The present disclosure relates to an aerosol generating apparatus and more particularly to an aerosol generating apparatus with interchangeable components.
Nebulizers, also known as aerosolizer or atomizer, are used to deliver medication in fine particles/droplets to patients for inhalation. An aerosol generating module, which is a component of a nebulizer, receives liquid medicament to generate aerosol for treating a patient with respiratory conditions, such as Chronic Obstructive Pulmonary Disease (COPD). A typical aerosol generating module includes a perforated membrane and a vibratable element. One way for a vibratable element to generate vibration is through the incorporation of piezoelectric (PZT) materials. Vibration is provided to the liquid passing through the perforated membrane, thereby generating aerosolization.
A reservoir, with an internal chamber, stores the liquid medicament to be provided to the aerosol generating module. The vibratable element vibrates the perforated membrane, through which the liquid medicament travels through, to generate aerosolization. Typically, the aerosol generating module is either permanently secured to the reservoir or integrally formed with the reservoir. The aerosol generating module may be secured to the reservoir with adhesives or by other securing means. Accordingly, when the liquid medicament is depleted, the aerosol generating module, which is affixed to the reservoir, is also discarded or replaced.
Generally, the reservoir needs to be cleaned thoroughly prior to each use. The same applies to the perforated membrane. If the reservoir and/or the perforated membrane were not cleaned properly, the nebulizer may not work in subsequent use. For example, residue may form and block the perforated membrane. The vibratable element, if not cleaned adequately, may degrade fast and generate reliability and performance issues. The liquid medicament may also be contaminated due to insufficient cleaning. The abovementioned risks can be mitigated by using a new set of aerosol generating module and reservoir for every treatment. However, it will substantially increase the patient's financial burden.
Therefore, the present disclosure aims to design a nebulizer with interchangeable and replaceable components, including liquid container, perforated membrane and vibratable element. The goal is to improve, or maintain over time, nebulization quality and efficiency, while providing patient a cost-effective treatment solution.
The disclosure provides an aerosol generating apparatus having an adaptor with a driving element, and a liquid container with a perforated membrane. The driving element includes a piezoelectric element and a substrate, and the driving element is accommodated by the adaptor. The center of the substrate has an aperture and the adaptor is configured to contact the substrate at its periphery. The aperture may be proximate to the substrate's center. The liquid container has a chamber for holding a liquid medicament and an opening for releasing the liquid. The membrane is at the opening of the liquid container and corresponds to the aperture of the substrate when the liquid container and the adaptor are engaged. When engaged, the liquid medicament is supplied to the perforated membrane, which is vibrated by the driving element through the substrate. As a result, the liquid medicament passes through the perforated membrane and is nebulized.
In some embodiments, the substrate includes an inlet surface and an outlet surface opposite to the inlet surface. The inlet surface further includes a projection extending away from its face, and a through hole is configured to penetrate a structure plate at the projection. The driving element couples with and vibrates the structure plate. Particularly, when the liquid container is engaged with the adaptor, the membrane of the liquid container is in contact with the projection such that the driving element vibrates the membrane through the projection.
In some embodiments, a space is formed between the inlet surface and the membrane when the projection is in contact with the membrane. In another embodiment, the substrate further includes a planar part at the inlet surface extending annularly from the projection, and the space between the membrane and the structure plate corresponds to the planar part.
In some embodiments, the substrate is in contact, touches or abuts the adaptor. The adaptor further includes a jack for supporting and holding the substrate. This way, the substrate is securely maintained in a position relative to the adaptor to ensure accurate alignment between the substrate and membrane while the contact areas between the substrate and the adaptor are minimized. The required reliable alignment between the nebulizer components during the process of aerosol generation is then achieved.
In some embodiments, the adaptor includes at least two jacks. The jacks may be integrally formed with the adaptor. The substrate is in contact with and held by the jacks. The substrate may be attached to the at least two jacks by adhesive. Alternatively, the substrate may be directly mounted on at least two jacks without adhesive.
In some embodiments, the respective jack has a first surface extending along a direction perpendicular to the longitudinal axis of the adaptor. Accordingly, the substrate can be mounted on and in contact with the first surface. In certain embodiments, the substrate may be attached to the first surface by adhesive, such as gel.
In some embodiments, the substrate is mounted directly to the first surface without adhesive. The substrate may be considered as supported by the adaptor, at least partially. Further, a pressing force in a direction perpendicular to the first surface may be provided, from the membrane against the projection of the substrate, such that the relative position between the substrate and the adaptor is maintained. In other words, the substrate may be clamped by the first surface and the liquid container when the liquid container is engaged with the adaptor.
In some embodiments, the jack further includes a second surface along the longitudinal axis of the adaptor. The substrate may be in contact with both the first and second surfaces. Furthermore, the substrate may be adhered to the first and second surfaces, or not.
In some embodiments, the substrate has recesses at its outer periphery corresponding to the first surface and the second surface. As a result, the substrate may be fitted more firmly with the adaptor to inhibit horizontal movement. Further, a pressing force in a direction perpendicular to the substrate may be provided such that the substrate is more securely clamped by the adaptor and the container. In yet another example, the substrate may be adhered to the jacks.
In some embodiments, the distal part of the second surface is melted using hot melting adhesive process and forms an additional surface which is parallel to the first surface. The additional surface is in contact with the substrate and together with first and second surfaces, and therefore the substrate is securely fixed by the jack. All three surfaces may be in contact with the substrate. In certain embodiments, the jacks come with the three surfaces.
In some embodiments, the adaptor is configured to contact the substrate's periphery at no more than three locations. Alternatively, no more than six percent of the substrate is in contact with the adaptor so as to maximize the vibration energy transmission to the membrane or to minimize vibration energy loss.
In some embodiments, the substrate is made of metal such as stainless steel, and the jack of the adaptor is made of material other than metal, such as polymer.
In some embodiments, the adaptor includes a supporting means and an interface, and the interface is configured to receive a liquid source. The liquid source is detachably engaged with the interface of the adaptor. As a result, the aerosol generating apparatus is modularized and components including the liquid source, the perforated membrane and the piezoelectric element can be replaced when needed. The supporting means is in contact with the periphery of the substrate and is configured to maintain a space between the substrate and the adaptor when the adaptor is engaged with the liquid source.
One or more embodiments are illustrated by way of example, and not by limitation, in the figures of the accompanying drawings, wherein elements having the same reference numeral designations represent like elements throughout. The drawings are not to scale, unless otherwise disclosed.
The drawings are only schematic and are non-limiting. In the drawings, the size of some of the elements may be exaggerated and not drawn on scale for illustrative purposes. The dimensions and the relative dimensions do not necessarily correspond to actual reductions to practice of the invention. Any reference signs in the claims shall not be construed as limiting the scope. Like reference symbols in the various drawings indicate like elements.
The making and using of the embodiments of the disclosure are discussed in detail below. It should be appreciated, however, that the embodiments provide many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the embodiments, and do not limit the scope of the disclosure.
Throughout the various views and illustrative embodiments, like reference numerals are used to designate like elements. Reference will now be made in detail to exemplary embodiments illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts. In the drawings, the shape and thickness may be exaggerated for clarity and convenience. This description will be directed in particular to elements forming part of, or cooperating more directly with, an apparatus in accordance with the present disclosure. It is to be understood that elements not specifically shown or described may take various forms. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. It should be appreciated that the following figures are not drawn to scale; rather, these figures are merely intended for illustration.
In the drawings, like reference numbers are used to designate like or similar elements throughout the various views, and illustrative embodiments of the present disclosure are shown and described. The figures are not necessarily drawn to scale, and in some instances the drawings have been exaggerated and/or simplified in places for illustrative purposes. One of ordinary skill in the art will appreciate the many possible applications and variations of the present disclosure based on the following illustrative embodiments of the present disclosure.
It will be understood that when an element is referred to as being “on” another element, it can be directly on the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present.
It will be understood that singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, relative terms, such as “bottom” and “top,” may be used herein to describe one element's relationship to other elements as illustrated in the Figures.
It will be understood that elements described as “under” or “below” other elements would then be oriented “over” or “above” the other elements. The exemplary terms “under” or “below” can, therefore, encompass both an orientation of over and under.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms; such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Referring to
The liquid container 20 is configured to hold a liquid medicament (not shown) or any medication suitable for aerosolization to be provided to the aerosol generating apparatus 10. The liquid container 20 may include a lid 202 covering an inlet, through which users can re-fill the liquid medicament. Alternatively, the liquid container 20 may not include such lid 202. Accordingly, users need to replace the liquid container entirely when the liquid medicament is depleted. The liquid container 20 includes an outlet opening (not shown) facing the adaptor 30. Through such opening, liquid is provided to the adaptor 30 for aerosolization.
The adaptor 30 is configured to house aerosolization components therein, which will be discussed in subsequent disclosures and embodiments. The adaptor 30 includes an inlet at one side for receiving liquid from the liquid container 20 and an outlet opposite to the inlet. Liquid enters the adaptor 30 and exits through the outlet in the form of aerosol. As such, the adaptor 30 is made of impermeable material(s). Moreover, the adaptor 30 may accommodate electric wires (not shown) for delivery of electric power to certain components therein. The impermeable material also serves to improve the durability of such electric parts.
Aerosolization is to be conducted after the liquid container and the adaptor is engaged. The relative position between the reservoir 20 and the holder 30 is fixed during aerosolization to ensure the liquid medicament is aerosolized under a controlled manner. Still, their relative position may be adjusted to configure the aerosolization rate based on different needs.
In some embodiments, the membrane 204 is made of a material flexible enough to respond to vibration, yet sturdy enough to maintain liquid from leakage or prevent contamination from outside environment. In certain embodiments, the membrane 204 is made of a macromolecular polymer of polyimide, polyethylene (PE), polypropylene (PP), polyether ether ketone (PEEK) and/or the combination thereof. When the membrane 204 is integrally formed with the liquid container 20, the two are made of the same material or same combination of materials. A separate container or vial may be added to encase the liquid container 20.
The adaptor 30 may include a body 302 and an interface 304. Together they may form a chamber for accommodating components therein. The body 302 and the interface 304 may be integrated into one single structure. Alternatively, only the body 302 is needed to accommodate elements therein and for engaging with the liquid container 20. In certain embodiments, the interface 304 may serve to mate, align and/or affix the liquid container 20 to the adaptor 30. For example, the liquid container 20 and the interface 304 may both include screw threads such that a user can screw fix the two together. A person having ordinary skill in the art would understand that other mating/aligning/affixing mechanisms may applied as long as the relative position between the liquid container 20 and the adaptor 30 can be maintained during aerosolization. If such positions are not maintained, the liquid container 20 might shift or jolt during aerosolization. As a result, aerosolization efficiency will be affected. Moreover, components of the aerosol generating apparatus 10 may be more prone to damage and wear if the position of the liquid container 20 and the adaptor 30 is not maintained.
A driving element 40 is accommodated by the adaptor 30. The driving element includes a piezoelectric (PZT) element (404, not shown) and a substrate 402. The substrate 402 may be flat or with a projection. The substrate 402 is made of metal or any kind of material suitable for prolonged vibration without breakage. The PZT element 404 is coupled to the liquid outlet side of the substrate 402, and the liquid inlet side of the substrate 402 faces the membrane 204. When the liquid container 20 is engaged with the adaptor 30, the substrate 402 and the membrane 204 are in contact. During aerosolization, electric power is provided to the PZT element through electric contacts, such as wires or leads. As a result, the PZT element 404 vibrates and the vibration energy thereof is transmitted to the membrane 204 to aerosolize the liquid passing through. The adaptor 30 includes some additional structures/components to ensure that the positioning of the liquid container 20, the membrane 204 and the adaptor 30 are in a desired manner, e.g., aligned. Such additional structures/components will be discussed in the subsequent disclosure.
In certain embodiments, the substrate 402 includes an aperture 406 at about its center. The aperture 406 corresponds to the location of the orifices 206 of the membrane 204 when the liquid container 20 is engaged with the adaptor 30. As such, liquid can be directed from the liquid container 20 through the substrate 402 via such aperture 406. Aerosolized liquid then leaves the substrate 402 through such aperture 406 and exits the adaptor 30 via its through hole 306.
In certain embodiments, the substrate 402 includes a projection 408 corresponding to the location of the aperture 406. In other words, substrate 402 is elevated at the projection 408, which becomes in contact with the membrane 204 when the liquid container 20 and the adaptor 30 are engaged. In some embodiments, only the projection 408 is in contact with the membrane 204 during aerosolization. The projection 408 may also serve to partially deform the membrane 204 when the liquid container 20 and the adaptor 30 are engaged. One example is to push the liquid container 20/membrane 204 against the substrate 402/projection 408. Aerosolization effect may be adjusted accordingly.
When the liquid container 20 and the adaptor 30 are engaged, the adaptor 30 is configured to contact the substrate's 40 periphery. The periphery of the substrate 40 shall be the outer perimeter of the substrate 40. In other words, it is the border area of the substrate 40 as distinguished from its internal regions or center. An example of the periphery of the substrate 40 is the ring region that marks the outer most boundary of the substrate 40. The adaptor 30 is configured to be in contact with the periphery of the substrate 402 for the purpose of minimizing hindrance against the vibration of the substrate 402 and for improving aerosolization efficiency. More particularly, the adaptor 30 is configured to make contact with only part of the periphery of the substrate 40.
Any contact of the substrate 402 with any element will create a hindered and/or dead spot during vibration, thus affecting vibration efficiency. It is preferred that the substrate 402 receives as little hindrance as possible. Moreover, hindrance from the periphery region of the substrates creates less energy loss than that from the more central regions. In the present disclosure, a jack 308 (or a means for supporting the substrate 402) is provided at the adaptor 30 to achieve the foregoing goal. That is, the jack 308 of the adaptor 30 makes contact with the substrate 402 only at a specific location of its periphery. Accordingly, there is only minimal contact between the adaptor 30 and the substrate 402. The jack 308 may be attached to the adaptor 30 or integrally formed with the adaptor 30.
The jack 308 further serves to ensure that the substrate 402 will be placed at a predetermined position for desired aerosolization. For example, the jack 308 may serve to align the adaptor 30 and the substrate 402. The resulting aerosol generating apparatus 10 may deliver more desired aerosolization with less energy consumption. Higher aerosolization efficiency may also lead to fewer blockages or clogging, thus prolongs the life of the aerosol generating apparatus 10. In some embodiments, the jack 308 is made of materials other than metal, such as polymer.
In certain embodiments, the adaptor 30 includes only one jack 308. The periphery of the substrate 402 may be mounted on and supported by such one jack 308 without adhesive. However, in the one jack 308 configuration, it is recommended that adhesive, e.g., glue, gel, hot molding or welding, is applied in order to maintain structural strength and integrity. Alternatively, the adaptor 30 may include more than one, e.g., two, three or more, jacks 308, that also correspond to the substrate's 402 periphery. Here, adhesive is optional between the plurality of jacks 308 and the substrate 402.
When engaged, the substrate 402 only makes contact with the tips of the plurality of jacks 308 at the periphery. Accordingly, only small areas of the periphery where the jacks 308 touch the substrate 402 may be affected during vibration. In other words, the adaptor 30 supports the substrate 402 just enough to maintain position during vibration/aerosolization, allowing substrate 402 to vibrate freely with minimal hindrance. In certain embodiments, this may be considered as the substrate 402 is partially supported by the adaptor 30. Such minimal hindrance provides an aerosol generating apparatus capable of delivering desired aerosolization with reduced energy consumption. It is important to note that the foregoing disclosure is only exemplary and shall not be considered as exhaustive. A person having ordinary skill in the art will understand that the configuration of any number of jacks 308 will fall within the scope of the present disclosure as long as the contact between the substrate 402 and the adaptor 30 is minimal. In a preferred embodiment, the adaptor 30 is only in contact with the periphery of the substrate 402 at no more than three locations, in the form of tip of a jack or any other readily known supporting structure.
The jack 308 further serves to lift and maintain the substrate 402 at a certain height, i.e., away from the liquid inlet surface of the adaptor 30. In other words, a space is maintained between the liquid inlet surface of the adaptor 30 and the substrate 402. Without such space, additional sections of the substrate 402 may come in contact with the adaptor 30 when vibrated, which results in vibration hindrance and loss. Moreover, such space serves to accommodate the PZT element 404 that couples to the substrate 402. The PZT element 404 is disposed at the liquid outlet surface of the substrate 402. Some space between the substrate 402 and the adaptor 30 should be preserved to prevent the PZT element 404 from contacting the adaptor 30. With such space maintained, vibration energy will not be reduced and vibration pattern of the substrate 402 will not be hindered.
Here, the electric contact 412 of the PZT element 404 is illustrated. Such electric contact 412 may be leads or electric wires. It is configured to provide electric power to the PZT element 404 to create vibration. Such vibration is then transmitted to the membrane 204 through the substrate 402 for aerosolization. In general, the PZT element 404 is ring shaped so aerosolized liquid can pass through its central through hole. However, the shape of the PZT element 404 is not limited to circular and may be adjusted if needed. For example, the shape of the PZT element 404 may not be a complete ring. It can be C-shaped or an incomplete ring with gaps. As long as vibration energy can be transmitted from the periphery towards the center of the substrate 402, the PZT element 404 can be of any shape or form.
In
The liquid/aerosol flow direction from L to L′ is again illustrated in
In some embodiments, the substrate 402 includes a planar part 414 at its inlet surface extending annularly from the projection 408. The planar part 414 also surrounds the aperture 406, which penetrates the projection 408 of the substrate 402. The projection 408 substantially corresponds to the orifices 206 of the membrane 204, while the planar part 414 substantially corresponds to such portions of the membrane 204 without orifices.
In some embodiments, when the liquid container 20 and the adaptor 30 are engaged, a pressing force from the liquid container 20 along a direction perpendicular to the substrate 402 is applied. As a result, the membrane 204 is pressed against the substrate 402 but not to the extent that the membrane 204 is punctured or deformed by the projection 408. In combination with the jacks 308, the substrate 402 is clamped by the liquid container 20 and the adaptor 30. Accordingly, the position of the substrate 402 relative to the adaptor 30 is aligned and maintained. Without the foregoing, the substrate 402 might shift or jolt during operation, which may lead to reduced aerosolization efficiency. Shifting or jolting of the substrate 402 may also cause damage and reduce the life of the aerosol generating apparatus. In certain embodiments, as illustrated in
Although not illustrated in
In
In
In
The embodiments in
The present disclosure provides an aerosol generating apparatus having a liquid source and an adaptor. The liquid source includes a perforated membrane at one side facing the adaptor. Liquid medicament is provided from the liquid source to the adaptor through the perforated membrane. The adaptor includes an interface to mate with the liquid source. The adaptor further accommodates a driving element, which includes a piezoelectric element and a substrate. The periphery of the substrate is in contact with the adaptor through its supporting means. The supporting means is configured to form a space between the substrate and the adaptor when the adaptor is engaged with the liquid source. An aperture is provided at or around the center of the substrate, which corresponds to the perforated membrane. When provided with electric energy, the piezoelectric element vibrates. Such vibration energy is transmitted to the perforated membrane through the substrate for aerosolization. Because the supporting means are configured to contact only a very small area of the periphery of the substrate, hindrance to vibration is minimized. As such, the improved aerosol generating apparatus can generate a desired aerosolization result with less energy consumption.
Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. For example, many of the processes discussed above can be implemented in different methodologies and replaced by other processes, or a combination thereof.
Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
The present application claims priority to U.S. Provisional Application Ser. No. 62/364,309 filed on Jul. 19, 2016, which is hereby incorporated by reference in its entirety. In addition, the entire disclosure in the PCT Application PCT/US16/17984 is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6732944 | Litherland | May 2004 | B2 |
20050034719 | Feiner | Feb 2005 | A1 |
20070051827 | Shen | Mar 2007 | A1 |
20090137950 | Loenner | May 2009 | A1 |
20120291776 | Van Der Mark | Nov 2012 | A1 |
20130074832 | Gallem | Mar 2013 | A1 |
20130112770 | Hsieh | May 2013 | A1 |
20130119151 | Moran | May 2013 | A1 |
20140116426 | Mullinger et al. | May 2014 | A1 |
20160119151 | Park et al. | Apr 2016 | A1 |
20160158789 | Selby | Jun 2016 | A1 |
20180178240 | Anzenberger | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
203842759 | Sep 2014 | CN |
204412540 | Jun 2015 | CN |
105579147 | May 2016 | CN |
105579147 | May 2016 | CN |
1762264 | Mar 2007 | EP |
2957349 | Dec 2015 | EP |
WO2011083380 | Jul 2011 | WO |
2013161986 | Oct 2013 | WO |
WO2016133856 | Aug 2016 | WO |
Entry |
---|
Lee W. Young, PCT/US 16/17984 International search report, dated Jun. 28, 2016, ISA/US. |
Office Action Communication from TIPO, dated Aug. 16, 2018. |
Office Action Communication from TIPO, dated Nov. 26, 2018. |
Extended European search report by the EPO, dated Dec. 21, 2017. |
First Office Action prepared by CNIPA, dated Nov. 5, 2019. |
Number | Date | Country | |
---|---|---|---|
20180021528 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
62364309 | Jul 2016 | US |