun 1997 | A |
5637460 | Swan et al. | Jun 1997 | A |
5647349 | Ohki et al. | Jul 1997 | A |
5653227 | Barnes et al. | Aug 1997 | A |
5654007 | Johnson et al. | Aug 1997 | A |
5654162 | Guire et al. | Aug 1997 | A |
5654460 | Rong | Aug 1997 | A |
5657926 | Toda | Aug 1997 | A |
5660166 | Lloyd | Aug 1997 | A |
5664557 | Makiej, Jr. | Sep 1997 | A |
5664706 | Cater | Sep 1997 | A |
5665068 | Takamura | Sep 1997 | A |
5666946 | Langenback | Sep 1997 | A |
5670999 | Takeuchi et al. | Sep 1997 | A |
5685491 | Marks et al. | Nov 1997 | A |
5692644 | Gueret | Dec 1997 | A |
5707818 | Chudzik et al. | Jan 1998 | A |
5709202 | Lloyd et al. | Jan 1998 | A |
5714360 | Swan et al. | Feb 1998 | A |
5714551 | Bezwada et al. | Feb 1998 | A |
5718222 | Lloyd et al. | Feb 1998 | A |
D392184 | Weiler | Mar 1998 | S |
5724957 | Rubsamen et al. | Mar 1998 | A |
5744515 | Clapper | Apr 1998 | A |
5752502 | King | May 1998 | A |
5755218 | Johansson et al. | May 1998 | A |
5758637 | Ivri et al. | Jun 1998 | A |
5775506 | Grabenkort | Jul 1998 | A |
5788665 | Sekins | Aug 1998 | A |
5788819 | Onishi et al. | Aug 1998 | A |
5790151 | Mills | Aug 1998 | A |
5810004 | Ohki et al. | Sep 1998 | A |
5819730 | Stone et al. | Oct 1998 | A |
5823179 | Grychowski et al. | Oct 1998 | A |
5823428 | Humberstone et al. | Oct 1998 | A |
5829723 | Brunner et al. | Nov 1998 | A |
5836515 | Fonzes | Nov 1998 | A |
5839617 | Cater et al. | Nov 1998 | A |
5842468 | Denyer et al. | Dec 1998 | A |
5862802 | Bird | Jan 1999 | A |
5865171 | Cinquin | Feb 1999 | A |
5878900 | Hansen | Mar 1999 | A |
5893515 | Hahn et al. | Apr 1999 | A |
5894841 | Voges | Apr 1999 | A |
5897008 | Hansen | Apr 1999 | A |
5910698 | Yagi | Jun 1999 | A |
5915377 | Coffee | Jun 1999 | A |
5918637 | Fleischman | Jul 1999 | A |
5925019 | Ljungquist | Jul 1999 | A |
5938117 | Ivri | Aug 1999 | A |
5950619 | Van der Linden et al. | Sep 1999 | A |
5954268 | Joshi et al. | Sep 1999 | A |
5960792 | Lloyd et al. | Oct 1999 | A |
5964417 | Amann et al. | Oct 1999 | A |
5970974 | Van Der Linden et al. | Oct 1999 | A |
5976344 | Abys et al. | Nov 1999 | A |
5993805 | Sutton et al. | Nov 1999 | A |
6000396 | Melker et al. | Dec 1999 | A |
6007518 | Kriesel et al. | Dec 1999 | A |
6012450 | Rubsamen | Jan 2000 | A |
6014970 | Ivri et al. | Jan 2000 | A |
6026809 | Abrams et al. | Feb 2000 | A |
6029666 | Aloy et al. | Feb 2000 | A |
6032665 | Psaros | Mar 2000 | A |
6037587 | Dowell et al. | Mar 2000 | A |
6039696 | Bell | Mar 2000 | A |
6045215 | Coulman | Apr 2000 | A |
6045874 | Himes | Apr 2000 | A |
6047818 | Warby et al. | Apr 2000 | A |
6055869 | Stemme et al. | May 2000 | A |
6060128 | Kim et al. | May 2000 | A |
6062212 | Davison et al. | May 2000 | A |
6068148 | Weiler | May 2000 | A |
6085740 | Ivri et al. | Jul 2000 | A |
6096011 | Trombley, III et al. | Aug 2000 | A |
6105877 | Coffee | Aug 2000 | A |
6106504 | Urrutia | Aug 2000 | A |
6116234 | Genova et al. | Sep 2000 | A |
6123413 | Agarwal et al. | Sep 2000 | A |
6139674 | Markham et al. | Oct 2000 | A |
6142146 | Abrams et al. | Nov 2000 | A |
6145963 | Pidwerbecki et al. | Nov 2000 | A |
6146915 | Pidwerbecki et al. | Nov 2000 | A |
6152130 | Abrams et al. | Nov 2000 | A |
6155676 | Etheridge et al. | Dec 2000 | A |
6158431 | Poole | Dec 2000 | A |
6161536 | Redmon et al. | Dec 2000 | A |
6163588 | Matsumoto et al. | Dec 2000 | A |
6182662 | McGhee | Feb 2001 | B1 |
6186141 | Pike et al. | Feb 2001 | B1 |
6196218 | Voges | Mar 2001 | B1 |
6196219 | Hess et al. | Mar 2001 | B1 |
6205999 | Ivri et al. | Mar 2001 | B1 |
6216916 | Maddox et al. | Apr 2001 | B1 |
6223746 | Jewett et al. | May 2001 | B1 |
6235177 | Borland et al. | May 2001 | B1 |
6254219 | Agarwal et al. | Jul 2001 | B1 |
6269810 | Brooker et al. | Aug 2001 | B1 |
6270473 | Schwebel | Aug 2001 | B1 |
6273342 | Terada et al. | Aug 2001 | B1 |
6318640 | Coffee | Nov 2001 | B1 |
6328030 | Kidwell et al. | Dec 2001 | B1 |
6328033 | Avrahami | Dec 2001 | B1 |
6341732 | Martin et al. | Jan 2002 | B1 |
6358058 | Strupat et al. | Mar 2002 | B1 |
6394363 | Arnott et al. | May 2002 | B1 |
6402046 | Loser | Jun 2002 | B1 |
6405934 | Hess et al. | Jun 2002 | B1 |
6427682 | Klimowicz et al. | Aug 2002 | B1 |
6443146 | Voges | Sep 2002 | B1 |
6443366 | Hirota et al. | Sep 2002 | B1 |
6467476 | Ivri et al. | Oct 2002 | B1 |
6530370 | Heinonen | Mar 2003 | B1 |
6540153 | Ivri | Apr 2003 | B1 |
6540154 | Ivri et al. | Apr 2003 | B1 |
6543443 | Klimowicz et al. | Apr 2003 | B1 |
6546927 | Litherland et al. | Apr 2003 | B2 |
6550472 | Litherland et al. | Apr 2003 | B2 |
6554201 | Klimowicz et al. | Apr 2003 | B2 |
6581595 | Murdock et al. | Jun 2003 | B1 |
6615824 | Power | Sep 2003 | B2 |
6629646 | Ivri | Oct 2003 | B1 |
6640804 | Ivri | Nov 2003 | B2 |
6651650 | Yamamoto et al. | Nov 2003 | B1 |
6705315 | Sullivan et al. | Mar 2004 | B2 |
6732944 | Litherland et al. | May 2004 | B2 |
6745768 | Colla et al. | Jun 2004 | B2 |
6745770 | McAuliffe et al. | Jun 2004 | B2 |
6755189 | Ivri et al. | Jun 2004 | B2 |
6769626 | Haveri | Aug 2004 | B1 |
6782886 | Narayan et al. | Aug 2004 | B2 |
6810876 | Berthon-Jones | Nov 2004 | B2 |
6814071 | Klimowicz et al. | Nov 2004 | B2 |
6817361 | Berthon-Jones et al. | Nov 2004 | B2 |
6830046 | Blakley et al. | Dec 2004 | B2 |
6840240 | Berthon-Jones et al. | Jan 2005 | B1 |
6845770 | Klimowicz et al. | Jan 2005 | B2 |
6851626 | Patel et al. | Feb 2005 | B2 |
6860268 | Bohn et al. | Mar 2005 | B2 |
6983747 | Gallem et al. | Jan 2006 | B2 |
7059320 | Feiner et al. | Jun 2006 | B2 |
7195011 | Loeffler et al. | Mar 2007 | B2 |
7322349 | Power | Jan 2008 | B2 |
20010013554 | Borland et al. | Aug 2001 | A1 |
20010015737 | Truninger et al. | Aug 2001 | A1 |
20020011247 | Ivri et al. | Jan 2002 | A1 |
20020023650 | Gunaratnam et al. | Feb 2002 | A1 |
20020033178 | Farrell et al. | Mar 2002 | A1 |
20020036601 | Puckeridge et al. | Mar 2002 | A1 |
20020078958 | Stenzler | Jun 2002 | A1 |
20020104530 | Ivri et al. | Aug 2002 | A1 |
20020121274 | Borland et al. | Sep 2002 | A1 |
20020134372 | Loeffler et al. | Sep 2002 | A1 |
20020134374 | Loeffler et al. | Sep 2002 | A1 |
20020134375 | Loeffler et al. | Sep 2002 | A1 |
20020134377 | Loeffler et al. | Sep 2002 | A1 |
20020162551 | Litherland | Nov 2002 | A1 |
20030140921 | Smith et al. | Jul 2003 | A1 |
20030145859 | Bohn et al. | Aug 2003 | A1 |
20030150445 | Power et al. | Aug 2003 | A1 |
20030150446 | Patel et al. | Aug 2003 | A1 |
20030226906 | Ivri | Dec 2003 | A1 |
20040000598 | Ivri | Jan 2004 | A1 |
20040004133 | Ivri et al. | Jan 2004 | A1 |
20040011358 | Smaldone et al. | Jan 2004 | A1 |
20040035413 | Smaldone et al. | Feb 2004 | A1 |
20040035490 | Power | Feb 2004 | A1 |
20040050947 | Power et al. | Mar 2004 | A1 |
20040139963 | Ivri et al. | Jul 2004 | A1 |
20040139968 | Loeffler et al. | Jul 2004 | A1 |
20040188534 | Litherland et al. | Sep 2004 | A1 |
20040194783 | McAuliffe et al. | Oct 2004 | A1 |
20040226561 | Colla et al. | Nov 2004 | A1 |
20040226566 | Gunaratnam et al. | Nov 2004 | A1 |
20040256488 | Loeffler et al. | Dec 2004 | A1 |
20050284469 | Tobia et al. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
477 885 | Sep 1969 | CH |
555 681 | Nov 1974 | CH |
11 03 522 | Mar 1961 | DE |
0 049 636 | Apr 1982 | EP |
0 103 161 | Mar 1984 | EP |
0 134 847 | Mar 1985 | EP |
0174862 | Mar 1986 | EP |
0 178 925 | Apr 1986 | EP |
0 387 222 | Sep 1990 | EP |
0 432 992 | Jun 1991 | EP |
0 476 991 | Mar 1992 | EP |
0 480 615 | Apr 1992 | EP |
0 510 648 | Oct 1992 | EP |
0 516 565 | Dec 1992 | EP |
0 542 723 | May 1993 | EP |
0 933 138 | Apr 1999 | EP |
0 923 957 | Jun 1999 | EP |
1 142 600 | Oct 2001 | EP |
973 458 | Oct 1964 | GB |
1 454 597 | Nov 1976 | GB |
2 073 616 | Oct 1981 | GB |
2 101 500 | Jan 1983 | GB |
2 177 623 | Jan 1987 | GB |
2 240 494 | Jul 1991 | GB |
2 272 389 | May 1994 | GB |
57-023852 | Feb 1982 | JP |
57-105608 | Jul 1982 | JP |
58-061857 | Apr 1983 | JP |
58-139757 | Aug 1983 | JP |
59-142163 | Aug 1984 | JP |
60-004714 | Jan 1985 | JP |
61-008357 | Jan 1986 | JP |
61-215059 | Sep 1986 | JP |
02-135169 | May 1990 | JP |
02-189161 | Jul 1990 | JP |
60-07721 | Jan 1994 | JP |
10-508251 | Aug 1998 | JP |
2005277188 | Oct 2005 | JP |
WO 8203548 | Oct 1982 | WO |
WO 9207600 | May 1992 | WO |
WO 9211050 | Sep 1992 | WO |
WO 9217231 | Oct 1992 | WO |
WO 9301404 | Jan 1993 | WO |
WO 9310910 | Jun 1993 | WO |
WO 9409912 | May 1994 | WO |
WO 9609229 | Mar 1996 | WO |
WO 9917888 | Apr 1999 | WO |
WO 0037132 | Jun 2000 | WO |
WO0264265 | Jan 2002 | WO |
WO03041774 | Oct 2002 | WO |
Entry |
---|
Abys, J.A. et al., “Annealing Behavior of Palladium-Nickel Alloy Electrodeposits,” Plating and Surface Finishing, Aug. 1996, pp. 1-7. |
Allen T. Particle Size Measurement, Third Edition, Chapman and Hall pp. 167-169 (1981). |
Ashgriz, N. et al. “Development of a Controlled Spray Generator” Rev. Sci. Instrum., 1987, pp. 1291-1296, vol. 58, No. 7. |
Berggren, E. “Pilot Study of Nebulized Surfactant Therapy for Neonatal Respiratory Distress Syndrome”, Acta Paediatr 89: 460-464, Taylor & Francis, ISSN 0803-5253, 2000, Sweden. |
Berglund, R.N., et al. “Generation of Monodisperse Aerosol Standards” Environ. Sci. Technology, Feb. 1973, pp. 147-153, vol. 7, No. 2. |
Cipolla, D.C. et al., “Assessment of Aerosol Delivery Systems for Recombinant Human Deoxyribonuclease,” S.T.P. Pharma Sciences 4 (1) 50-62, 1994. |
Cipolla, D.C. et al., “Characterization of Aerosols of Human Recombinant Deoxyribonuclease I (rhDNase) Generated by Neulizers,” Pharmaceutical Research II (4) 491-498, 1994. |
Dogan, Aydin PhD, Thesis: “Flexional ‘Moonie and Cymbal’ Actuators”, Penn State University, 1994. |
Duarte, Alexander G. et al. “Inhalation Therapy During Mechanical Ventilation” Respiratory Care Clinics of North America, Aerosol Therapy, Jun. 2001, pp. 233-259, vol. 7, No. 2. |
Fink, James B. et al. “Aerosol Drug Therapy,” Clinical Practice in Respiratory Care; Chapter 12, pp. 308-342; 1999. |
Fink, James B. et al. “Aerosol Therapy in Mechanically Ventilated Patients: Recent Advances and New Techniques” Seminars in Respiratory and Critical Care Medicine, 2000, pp. 183-201, vol. 21, No. 3. |
Fink, James B. et al. Diagram from and abstract of article entitled “Optimizing efficiency of nebulizers during mechanical ventilation: The effect of placement and type of ventilator circuit” Chest, Oct. 1999, 116:312S. |
Geiser Tool Company catalog, pp. 26, 29-30 (1990). |
Gonda, I. “Therapeutic Aerosols,” Pharmaceutics, The Science of Dosage Form Design, Editor: M.E. Aulton, 341-358, 1988. |
Hancock, B.C. et al., “Molecular Mobility of Amorphous Pharmaceutical Solids Below Their Glass Transition Temperatures,” Pharmaceutical Research 12, 799-806 (1995). |
Heyder, J. et al., “Deposition of particles in the human respiratory tract in the size range 0.005-15 microns.” J Aerosol Sci 17: 811-825, 1986. |
Hickey, Anthony J. “Pharmaceutical Inhalation Aerosol Technology,” Drugs and the Pharmaceutical Science, 1992, pp. 172-173, vol. 54. |
Hikayama, H., et al. “Ultrasonic Atomizer with Pump Function” Tech. Rpt. IEICE Japan US88-74:25 (1988). |
Jorch, G. Letter to the Editor, “Surfactant Aerosol Treatment of Respiratory Distress Syndrome in Spontaneously Breathing Premature Infants”, Pediatric Pulmonology 24: 222-224, 1997, Wiley-Liss. |
Maehara, N. et al. “Atomizing rate control of a multi-pinhole-plate ultrasonic atomizer” J. Acoustical Soc. Japan, 1988, pp. 116-121, 44:2. |
Maehara, N. et al. “Influence of the vibrating system of a multipinhole-plate ultrasonic nebulizer on its performance” Review of Scientific Instruments, Nov. 1986, p. 2870-2876, vol. 57, No. 1. |
Maehara, N. et al. “Influences of liquid's physical properties on the characteristics of a multi-pinhole-plate ultrasonic atomizer” J. Acoustical Soc. Japan 1988, pp. 425-431, 44:6. |
Maehara, N. et al. “Optimum Design Procedure for Multi-Pinhole-Plate Ultrasonic Atomizer” Japanese Journal of Applied Physics, 1987, pp. 215-217, vol. 26, Supplement 26-1. |
Nogi, T. et al. “Mixture Formation of Fuel Injection System in Gasoline Engine” Nippon Kikal Gakkai Zenkoku Taikai Koenkai Koen Ronbunshu 69:660-662 (1991). |
Palla Tech Pd an Pd Alloy Processes—Procedure for the Analysis of Additive IVS in Palla Tech Plating Solutions by HPLC, Technical Bulletin, Electroplating Chemicals & Services, 029-A, Lucent Technologies,, pp. 1-5, 1996. |
Siemens, “Servo Ultra Nebulizer 345 Operating Manual,” pp. 1-23. |
Smaldone, G. C. “Aerosolized Antibiotics: Current and Future”, Respiratory Care, 2000, vol. 45, No. 6, pp. 667-675. |
Smedsaas-Löfvenbert, A. “Nebulization of Drugs in a Nasal CPAP System”, Scandinavian University Press, 1999, Acta Paediatr 88: 89-92, Sweden. |
TSI Incorporated product catalog. Vibrating Orifice Aerosol Generator (1989). |
Ueha, S., et al. “Mechanism of Ultrasonic Atomization Using a Multi-Pinhole Plate” J. Acoust. Soc. Jpn., 1985, pp. 21-26, (E)6,1. |
Wehl, Wolfgang R. “Ink-Jet Printing: The Present State of the Art” for Siemens AG, 1989. |
Number | Date | Country | |
---|---|---|---|
20050011514 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
60488718 | Jul 2003 | US |