The present invention relates to a method and apparatus for generating an aerosol for delivery to a patient. More particularly, the present invention relates to a nebulizer configured to nebulize a fluid into an aerosol in coordination with a patient's breathing.
Medical nebulizers that nebulize a fluid into an aerosol for inhalation by a patient are well-known devices commonly used for the treatment of certain conditions and diseases. Nebulizers have applications for conscious, spontaneously-breathing patients and for controlled, ventilated patients.
In some nebulizers, a gas and a fluid are mixed together and directed against a baffle or diverter. In some other nebulizers, interaction of the gas and fluid is enhanced through impacting the gas and fluid against a diverter. The term diverter, as used in this specification, includes any baffle or impinger. As a result of either nebulization process described above, the fluid is transformed into an aerosol, that is, the fluid is caused to form small particles that are suspended in the air and that have a particle size in a range suitable for delivery to a targeted area of a patient's respiratory tract. One way to mix the gas and fluid together in a nebulizer is to pass a quickly moving gas over a fluid orifice tip of a tube. The negative pressure created by the flow of pressurized gas is a factor that contributes to drawing fluid out of the fluid orifice into the stream of gas and nebulizing it.
Important considerations in the design of a nebulizer are the timing and dosage regulation of the aerosolized fluid. In some nebulizer designs, a continuous stream of pressurized gas entrains the fluid against the diverter to constantly generate an aerosol until the fluid in a reservoir is depleted. Continuous nebulization may result in a waste of aerosol during a patient's exhalation or during a delay between inhalation and exhalation. The amount of wasted aerosol may be difficult to quantify and some of the aerosol may be lost to condensation on the nebulizer or mouthpiece during periods of non-inhalation. Nebulizers implementing a timed or non-continuous nebulization may adversely affect particle size and density as the nebulization is turned on and off.
Effective and economical nebulizer therapy includes the ability to quickly generate a large amount of aerosol within a predetermined particle size range. An effective nebulizer preferably provides these features synchronously with the inhalation of the patient. In order to actuate a mechanical nebulizer, a patient's inhalation effort must overcome certain variables. Depending on the structural configuration of the nebulizer, these variables may include one or more of the following: the volumetric flow rate of the flowing gas; air leaks in the device; the force exerted by the flowing gas on a moveable diverter; and the friction between moveable parts. The greater the flow rate, air leaks and friction, the greater the inhalation effort required in order to actuate the device. It is desirable that a nebulizer have adequate sensitivity to quickly respond to an inhalation while not adversely restricting the patient's inhalation.
In order to address the deficiencies in the prior art and provide improved performance, a nebulizer and method are provided. According to a first aspect of the invention, a nebulizer is provided with a housing having an ambient air inlet and a chamber for holding an aerosol. An air outlet communicates with the chamber for permitting the aerosol to be withdrawn from the chamber. A fluid outlet and a pressurized gas outlet are in communication with the chamber where the pressurized gas outlet is located adjacent to the fluid outlet. In one preferred embodiment, the fluid outlet is preferably positioned at the opposite end of a nozzle cover from a fluid inlet, wherein the fluid inlet is capable of fluid communication with a reservoir. A diverter is positioned in the chamber in a fixed position relative to the pressurized gas orifice.
At least one portion of the fluid orifice is adjustable between a nebulizing position and a non-nebulizing position. As used in this specification, the term “fluid orifice” means either the fluid inlet or the fluid outlet and may be used interchangeably with these terms. The nebulizer may have an actuator piston connected with at least a portion of a nozzle cover to move all or part of the fluid orifice, or all or part of the fluid pathway between the reservoir of fluid and the fluid orifice. Additionally, a relief piston independently movable with respect to the actuator piston may be used to alleviate inhalation effort after an initial period of inhalation. In one embodiment, the fluid orifice is movable in response to a patient's breathing. In another embodiment, the fluid orifice is movable by moving a mechanical actuator by hand. In yet further embodiments, the diverter may be movable relative to the nebulizer housing, but fixedly positioned relative to either the pressurized gas orifice or fluid orifice.
According to another aspect of the invention, a method of providing a nebulized fluid to a patient includes providing a nebulizer having a diverter fixedly positioned with respect to a pressurized gas outlet in a chamber, a fluid reservoir in communication with the chamber, and an adjustable fluid pathway movably positioned to communicate fluid in the fluid reservoir with a fluid orifice in response to inhalation by the patient. Upon inhalation through an air outlet connected to the chamber, a position of the fluid pathway is adjusted with the force of the inhalation such that the fluid in the chamber is nebulized.
A preferred embodiment of a nebulizer 10 for nebulizing a fluid is shown in
Referring to
A nozzle cover 32 is slideably mounted over the nozzle 26. As shown in
An embodiment is also contemplated with fluid pathways that are completely enclosed within the thickness of the nozzle cover such as one or more tunnels bored from, or molded in, the bottom of the nozzle cover extend some or all of the distance up to the opening at the top of the nozzle cover. Further, an alternative embodiment may consist of an array of one or more discrete tubes connected in a ring around the pressurized gas outlet 28, where each of the tubes provides a passageway from the fluid reservoir 80 to a respective point adjacent the pressurized gas outlet 28.
In the embodiment of
A diverter 46 is preferably attached to, or integrally molded with, the inside of the nebulizer 10. As shown in
Any of a number of configurations for fixing the position of the diverter with respect to the pressurized gas orifice are contemplated. For example, the cylindrical flange 160 may extend further into the chamber 120 so that the diverter 146 and support arm 148 are attached or molded further from the bottom of the cylindrical flange 160 as shown in the embodiment illustrated in
Referring again to
The opening 58 at the distal end 54 connects with a chimney, or cylindrical flange 60, extending down into the upper portion of the chamber 20. The cylindrical flange 60 is preferably of a diameter suited to slideably receive the cylindrical extension 62 of the actuator piston 38 that extends downward into the chamber 20. The cylindrical extension 62 is positioned substantially coaxially within the cylindrical flange 60 and acts as a vertical guide for the actuator piston 38. The open proximal end 52 of the upper portion 12 of the housing 13 has a diameter suited to receive the lid 11. The lid 11 may be threaded, snap-fit, friction-fit, molded or welded to the upper portion 12 of the housing 13. The middle portion 14 of the housing 13 is preferably manufactured of a clear plastic so that a caregiver can see the actuator piston and determine if the nebulizer is actuated.
The interior of the upper portion 12 is suited to slideably receive the actuator piston 38 and a relief piston 62, and to receive a biasing means 64 such as a plastic or metal spring. The actuator piston 38, as shown in
Referring to
A biasing means 64, such as a plastic or metal spring, is positioned adjacent the top of the relief piston 62. The biasing means 64 has a predetermined spring force that is designed to hold the pistons 38, 62 down during an absence of inhalation, but that will be overcome once sufficient negative pressure is created by a patient's inhalation effort. In a preferred embodiment, one end of the biasing means 64 rests against the retainer lid 11 and the other end against relief piston 62 between the inner and outer annular ribs 46, 78. Other biasing means, such as a flexible membrane or a set of oppositely charged magnetic materials, may also be used. Additionally, the biasing means may consist of extra weights added to the relief piston and actuator piston, or the weight of the relief and actuator pistons by themselves, rather than a spring, so that gravity may be used to provide the necessary biasing force keeping the pistons against the air inlets 56, 72 in a resting or exhalation position.
The bottom portion 16 of the housing 3 is used as a fluid reservoir 80. The fluid reservoir 80 preferably holds a fluid. In one embodiment, the fluid may comprise medication used to alleviate respiratory ailments such as asthma and chronic obstructive pulmonary disease. The fluid reservoir 80 is bounded by a wall 30 that slopes down towards the bottom of the nozzle 26. Gravity urges the fluid in the reservoir toward the passageway 34 defined by the nozzle and nozzle cover. Both the cylindrical middle portion 14 of the housing 13 and bottom portion 16 of the housing 13 are preferably constructed from a transparent plastic to allow a caregiver to monitor medication levels in the nebulizer. When in a nebulizing position, the passageway 34 guides the fluid from the fluid reservoir to the fluid outlet 36.
Various alternative fluid reservoirs can be used in the nebulizer 10 For example, as is disclosed in U.S. Pat. No. 5,823,179, the reservoir may be formed of at least two portions: (1) an upper portion which is relatively shallow and wide with a diameter approximately the same as that of the chamber; and (2) a lower portion that is relatively narrow, but relatively deep. In this embodiment, the lower portion of the reservoir is wider than the outer diameter of the nozzle cover. This alternative embodiment can also be modified to include a third intermediate portion located between the upper and lower portions. The entire disclosure of U.S. Pat. No. 5,823,179 is incorporated herein by reference.
Referring to
Pressurized gas is continuously introduced into the chamber via the pressurized gas orifice 28 and is deflected radially outward from the gas orifice in a 360° pattern by the deflector 46. In the non-actuated position, the flow of gas fanning out over the annular fluid outlet is at a sufficient distance h2 from the annular fluid outlet that no nebulization takes place. Additionally, the force of the biasing member against the relief and actuator pistons closes the air inlets 72, 56 and keeps air and any nebulized substance in the chamber 20 from escaping through the air inlets. In one embodiment, h2 is approximately 2.0 mm when h1, the fixed distance between diverter and nozzle, is 0.75 mm. Other ratios of h2 and h1 may be utilized to take into account changes in parameters such as the viscosity of the fluid in the reservoir and the velocity of the pressurized gas entering the chamber.
When a patient begins inhaling through the air outlet 18, the force of the patient's inhalation lowers the pressure in the chamber and creates a negative pressure above the pistons causing both the actuator piston and relief piston to simultaneously lift away from the annular wall of the upper portion of the housing. The nozzle cover 32, rigidly attached to the actuator piston through the cylindrical extension and arms, moves up the pressurized gas nozzle until the fluid outlet reaches the low pressure zone created by the continuous flow of gas diverted by the diverter. In order to maintain the fluid outlet at the appropriate position during inhalation, upward movement of the actuator piston is preferably limited by contact of the outer annular rib with the edge of the lid 11. Alternatively, other points of contact may be used to limit the maximum upward movement of the nozzle and actuator piston For example, the plurality of stops 41 on the upper edge of the nozzle cover 32 shown in
In the nebulizing position (
Although nebulization has already started as soon as the actuator piston has lifted the nozzle cover to the appropriate spacing from the diverter, continued inhalation causes the relief piston to separate from the actuator piston. Separation of the relief piston from the actuator piston uncovers additional air inlets in the actuator piston and has the effect of increasing air flow into the nebulizer and reducing the resistance to inhalation.
Upon exhalation, the negative pressure in the chamber is replaced with a positive pressure such that the force of the biasing member against the relief and actuator pistons closes the air inlets and again moves the nozzle cover away from the low pressure zone generated by the pressurized gas inlet and diverter. Continued exhalation directs exhaled air through a relief valve on the mouthpiece (not shown) connected to the air outlet to direct exhalation away from the nebulizer. Any of a number of commonly available relief valves may be used with the presently preferred embodiment. A suitable mouthpiece and relief valve are illustrated in U.S. Pat. No. 6,044,841, the entire specification of which is incorporated herein by reference.
Although preferably operated by breath actuation, the nebulizer 10 may also be manually actuated. As shown in the embodiment of
An alternative embodiment of a nebulizer 410 is illustrated in
In the non-actuating position, the second portion 432B is separate from the first portion 432A such that a gap 433 of a predetermined distance exists between the two portions as shown in
Another alternative embodiment of the nebulizer is illustrated in
Unlike the embodiment of
In order to achieve the separation of the first and second portions 532A, 532B, movement of the actuator 538 and relief 562 pistons should be opposite that of the actuator and relief pistons illustrated in the embodiment of
Additional inhalation draws the relief piston 562 away from the actuator piston 538 so that air from the inlets 556 can also flow through openings 572 in the actuator piston and relieves the inhalation effort. Upon exhalation, the biasing member force returns the pistons 538, 562 to a non-nebulizing position and exhaled air is directed through a one-way valve 563 in the mouthpiece 561. This embodiment of the nebulizer may also be manually actuated by pressing down on a manual actuator 557 extending through a central opening 559 in the lid 511. One suitable nebulizer piston configuration is illustrated in U.S. Pat. No. 6,044,841, the entire disclosure of which is incorporated herein by reference. In similar fashion, the downward moving piston configuration may be used with a nozzle cover that is suspended above, or against, the diverter so that inhalation effort would move the actuator piston and attached nozzle cover down to complete the fluid pathway and place the fluid orifice in the low pressure zone created by the continuous flow of pressurized gas against the diverter. All or a portion of the nozzle cover may be connected with the actuator piston in this downward piston motion alternative embodiment.
Another alternative embodiment of the nebulizer is illustrated in
As illustrated in
Illustrated in
Referring to
In alternative embodiments, the vane 638, 662 may be constructed of a flexible material that is configured to flex with a patients inhalation and exhalation rather than pivoting about a point. Also, different portions of the nozzle and/or nozzle cover may be movably mounted to swing with the vane and form the fluid pathway or a fluid orifice during inhalation. Further, a movable collar may be used to block the fluid inlet 667 or outlet 664 in another alternative configuration capable of actuating the nebulizer in coordination with a patient's breathing.
In the embodiment of
In operation, the nebulizer 710 is in a non-actuated state when at rest (
Upon exhalation, the relief piston 762 will shut the openings in the lid to restore the original pressure in the housing. The actuator piston 738 will lower to its rest position and move the fluid outlet away from the low pressure zone created by the pressurized gas impacting the fixed diverter 746. Any air exhaled by the patient will preferably pass through a one-way valve 763 on the mouthpiece 761 and not enter the air outlet 718 of the nebulizer. Although the air inlets 756 are shown underneath the periphery of the middle portion 714 in
In one preferred embodiment, if the continuous pressurized gas flow into the chamber 720 from the pressurized gas inlet 728 is at a rate of 8 Liters/minute (L/min), the actuator piston 738 will respond to the inhalation once the inhalation rate exceeds the 8 L/min and generates a negative pressure in the range of 0.5 to 1.0 centimeters H2O. Nebulization should begin once the initial inhalation has moved the actuator piston up into the actuation position. The force initially keeping the actuator piston in the non-actuated state may be the weight of the actuator piston or may be supplied by any of a number of biasing members. As the patient continues inhaling and the negative pressure increases to approximately 1.0 centimeters H2O, the relief piston 762 opens. The relief piston is preferably configured to increase the amount of additional ambient air provided to the chamber as the patient's inhalation increases to keep the negative pressure from rising to a point that makes inhalation difficult for the patient.
As best shown in
Referring to
The embodiments of
Another aspect of the nebulizer shown in
Another embodiment of a breath-actuated nebulizer 800 is illustrated in
During exhalation, or at rest, the actuator piston 838 lowers the nozzle cover 832 until the underside 830 of the top of the nozzle cover 832 rests against the top portion 827 of the nozzle 826. Although pressurized gas may still flow freely, the fluid pathway 834 is blocked off and fluid cannot be drawn from the reservoir 880. Thus, the gas nozzle 826 and nozzle cover 832 in
The invention may be embodied in other forms than those specifically disclosed herein without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive, and the scope of the invention is intended to be commensurate with the appended claims.
This application is a continuation of U.S. application Ser. No. 11/046,217, filed Jan. 27, 2005, now U.S. Pat. No. 7,131,439 which is a continuation of U.S. application Ser. No. 10/101,554, filed Mar. 19, 2002, now U.S. Pat. No. 6,929,003, which claims the benefit of provisional application Ser. No. 60/277,482, filed Mar. 20, 2001, wherein the entire disclosure of each of these applications is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2535844 | Emerson | Dec 1950 | A |
2882026 | Eichelman | Apr 1959 | A |
2951644 | Mahon et al. | Sep 1960 | A |
3172406 | Bird et al. | Mar 1965 | A |
3269665 | Cheney | Aug 1966 | A |
3467092 | Bird et al. | Sep 1969 | A |
3490697 | Best, Jr. | Jan 1970 | A |
3580249 | Takaoka | May 1971 | A |
3584621 | Bird et al. | Jun 1971 | A |
3630196 | Bird et al. | Dec 1971 | A |
3658059 | Steil | Apr 1972 | A |
3664337 | Lindsey et al. | May 1972 | A |
3826255 | Havstad et al. | Jul 1974 | A |
3838686 | Szekely | Oct 1974 | A |
3874379 | Enfield et al. | Apr 1975 | A |
3903884 | Huston et al. | Sep 1975 | A |
3990442 | Patneau | Nov 1976 | A |
4093124 | Morane et al. | Jun 1978 | A |
4094317 | Wasnich | Jun 1978 | A |
4106503 | Rosenthal et al. | Aug 1978 | A |
4116387 | Kremer et al. | Sep 1978 | A |
4139128 | Ewald | Feb 1979 | A |
4150071 | Pecina | Apr 1979 | A |
4183361 | Russo | Jan 1980 | A |
4198969 | Virag | Apr 1980 | A |
4206644 | Platt | Jun 1980 | A |
4210140 | James et al. | Jul 1980 | A |
4210155 | Grimes | Jul 1980 | A |
4251033 | Rich et al. | Feb 1981 | A |
4253468 | Lehmbeck | Mar 1981 | A |
4268460 | Boiarski et al. | May 1981 | A |
4291688 | Kistler | Sep 1981 | A |
4333450 | Lester | Jun 1982 | A |
4413784 | Dea | Nov 1983 | A |
4456179 | Kremer | Jun 1984 | A |
4470412 | Nowacki et al. | Sep 1984 | A |
4484577 | Sackner et al. | Nov 1984 | A |
4508118 | Toth | Apr 1985 | A |
4509668 | Klaus et al. | Apr 1985 | A |
4588129 | Shanks | May 1986 | A |
4620670 | Hughes | Nov 1986 | A |
4627432 | Newell et al. | Dec 1986 | A |
4657007 | Carlin et al. | Apr 1987 | A |
4674491 | Brugger et al. | Jun 1987 | A |
4677975 | Edgar et al. | Jul 1987 | A |
4746067 | Svoboda | May 1988 | A |
4758224 | Siposs | Jul 1988 | A |
4792097 | Kremer, Jr. et al. | Dec 1988 | A |
4809692 | Nowacki et al. | Mar 1989 | A |
4832015 | Nowacki et al. | May 1989 | A |
4911157 | Miller | Mar 1990 | A |
4984158 | Hillsman | Jan 1991 | A |
5012803 | Foley et al. | May 1991 | A |
5012804 | Foley et al. | May 1991 | A |
5020527 | Dessertine | Jun 1991 | A |
5020530 | Miller | Jun 1991 | A |
5042467 | Foley | Aug 1991 | A |
5054477 | Terada et al. | Oct 1991 | A |
5054478 | Grychowski et al. | Oct 1991 | A |
5078131 | Foley | Jan 1992 | A |
5086765 | Levine | Feb 1992 | A |
5165392 | Small | Nov 1992 | A |
5167506 | Kilis et al. | Dec 1992 | A |
5170782 | Kocinski | Dec 1992 | A |
5241954 | Glenn | Sep 1993 | A |
5277175 | Riggs et al. | Jan 1994 | A |
5280784 | Kohler | Jan 1994 | A |
5299565 | Brown | Apr 1994 | A |
5301662 | Bagwell et al. | Apr 1994 | A |
5301663 | Small, Jr. | Apr 1994 | A |
5309900 | Knoch et al. | May 1994 | A |
5312046 | Knoch et al. | May 1994 | A |
5312281 | Takahashi et al. | May 1994 | A |
5318015 | Mansson et al. | Jun 1994 | A |
5333106 | Lanpher et al. | Jul 1994 | A |
5337926 | Drobish et al. | Aug 1994 | A |
5349947 | Newhouse et al. | Sep 1994 | A |
5363842 | Mishelevich et al. | Nov 1994 | A |
5383470 | Kolbly | Jan 1995 | A |
5385140 | Smith | Jan 1995 | A |
5392648 | Robertson | Feb 1995 | A |
5398714 | Price | Mar 1995 | A |
5427089 | Kraemer | Jun 1995 | A |
5431154 | Seigel et al. | Jul 1995 | A |
5458136 | Jaser et al. | Oct 1995 | A |
5461695 | Knoch | Oct 1995 | A |
5479920 | Piper et al. | Jan 1996 | A |
5487378 | Robertson et al. | Jan 1996 | A |
5497765 | Praud et al. | Mar 1996 | A |
5505192 | Samiotes et al. | Apr 1996 | A |
5505193 | Baliini et al. | Apr 1996 | A |
5511538 | Haber et al. | Apr 1996 | A |
5511539 | Lien | Apr 1996 | A |
5515842 | Ramseyer et al. | May 1996 | A |
5520166 | Ritson et al. | May 1996 | A |
5522380 | Dwork | Jun 1996 | A |
5533497 | Ryder | Jul 1996 | A |
5533501 | Denyer | Jul 1996 | A |
5544647 | Jewett et al. | Aug 1996 | A |
5549102 | Lintl et al. | Aug 1996 | A |
5570682 | Johnson | Nov 1996 | A |
5582162 | Petersson | Dec 1996 | A |
5584285 | Salter et al. | Dec 1996 | A |
5598839 | Niles et al. | Feb 1997 | A |
5613489 | Miller et al. | Mar 1997 | A |
5617844 | King | Apr 1997 | A |
5622162 | Johansson et al. | Apr 1997 | A |
5630409 | Bono et al. | May 1997 | A |
5645049 | Foley et al. | Jul 1997 | A |
5687912 | Denyer | Nov 1997 | A |
5701886 | Ryatt | Dec 1997 | A |
5704344 | Cole | Jan 1998 | A |
5740793 | Hodson et al. | Apr 1998 | A |
5752505 | Ohki et al. | May 1998 | A |
5758638 | Kreamer | Jun 1998 | A |
5765553 | Richards et al. | Jun 1998 | A |
5792057 | Rubsamen et al. | Aug 1998 | A |
5803078 | Brauner | Sep 1998 | A |
5816240 | Komesaroff | Oct 1998 | A |
5823179 | Grychowski et al. | Oct 1998 | A |
5848588 | Foley et al. | Dec 1998 | A |
5865172 | Butler et al. | Feb 1999 | A |
5875774 | Clementi et al. | Mar 1999 | A |
5881718 | Mortensen et al. | Mar 1999 | A |
5899201 | Schultz et al. | May 1999 | A |
5937852 | Butler et al. | Aug 1999 | A |
5954049 | Foley et al. | Sep 1999 | A |
5988160 | Foley et al. | Nov 1999 | A |
6026807 | Puderbaugh et al. | Feb 2000 | A |
6033841 | Bell et al. | Mar 2000 | A |
6039042 | Sladek | Mar 2000 | A |
6044841 | Verdun et al. | Apr 2000 | A |
6073628 | Butler et al. | Jun 2000 | A |
6116233 | Denyer et al. | Sep 2000 | A |
6116239 | Volgyesi | Sep 2000 | A |
6129080 | Pitcher et al. | Oct 2000 | A |
6131568 | Denyer et al. | Oct 2000 | A |
6176237 | Wunderlich et al. | Jan 2001 | B1 |
6179164 | Fuchs | Jan 2001 | B1 |
6223745 | Hammerlund et al. | May 2001 | B1 |
6237589 | Denyer et al. | May 2001 | B1 |
6253767 | Mantz | Jul 2001 | B1 |
6293279 | Schmidt et al. | Sep 2001 | B1 |
6338443 | Piper | Jan 2002 | B1 |
6345617 | Engelbreth et al. | Feb 2002 | B1 |
6435177 | Schmidt et al. | Aug 2002 | B1 |
6450163 | Blacker et al. | Sep 2002 | B1 |
6513519 | Gallem | Feb 2003 | B2 |
6543448 | Smith et al. | Apr 2003 | B1 |
6557549 | Schmidt et al. | May 2003 | B2 |
6578571 | Watt | Jun 2003 | B1 |
6584971 | Denyer et al. | Jul 2003 | B1 |
6595203 | Bird | Jul 2003 | B1 |
6606992 | Schuler et al. | Aug 2003 | B1 |
6612303 | Grychowski et al. | Sep 2003 | B1 |
6644304 | Grychowski et al. | Nov 2003 | B2 |
6679250 | Walker et al. | Jan 2004 | B2 |
6708688 | Rubin et al. | Mar 2004 | B1 |
6748945 | Grychowski et al. | Jun 2004 | B2 |
6823862 | McNaughton | Nov 2004 | B2 |
6848443 | Schmidt et al. | Feb 2005 | B2 |
6857427 | Ziegler et al. | Feb 2005 | B2 |
6904908 | Bruce et al. | Jun 2005 | B2 |
6929003 | Blacker et al. | Aug 2005 | B2 |
6994083 | Foley et al. | Feb 2006 | B2 |
7013896 | Schmidt | Mar 2006 | B2 |
7036505 | Bacon et al. | May 2006 | B2 |
7051731 | Rogerson | May 2006 | B1 |
7080643 | Grychowski et al. | Jul 2006 | B2 |
7131439 | Blacker et al. | Nov 2006 | B2 |
7131440 | Sonntag | Nov 2006 | B2 |
7201165 | Bruce et al. | Apr 2007 | B2 |
7261102 | Barney et al. | Aug 2007 | B2 |
7270123 | Grychowski et al. | Sep 2007 | B2 |
7559322 | Foley et al. | Jul 2009 | B2 |
7568480 | Foley et al. | Aug 2009 | B2 |
7634995 | Grychowski et al. | Dec 2009 | B2 |
20010032643 | Hochrainer et al. | Oct 2001 | A1 |
20020020762 | Selzer et al. | Feb 2002 | A1 |
20020104531 | Malone | Aug 2002 | A1 |
20020157663 | Blacker | Oct 2002 | A1 |
20030005929 | Grychowski et al. | Jan 2003 | A1 |
20030015193 | Grychowski et al. | Jan 2003 | A1 |
20030136399 | Foley et al. | Jul 2003 | A1 |
20030159694 | McNaughton | Aug 2003 | A1 |
20040031485 | Rustad et al. | Feb 2004 | A1 |
20040060556 | Halamish | Apr 2004 | A1 |
20040173209 | Grychowski et al. | Sep 2004 | A1 |
20040231665 | Lieberman et al. | Nov 2004 | A1 |
20050039741 | Gallem et al. | Feb 2005 | A1 |
20050183718 | Wuttke et al. | Aug 2005 | A1 |
20060011196 | Gallem et al. | Jan 2006 | A2 |
20070204864 | Grychowski et al. | Sep 2007 | A1 |
20080083407 | Grychowski et al. | Apr 2008 | A1 |
20080257345 | Snyder et al. | Oct 2008 | A1 |
20090272820 | Foley et al. | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
B-2996989 | Aug 1990 | AU |
8703534 | Aug 1987 | DE |
199 02 847 | May 2000 | DE |
199 53 317 | Feb 2001 | DE |
0 281 650 | Sep 1988 | EP |
0 281 650 | Sep 1988 | EP |
0 414 536 | Feb 1991 | EP |
0 514 085 | Nov 1992 | EP |
0 587 380 | Mar 1993 | EP |
0587380 | Mar 1994 | EP |
0 601 708 | Jun 1994 | EP |
0 641 570 | Mar 1995 | EP |
0 711 609 | Oct 1996 | EP |
0 855 224 | Jul 1998 | EP |
0 938 906 | Sep 1999 | EP |
0 601 708 | Mar 2000 | EP |
1 070 292 | Jul 1954 | FR |
2 763 507 | Nov 1998 | FR |
497530 | Dec 1938 | GB |
675524 | Jul 1952 | GB |
1 598 081 | Sep 1981 | GB |
2 253 200 | Sep 1992 | GB |
2 299 512 | Oct 1996 | GB |
2 310 607 | Sep 1997 | GB |
9009203 | Aug 1990 | WO |
9417753 | Aug 1994 | WO |
9826828 | Jun 1998 | WO |
9841265 | Sep 1998 | WO |
9844974 | Oct 1998 | WO |
9940959 | Aug 1999 | WO |
9953982 | Oct 1999 | WO |
0059565 | Oct 2000 | WO |
0224263 | Mar 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20070107719 A1 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
60277482 | Mar 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11046217 | Jan 2005 | US |
Child | 11542619 | US | |
Parent | 10101554 | Mar 2002 | US |
Child | 11046217 | US |