Nebulizer

Information

  • Patent Grant
  • 9943654
  • Patent Number
    9,943,654
  • Date Filed
    Wednesday, June 1, 2011
    13 years ago
  • Date Issued
    Tuesday, April 17, 2018
    6 years ago
Abstract
A nebulizer (1), in particular inhaler, having a pre-installed container (3) is proposed. The nebulizer comprises a securing member (30) preventing fluidic connection or opening of the container in a delivery state. The securing member can be manually opened, removed, released or destroyed by torsioning, by opening along a pre-determined breaking line and/or by means of an actuator (50). This facilitates handling.
Description
BACKGROUND

The present invention relates to a nebulizer.


The starting point for the present invention is a nebulizer as illustrated in WO 2006/125577 A2. The nebulizer has, as a reservoir for fluid which is to be atomized, an insertable rigid container having an inner bag containing the fluid and a pressure generator with a drive spring for delivering and atomizing the fluid. Preferably, the container is pre-installed in the nebulizer in the delivery state. Before being used for the first time a securing member of the nebulizer has to be opened or removed so that a housing of the nebulizer can be completely closed. Thus, the pre-installed container is opened by a delivery tube piercing a sealing and a septum to fluidically connect to the inner bag of the container. By rotating a lower housing part of the housing of the nebulizer the drive spring can be put under tension and fluid can be sucked into a compression chamber of the pressure generator. Simultaneously, the container is moved into the lower housing part in a stroke movement within the nebulizer and when tensioned for the first time the container may be pierced through its base by a piercing element in the lower housing part to allow venting of the container. After manual operation of a locking element the drive spring is released and the fluid in the pressure chamber is put under pressure by the drive spring and is delivered or atomized through a nozzle into a mouthpiece as an aerosol, without the use of propellant gas.


SUMMARY

Object of the present invention is to provide a nebulizer with optimized or facilitated handling.


According to one aspect of the present invention, the nebulizer comprises a securing member preventing fluidic connection or opening of the container in a delivery state. The container is already disposed in the nebulizer in the deli-very state, i.e. pre-installed. The securing member can be manually opened, removed, released or destroyed to allow fluidic connection or opening of the container, in particular before or for first use of the nebulizer. The securing member comprises an actuator to open, remove, release or destroy the securing member. This allows optimized and/or facilitated handling. In particular, it allows intuitive operation of the nebulizer. For example, a user will intuitively grab, tear, tilt, pull or push the actuator to open, remove, release or destroy the securing member and, then, completely close the nebulizer for using the nebulizer.


According to a further aspect of the present invention, the securing member comprises a pre-determined breaking line along which the securing member can be opened, in particular by pulling the actuator. This allows facilitated and/or optimized handling. In particular, it allows defined opening or removal of the securing member.


According to another aspect of the present invention, the securing member can be opened, released or destroyed by turning a (lower) housing part of the nebulizer relative to the housing or upper housing part of the nebulizer, i.e. by torsioning the securing member or a preferably sleeve-like body thereof. In particular, the securing member or body is opened along a pre-determined breaking line by this torsioning. This facilitates the handling.


According to a further aspect of the present invention, the securing member is made of one piece and/or such that it can be opened, removed, released or destroyed in one piece. This allows an optimized or facilitated handling.


Preferably, the nebulizer comprises a housing part that is connectable to a housing of the nebulizer in a non-detachable manner after inserting or pre-installing the container. According a further aspect of the present invention, the housing part can be pre-mounted in another position, preferably in another rotational position, on the nebulizer or its housing than in the delivery state such that the housing part can be detached for inserting the container. This pre-mounting allows to re-open the nebulizer or its housing for inserting the container. Thus, the container can be inserted or pre-installed after producing the nebulizer. This allows optimized or facilitated handling.


The above aspects of the present invention and other aspects of the present invention as described the following can be realized independently from each other or in any combination.


A basic idea of the present invention is that even in its delivered state the nebulizer has a closed container provided therein and the nebulizer is constructed so that the container is opened inside the nebulizer before or during the first use of the nebulizer. This basic idea is called in the present invention also “pre-installed container”. This makes operation easier as there is no need to open the nebulizer, insert the container and close the nebulizer. Moreover, undesirable soiling or damage to the nebulizer caused by incorrect handling of the end-user when inserting the container can thus be prevented. Accordingly, there is better operational safety as it is impossible for the container to be wrongly inserted or otherwise misused during insertion.


Preferably, the container is not replaceable and in particular cannot be removed. This again leads to easier operation and hence improved operational reliability. This also prevents the nebulizer from being used or re-used in an undesirable or unauthorized manner.


In particular, the nebulizer cannot be opened and a lower housing part cannot be removed in order to replace the empty container with a full one in an undesirable manner.


The combination of the pre-installed container and the construction which makes the container non-replaceable results in particularly easy operation and high operational reliability as the user can only use the nebulizer as a single-use item until the container is empty, and undesirable or unauthorized further use of the nebulizer is prevented by the fact that the container cannot be replaced.


However, correspondingly easy operation and improved operational reliability for the user can also be achieved if the container is pre-installed at the pharmacy, for example, i.e. by trained staff, and optionally opened at the same time provided that the container is made non-exchangeable, in particular the nebulizer cannot be opened by the user (end-user).





DESCRIPTION OF THE DRAWINGS

Further advantages, features, characteristics and aspects of the present invention will become apparent from the claims and the following description of preferred embodiments with reference to the drawings. It shows:



FIG. 1 a schematic section of a known nebulizer in a non-tensioned state;



FIG. 2 a schematic section, rotated through 90° compared with FIG. 1, of the known nebulizer in a tensioned state;



FIG. 3 a schematic section of a nebulizer according to the present invention in a delivery state with a partly closed housing and with a pre-installed, closed container;



FIG. 4 a schematic section of the nebulizer according to FIG. 3 in an activated or tensioned state with the completely closed housing and with the opened container;



FIG. 5 a schematic section of the nebulizer according to FIG. 4 in a non-tensioned state;



FIG. 6 a schematic section of the nebulizer similar to FIG. 5, but in a pre-mounted state without container;



FIG. 7 a schematic explosion-like view of parts of the nebulizer including a securing member;



FIG. 8 A a side view of the nebulizer with another securing member;



FIG. 8B a side view of the nebulizer perpendicular to the view of FIG. 8 A;



FIG. 9A a side view of the nebulizer with another securing member;



FIG. 9B a side view of the nebulizer perpendicular to the view of FIG. 9A;



FIG. 10A a side view of the nebulizer with another securing member;



FIG. 10B a side view of the nebulizer perpendicular to the view of FIG. 10A;



FIG. 11A a side view of the nebulizer with another securing member;



FIG. 11B a side view of the nebulizer perpendicular to the view of FIG. 11 A;



FIG. 12A a side view of the nebulizer with another securing member;



FIG. 12B a side view of the nebulizer perpendicular to the view of FIG. 12A;



FIG. 13 A a side view of the nebulizer with another securing member;



FIG. 13B a side view of the nebulizer perpendicular to the view of FIG. 13 A;



FIG. 14A a side view of the nebulizer with another securing member;



FIG. 14B a side view of the nebulizer perpendicular to the view of FIG. 14A;



FIG. 14C a schematic horizontal section of the securing member of the nebulizer according to FIG. 14A;



FIG. 15 A a side view of the nebulizer with another securing member;



FIG. 15B a side view of the nebulizer perpendicular to the view of FIG. 15 A;



FIG. 16A a side view of the nebulizer with another securing member;



FIG. 16B a side view of the nebulizer perpendicular to the view of FIG. 16A;



FIG. 17A a side view of the nebulizer with another securing member;



FIG. 17B a side view of the nebulizer perpendicular to the view of FIG. 17A;



FIG. 18A a side view of the nebulizer with another securing member;



FIG. 18B a side view of the nebulizer perpendicular to the view of FIG. 18A;



FIG. 19 A a side view of the nebulizer with another securing member;



FIG. 19B a side view of the nebulizer perpendicular to the view of FIG. 19A;



FIG. 20A a side view of the nebulizer with another securing member;



FIG. 20B a side view of the nebulizer perpendicular to the view of FIG. 20A;



FIG. 21A a side view of the nebulizer with another securing member;



FIG. 21B a side view of the nebulizer perpendicular to the view of FIG. 21A;



FIG. 22A a side view of the nebulizer with another securing member;



FIG. 22B a side view of the nebulizer perpendicular to the view of FIG. 22A;



FIG. 23 A a side view of the nebulizer with another securing member;



FIG. 23B a side view of the nebulizer perpendicular to the view of FIG. 23A;



FIG. 24A a side view of the nebulizer with another securing member;



FIG. 24B a side view of the nebulizer perpendicular to the view of FIG. 24A;



FIG. 25 A a side view of the nebulizer with another securing member;



FIG. 25B a side view of the nebulizer perpendicular to the view of FIG. 25A;



FIG. 26A a side view of the nebulizer with another securing member;



FIG. 26B a side view of the nebulizer perpendicular to the view of FIG. 26A;



FIG. 27A a side view of the nebulizer with another securing member;



FIG. 27B a side view of the nebulizer perpendicular to the view of FIG. 27A;



FIG. 28 A a side view of the nebulizer with another securing member;



FIG. 28B a side view of the nebulizer perpendicular to the view of FIG. 28A;



FIG. 29 a schematic section of a nebulizer with a partly closed housing and with a securing means in a housing part holding unmoveably a container in the nebulizer;



FIG. 30 a perspective view of the securing means;



FIG. 31 a side view of the securing means holding the associated container unmoveably; and



FIG. 32 a schematic partial view of a part of the nebulizer with opened securing means so that the container can move.





DETAILED DESCRIPTION

In the Figures, the same reference numerals have been used for identical or similar parts, resulting in corresponding or comparable properties and advantages, even if the associated description is not repeated.



FIGS. 1 and 2 show a known nebulizer 1 for atomizing a fluid 2, particularly a highly effective pharmaceutical composition, medicament or the like, dia-grammatically shown in a non-tensioned state (FIG. 1) and in a tensioned state (FIG. 2). The nebulizer 1 is constructed in particular as a portable inhaler and preferably operates only mechanical and/or without propellant gas.


When the fluid 2, preferably a liquid, more particularly a pharmaceutical composition, is nebulized, an aerosol 14 (FIG. 1) is formed, which can be breathed in or inhaled by a user. Usually the inhaling is done at least once a day, more particularly several times a day, preferably at set intervals, depending on the complain or illness from which the patient is suffering.


The nebulizer 1 is provided with or comprises an insertable container 3 containing the fluid 2. The container 3 thus forms a reservoir for the fluid 2 which is to be nebulized. Preferably, the container 3 contains an amount of fluid 2 or active substance which is sufficient to provide up to 200 dosage units, for example, i.e. to allow up to 200 sprays or applications. A typical container 3, as disclosed in WO 96/0601 1 A1, holds e.g. a volume of about 2 to 10 ml.


The container 3 is substantially cylindrical or cartridge-shaped and once the nebulizer 1 has been opened the container can be inserted therein from below and changed if desired. It is preferably of rigid construction, the fluid 2 in particular being held in a collapsible bag 4 in the container 3.


The nebulizer 1 comprises preferably a pressure generator 5 for conveying and nebulizing the fluid 2, particularly in a preset and optionally adjustable dosage amount. The pressure generator 5 comprises preferably a holder 6 for the container 3, an associated drive spring 7, only partly shown, a releasing element 8 which can be manually operated to release the spring 7, a conveying element, such as a conveying tube 9, a non-return valve 10, a pressure chamber 11 and/or an nozzle 12 for nebulizing the fluid 2 into a mouthpiece 13. The container 3 is fixed or held in the nebulizer 1 via the holder 6 such that the conveying tube 9 penetrates into the container 3. The holder 6 may be constructed so that the container 3 can be exchanged.


As the drive spring 7 is axially tensioned the holder 6 with the container 3 and the conveying tube 9 is moved downwards in the drawings and fluid 2 is sucked out of the container 3 into the pressure chamber 11 of the pressure generator 5 through the non-return valve 10. Then, the nebulizer 1 is in the so called activated or tensioned state.


During the subsequent relaxation after actuation of the releasing element 8 the fluid 2 in the pressure chamber 11 is put under pressure as the conveying tube 9 with its now closed non-return valve 10 is moved back upwards by the relaxation of the drive spring 7 and now acts as a pressing ram or piston. This pressure forces the fluid 2 through the nozzle 12, whereupon it is nebulized into the aerosol 14, as shown in FIG. 1. The preferred droplet size of the particles has already been discussed above in the introductory part.


Generally, the nebulizer 1 operates with a spring pressure of 5 to 200 MPa, preferably 10 to 100 MPa on the fluid 2, with a volume of fluid 2 delivered per stroke of 10 to 50 μcustom character, preferably 10 to 20 μcustom character, most preferably about 15 μcustom character. The fluid 2 is converted into or nebulized as aerosol 14 the droplets of which have an aerodynamic diameter of up to 20 μηι, preferably 3 to 10 μηι. Preferably, the generated jet spray has an angle of 20° to 160°, preferably 80° to 100°. These values also apply to the nebulizer 1 according to the teaching of the present invention as particularly preferred values.


A user (not shown) can inhale the aerosol 14, while an air supply can be sucked into the mouthpiece 13 through at least one air supply opening 15.


Preferably, the nebulizer 1 or drive spring 7 can be manually activated or tensioned. The nebulizer 1 comprises preferably an upper housing part 16 and an inner part 17 which is rotatable relative thereto (FIG. 2) having an upper part 17a and a lower part 17b (FIG. 1), in particular a manually operable (lower) housing part 18 is releasable fixed, particularly fitted onto the inner part 17, preferably by means of a retaining element 19. Preferably, the housing parts 16 and 18 form a housing of the nebulizer 1. In order to insert and/or replace the container 3 the housing part 18 can be detached from the nebulizer 1 or its housing.


The housing part 18 can be rotated relative to the upper housing part 16, carrying with it the part 17b of the inner part 17. As a result the drive spring 7 is tensioned in the axial direction by means of a gear or transmission (not shown) acting on the holder 6. During tensioning the container 3 is moved axially downwards until the container 3 assumes an end position as shown in FIG. 2. In this activated or tensioned state the drive spring 7 is under tension.


During the nebulizing process the container 3 is moved back into its original position (non-tensioned position or state shown in FIG. 1) by the drive spring 7. Thus the container 3 executes a lifting or stroke movement during the tensioning process and during the atomizing process.


The housing part 18 preferably forms a cap-like lower housing part and fits around or over a lower free end portion of the container 3. As the drive spring 7 is tensioned the container 3 moves with its end portion (further) into the housing part 18 or towards the end face thereof, while an aeration means, such as an axially acting spring 20 arranged in the housing part 18, comes in contact with base 21 of the container 3 and pierces the container 3 or a base seal thereon with a piercing element 22 when the container 3 makes contact with it for the first time, to allow air in or aeration.


The nebulizer 1 may comprise a monitoring device 23 which counts the actuations of the nebulizer 1, preferably by detecting the rotation of the inner part 17 relative to the upper part 16 of the housing. Preferably, the monitoring device 23 blocks the actuation or use of the nebulizer 1, e.g. blocks the actuation of a releasing element 8, when a certain number of actuations or discharged doses has been reached or exceeded.


A preferred construction and mode of operation of a proposed inhaler or nebulizer 1 will now be described in more detail with reference to FIGS. 3 to 5, but emphasizing only essential differences from the nebulizer 1 according to FIGS. 1 and 2. The remarks relating to FIGS. 1 and 2 thus apply preferably accordingly or in a similar manner, while any desired combinations of features of the nebulizer 1 according to FIGS. 1 and 2 and the nebulizer 1 described below are possible.


Preferably, the container 3 is pre-installed. This can be realized in particular as shown in WO 2006/125577 A2 or as described in the following.



FIGS. 3 to 5 shows, in schematic sectional views, a nebulizer 1 according to a preferred embodiment of the present invention. FIG. 3 shows the nebulizer 1 in a delivery state, i.e. with pre-installed container 3 which is still closed. In this state, the housing of the nebulizer 1 is not completely closed, in particular the housing part 18 is not completely pushed on the inner part 17. FIGS. 4 and 5 show the nebulizer 1 in an activated state with the housing completely closed and with the container 3 opened. In FIG. 4, the nebulizer 1 or drive spring 7 is tensioned, i. e. the container 3 is in its lower position. FIG. 5 shows the nebulizer 1 in a non-tensioned state, e.g. after the delivery or discharge of one dose of the fluid 2, the container 3 is in its upper position.


The container 3 is already mounted or pre-installed in the nebulizer 1 in the delivery state, as shown in FIG. 3. In this state, the container 3 is still closed, i.e. there is no fluidic connection between the container 3 or its bag 4 on one hand and the nebulizer 1 or its pressure generator 5 or the conveying element on the other hand.


The container 3 comprises a fluid outlet 24 for outputting the fluid 2 to be dispensed. In particular, the fluid outlet 24 allows a fluidic connection between the container 3 or its bag 4 on one hand and the nebulizer 1, its pressure generator 5 or the conveying element on the other hand.


In the non-installed state of the container 3, i.e. before mounting or pre-installation of the container 3 in the nebulizer 1, the fluid outlet 24 is closed by a first or inner closure 25 and optionally by a second or outer closure 26. In particular, the second closure 26 covers the first closure 25.


The first or inner closure 25 is preferably formed by a septum, a membrane, a plastic seal or the like and/or is provided inside the container 3.


In the preferred embodiment, the second closure 26 is preferably formed by a seal, a foil, a cap or the like, in particular by a metallic and/or composite foil or the like, which is preferably hot-sealed or attached in any other suitable manner on or to a head end or axial end of the container 3. In the shown embodiment, the second closure 26 is formed preferably by a hot-sealed foil with an aluminum layer.


Preferably, the closures 25 and 26 are designed such that separate opening is possible, in particular such that the second closure 26 can be opened indepen-dently from the first closure 25 and/or has to be opened before the first closure 25.


Preferably, the closures 25 and 26 are designed such that successive opening is possible by means of one common element, in particular the conveying element or conveying tube 9 or the like, and/or by piercing.


In the preferred embodiment, the first closure 25 and second closure 26 are arranged one after the other and/or spaced in axial direction or direction of the stroke movement of the container 3 or with respect to the main outlet direction of the fluid 2.


Preferably, the first or inner closure 25 is formed or supported by a closure part 27 extending from the outlet or head end of the container 3 into the container 3 or bag 4. The second or outer closure 26 is preferably located adjacent to the head or axial end of the container 3 and/or held or connected to a flange 28, which can be formed by the closure part 27 or any other suitable part. However, other constructional solutions are possible.


In the delivery state according to FIG. 3, the container 3 has been pre-installed, i.e. inserted into the nebulizer 1. However, the container 3 or its fluid outlet 24 is not yet opened. In particular, the second closure 26 is already opened, but not the first closure 25. This is achieved in particular in that the housing of the nebulizer 1 is closed only partly, i.e. not completely, in the delivery state, preferably by not completely closing or pushing on the housing part 18 in the shown embodiment. Preferably, the housing part 18 is snapped on or inserted only partly in the delivery state.


Generally, the container 3, fluid outlet 24 or closures 25 or 26 are opened in particular by means of a conveying element, such as the conveying tube 9, or the like and/or by piercing or in any other suitable manner. In particular, the opening is achieved by moving the container 3 relative to the nebulizer 1 or conveying element or tube 9 or the like and/or by movement in longitudinal or axial direction.


According to the present invention, the second closure 26 is already opened in the delivery state, preferably automatically by the nebulizer 1. In particular, the second closure 26 is opened during or by or when inserting the container 3 and/or during, by or when—preferably partly—closing the housing or housing part 18 of the nebulizer 1. Preferably, the first closure 25 is designed such that, when the conveying element pierces or opens the first closure 25, such as a septum, any material may not fall into the fluid 2, but will stay connected to the closure part 27 or the like and/or will be pivoted aside.


In particular, the container 3 is attached to or held by or secured in the housing part 18, in particular by a transportation lock 29, which is preferably arranged within or at the housing part 18. The transportation lock 29 holds the container 3 preferably temporarily, in particular before attaching the housing part 18 to the nebulizer 1 and/or in the delivery state. In particular, the transportation lock 29 holds the container fixed during the fluidic connection of container 3 and/or during the mechanic of container 3, here with holder 6.


Preferably, the second closure 26 is automatically opened, in particular pierced, when pre-installing the container 3 and/or attaching the housing part 18 to the nebulizer 1, in particular when snapping or pushing the housing part 18 partly on the nebulizer 1. Then, the opening or piercing is effected in the preferred embodiment by the conveying element or conveying tube 9 which extends in the delivery state through the second closure 26 and in particular into the closure part 27, i.e. partly into the container 3. Thus, a very compact arrangement and a small size or axial extension of the nebulizer 1 can be achieved in the delivery state. In particular, the housing part 18 can be snapped or pushed on or inserted into the nebulizer 1 or its housing in the delivery state significantly further than in case of the prior art.


In the delivery state, the first closure 25 and, thus the container 3 and the fluid outlet 24 remain closed.


In the delivery state, the nebulizer 1 or the housing part 18 is preferably secured, in particular by means of a securing means or member 30, such that the container 3 and/or housing part 18 are held sufficiently spaced from the nebulizer 1 or upper housing part 16 and/or prevented from being completely inserted or pushed on the conveying element or tube 9, the housing or inner housing part 17 or the like and/or such that (complete) opening of the container 3, namely of the first closure 25, is prevented.


In the shown embodiment, the securing means or member 30 is preferably mounted between the housing part 18 and the upper housing part 16 and preferably engages with or between the housing parts 16 and 18, so that the housing part or lower part 18 is axially secured or is kept or held sufficiently away or spaced from the upper housing part 16 to be able to hold the (still) closed container 3 or first closure 25 away from the conveying tube 9.


In the preferred embodiment, the securing member 30 is at least substantially hollow and/or cylindrical and is disposed axially between the (lower) housing part 18 and the upper housing part 16. To activate the nebulizer 1 or prepare its for use, i.e. to push the housing part 18 fully on in the axial direction and thereby open the container 3, the securing member 30 first has to be removed or released or opened.


In the shown preferred embodiment, the securing member 30 is constructed in the manner of a banderole or the like, made of plastics, for example, and/or can be manually opened, removed or destroyed. The securing member 30 may alternatively or simultaneously form or constitute a seal of origin. However, other embodiments of the securing member 30 are also possible, e.g. in the form of a security tag or the like.


The securing member 30 can be made of any suitable material, in particular of plastics, any composite or the like. Further, the securing member 30 can be made of paper, in particular like a paper sleeve as shown in FIG. 6. Alternatively or additionally, the securing member 31 can be formed by a label, tap, tag or tape and/or be self-adhesive. In this case, also a sleeve can be formed as shown in FIG. 3.


Further, examples will be explained later.


Preferably, the container 3 and/or housing part 18 are held positively or in a form-fit or interlocking manner in the delivery state. This is achieved in the preferred embodiment in particular by means of the transportation lock 29 acting between the container 3 and the housing part 18, and the securing means or member 30 acting between the housing part 18 and the housing of the nebulizer 1 or the upper housing part 16 or the like. However, the transportation lock 29 or securing means or member 30 could also act directly between the container 3 on one hand and the nebulizer 1, its housing, the upper housing part 16, the inner housing part 17 or the holder 6 on the other hand.


The pre-installed container 3, i.e. its first closure 25, is still closed in the delivery state, i.e. non-activated state with pre-installed container 3. In this non-activated position, the housing part 18 is preferably secured so that it cannot be lost and, in particular, cannot be released. Then, the housing part or lower part 18 of the nebulizer 1 can no longer be detached from the nebulizer 1 after it has been (partially) axially pushed on for the first time, i.e. the nebulizer 1 cannot be opened any longer, with the result that that the container 3 cannot be changed, i.e. cannot be removed again.


In order to secure the housing part 18, it is preferably held or latched positively or in an interlocking or form-fit manner. Preferably, the housing part 18 is secured by latching means 43 particularly comprising at least one latching lug 31, protrusion, nose or the like which engages in an associated latching recess 32 in the housing part 18 or the like and, thereby, secures the housing part 18 against axial removal by interlocking engagement. In the present embodiment, the latching lug 31 may be formed by or at a latching arm 33 which can preferably flex. Thus, a ratchet-like—or vice versa—latching means 43 for securing the housing part 18 to the nebulizer 1 or to its housing or the upper housing part 16 is formed. However, other constructional solutions are also possible.


Once the securing member 30 has been removed a user (not shown) can push the housing part 18 fully on in the axial direction and thereby open the container 3, i.e. first closure 25, by inserting the conveying element or conveying tube 9. FIGS. 4 and 5 show this activated state with the housing part 18 pushed fully on and/or the container 3 open (fluidically connected to the nebulizer 1 or its pressure generator 5 or the conveying element or tube 9). In this pushed on or activated state, the housing part 18 is preferably secured or axially fixed again by interlocking engagement, i.e. form-fit manner in axial direction, particularly by further engagement of the latching means 43 or by means of some other mechanical securing device.



FIG. 4 shows the nebulizer 1 or container 3 in the activated state, the container 3, i.e. first closure 25, is open, i.e. the container 3 or its fluid 2 is fluidically connected to the nebulizer 1 or its pressure generator 5, and the housing part 18 has been pushed fully on in the axial direction. In order to bring the holder 6 into (complete) engagement with the container 3 at the head end and then be able to move the container 3 back and/or forth for the suction/tensioning and pressing strokes, it may be necessary to tension the nebulizer 1 or it drive spring 7 for the first time. During this tensioning process the holder 6 is moved together with the conveying tube 9 axially towards or into the housing part 18, thus bringing the holder 6 into (complete) engagement with the container 3 and preferably also moving or pressing the container 3 against the piercing element 22 in the region of the base of the housing part 18 and thereby piercing or opening a vent opening 34 in the container base 21. FIG. 4 shows the nebulizer 1 in this tensioned and activated state. The holder 6 is engaged with the container 3 and the conveying tube 9 has been fully inserted into the container 3.



FIG. 5 shows the nebulizer 1 in the relaxed, non-tensioned state, i.e. after ato-mization or discharge of a dose of the fluid 2. The holder 6 and the container 3 are in the upper position. The holder 6 is still engaged with the container 3 and remains engaged during the further uses of the nebulizer 1. Further, the container 3 is still open and fluidically connected, i.e. the nebulizer 1 remains activated.


In the delivery state shown in FIG. 3, i.e. with the container 3, namely the first closure 25, (still) closed, the nebulizer 1 can be shipped or delivered to the user. Then, the user can store the nebulizer 1 with the pre-installed container 3. The container 3 will be opened later before or during the first use of the nebulizer 1, namely when removing the securing member 30 and completely closing the nebulizer 1 or housing or housing part 18.


It should be noted that the opening of the container 3 is preferably carried out exclusively by mechanical means and/or manual actuation. However, it is additionally or alternatively possible to open it in other ways, e.g. by chemical, electrical, magnetic, pneumatic, hydraulic or similar means.


The proposed nebulizer 1 is activated after the removal of the securing member 30 and (total) axial pushing on of the housing part 18 and can be used in the same way as the nebulizer 1 shown in FIGS. 1 and 2. The pre-installation of the container 3 prevents the wrong container 3 or used containers 3 from being inserted in the nebulizer 1 by the user. Additionally it ensures that a separately supplied container 3 is not accidentally opened before being inserted in the nebulizer 1. Additionally the proposed solution prevents possible soiling or damage to the nebulizer 1, e.g. the conveying tube 9 or the like, when the nebulizer 1 is opened and the container 3 is used improperly.


As preferably the container 3 cannot then be removed, especially because the nebulizer 1 cannot be opened and the housing part 18 cannot be removed again, undesirable replacement of the container 3 by the user and in particular undesirable interim or subsequent opening of the nebulizer 1 by the user can be prevented.


To prevent unwanted opening of the container 3, particularly of the first closure 25, in the delivery state of the nebulizer 1, preferably the transportation lock 29 is provided. By frictional, forcible or interlocking engagement, for example, the transportation lock 29 prevents the container 3 from undesirably moving axially in the nebulizer 1, e.g. during transportation, in the event of accidental dropping of the nebulizer 1 or the like.


In the following, a preferred realization of the transportation lock 29 will be explained. It has to be noted that the transportation lock 29 can be realized independently from the preferred partial opening or piercing of the container 3 in the delivery state, in particular namely opening of the second closure 26. In particular, the proposed function and construction of the transportation lock 29 can be realized independently from the features of the present claims.


In the preferred embodiment, the transportation lock 29 comprises at least one gripping arm 35, preferably a plurality of gripping arms 35, for axially holding the container 3 in the delivery state, in particular by (radially) engaging around its preferably radially expanded base 21 or edge 36, as shown in FIG. 3.


The gripping arms 35 are preferably held or formed by or attached to or molded unitary with a member 37 which may form the bottom or base or end face of the housing part 18. Preferably, the member 37 or bottom holds the gripping arms 35 such that the arms 35 can flex or pivot.


Preferably, the piercing element 22 is also formed by or held by the member 37.


It has to be noted that the member 37 and/or the transportation lock 29 may be inserted into the housing part 18. The transportation lock 29 or part thereof can also be formed by or in the housing part 18.


Preferably, the transportation lock 29 is formed by multiple or only two different parts, here the gripping arm(s) 35 and a control member 39 as explained later.


The transportation lock 29, in particular, the gripping arms 35, are holding the container 3 in the delivery state (closed transportation lock 29) preferably such that the container base 21 or vent opening 34 are axially spaced from the piercing element 22, as shown in FIG. 3.


To open the transportation lock 29, the gripping arms 35 may be flexed radially outwardly. Preferably, the opening of the transportation lock 29 or the flexing of the gripping arms 35 occurs automatically when closing the nebulizer 1 or its housing completely, i.e. when snapping or pushing on the housing part 18 completely towards the upper housing part 16. During this (axial or telescopic) closing movement, the transportation lock 29 is opened and the container 3 released in axial direction preferably only in a last part of the movement and/or just little before the final completely closed position is reached or just when the final completely closed position is reached.


The closing movement of the nebulizer 1 opens the transportation lock 29 preferably automatically. In particular, the transportation lock 29 is opened by the direct or indirect interaction with or actuation by the housing of the nebulizer 1, the inner part 17 or its lower part 17b, a holding ring 38 bearing the spring 7 or the like. Preferably, the container 3 and/or first closure 25 are opened as well as the transportation lock 29 by means of a common actuation, here the closing movement of the nebulizer 1 or its housing or bottom part 18.


In the preferred embodiment, the transportation lock 29 comprises a control member 39, in particular a ring or the like, for actuating or opening or engaging with or pivoting preferably all gripping arms 35 simultaneously. In particular, the control member 39 or transportation lock 29 may convert a linear or axial movement into a pivot or radial movement of the gripping arms 35.


The control member 39 is shown in an upper position in FIG. 3 when the transportation lock 29 is closed. In this position, the control member 39 may secure the gripping arms 35 in the closed positions, in particular in a form-fit manner, e.g. by radially outwardly abutting portions (not shown) of the control member 39 or the like.


The control member 39 is axially moveable or shiftable in order to open the transportation lock 29. In particular, the control member 39 may be moved downwardly when completely closing the nebulizer 1 or its housing or completely pushing or snapping on the housing part 18. Preferably, the inner part 17 or ring 38 pushes the control member 39 downwardly or relatively to the gripping arms 35 so that the gripping arms 35 are released and, in particular, actively or positively opened or pivoted or flexed to open the transportation lock 29 and/or to release the container 3. In the shown embodiment, the control member 39 interacts with its axial end or an axial color or annular ring portion 40 with actuating portions 41 of the gripping arms 35 such that axially downward movement of the actuating portions 41 results in pivotation of the gripping arms 35 and radially outward flexing of the gripping arms 35. The flex characteristics of the gripping arms 35 depend on the used material, on the connection with member 37 and the like.


The control member 39 preferably opens the transportation lock 29 or gripping arms 35 positively.



FIGS. 4 and 5 show the transportation lock 29 and the gripping arms 35 in the open position, i.e. wherein the container 3 is free to move axially. In particular, control member 39 is shown in its downward end position. In this position, the control member 39 is preferably locked or secured within the bottom part 18, in particular by force-fit or form-fit or by a snap-connection, so that the transportation lock 29 and the gripping arms 35 are held open permanent-ly-


However, other constructional solutions of the transportation lock 29 are possible. In this regard, reference is made in particular to WO 2006/125577 A2 which shows some other constructional solutions, which can be realized as well.


Preferably, in the non-activated state, i.e. when the housing part 18 has not been pushed on fully, the nebulizer 1 may be locked to prevent tensioning of the pressure generator 5, i.e. in particular to prevent rotation of the inner part 17 relative to the upper housing part 16. This may be important when the nebulizer 1 is supplied in the delivery state with the pressure generator 5 not under tension. Accordingly, the inhaler 1 may have a barrier, so that the inner part 17 can only be rotated relative to the upper housing part 16 when the housing part 18 has been pushed fully on.


Alternatively or additionally, the securing member 30 may block not only pushing on of the bottom part 18 in the delivery state, but also any rotation of the inner part 17 until the securing member 30 has been opened, released or removed.



FIGS. 3 to 5 show the nebulizer 1 with a mouthpiece cover 42 covering the mouthpiece 13.


Generally, it should be pointed out that in the proposed nebulizer 1 the container 3 can preferably be inserted, i.e. incorporated in the nebulizer 1. Consequently, the container 3 is preferably a separate component. However, the container 3 may theoretically be formed directly by the nebulizer 1 or part of the nebulizer 1 or may otherwise be integrated in the nebulizer 1.


In the shown embodiment, the latching means 43 comprises multiple, here two latching lugs 31 engaging into associated latching recesses 32.


The latching arms 33 and/or latching lugs 31 are preferably formed at or by the inner part 17, in particular the lower part 17b. The latching recesses 32 are preferably formed at or by the housing part 18 which can be closed to cover the inserted container 3. However, the construction could also be vice versa or realized in any other suitable manner.


In the shown embodiment, the latching means 43 or housing part 18 comprises a first undercut or shoulder 44 associated to the respective latching recess 32 so that the engaging or abutting latching lug 31 holds the housing part 18 in a non-detachable or inseparable manner in the delivery state as shown in FIG. 3. This forms a first form-fit engagement or holding.


The latching means 43 forms or enables preferably a second form-fit engagement or holding of the housing part 18 in the activated state. This is realized in the shown embodiment in that the latching lugs 31 engage into further latching recesses 45 and/or behind second undercuts or shoulders 46 as shown in FIGS. 4 and 5. The second engagement of the latching means 43 is achieved preferably by completely closing the housing or housing part 18 of the nebulizer 1.


It has to be noted that the latching means 43 can be realized e.g. with only one latching lug 31, protrusion, nose, locking element or the like if desired. In this case, the above description applies preferably as well or in a similar manner.


According to a preferred aspect, the housing part 18 may be pre-mounted to the nebulizer 1, its housing or to the inner part 17 without container 3 so that the nebulizer 1, its housing or the housing part 18 can be opened again, i.e. so that the latching means 43 does not prevent opening, for later inserting or pre-installing the container 3, in particular at another factory or at a pharmacy or the like. This pre-mounting of the housing part 18 is preferably achieved in that the housing part 18 is mounted in another position, preferably another ro-tational position, on the nebulizer 1, in particular the inner part 17 of lower part 17b.



FIG. 6 shows in a schematic sectional view the nebulizer 1 with the pre-mounted housing part 18. Due to the other (rotational) position of the housing part 18 relative to the inner part 17, each latching lug 31 engages into a different or additional recess, groove 47 or the like. In the shown embodiment, the grooves 47 are formed in the housing part 18. The grooves 47 are axially open so that the associated latching lugs 31 may be axially drawn out of the grooves 47. Thus, the latching means 43 do not provide any latching or form-fit holding or the like in the pre-mounted state of the housing part 18. Nevertheless, the preferably radially flexible and/or biased latching lugs 31 or the latching means 43 may hold the housing part 18 by friction or force-fit so that unintentionally losing of the housing part 18 can be prevented.



FIG. 7 shows the nebulizer 1 in a schematic, explosion-like view. The following parts are separated in this view: the mouthpiece cover 42, the housing comprising upper housing part 16 and inner part 17, the securing member 30, the control member 39, the housing part 18, the container 3, and the base member 37 of the housing part 18.



FIG. 7 shows that the at least one latching lug 31 and its associated latching arm 33 may be formed for example in a through hole 48 of the inner part 17/lower part 17b. This through hole 48, in particular multiple through holes 48, may be used for engagement of holding portions of the ring 38.


The housing part 18 and the housing or inner part 17/17b of the nebulizer 1 are adapted to each other such that the housing part 18 can be pushed onto the part 17/17b in two different rotational positions, in the present embodiment in two positions offset by 180°. For this purpose, the housing part 18 may have at least one indention 48 or any other deformation or non-circular inner cross-section, in the shown embodiment it has two indentions 49 on opposite sites, corresponding or cooperating with a respective complementary form, in the shown embodiment with the monitoring device 23 of the inner part 17/lower part 17b. However, other constructional solutions are possible.


The at least one latching lug 31 on one hand and the at least one latching recess 32 and the at least one groove 47 on the other hand are distributed over the circumference such that the at least one latching lug 31 engages only into the respective groove 47 in the pre-mounted state of the housing part 18 and into the respective latching recess 32/45 in the other/rotational state (delivery state or activate state), i.e. in the usual mounting position, of the housing part 18. Preferably, the two latching lugs 31 are not positioned directly opposite to each other on the circumference of part 17/17b, but offset. Accordingly, the schematic sections according to FIGS. 3 to 6 are not in one flat plane, but along a plane folded along the longitudinal or rotational axis or the conveying tube 9.


For assembly and pre-installing the container 3, the securing member 30 is mounted onto inner part 17/lower part 17b and, the housing part 18 including the pre-installed container 3 (the container 3 is held within the housing part 18 by the closed transportation lock 29) is pushed onto inner part 17/lower part 17b, in particular until the securing member 30 is reached and/or the first engagement of the latching means 43 is reached. Thus, the housing part 18 is connected to the nebulizer 1 or its housing or to the inner part 17 or housing part 16 in a non-detachable manner. With other words, the nebulizer 1 can not be opened any more, the container 3 can not be removed or replaced any more.


The securing member 30 can be manually opened, removed, released or destroyed to allow complete closing of the housing or nebulizer 1, i.e. to push the housing part 18 completely on the inner part 17, to reach the activated state, i.e. to allow fluidic connection or opening of the container 3.


Preferably, the securing member 30 comprises an actuator 50 to open, remove, release or destroy the securing member 30. The actuator 50 is preferably non-detachable from the securing member 30. Preferably, the securing member 30 is made as one piece, in particular integrally with the actuator 50.


Preferably, the securing member 30 is made of plastics. However, the securing member 30 can be made of any other suitable material or from different materials. In particular, the securing member 30 is molded.


The securing member 30 comprises preferably a body 51. The securing member 30 or body 51 is preferably hollow and/or preferably forms a sleeve, ring, loop, banderole, or the like. In particular, it forms a closed sleeve or ring.


In the shown embodiment, the actuator 50 may form part of the circumferential wall, ring or sleeve formed by the body 51.


The actuator 50 is preferably inseparable from the securing member 30 or body 51 even if the securing member 30 is opened, removed, released or destroyed to allow fluidic connection opening of the container 3 and/or to allow entering of the activated state.


The securing member 30 or body 51 preferably comprises engagement means, such as at least one stop 52, protruding radially inwardly and/or engaging between the housing part 18 on one hand and the nebulizer 1, its housing, the upper housing part 16 or the ring 38 on the other hand, in particular to form an axial stop or abutment for the housing part 18 in the delivery state against movement into the activated state. In the present embodiment, the engagement means are preferably formed by ribs or protrusions extending in particular axially and protruding radially inwardly. Preferably, the engagement means are and/or covered and/or formed by the body 51. However, other constructional solutions are possible as well.


In the following, the term “to open the securing member” or similar formulations shall include that the securing member 30 is removed, release, destroyed or the like.


To open the securing member 30, a user (not shown) pulls, tears, pivots, tilts, pushes, presses and/or removes the actuator 50. For this purpose, the actuator 50 may form or may be formed by a handhold 53, grip, lever, tag, flap, ring, clip or the like as shown in some examples in the further figures.


The securing member 30 or body 51 comprises preferably at least one predetermined breaking line 54 in order to facilitate opening and/or to ensure a defined opening. For example, the breaking line 54 may extend along and/or adjacent to the actuator 50 and/or on both or opposite sides of the actuator 50.


The breaking line 54 can be defined or pre-formed in particular by respective thinning of the material, a respective perforation or the like, in particular of the body 51.


In the shown embodiment, the breaking line 54 extends at least essentially in axial direction (the term “axial direction” means generally at least essentially parallel to the longitudinal or central axis or rotational axis of the nebulizer 1 and/or to the main dispensing direction of the aerosol 14/nebulizer 1).


Preferably, the securing member 30 locks the housing part 18 against rotation. This can be achieved in that the securing member 30 engages with the nebulizer 1 or upper housing part 16 and with the lower housing part 18 respectively in a form-fit manner, e.g. by axial engagement and/or by at least partially covering the preferably non-circular outer contour of the respective parts 16/18. However, other constructional solutions are possible as well.


After pulling the actuator 50, the securing member 30 or body 51 is open, preferably along at least one breaking line 54, so that the closed ring, sleeve or banderole of the securing member 30/body 51 is open and can be detached from the nebulizer 1 in particular by respective moving or flexing the free ends of the body 51 away from each other. Thus, the securing member 30 can be detached from the nebulizer 1. This allows to push the housing part 18 onto the inner part 17, i.e. towards the upper housing part 16, so that the container 3 is fluidically opened or connected and the housing of the nebulizer 1 is completely closed.


It has to be noted that the securing means 30 or the body 51 is preferably sufficiently flexible such when the actuator 50 has been pulled and the securing means 30 has been opened, the body 51 can be detached from the nebulizer 1.


In the present embodiment, the actuator 50 is directed to or points towards the housing part 18 and/or away from the mouthpiece 13 and/or essentially in axial direction.


In the following, further embodiments of the securing member 30 are explained with reference to the further figures, wherein only major differences are discussed or emphasized. The previous explanations and description of the previous embodiment and of the further embodiments apply preferably in addition or in a similar manner, even if not repeated.



FIG. 8A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 8B shows it in a view of a transversal side (side face). In this embodiment, the actuator 50 extends upwards so that the handhold 53 extends at least in front of the mouthpiece cover 42 covering the releasing element 8. Preferably, the actuator 50 or its handhold 53 engages with the mouthpiece cover 42 or covers the mouthpiece cover 42 partially or engages therewith such that the actuator 50/handhold 53 has to be pulled (as schematically indicated in FIG. 8b by an arrow) before the mouthpiece cover 42 can be opened. This facilitates an intuitive handling of the nebulizer 1.


The actuator 50 extends essentially in axial direction and/or towards the dispensing and/or mouthpiece 13 of the nebulizer 1.


The securing means 30 comprises in this embodiment preferably only one breaking line 54.


The breaking line 54 is essentially continuously curved and, for example, at least from an essentially axial extension at the upper circumference of the body 51 to an at least essentially circumferential direction at the lower circumference of the body 51.


The actuator 50 comprises preferably a portion 55 connecting the handhold 53, grip, lever, tag, flap, ring, clip or the like with the body 51. This portion 55 is preferably stem-like and/or flexible.



FIG. 9A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 9B shows it in a view of a transversal side (side face). This embodiment differs from the embodiment according to FIG. 8 essentially in that the actuator 50 or its handhold 53 extends below the part of the mouth-piece cover 42 which covers the releasing element 8. Thus, the mouthpiece cover 42 has to be opened first before the actuator 50 or its handhold 53 can be actuated, in particular grabbed or pulled. This allows also an intuitive handling. Namely, the actuator 50 or its handhold 53 is located at least partially above or on the releasing element 8 so that the user will usually actuate the actuator 50 before pressing the releasing element 8.


In this embodiment, the breaking line 54 extends more or less helically around the body 51.



FIG. 10A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 10B shows it in a view of a transversal side (side face). In this embodiment, the actuator 50 is located on another side than the releasing element 8 (which is not visible because it is covered by the mouthpiece cover 42). In particular, the actuator 50 or its handhold 53 is located on a transversal side or side face relative to the side (front face) with the operating button, i.e. releasing element 8, of the nebulizer 1.


In this embodiment, the breaking line 54 runs at least essentially in axial direction.



FIG. 11A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 11B shows it in a view of a transversal side (side face). This embodiment is very similar to the embodiment according to FIG. 9. Here, the nebulizer 1 is shown with open mouthpiece cover 42. Further, the handhold 53 is formed slightly differently. A half-circular form is closed by a substantial horizontal connection. In the embodiment according FIG. 9, the handhold 53 has an essentially half-circular or U-form, but does not form a closed loop or ring-like structure as shown in the embodiments according to FIGS. 8 and 11.



FIG. 12A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 12B shows it in a view of a transversal side (side face). In this embodiment, the actuator 50 is located at a side face of the nebulizer 1, similar to the embodiment according to FIG. 10. Further, the actuator 50 or its portion 55 is curved and extends more or less from the front face with the releasing element 8 (shown in FIG. 12A) to the side face (shown in FIG. 12B).


In this embodiment, the actuator 50 is at essentially strip-like and/or broadens towards its free end.


Further, the actuator 50 continues essentially the curvature of the breaking line 54. The actuator 50 or its portion 55 and the breaking line 54 extend essentially along a half circle.


The opening of the securing member 30 or actuator 50 is schematically indicated by the arrow shown in FIG. 12B.



FIG. 13A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 13B shows it in a view of a transversal side (side face). This embodiment is similar to the embodiment according to FIG. 12. In the present embodiment, the actuator 50 is differently curved and is at least essentially tapered or narrowed to its free end. Here, the actuator 50 or its portion and the breaking line 54 form a soft curve or part of a helical line.



FIG. 14A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 14B shows it in a view of a transversal side (side face). FIG. 14C shows a horizontal section of the securing member 30 without the nebulizer 1. In this embodiment, the actuator 50 is connected via a living hinge 56 (shown in FIGS. 14A and 14B at the lower end of the body 51) and is tilted upwards so that it passes or extends within the body 51 and extends towards the mouthpiece 13 and/or in axial direction. The actuator 50 is located at the side face of the nebulizer 1. To open the securing member 30, the actuator 50 is tilted or pivoted radially outwardly around the living hinge 56 wherein the portion 55 opens the body 51. For this purpose, the actuator 50 or portion 55 preferably forms a rib or cutting edge 57 as schematically shown in the section according to FIG. 14B.


The body 51 is formed preferably in one piece. The body 51 can comprise or form two parts or halves 51a and 51b which can be connected via a pivotal joint or hinge 51c, such as a living hinge. In this case, the parts or halves 51a and 51b may be relatively stiff or rigid. To open the body 51, the two parts or halves 51a and 51b are pivoted away from each other around the hinge 51c. This is possible after actuating the actuator 50, in particular after opening or breaking the body 51 along the breaking line 54.


It has to be noted that the concept of two parts or halves 51a and 51b connected by a pivotal connection or hinge 51c can be used in any other embodiment as well. Further, the two parts or halves 51a and 51b may be formed as separate parts and connected via any other type of joint or hinge 51c.


It has to be noted that the body 51 forms or comprises preferably an at least essentially closed and/or smooth surface over the circumference. However, other designs and constructions are possible as well.



FIG. 15 A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 15B shows it in a view of a transversal side (side face). Here, the actuator 50 has to be actuated more or less in a tangential direction perpendicular to the axial direction. In the previous embodiments, the actuator 50 has to be actuated at least essentially radially outwardly, in particular by radial pulling, which can be combined with a downward movement or downward pivotation and/or with a circumferential movement.


In the present embodiment, the actuator 50 acts as a lever which is supported on one circumferential side in the upper region of the body 51 by a first connection or bearing 58 and on the other circumferential side in a lower region of the body 51 by a second connection or bearing 59. The connections or bearings 58, 59 are axially offset. When the actuator 50 is operated or tilted, the adjacent parts of the body 51 are moved away from each other. Thus, the diameter of the body 51 is increased and the securing member 30 can be disengaged and moved over the housing part 18 in order to detach the securing member 30 from the nebulizer 1.



FIG. 16A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 16B shows it in a view of a transversal side (side face). In this embodiment, the actuator 50 is formed by the body 51 or part of the body 51. In particular, the actuator 50 does not comprise a handhold 53 or the like and/or a portion 55 extending or protruding from the body 51. The handhold 53 is preferably formed by a portion of the body 51 forming a flap or end-part, preferably adjacent to the breaking line 54. This end portion can be grabbed manually to open the securing member 30 or its body 51. Alternatively and preferably the securing member 30 or its body 51 is opened—in particularly along the breaking line 54—by turning the housing part 18 relative to the nebulizer 1/upper housing part 16. In this case, the securing member 30 or its body 51 is opened by torsioning. In order to allow turning of the housing part 18, it may be necessary to allow that inner part 17 can be turned relative to the nebulizer 1 or upper housing part 16. However, the nebulizer 1 could be respectively adapted also in a different manner. The turning of the housing part 18 to open the securing member 30 or body 51 is schematically indicated in FIG. 16 by arrows.


The breaking line 54 extends preferably at least essentially along a helical line of the body 51. However, the breaking line 54 can follow other courses or paths.



FIG. 17A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 17B shows it in a view of a transversal side (side face). In this embodiment, the actuator 50 is formed by or integrated into the body 51 similar as in the embodiment according to FIG. 16. In particular, the actuator 50 does not comprise a handhold 53 and/or portion 55 extending or protruding from the body 51, in particular in axial direction. In the present embodiment, the actuator 50 extends at least essentially in circumferential direction and/or around or along the body 51. Preferably, the actuator 50 or its handhold 53 forms, comprises or is formed by a flap, a hanger, a clip, a strap or an ear as schematically shown in FIG. 17.


In the present embodiment, the actuator 50 or its handhold 53 is pulled at least essentially in circumferential or tangential direction and/or around the body 51 to open the securing member 30.


The securing member 30 comprises one or two breaking lines 54 extending at least essentially along a circumference of the body 51 with axially curved or ends or start portions 54A.



FIG. 18 A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 18B shows it in a view of a transversal side (side face). In this embodiment, the securing member 30 or body 51 does not comprise or form an initially closed loop, banderole, ring or sleeve (between the housing parts 16 and 18) as in the previous embodiments. Instead, the body 51 is closed by means of connecting means 60, such as a rivet or pin connection as indicated in FIG. 18. In particular, the connecting means 60 connects overlapping part or ends of the body 51 and/or provides a releasable connection to allow opening of the body 51 and detachment of the securing member 30.


The actuator 50 is located at the side face of the nebulizer 1. The handhold 53 is ring-like preferably similar to the one shown in the embodiment according to FIG. 14. To open the securing member 30 or body 51, the actuator 50 or its handhold 53 has to be pulled radially outwards, downwards and/or sidewards as schematically indicated by an arrow in FIG. 18B. Thus, the connecting means 60 is opened or released.



FIG. 19A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 19B shows it in a view of a transversal side (side face). The securing member 30 or body 51 comprises connecting means 60 similar to the embodiment according to FIG. 18. The actuator 50 is at least essentially similar to the one shown in the embodiment according to FIG. 8. The actuator 50 is located at the front face of the nebulizer 1.


The securing member 30 or body 51 is opened in a similar manner as in case of the embodiment according to FIG. 18 and/or by moving the actuator 50 or its handhold 53 at least essentially in the direction of the arrow shown in FIG. 19B.



FIG. 20A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 20B shows it in a view of a transversal side (side face). In this embodiment, the securing member 30 or its body 51 comprises connecting means 60 as well, i.e. similar to the ones shown in the embodiments according to FIGS. 18 and 19.


In the present embodiment, the actuator 50 is basically similar to the one shown in the embodiment according to FIG. 17, i.e. it extends at least essentially in circumferential direction and/or along or on the body 51. Preferably, the actuator 50 is strap- or flap-like. The actuator 50 or its handhold 53 has to be pulled radially to open the connecting means 60 and, thus, to open the body 51/securing member 30.



FIG. 21 A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 2 IB shows it in a view of a transversal side (side face). This embodiment is similar to the embodiment according to FIG. 20. However, the securing member 30 or body 51 does not comprise connecting means 60. Instead, the securing member 30, body 51 or actuator 50 is sufficiently stiff or rigid such that it secures itself in the delivery state shown in FIG. 21. To open the securing member 30 or body 51, the actuator 50 or its handhold 53 has to be pulled radially outwardly and/or tangentially and/or in circumferential direction to bend the actuator and/or the securing member 30/body 51 open so that it can be detached from the nebulizer 1. In order to facilitate grabbing of the actuator 50 or its handhold 53, the body 51 may comprise a rib or protrusion 61 to hold the actuator 50/handhold 53 in a slightly elevated position.



FIG. 22A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 22B shows it in a view of a transversal side (side face). This embodiment is very similar to the one shown in FIG. 21. In the present embodiment, the actuator 50 is connected via the living hinge 56 to the body 51 and/or connectable via connecting means 60 to the body. Preferably, the connecting means 60 can be opened again and/or allow a hook-like fixing of the actuator 50 or its handhold 53.



FIG. 23 A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 23B shows it in a view of a transversal side (side face). This embodiment is similar to the ones shown in FIGS. 21 and 22. Here, the actuator 50 or its handhold 53 may be releasably fixed in the closed or mounted position by means of an adhesive connection, e.g. my means of a glue point 62 as indicated in FIG. 23B, or by means of a preferably self-adhesive tape 63 indicated in FIG. 23A or the like. The gluing or tape 63 can be broken or released or detached to actuate/pull the actuator 50 or its handhold 53.



FIG. 24 A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 24B shows it in a view of a transversal side (side face). In the present embodiment, the securing member 30 is not a single piece, but consists of multiple or at least two parts, in particular in contrast to the previous embodiments. In the present embodiment and in the embodiments shown in FIGS. 25 and 26, the actuator 50 is not formed in one piece or integrally with the body 51, but made as a piece separate from body 51.


In the embodiment according to FIG. 24, the actuator 50 comprises a through hole or recess 64, into which the free ends of the body 51 are inserted. The free ends can be bent, folded or thickened so that the actuator 50 is held by or connected to the body 51 by force-fit or form-fit. When the actuator 50 is tilted, pivoted or pulled, in particular as indicated by the arrow shown in FIG. 24A, the actuator 50 is drawn from the free ends of the body 50 and, thus, detached from the body 51. Then, the body 51 is open and can be detached from the nebulizer 1.


In the shown embodiment, the actuator 50 is designed and/or located similar as in case of the embodiment according to FIG. 14. In particular, it extends in axial direction and/or is located on the side face. Alternatively or additionally, the body 51 may be formed by two parts or halves 51a and 51b which may be pivoted relatively to each other to open the body 51 as described in particular in connection with FIG. 14C.



FIG. 25 A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 25B shows it in a view of a transversal side (side face). This embodiment is very similar to the embodiment according to FIG. 24. However, the actuator 50 is axially clipped or radially pushed onto the free ends of the body 51 and/or holds the free ends of the body 51 together like a clamp in the embodiment according to FIG. 25. The actuator 50 can be opened or detached preferably by radial pulling and/or axial pushing.



FIG. 26A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 26B shows it in a view of a transversal side (side face). This embodiment is very similar to the embodiment according to FIG. 25. However, the actuator 50 forms a circumferential clamp closing or holding the body 51 together. To open the securing member 30 or body 51, the actuator 50 is pulled radially outwards and/or shifted, in particular in circumferential direction or in any other suitable direction and thus released or detached.



FIG. 27A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 27B shows it in a view of a transversal side (side face). This embodiment, the actuator 50 is made from a different material than the body 51 in contrast to the previous embodiments. Preferably, the actuator 50 is formed by a preferably self-adhesive tap 66, tag, label or tape and/or made of any other suitable, preferably flexible or foil-like material. The actuator 50 extends preferably in circumferential direction and closes the body 50, in particular by adhering the actuator 50 over a radial gap or slit 65 of the body 50. To open the securing member 30 or body 51, the actuator 50 is broken, torn or drawn from the body 51. Then, the body 51 can be detached from the nebulizer 1.



FIG. 28A shows a side view (front face) of the nebulizer 1 with another securing member 30 and FIG. 28B shows it in a view of a transversal side (side face). This embodiment is very similar to the embodiment according to FIG. 27. In this embodiment, the actuator 50 is larger, in particular in axial direction, than the body 51 and/or the actuator 50 of FIG. 27. Further, the securing member 30, body 51 or the actuator 50 may comprise or support or form a tap 66 which may be self-adhesive or adhered to any part thereof and/or which may at least partly cover any part thereof, such as the actuator 50 or its portion 55.


It has to be noted in general that the securing member 30 or actuator 50 or its portion 55 can be provided with symbols 67, in particular such as numerals, letters, colors, codes, signs and/or instructions or the like, in particular relating to the handling or opening and/or relating to the nebulizer 1, its medicament or fluid 2 or the like. This can be realized by using a respective, preferably self-adhering plate, tag 66 or tap or the like which could be used in addition to the actuator 50 or form the actuator 50 or any other part of the securing member 30. Alternatively or additionally, such symbols, signs, instructions or the like can be formed by molding, printing or the like, in particular on any suitable surface of any component of the securing member 30.


As already mentioned, individual features, aspects and/or principles of the embodiments described may also be combined with one another as desired and may be used particularly in the known nebulizer 1 according to FIGS. 1 and 2 but also in similar or different nebulizers.


Unlike freestanding equipment or the like the proposed nebulizer 1 is preferably designed to be portable and in particular is a mobile hand operated device.


The proposed solution may, however, be used not only in the nebulizers 1 specifically described here but also in other nebulizers or inhalers, e.g. powder inhalers or so-called metered dose inhalers.


Preferably, the fluid 2 is a liquid, as already mentioned, especially an aqueous pharmaceutical formulation. However, it may also be some other pharmaceutical formulation, a suspension or the like.


According to an alternative embodiment the fluid 2 may also comprise particles or powder. In this case, instead of the expulsion nozzle 12, some other kind of supply device may be provided, especially an expulsion opening (not shown) or a supply channel (not shown) for supplying the fluid to or powder or the like into the mouthpiece 13. The optional air supply opening 15 then serves to supply ambient air preferably in parallel so as to general or allow an airflow with a sufficient volume for breathing in or inhaling through the mouthpiece 13.


If necessary the fluid 2 may also be atomized by means of a propellant gas.


Preferred ingredients and/or formulations of the preferably medicinal fluid 2 are listed in particular in WO 2009/047173 A2 which is incorporated herewith by reference. As already stated, these may be aqueous or non-aqueous solu-tions, mixtures, formulations containing ethanol or free from solvent, or the like.


In the following, a further, preferred embodiment of the inhaler or nebulizer 1 according to the present invention will be described in detail with reference to FIGS. 29 to 32 wherein only essential differences will be emphasized so that the previous remarks and explications preferably in a corresponding or similar manner. This nebulizer 1 comprises in the delivery state a pre-installed container and the securing member as already described. Although, it is not shown in the following drawings.



FIG. 29 shows in a very schematic, partially sectional view the nebulizer 1. The nebulizer 1 is shown a transitional state from the delivery state to the activated state with not completely closed housing or housing part 18. The housing part 18 has already been pushed on the inner part 17 more than initially provided in the delivery state such as shown in FIG. 3. Therefore, the container 3 has already been opened in the state shown in FIG. 29. Further, the securing member 30, which preferably secures the housing part 18 in the delivery state against pushing on the inner part 17, has already been released or opened or removed in the state shown in FIG. 29.


The nebulizer 1 or its housing comprises a securing means 135 for holding the container 3 such that the container 3 is moveable back and forth for the conveying of the fluid 2, pressure generation and/or nebulization, but is inseparable from the housing or housing part 18, and/or such that the container 3 is unmoveably held in the delivery state of the nebulizer 1.


The securing means 135 is located or arranged preferably at or in the housing part 18 as shown in FIG. 29.



FIG. 30 shows in a perspective view a preferred embodiment of the securing means 135. FIG. 31 shows the securing means 135 connected with the container 3.


Preferably, the securing means 135 comprises or consists of a metal and/or stamping part and/or consists of a single, unitary part as shown in FIG. 30.


Preferably, the securing means 135 is made of steel, in particular spring steel.


Preferably, the securing means 135 is produced from sheet material by cutting, stamping or the like and/or by bending.


Preferably, the securing means 135 or the part forms a cage, in particular, encompasses the container 3 or an end portion thereof.


Preferably, the securing means 135 comprises holding elements 136 and/or locking elements 137. The elements 136 and 137 are preferably designed like arms, fingers leaves or the like. In particular, the elements 136, 137 are alternately distributed over a circumference of the container 3 and/or extend at least essentially axially or in the direction of the back and forth movement of the container 3.


Preferably, the elements 136 and 137 are held by or connected with a base 138 of the securing means 135.


Preferably, the securing means 135 or base 138 comprises or holds the piercing element 22 for piercing the container 3, i.e. opening the container base 21 or its venting hole 134 in the activated and tensioned state, i.e. when the container 3 reaches its lower end position. In the shown embodiment, the piercing element 22 is formed by a respective bending of a spring portion 139 of the securing means 135 or its base 138. The spring portion 139 can support or facilitate the (complete or final) connection of the container 3 to holder 6.


The securing means 135 or base 138 comprises preferably at least one or multiple fixing portions 140 for fixing the securing means 135 at or in the nebulizer 1 or housing or housing part 18. In particular, the fixing portions 140 may fix the securing means 135 when the securing means 135 is pressed into the housing part 18 by cooperating with the side wall of the housing part 18. However, it is also possible to overmold the securing means 135, its base 138, the fixing portions 140 or the like. Moreover, the securing means 135 could be connected with the housing part 18 or the like in any other suitable manner.


Preferably, the securing means 135 does not only prevent the separation of the container 3 from the nebulizer 1, its housing or housing part 18, but also forms the transportation lock 129 for holding the container 3 unmovable in the housing in the delivery state of the nebulizer 1. FIGS. 29 and 31 shows this state or situation when the container 3 is held (axially) unmovable by the securing means 135, i.e. when the transportation lock 129 is closed. In this situation, the container 3 or its preferably radially protruding end or edge 141 of the container 3 is held between the holding element 136 and locking element 137, in particular between respectively formed or bent ends of the elements 136 and 137.


In the shown embodiment, the container end or edge 141 is caught between end portions 136a and 137a of the elements 136 and 137. The holding elements 136 grip or extend over the edge 141 and the locking elements 137 or its end portions 137a grip or extend under the edge 141 or container base 21 so that the edge 141 and container 3 are securely held preventing any axial movement of the container 3 relative to the securing means 135 and relative to the associated housing part 18 in this state, i.e. with locked securing means 135/transportation lock 129.


The holding element 136 and the locking elements 137 are distributed alterna-tingly around the container 3 or edge 141.


Preferably, the end portions 136a of the holding elements 136 end in a first radial plane and the end portions 137a of the locking elements 137 end in another, second radial plane, wherein the two planes are axially offset to hold the edge 141 in between and/or wherein the second plane is located axially between the first plane and the lower end position of the container 3 or the lower end of the housing part 18 or the piercing element 22. Additionally or alternatively, the end portions 136a end on another radius (outer radius) than the end portions 137a and/or are axially spaced therefrom.


The end portions 136a and/or 137a are preferably form like claws or the like and/or extend preferably radially inwardly.


Preferably, the elements 136 and/or 137 can flex with its free ends radially outwardly.


For example, the ends of the end portions 136a may be inclined such that the container 3 may be inserted into or connected with the securing means 135 by a respective axial force so that the holding elements 136 flex outwardly to allow passing of edge 141. However, the holding elements 136 can be flexed outwardly also by a suitable tool (not shown) or the like when the container 3 is inserted, in particular with its edge 141, into the securing means 135.


Preferably, the holding elements 136 prevent separation of the container 3 from the securing means 135 and, thus, from the associated housing part 18 or the like.


The locking elements 137 or its end portions 137a can be flexed radially outwardly in order to open the axial holding or transportation lock 129 (this will be explained in detail with reference to FIG. 32 in the following). Then, the container 3 can axially move, in particular back and forth and/or with its edge 141 between the first plane and the piercing element 22 in the present embodiment.


In the present embodiment, the locking elements 137 comprise actuation portions 137b (preferably formed at the free ends and/or between adjacent end portions 137a). Preferably, the actuation portions 137b form axial extensions which may be radially offset. The actuation portion 137b cooperate with an associated control member 142 or multiple control members 142 of the nebulizer 1 such that the locking elements 137 are flexed radially outwardly when (completely) closing the housing to open the transportation lock 129 (here primarily formed by the locking elements 137 or its end portions 137a).



FIG. 29 shows schematically the control member 142 axially spaced from the associated actuation portion 137b as the housing has not yet been closed (completely).



FIG. 32 shows a lower part of the completely closed nebulizer 1 with opened transportation lock 129, i.e. with radially outwardly flexed locking elements 137. FIG. 32 shows that the control member 142 has an inclined guiding surface or the like to convert the axial closing movement into the radial opening movement of the actuation portion 137b and, thus, of the associated locking element 137 to open the transportation lock 129, in particular when the housing has been completely closed or when the housing part 18 has been pushed completely on the nebulizer 1.


The control member 142 is preferably formed as an axial protrusion. It can be formed by or at a ring 143 or any other bearing means of the nebulizer 1 for counter-bearing the drive spring 7 in the inner part 17 or by or at any other suitable component if the nebulizer such as the inner part 17.


The control member 142 may be formed like an axial protruding ring or shoulder or ridge which extends along the ring 143.


The control member 142 may additionally secure the holding elements 136 against axial opening when the housing is completely closed as schematically shown in FIG. 32. In this case, the control member 142 contacts the holding element(s) 136 or its end portions 136a peripherally on the outer side to prevent any outward flexing. Then, the securing means 135 or its holding elements 136 are secured against opening so that the container 3 is securely held within the securing means 135 or the cage formed by the securing means 135 or holding elements 136.



FIG. 32 shows the container 3 in its lower position when the piercing element 22 can pierce the venting hole 134 or an associated seal attached to the container base 21.


In the present embodiment, the securing means 135 has multiple functions. It holds the container 3 (in the activated state/with completely closed housing) such that it can move back and forth, in particular during conveying of the fluid 2, during pressure generation and/or during nebulization, wherein the container 3 is inseparable from the housing or the housing part 18. Further, the securing means 135 forms the transportation lock 129 and/or holds the container 3 unmovable in the delivery state of the nebulizer 1. Additionally or al-ternatively, the securing means 135 comprises an opening means, here the piercing element 22, for opening the venting hole 134 of the container 3.


Preferably, the securing means 135 forms a cage which cannot be separated from the container 3 after connecting it with the container 3.


The transportation lock 129 and the locking elements 137 are kept opened during the normal use of the nebulizer 1, in particular as long as the housing is (completely) closed. When the housing is opened, i.e. the housing part 18 is detached, the control member 142 may disengage from the actuation portions 137b so that the locking element 137 can close or flex inwardly again. Then, the locking elements 137 may grip with its end portions 137a over the edge 141 of the container 3 such that an additional lock is formed which prevents that the container 3 can be separated from the securing means 135/housing part 18.


The securing means 135 prevents separation of the container 3 from the housing part 18. Therefore, the container 3 can be replaced or exchanged only together with the housing part 18 if the housing part 18 can be detached from the nebulizer 1 or inner part 17 at all. However, it is also possible that the nebulizer 1 can not be opened. Then, the container 3 can not be replaced.












List of reference numerals


















 1
nebulizer



 2
fluid



 3
container



 4
bag



 5
pressure generator



 6
holder



 7
drive spring



 8
releasing element



 9
conveying tube



 10
non-return valve



 11
pressure chamber



 12
nozzle



 13
mouthpiece



 14
aerosol



 15
air supply opening



 16
upper housing part



 17
inner part



 17a
upper part of the inner part



 17b
lower part of the inner part



 18
housing part (lower part)



 19
retaining element



 20
spring



 21
container base



 22
piercing element



 23
monitoring device



 24
fluid outlet



 25
first closure



 26
second closure



 27
closure part



 28
flange



 29
transportation lock



 31
latching lug



 32
latching recess



 33
latching arm



 34
vent opening



 35
gripping arm



 36
edge



 37
member



 38
ring



 39
control member



 40
ring portion



 41
actuating portion



 42
mouthpiece cover



 43
latching means



 44
first shoulder



 45
further latching recess



 46
second shoulder



 47
grooves



 48
through hole



 49
indention



 50
actuator



 51
body



 51a
half of body



 51b
half of body



 51c
hinge



 52
stop



 53
handhold



 54
breaking line



 54
start portion



 55
actuator portion



 56
living hinge



 57
cutting edge



 58
bearing



 59
bearing



 60
connecting element



 61
protrusion



 62
glue point



 63
tag



 64
recess



 65
slit



 66
tap



 67
symbol



124
fluid outlet



125
first closure



126
second closure



127
closure part



128
flange



129
transportation lock



131
latching lug



132
latching recess



133
latching arm



134
venting hole



135
securing means



136
holding element



136a
end portion



137
locking element



137a
end portion



137b
actuation portion



138
base



139
spring portion



140
fixing portion



141
edge



142
control member



143
ring



144
ring portion



145
corrugation








Claims
  • 1. A nebulizer forming an inhaler, comprising: a first housing part and a second housing part forming a housing, where the first and second housing parts are axially slidable in a longitudinal direction relative to one another between a delivery state and an activated state;a container, containing a fluid, disposed within the housing such that: (i) in the delivery state the first and second housing parts are sufficiently axially separated such that the fluid within the container is not accessed, and (ii) in the activated state the first and second housing parts are sufficiently axially proximate such that the fluid within the container is accessed;a securing member operating to prevent the first housing part and second housing part to move axially from the delivery state to the activated state, the securing member including an actuator for grasping by a user to open, remove, release or destroy the securing member, and the securing member including a body having a pre-determined, weakened breaking line extending in a continuously curved fashion and including at least one of: (i) a reduction in a thickness of the material of the body, and (ii) a perforation in the material of the body,wherein the securing member must be manually opened, removed, released or destroyed by tearing the body of the securing member along the breaking line, and thereby permit the first housing part and second housing part to move axially from the delivery state to the activated state, andwherein the weakened breaking line includes a substantially axially extending section in the longitudinal direction, which transitions to a substantially circumferentially extending section as the weakened breaking line extends in the continuously curved fashion.
  • 2. The nebulizer according to claim 1, wherein the securing member is molded as one integral piece with the actuator.
  • 3. The nebulizer according to claim 1, wherein the actuator is non-detachable from the securing member.
  • 4. The nebulizer according to claim 1, wherein the actuator includes a grasping element, including at least one of a handhold, a grip, a lever, a tag, a flap, a ring, and a clip to facilitate grasping by the user.
  • 5. The nebulizer according to claim 1, wherein the nebulizer comprises an outlet end or mouthpiece, and the actuator is located adjacent to the outlet end or mouthpiece in the delivery state.
  • 6. The nebulizer according to claim 1, wherein the nebulizer comprises a mouthpiece cover, and the actuator is located at least one of: adjacent to, at least partially below, and at least partially above the mouthpiece cover in the delivery state.
  • 7. The nebulizer according to claim 1, wherein the nebulizer comprises a releasing element operating to permit a dose of the fluid to be nebulized, and the actuator is located at least one of: adjacent to, above, and around the releasing element in the delivery state.
  • 8. The nebulizer according to claim 4, wherein the nebulizer comprises a releasing element operating to permit a dose of the fluid to be nebulized, and the actuator or the grasping element thereof is located at least one of partially above, and on, the releasing element so that the user tends to actuate the actuator before pressing the releasing element.
  • 9. The nebulizer according to claim 1, further comprising a conveying tube, operating to access the fluid within the container, before or during first use of the nebulizer, when the first and second housing parts are axially located in the activated state by insertion of the conveying element into the container, wherein the conveying tube operates to convey the fluid from the container.
  • 10. The nebulizer according to claim 1, further comprising a latching means having at least one latching lug for securing the first and second housing parts against detachment when in the delivery state and in the activated state, wherein the first and second housing parts may attain a loading rotational position, differing from a rotational position of the delivery state, whereby the first and second housing parts may be detached for inserting the container.
  • 11. The nebulizer according to claim 1, wherein the securing member comprises inner radial protrusions or ribs forming axial stops for preventing the first and second housing parts from moving axially towards one another while in the delivery state.
  • 12. The nebulizer according to claim 1, wherein the securing member forms at least one of a loop, ring, sleeve and banderole.
  • 13. The nebulizer according to claim 1, wherein the securing member comprises a hinge for opening the securing member.
  • 14. The nebulizer according to claim 1, wherein the actuator is formed by at least one of: a self-adhesive tap, a self-adhesive tag, a self-adhesive label, a self-adhesive tape, a flexible material, and a foil-like material.
  • 15. The nebulizer according to claim 1, wherein the actuator includes a ring-shaped hold for grasping by the user to facilitate the opening, removing, releasing or destroying of the securing member along the weakened breaking line.
  • 16. The nebulizer according to claim 1, wherein the substantially axially extending section and the substantially circumferentially extending section define a helical path as the weakened breaking line extends in the continuously curved fashion.
  • 17. The nebulizer according to claim 1, wherein the actuator is also continuously curved and complements the continuous curvature of the weakened breaking line.
  • 18. A nebulizer forming an inhaler, comprising: a first housing part and a second housing part forming a housing, where the first and second housing parts are axially slidable in a longitudinal direction relative to one another between a delivery state and an activated state;a container, containing a fluid, disposed within the housing such that: (i) in the delivery state the first and second housing parts are sufficiently axially separated such that the fluid within the container is not accessed, and (ii) in the activated state the first and second housing parts are sufficiently axially proximate such that the fluid within the container is accessed;a securing member operating to prevent the first housing part and second housing part to move axially from the delivery state to the activated state, the securing member including a body having a pre-determined, weakened breaking line extending in a continuously curved fashion and including at least one of: (i) a reduction in a thickness of the material of the body, and (ii) a perforation in the material of the body,wherein the securing member must be manually opened, removed, released or destroyed by tearing the body of the securing member along the breaking line, and thereby permit the first housing part and second housing part to move axially from the delivery state to the activated state, andwherein the weakened breaking line includes a substantially axially extending section in the longitudinal direction, which transitions to a substantially circumferentially extending section as the weakened breaking line extends in the continuously curved fashion.
  • 19. The nebulizer according to claim 18, wherein the securing member is molded as one integral piece with an actuator.
  • 20. The nebulizer according to claim 18, wherein an actuator is non-detachable from the securing member.
  • 21. The nebulizer according to claim 18, wherein the securing member includes a grasping element, including at least one of a handhold, a grip, a lever, a tag, a flap, a ring, and a clip to facilitate grasping by the user.
  • 22. The nebulizer according to claim 18, wherein the securing member includes an actuator for grasping by the user to open, remove, release or destroy the securing member.
  • 23. The nebulizer according to claim 22, wherein at least one of: the nebulizer comprises an outlet end or mouthpiece, and the actuator is located adjacent to the outlet end or mouthpiece in the delivery state; andthe nebulizer comprises a mouthpiece cover, and the actuator is located at least one of: adjacent to, at least partially below, and at least partially above the mouthpiece cover in the delivery state.
  • 24. The nebulizer according to claim 22, wherein the nebulizer comprises a releasing element operating to permit a dose of the fluid to be nebulized, and the actuator is located at least one of: adjacent to, above, and around the releasing element in the delivery state.
  • 25. The nebulizer according to claim 22, wherein the nebulizer comprises a releasing element operating to permit a dose of the fluid to be nebulized, and the actuator or the grasping element thereof is located at least one of partially above, and on, the releasing element so that the user tend to actuate the actuator before pressing the releasing element.
  • 26. The nebulizer according to claim 18, further comprising a conveying tube, operating to access the fluid within the container, before or during first use of the nebulizer, when the first and second housing parts are axially located in the activated state by insertion of the conveying element into the container, wherein the conveying tube operates to convey the fluid from the container.
  • 27. The nebulizer according to claim 18, further comprising a latching means having at least one latching lug for securing the first and second housing parts against detachment when in the delivery state and in the activated state, wherein the first and second housing parts may attain a loading rotational position, differing from a rotational position of the delivery state, whereby the first and second housing parts may be detached for inserting the container.
  • 28. The nebulizer according to claim 18, wherein the securing member comprises inner radial protrusions or ribs forming axial stops for preventing the first and second housing parts from moving axially towards one another while in the delivery state.
  • 29. The nebulizer according to claim 18, wherein the securing member forms at least one of a loop, ring, sleeve and banderole.
  • 30. The nebulizer according to claim 18, wherein the securing member comprises a hinge for opening the securing member.
  • 31. The nebulizer according to claim 18, further comprising an actuator which is formed by at least one of: a self-adhesive tap, a self-adhesive tag, a self-adhesive label, a self-adhesive tape, a flexible material, and a foil-like material.
  • 32. The nebulizer according to claim 18, further comprising an actuator which includes a distal portion sized and shaped for the user to grasp and an elongate portion extending from the distal portion, and wherein the elongate portion is at least partially circumscribed by the breaking line.
Priority Claims (1)
Number Date Country Kind
10006584 Jun 2010 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2011/059088 6/1/2011 WO 00 3/20/2013
Publishing Document Publishing Date Country Kind
WO2011/160932 12/29/2011 WO A
US Referenced Citations (523)
Number Name Date Kind
1828864 Hopkins Oct 1931 A
2015970 Schoene Oct 1935 A
2127401 Gillican Aug 1938 A
2161071 McGrath et al. Jun 1939 A
2321428 Schloz Jun 1943 A
2329311 Waters Sep 1943 A
2362103 Smith Nov 1944 A
2651303 Johnson et al. Sep 1953 A
2720969 Kendall Oct 1955 A
2793776 Lipari May 1957 A
2974880 Stewart et al. Mar 1961 A
3032823 Sherman et al. May 1962 A
3157179 Allen et al. Nov 1964 A
3172568 Modderno Mar 1965 A
3196587 Hayward et al. Jul 1965 A
3223289 Bouet Dec 1965 A
3299603 Shaw Jan 1967 A
3348726 La Cross Oct 1967 A
3354883 Southerland Nov 1967 A
3425591 Pugh, Sr. Feb 1969 A
3440144 Anderson et al. Apr 1969 A
3457694 Tatibana Jul 1969 A
3491803 Galik Jan 1970 A
3502035 Fedit Mar 1970 A
3580249 Takaoka May 1971 A
3590557 Vogel Jul 1971 A
3606106 Yuhas Sep 1971 A
3632743 Geller et al. Jan 1972 A
3655096 Easter Apr 1972 A
3674060 Ruekberg Jul 1972 A
3675825 Morane Jul 1972 A
3684124 Song Aug 1972 A
3802604 Morane et al. Apr 1974 A
3817416 Costa Jun 1974 A
3820698 Franz Jun 1974 A
3842836 Ogle Oct 1974 A
3858580 Ogle Jan 1975 A
3861851 Schiemann Jan 1975 A
3870147 Orth Mar 1975 A
3924741 Kachur et al. Dec 1975 A
3933279 Maier Jan 1976 A
3946732 Hurscham Mar 1976 A
3949751 Birch et al. Apr 1976 A
3951310 Steiman Apr 1976 A
3953995 Haswell et al. May 1976 A
3973603 Franz Aug 1976 A
4012472 Lindsey Mar 1977 A
4031892 Hurschman Jun 1977 A
4036439 Green Jul 1977 A
4048997 Raghavachari et al. Sep 1977 A
4067499 Cohen Jan 1978 A
4094317 Wasnich Jun 1978 A
4120995 Phipps et al. Oct 1978 A
4126559 Cooper Nov 1978 A
4153689 Hirai et al. May 1979 A
4174035 Wiegner Nov 1979 A
4177938 Brina Dec 1979 A
4178928 Tischlinger Dec 1979 A
4195730 Hunt Apr 1980 A
4245788 Wright Jan 1981 A
4275840 Staar Jun 1981 A
4315570 Silver et al. Feb 1982 A
4338765 Ohmori et al. Jul 1982 A
4377106 Workman et al. Mar 1983 A
4434908 French Mar 1984 A
4456016 Nowacki et al. Jun 1984 A
4458821 Ostrowsky Jul 1984 A
4463867 Nagel Aug 1984 A
4467965 Skinner Aug 1984 A
4474302 Goldberg Oct 1984 A
4476116 Anik Oct 1984 A
4515586 Mendenhall et al. May 1985 A
4516967 Kopfer May 1985 A
4524888 Tada Jun 1985 A
4603794 DeFord et al. Aug 1986 A
4677975 Edgar et al. Jul 1987 A
4727985 McNeirney et al. Mar 1988 A
4749082 Gardiner et al. Jun 1988 A
4796614 Nowacki et al. Jan 1989 A
4805377 Carter Feb 1989 A
4813210 Masuda et al. Mar 1989 A
4821923 Skorka Apr 1989 A
4840017 Miller et al. Jun 1989 A
4863720 Burghart et al. Sep 1989 A
4868582 Dreinhoff Sep 1989 A
4885164 Thurow Dec 1989 A
4905450 Hansen et al. Mar 1990 A
4926613 Hansen May 1990 A
4951661 Sladek Aug 1990 A
4952310 McMahan et al. Aug 1990 A
4964540 Katz Oct 1990 A
RE33444 Lerner Nov 1990 E
4973318 Holm et al. Nov 1990 A
4979941 Ogle, II Dec 1990 A
4982875 Pozzi et al. Jan 1991 A
5014492 Fiorini et al. May 1991 A
5025957 Ranalletta et al. Jun 1991 A
5059187 Sperry et al. Oct 1991 A
5060791 Zulauf Oct 1991 A
5067655 Farago et al. Nov 1991 A
5156918 Marks et al. Oct 1992 A
5174366 Nagakura Dec 1992 A
5207217 Cocozza et al. May 1993 A
5230884 Evans et al. Jul 1993 A
5237797 Varlet Aug 1993 A
5246142 DiPalma et al. Sep 1993 A
5261565 Drobish et al. Nov 1993 A
5263842 Fealey Nov 1993 A
5271153 Reiboldt et al. Dec 1993 A
5282304 Reiboldt et al. Feb 1994 A
5282549 Scholz et al. Feb 1994 A
5284133 Burns et al. Feb 1994 A
5289948 Moss et al. Mar 1994 A
5339990 Wilder Aug 1994 A
5352196 Haber et al. Oct 1994 A
5380281 Tomellini et al. Jan 1995 A
5385140 Smith Jan 1995 A
5394866 Ritson et al. Mar 1995 A
5408994 Wass et al. Apr 1995 A
5433343 Meshberg Jul 1995 A
5435282 Haber et al. Jul 1995 A
5435884 Simmons et al. Jul 1995 A
5451569 Wong et al. Sep 1995 A
5456522 Beach Oct 1995 A
5456533 Streiff et al. Oct 1995 A
5472143 Bartels et al. Dec 1995 A
5482030 Klein Jan 1996 A
5487378 Robertson et al. Jan 1996 A
5497944 Weston et al. Mar 1996 A
5499750 Manifold Mar 1996 A
5499751 Meyer Mar 1996 A
5503869 Van Oort Apr 1996 A
5509404 Lloyd et al. Apr 1996 A
5518147 Peterson et al. May 1996 A
5533994 Meyer Jul 1996 A
5541569 Jang Jul 1996 A
5544646 Lloyd et al. Aug 1996 A
5547094 Bartels et al. Aug 1996 A
5569191 Meyer Oct 1996 A
5574006 Yanagawa Nov 1996 A
5579760 Kohler Dec 1996 A
5584285 Salter et al. Dec 1996 A
5593069 Jinks Jan 1997 A
5599297 Chin et al. Feb 1997 A
5603943 Yanagawa Feb 1997 A
5614172 Geimer Mar 1997 A
5622162 Johansson et al. Apr 1997 A
5622163 Jewett et al. Apr 1997 A
5643868 Weiner et al. Jul 1997 A
5662098 Yoshida Sep 1997 A
5662271 Weston et al. Sep 1997 A
5676930 Jager et al. Oct 1997 A
5685846 Michaels, Jr. Nov 1997 A
5697242 Halasz et al. Dec 1997 A
5709202 Lloyd et al. Jan 1998 A
5722598 Werding Mar 1998 A
5738087 King Apr 1998 A
5740967 Simmons et al. Apr 1998 A
5763396 Weiner et al. Jun 1998 A
5775321 Alband Jul 1998 A
5782345 Guasch et al. Jul 1998 A
5827262 Neftel et al. Oct 1998 A
5829435 Rubsamen et al. Nov 1998 A
5833088 Kladders et al. Nov 1998 A
5848588 Foley et al. Dec 1998 A
5868287 Kurokawa et al. Feb 1999 A
5881718 Mortensen et al. Mar 1999 A
5884620 Gonda et al. Mar 1999 A
5902298 Niedospial, Jr. et al. May 1999 A
5934272 Lloyd et al. Aug 1999 A
5935101 Kato et al. Aug 1999 A
5941244 Yamazaki et al. Aug 1999 A
5950016 Tanaka Sep 1999 A
5950403 Yamaguchi et al. Sep 1999 A
5951882 Simmons et al. Sep 1999 A
5964416 Jaeger et al. Oct 1999 A
5975370 Durliat Nov 1999 A
5997263 Van Lintel et al. Dec 1999 A
6041777 Faithfull et al. Mar 2000 A
6041969 Parise Mar 2000 A
6053368 Geimer Apr 2000 A
6062430 Fuchs May 2000 A
6098618 Jennings et al. Aug 2000 A
6109479 Ruckdeschel Aug 2000 A
6110247 Birmingham et al. Aug 2000 A
6116233 Denyer et al. Sep 2000 A
6119853 Garrill et al. Sep 2000 A
6120492 Finch et al. Sep 2000 A
6123068 Lloyd et al. Sep 2000 A
6131566 Ashurst et al. Oct 2000 A
6145703 Opperman Nov 2000 A
6149054 Cirrillo et al. Nov 2000 A
6152296 Shih Nov 2000 A
6171972 Mehregany et al. Jan 2001 B1
6176442 Eicher et al. Jan 2001 B1
6179118 Garrill et al. Jan 2001 B1
6186409 Srinath et al. Feb 2001 B1
6199766 Fox et al. Mar 2001 B1
6223933 Hochrainer et al. May 2001 B1
6224568 Morimoto et al. May 2001 B1
6237589 Denyer et al. May 2001 B1
6259654 de la Huerga Jul 2001 B1
6267154 Felicelli et al. Jul 2001 B1
6279786 de Pous et al. Aug 2001 B1
6302101 Py Oct 2001 B1
6315173 Di Giovanni et al. Nov 2001 B1
6319943 Joshi et al. Nov 2001 B1
6336453 Scarrott et al. Jan 2002 B1
6341718 Schilthuizen et al. Jan 2002 B1
6349856 Chastel Feb 2002 B1
6352152 Anderson et al. Mar 2002 B1
6352181 Eberhard Mar 2002 B1
6363932 Forchione et al. Apr 2002 B1
6375048 van der Meer et al. Apr 2002 B1
6392962 Wyatt May 2002 B1
6395331 Yan et al. May 2002 B1
6401710 Scheuch et al. Jun 2002 B1
6401987 Oechsel et al. Jun 2002 B1
6402055 Jaeger et al. Jun 2002 B1
6405872 Ruther et al. Jun 2002 B1
6412659 Kneer Jul 2002 B1
6419167 Fuchs Jul 2002 B1
6423298 McNamara et al. Jul 2002 B2
6427682 Klimowicz et al. Aug 2002 B1
6446054 Mayorga Lopez Sep 2002 B1
6457658 Srinath et al. Oct 2002 B2
6464108 Corba Oct 2002 B2
6481435 Hochrainer et al. Nov 2002 B2
6491897 Freund et al. Dec 2002 B1
6503362 Bartels et al. Jan 2003 B1
6513519 Gallem Feb 2003 B2
6543448 Smith et al. Apr 2003 B1
6548647 Dietz et al. Apr 2003 B2
6550477 Casper et al. Apr 2003 B1
6565743 Poirier et al. May 2003 B1
6578741 Ritsche et al. Jun 2003 B2
6581596 Truitt et al. Jun 2003 B1
6584976 Japuntich et al. Jul 2003 B2
6606990 Stapleton et al. Aug 2003 B2
6620438 Pairet et al. Sep 2003 B2
6626309 Jansen et al. Sep 2003 B1
6640805 Castro et al. Nov 2003 B2
6641782 Mauchan et al. Nov 2003 B1
6669176 Rock Dec 2003 B2
6679254 Rand et al. Jan 2004 B1
6685691 Freund et al. Feb 2004 B1
6698421 Attolini Mar 2004 B2
6706726 Meissner et al. Mar 2004 B2
6708846 Fuchs et al. Mar 2004 B1
6725858 Loescher Apr 2004 B2
6729328 Goldemann May 2004 B2
6732731 Tseng May 2004 B1
6745763 Webb Jun 2004 B2
6779520 Genova et al. Aug 2004 B2
6789702 O'Connor et al. Sep 2004 B2
6792945 Davies et al. Sep 2004 B2
6823862 McNaughton Nov 2004 B2
6825441 Katooka et al. Nov 2004 B2
6846413 Kadel et al. Jan 2005 B1
6866039 Wright et al. Mar 2005 B1
6889690 Crowder et al. May 2005 B2
6890517 Drechsel et al. May 2005 B2
6915901 Feinberg et al. Jul 2005 B2
6929004 Bonney et al. Aug 2005 B1
6932962 Backstrom et al. Aug 2005 B1
6942127 Raats Sep 2005 B2
6964759 Lewis et al. Nov 2005 B2
6977042 Kadel et al. Dec 2005 B2
6978916 Smith Dec 2005 B2
6986346 Hochrainer et al. Jan 2006 B2
6988496 Eicher et al. Jan 2006 B1
6994083 Foley et al. Feb 2006 B2
7040311 Hochrainer et al. May 2006 B2
7066408 Sugimoto et al. Jun 2006 B2
7090093 Hochrainer et al. Aug 2006 B2
7131441 Keller et al. Nov 2006 B1
7152760 Peabody Dec 2006 B1
7258716 Shekarriz et al. Aug 2007 B2
7314187 Hochrainer et al. Jan 2008 B2
7331340 Barney Feb 2008 B2
7341208 Peters et al. Mar 2008 B2
7380575 Stricklin Jun 2008 B2
7417051 Banholzer et al. Aug 2008 B2
7451876 Bossi et al. Nov 2008 B2
7451885 Nyman Nov 2008 B2
7470422 Freund et al. Dec 2008 B2
7556037 Klein Jul 2009 B2
7559597 Mori Jul 2009 B2
7571722 Wuttke et al. Aug 2009 B2
7579358 Boeck et al. Aug 2009 B2
7611694 Schmidt Nov 2009 B2
7611709 Bassarab et al. Nov 2009 B2
7621266 Kladders et al. Nov 2009 B2
7645383 Kadel et al. Jan 2010 B2
7652030 Moesgaard et al. Jan 2010 B2
7665461 Zierenberg et al. Feb 2010 B2
7681811 Geser et al. Mar 2010 B2
7686014 Boehm et al. Mar 2010 B2
7717299 Greiner-Perth May 2010 B2
7723306 Bassarab et al. May 2010 B2
7743945 Lu et al. Jun 2010 B2
7779838 Hetzer et al. Aug 2010 B2
7802568 Eicher et al. Sep 2010 B2
7819342 Spallek et al. Oct 2010 B2
7823584 Geser et al. Nov 2010 B2
7837235 Geser et al. Nov 2010 B2
7849851 Zierenberg et al. Dec 2010 B2
7896264 Eicher et al. Mar 2011 B2
7980243 Hochrainer Jul 2011 B2
7994188 Disse Aug 2011 B2
8062626 Freund et al. Nov 2011 B2
8104643 Pruvot Jan 2012 B2
8167171 Moretti May 2012 B2
8298622 Nakayama et al. Oct 2012 B2
8479725 Hausmann et al. Jul 2013 B2
8495901 Hahn et al. Jul 2013 B2
8650840 Holakovsky et al. Feb 2014 B2
8651338 Leak et al. Feb 2014 B2
8656910 Boeck et al. Feb 2014 B2
8733341 Boeck et al. May 2014 B2
8734392 Stadelhofer May 2014 B2
8944292 Moreau Feb 2015 B2
8950393 Holakovsky et al. Feb 2015 B2
8960188 Bach et al. Feb 2015 B2
8997735 Zierenberg et al. Apr 2015 B2
9027854 Moser et al. May 2015 B2
9192734 Hausmann et al. Nov 2015 B2
9238031 Schmelzer et al. Jan 2016 B2
9744313 Besseler et al. Aug 2017 B2
20010008632 Freund et al. Jul 2001 A1
20010028308 De La Huerga Oct 2001 A1
20010032643 Hochrainer et al. Oct 2001 A1
20010035182 Rubin et al. Nov 2001 A1
20020000225 Schuler et al. Jan 2002 A1
20020005195 Shick et al. Jan 2002 A1
20020007155 Freund et al. Jan 2002 A1
20020046751 MacRae et al. Apr 2002 A1
20020060255 Benoist May 2002 A1
20020074429 Hettrich et al. Jun 2002 A1
20020079285 Jansen et al. Jun 2002 A1
20020092523 Connelly et al. Jul 2002 A1
20020111363 Drechsel et al. Aug 2002 A1
20020129812 Litherland et al. Sep 2002 A1
20020130195 Jaeger et al. Sep 2002 A1
20020137764 Drechsel et al. Sep 2002 A1
20020176788 Moutafis et al. Nov 2002 A1
20030039915 Holt et al. Feb 2003 A1
20030064032 Lamche et al. Apr 2003 A1
20030066524 Hochrainer et al. Apr 2003 A1
20030066815 Lucas Apr 2003 A1
20030080210 Jaeger et al. May 2003 A1
20030085254 Katooka et al. May 2003 A1
20030098023 Drachmann et al. May 2003 A1
20030106827 Cheu et al. Jun 2003 A1
20030145849 Drinan et al. Aug 2003 A1
20030178020 Scarrott Sep 2003 A1
20030181478 Drechsel et al. Sep 2003 A1
20030183225 Knudsen Oct 2003 A1
20030187387 Wirt et al. Oct 2003 A1
20030191151 Chaudry et al. Oct 2003 A1
20030194379 Brugger et al. Oct 2003 A1
20030196660 Haveri Oct 2003 A1
20030209238 Peters et al. Nov 2003 A1
20030226907 Geser et al. Dec 2003 A1
20040004138 Hettrich et al. Jan 2004 A1
20040010239 Hochrainer et al. Jan 2004 A1
20040015126 Zierenberg et al. Jan 2004 A1
20040019073 Drechsel et al. Jan 2004 A1
20040055907 Marco Mar 2004 A1
20040060476 Sirejacob Apr 2004 A1
20040069799 Gee et al. Apr 2004 A1
20040092428 Chen et al. May 2004 A1
20040094147 Schyra et al. May 2004 A1
20040134494 Papania et al. Jul 2004 A1
20040134824 Chan et al. Jul 2004 A1
20040139700 Powell et al. Jul 2004 A1
20040143235 Freund et al. Jul 2004 A1
20040164186 Kladders et al. Aug 2004 A1
20040166065 Schmidt Aug 2004 A1
20040182867 Hochrainer et al. Sep 2004 A1
20040184994 DeStefano et al. Sep 2004 A1
20040194524 Jentzsch Oct 2004 A1
20040210199 Atterbury et al. Oct 2004 A1
20040231667 Horton et al. Nov 2004 A1
20050028812 Djupesland Feb 2005 A1
20050028815 Deaton et al. Feb 2005 A1
20050028816 Fishman et al. Feb 2005 A1
20050061314 Davies et al. Mar 2005 A1
20050089478 Govind et al. Apr 2005 A1
20050098172 Anderson May 2005 A1
20050126469 Lu Jun 2005 A1
20050131357 Denton et al. Jun 2005 A1
20050158394 Staniforth et al. Jul 2005 A1
20050159441 Hochrainer et al. Jul 2005 A1
20050183718 Wuttke et al. Aug 2005 A1
20050191246 Bechtold-Peters et al. Sep 2005 A1
20050194472 Geser et al. Sep 2005 A1
20050239778 Konetzki et al. Oct 2005 A1
20050247305 Zierenberg et al. Nov 2005 A1
20050250704 Bassarab et al. Nov 2005 A1
20050250705 Bassarab et al. Nov 2005 A1
20050255119 Bassarab et al. Nov 2005 A1
20050263618 Spallek et al. Dec 2005 A1
20050268909 Bonney et al. Dec 2005 A1
20050268915 Wassenaar et al. Dec 2005 A1
20050269359 Raats Dec 2005 A1
20060002863 Schmelzer et al. Jan 2006 A1
20060016449 Eicher et al. Jan 2006 A1
20060035874 Lulla et al. Feb 2006 A1
20060037612 Herder et al. Feb 2006 A1
20060067952 Chen Mar 2006 A1
20060086828 Bougamont et al. Apr 2006 A1
20060150971 Lee et al. Jul 2006 A1
20060196500 Hochrainer et al. Sep 2006 A1
20060225734 Sagaser et al. Oct 2006 A1
20060239886 Nakayama et al. Oct 2006 A1
20060239930 Lamche et al. Oct 2006 A1
20060254579 Grychowski et al. Nov 2006 A1
20060279588 Yearworth et al. Dec 2006 A1
20060282045 Wilkinson et al. Dec 2006 A1
20060285987 Jaeger et al. Dec 2006 A1
20060289002 Hetzer et al. Dec 2006 A1
20060293293 Muller et al. Dec 2006 A1
20070062518 Geser et al. Mar 2007 A1
20070062519 Wuttke et al. Mar 2007 A1
20070062979 Dunne Mar 2007 A1
20070090205 Kunze et al. Apr 2007 A1
20070090576 Geser et al. Apr 2007 A1
20070107720 Boeck et al. May 2007 A1
20070119449 Boehm et al. May 2007 A1
20070137643 Bonney et al. Jun 2007 A1
20070163574 Rohrschneider et al. Jul 2007 A1
20070181526 Frishman Aug 2007 A1
20070183982 Berkel et al. Aug 2007 A1
20070210121 Stadelhofer Sep 2007 A1
20070221211 Sagalovich Sep 2007 A1
20070264437 Zimmermann et al. Nov 2007 A1
20070272763 Dunne et al. Nov 2007 A1
20070298116 Bechtold-Peters et al. Dec 2007 A1
20080017192 Southby et al. Jan 2008 A1
20080029085 Lawrence et al. Feb 2008 A1
20080060640 Waldner et al. Mar 2008 A1
20080083408 Hodson et al. Apr 2008 A1
20080092885 von Schuckmann Apr 2008 A1
20080156321 Bowman et al. Jul 2008 A1
20080163869 Nobutani et al. Jul 2008 A1
20080197045 Metzger et al. Aug 2008 A1
20080249459 Godfrey et al. Oct 2008 A1
20080264412 Meyer et al. Oct 2008 A1
20080265198 Warby Oct 2008 A1
20080283553 Cox et al. Nov 2008 A1
20080299049 Stangl Dec 2008 A1
20080308580 Gaydos et al. Dec 2008 A1
20090032427 Cheu et al. Feb 2009 A1
20090060764 Mitzlaff et al. Mar 2009 A1
20090075990 Schmidt Mar 2009 A1
20090114215 Boeck et al. May 2009 A1
20090166379 Wright et al. Jul 2009 A1
20090170839 Schmidt Jul 2009 A1
20090185983 Freund et al. Jul 2009 A1
20090197841 Kreher et al. Aug 2009 A1
20090202447 Kreher et al. Aug 2009 A1
20090211576 Lehtonen et al. Aug 2009 A1
20090221626 Schmidt Sep 2009 A1
20090235924 Holakovsky et al. Sep 2009 A1
20090272664 Marshall et al. Nov 2009 A1
20090293870 Brunnberg et al. Dec 2009 A1
20090306065 Schmidt Dec 2009 A1
20090308772 Abrams Dec 2009 A1
20090314287 Spallek et al. Dec 2009 A1
20090317337 Schmidt Dec 2009 A1
20100012120 Herder et al. Jan 2010 A1
20100018524 Jinks et al. Jan 2010 A1
20100018997 Faneca Llesera Jan 2010 A1
20100044393 Moretti Feb 2010 A1
20100056559 Schmelzer et al. Mar 2010 A1
20100084531 Schuchman Apr 2010 A1
20100095957 Corbacho Apr 2010 A1
20100144784 Schmelzer et al. Jun 2010 A1
20100168710 Braithwaite Jul 2010 A1
20100237102 Margheritis Sep 2010 A1
20100242557 Spreitzer et al. Sep 2010 A1
20100242954 Hahn et al. Sep 2010 A1
20100313884 Elliman Dec 2010 A1
20100331765 Sullivan et al. Dec 2010 A1
20110005517 Boeck et al. Jan 2011 A1
20110041842 Bradshaw et al. Feb 2011 A1
20110168175 Dunne et al. Jul 2011 A1
20110239594 Nottingham et al. Oct 2011 A1
20110240679 Langlos Oct 2011 A1
20110245780 Helmer et al. Oct 2011 A1
20110268668 Lamche et al. Nov 2011 A1
20110277753 Dunne et al. Nov 2011 A1
20110290239 Bach et al. Dec 2011 A1
20110290242 Bach et al. Dec 2011 A1
20110290243 Bach et al. Dec 2011 A1
20120090603 Dunne et al. Apr 2012 A1
20120132199 Kiesewetter May 2012 A1
20120138049 Wachtel Jun 2012 A1
20120138713 Schuy et al. Jun 2012 A1
20120260913 Bach et al. Oct 2012 A1
20120325204 Holakovsky et al. Dec 2012 A1
20130012908 Yeung Jan 2013 A1
20130056888 Holakovsky et al. Mar 2013 A1
20130125880 Holakovsky et al. May 2013 A1
20130125881 Holakovsky et al. May 2013 A1
20130126389 Holakovsky et al. May 2013 A1
20130206136 Herrmann Aug 2013 A1
20130269687 Besseler et al. Oct 2013 A1
20140121234 Kreher et al. May 2014 A1
20140190472 Holakovsky et al. Jul 2014 A1
20140228397 Schmelzer et al. Aug 2014 A1
20140331994 Holakovsky et al. Nov 2014 A1
20150040890 Besseler et al. Feb 2015 A1
20150040893 Besseler et al. Feb 2015 A1
20150041558 Besseler et al. Feb 2015 A1
20150114387 Bach et al. Apr 2015 A1
20150122247 Besseler et al. May 2015 A1
20150258021 Kreher et al. Sep 2015 A1
20150306087 Schmelzer et al. Oct 2015 A1
20150320947 Eicher et al. Nov 2015 A1
20150320948 Eicher et al. Nov 2015 A1
20160095992 Wachtel Apr 2016 A1
Foreign Referenced Citations (314)
Number Date Country
2005201364 Jul 2006 AU
1094549 Jan 1981 CA
2233981 Apr 1997 CA
2237853 Jun 1997 CA
2251828 Oct 1997 CA
2275392 Jul 1998 CA
2297174 Feb 1999 CA
2343123 Apr 2000 CA
2434872 Aug 2002 CA
2497059 Mar 2004 CA
2497680 Mar 2004 CA
2513167 Oct 2004 CA
2557020 Sep 2005 CA
2653183 Dec 2007 CA
2653422 Dec 2007 CA
1125426 Jun 1996 CN
1849174 Oct 2006 CN
101247897 Aug 2008 CN
1653651 Jul 1971 DE
2754100 Jun 1978 DE
4117078 Nov 1992 DE
19625027 Jan 1997 DE
19615422 Nov 1997 DE
19653969 Jun 1998 DE
19902844 Nov 1999 DE
10007591 Nov 2000 DE
10104367 Aug 2002 DE
10300983 Jul 2004 DE
102004031673 Jan 2006 DE
202006017793 Jan 2007 DE
01102006025871 Dec 2007 DE
83175 Jul 1957 DK
140801 Nov 1979 DK
0018609 Nov 1980 EP
0289332 Nov 1988 EP
0289336 Nov 1988 EP
0354507 Feb 1990 EP
0364235 Apr 1990 EP
0372777 Jun 1990 EP
0386800 Sep 1990 EP
0412524 Feb 1991 EP
0505123 Sep 1992 EP
0520571 Dec 1992 EP
0622311 Nov 1994 EP
0642992 Mar 1995 EP
0679443 Nov 1995 EP
0735048 Oct 1996 EP
0811430 Mar 1997 EP
0778221 Jun 1997 EP
0845253 Jun 1998 EP
0845265 Jun 1998 EP
0860210 Aug 1998 EP
0916428 May 1999 EP
0965355 Dec 1999 EP
0970751 Jan 2000 EP
1003478 May 2000 EP
1017469 Jul 2000 EP
1025923 Aug 2000 EP
1068906 Jan 2001 EP
1075875 Feb 2001 EP
1092447 Apr 2001 EP
1157689 Nov 2001 EP
1211628 Jun 2002 EP
1245244 Oct 2002 EP
1312418 May 2003 EP
1375385 Jan 2004 EP
1521609 Apr 2005 EP
1535643 Jun 2005 EP
1595564 Nov 2005 EP
1595822 Nov 2005 EP
1726324 Nov 2006 EP
1736193 Dec 2006 EP
1795221 Jun 2007 EP
1813548 Aug 2007 EP
2135632 Dec 2009 EP
2262348 Nov 2006 ES
2505688 Nov 1982 FR
2604363 Apr 1988 FR
2673608 Sep 1992 FR
2756502 Jun 1998 FR
1524431 Sep 1978 GB
2081396 Feb 1982 GB
2101020 Jan 1983 GB
2279273 Jan 1995 GB
2291135 Jan 1996 GB
2332372 Jun 1999 GB
2333129 Jul 1999 GB
2347870 Sep 2000 GB
2355252 Apr 2001 GB
2398253 Aug 2004 GB
0700839.4 Jul 2008 GB
S5684246 Jul 1981 JP
H01288265 Nov 1989 JP
H0228121 Jan 1990 JP
H057246 Feb 1993 JP
H0553470 Mar 1993 JP
H06312019 Nov 1994 JP
H07118164 May 1995 JP
H07118166 May 1995 JP
07323086 Dec 1995 JP
H08277226 Oct 1996 JP
H092442 Jan 1997 JP
H0977073 Mar 1997 JP
H09315953 Dec 1997 JP
2001518428 Oct 2001 JP
2001346878 Dec 2001 JP
2002504411 Feb 2002 JP
2002235940 Aug 2002 JP
2003511212 Mar 2003 JP
2003299717 Oct 2003 JP
2004502502 Jan 2004 JP
2004097617 Apr 2004 JP
2005511210 Apr 2005 JP
2005144459 Jun 2005 JP
2007517529 Jul 2007 JP
2007245144 Sep 2007 JP
2007534379 Nov 2007 JP
2008119489 May 2008 JP
2008541808 Nov 2008 JP
2010526620 Aug 2010 JP
2010540371 Dec 2010 JP
8100674 Mar 1981 WO
8200785 Mar 1982 WO
8300288 Feb 1983 WO
8303054 Sep 1983 WO
8605419 Sep 1986 WO
8706137 Oct 1987 WO
8803419 May 1988 WO
8900889 Feb 1989 WO
8900947 Feb 1989 WO
8902279 Mar 1989 WO
8903672 May 1989 WO
8903673 May 1989 WO
8905139 Jun 1989 WO
9009780 Sep 1990 WO
9009781 Sep 1990 WO
9114468 Oct 1991 WO
9206704 Apr 1992 WO
9217231 Oct 1992 WO
9221332 Dec 1992 WO
9222286 Dec 1992 WO
9313737 Jul 1993 WO
9324164 Dec 1993 WO
9325321 Dec 1993 WO
9407607 Apr 1994 WO
9417822 Aug 1994 WO
9425371 Nov 1994 WO
9427653 Dec 1994 WO
9503034 Feb 1995 WO
9532015 Nov 1995 WO
9600050 Jan 1996 WO
9606011 Feb 1996 WO
9606581 Mar 1996 WO
9623522 Aug 1996 WO
9701329 Jan 1997 WO
9706813 Feb 1997 WO
9706842 Feb 1997 WO
9712683 Apr 1997 WO
9712687 Apr 1997 WO
9720590 Jun 1997 WO
9723208 Jul 1997 WO
9727804 Aug 1997 WO
9735562 Oct 1997 WO
9741833 Nov 1997 WO
9812511 Mar 1998 WO
9827959 Jul 1998 WO
9831346 Jul 1998 WO
9839043 Sep 1998 WO
9901227 Jan 1999 WO
9907340 Feb 1999 WO
9911563 Mar 1999 WO
9916530 Apr 1999 WO
9943571 Sep 1999 WO
9962495 Dec 1999 WO
9965464 Dec 1999 WO
0001612 Jan 2000 WO
0023037 Apr 2000 WO
0023065 Apr 2000 WO
0027543 May 2000 WO
0033965 Jun 2000 WO
0037336 Jun 2000 WO
0049988 Aug 2000 WO
0064779 Nov 2000 WO
0113885 Mar 2001 WO
0128489 Apr 2001 WO
0164182 Sep 2001 WO
0185097 Nov 2001 WO
0187392 Nov 2001 WO
0197888 Dec 2001 WO
0198175 Dec 2001 WO
0198176 Dec 2001 WO
0204054 Jan 2002 WO
0205879 Jan 2002 WO
0217988 Mar 2002 WO
0232899 Apr 2002 WO
0234411 May 2002 WO
02070141 Sep 2002 WO
02089887 Nov 2002 WO
03002045 Jan 2003 WO
03014832 Feb 2003 WO
03020253 Mar 2003 WO
03022332 Mar 2003 WO
03035030 May 2003 WO
03037159 May 2003 WO
03037259 May 2003 WO
03049786 Jun 2003 WO
03050031 Jun 2003 WO
03053350 Jul 2003 WO
03057593 Jul 2003 WO
03059547 Jul 2003 WO
03068299 Aug 2003 WO
03087097 Oct 2003 WO
03097139 Nov 2003 WO
2004019985 Mar 2004 WO
2004022052 Mar 2004 WO
2004022132 Mar 2004 WO
2004022244 Mar 2004 WO
2004024157 Mar 2004 WO
2004033954 Apr 2004 WO
2004062813 Jul 2004 WO
2004078236 Sep 2004 WO
2004089551 Oct 2004 WO
2004091704 Oct 2004 WO
2004098689 Nov 2004 WO
2004098795 Nov 2004 WO
2005000476 Jan 2005 WO
2005004844 Jan 2005 WO
2005014175 Feb 2005 WO
2005020953 Mar 2005 WO
2005030211 Apr 2005 WO
2005055976 Jun 2005 WO
2005077445 Aug 2005 WO
2005079997 Sep 2005 WO
2005080001 Sep 2005 WO
2005080002 Sep 2005 WO
2005087299 Sep 2005 WO
2005107837 Nov 2005 WO
2005109948 Nov 2005 WO
2005112892 Dec 2005 WO
2005112996 Dec 2005 WO
2005113007 Dec 2005 WO
2006011638 Feb 2006 WO
2006018392 Feb 2006 WO
2006027595 Mar 2006 WO
2006037636 Apr 2006 WO
2006037948 Apr 2006 WO
2006042297 Apr 2006 WO
2006045813 May 2006 WO
2006110080 Oct 2006 WO
2006125577 Nov 2006 WO
2006126014 Nov 2006 WO
2007011475 Jan 2007 WO
2007022898 Mar 2007 WO
2007030162 Mar 2007 WO
2007049239 May 2007 WO
2007060104 May 2007 WO
2007060105 May 2007 WO
2007060106 May 2007 WO
2007060107 May 2007 WO
2007060108 May 2007 WO
2007062721 Jun 2007 WO
2007090822 Aug 2007 WO
2007101557 Sep 2007 WO
2007128381 Nov 2007 WO
2007134965 Nov 2007 WO
2007134966 Nov 2007 WO
2007134967 Nov 2007 WO
2007134968 Nov 2007 WO
2007141201 Dec 2007 WO
2007141203 Dec 2007 WO
2008023017 Feb 2008 WO
2008047035 Apr 2008 WO
2008077623 Jul 2008 WO
2008124666 Oct 2008 WO
2008138936 Nov 2008 WO
2008146025 Dec 2008 WO
2009006137 Jan 2009 WO
2009047021 Apr 2009 WO
2009047173 Apr 2009 WO
2009050978 Apr 2009 WO
2009090245 Jul 2009 WO
2009103510 Aug 2009 WO
2009115200 Sep 2009 WO
2010005946 Jan 2010 WO
2010006870 Jan 2010 WO
2010094305 Aug 2010 WO
2010094413 Aug 2010 WO
2010112358 Oct 2010 WO
2010133294 Nov 2010 WO
2010149280 Dec 2010 WO
2011006711 Jan 2011 WO
2011064160 Jun 2011 WO
2011064163 Jun 2011 WO
2011064164 Jun 2011 WO
2011131779 Oct 2011 WO
2011154295 Dec 2011 WO
2011160932 Dec 2011 WO
2012130757 Oct 2012 WO
2012159914 Nov 2012 WO
2012160047 Nov 2012 WO
2012160052 Nov 2012 WO
2012161685 Nov 2012 WO
2012162305 Nov 2012 WO
2013017640 Feb 2013 WO
2013110601 Aug 2013 WO
2013152861 Oct 2013 WO
2013152894 Oct 2013 WO
2014111370 Jul 2014 WO
2015018901 Feb 2015 WO
2015018903 Feb 2015 WO
2015018904 Feb 2015 WO
2015169431 Nov 2015 WO
2015169732 Nov 2015 WO
199901520 Dec 1999 ZA
Non-Patent Literature Citations (50)
Entry
International Search Report, Form PCT/ISA/210, for corresponding PCT/EP2011/059088; dated Sep. 26, 2011.
“Activate”. Collins English Dictionary, London: Collins, 2000, 2 pages. [Retrieved at http://search.credoreference.com/content/entry/hcengdict/activate/0 on Jun. 12, 2014].
“Lung Cancer”. Merck Manual Home Edition, pp. 1-7. [Accessed at www.merck.com/mmhe/print/sec04/ch057/ch057a.html, on Jul. 28, 2010].
Abstract in English for DE19902844, 1999.
Abstract in English for DE4117078, 1992.
Abstract in English for EP0354507, 1990.
Abstract in English for FR2756502, 1998.
Abstract in English for JPS5684246, 1979.
Abstract in English of DE10007591, 2000.
Abstract in English of DE202006017793, 2007.
Abstract in English of FR2604363, Sep. 30, 1986.
Abstract in English of JPH0553470, 1993.
Abstract in English of JPH057246, 1993.
Abstract in English of JPH07118164, 1995.
Abstract in English of JPH07118166, 1995.
Abstract in English of JPH08277226,1996.
Abstract in English of JPH092442, 1997.
Abstract in English of JPH09315953, 1997.
Abstract in English of JPH0977073, 1997.
Abstract in English of WO199706813, 1997.
Abstract in English of WO199839043, 1998.
Abstract in English of WO2002070141, 2002.
Ackermann et al.; Quantitative Online Detection of Low-Concentrated Drugs via a SERS Microfluidic System; ChemPhysChem; 2007; vol. 8; No. 18; pp. 2665-2670.
Beasley R et al: “Preservatives in Nebulizer solutions: Risks without Benefit” Pharmacotherapy, Boston, US, Bd. 18, Nr. 1, Jan. 1998.
Beasley R et al: “Preservatives in Nebulizer solutions: Risks without Benefit” Pharmacotherapy, Boston, US, Bd. 18, Nr. 1, Jan. 1998, pp. 130-139.
Bocci et al., “Pulmonary catabolism of interferons: alveolar absorption of 125I-labeled human interferon alpha is accompanied by partial loss of biological activity”. Antiviral Research, vol. 4, 1984, pp. 211-220.
Chen, F-K et al., “A study of forming pressure in the tube-hydroforming process”. Journal of Materials Processing Technology, 192-193, 2007, p. 404-409.
China Suppliers, Shanghai Lite Chemical Technology Co., Ltd. Product details on polyvinylpyrrolidones. Obtained online by the USPTO examiner on Apr. 24, 2011.
Cras et al., “Comparison of chemical cleaning methods of glass in preparation for silanization”. Biosensors & Bioelectronics, vol. 14, 1999, pp. 683-688.
Diamond et al., “Substance P Fails to Mimic Vagally Mediated Nonadrenergic Bronchodilation”. Peptides, vol. 3, 1982, pp. 27-29.
Elwenspoek et al., “Silicon Micromachining”, Chapter 3, Mechanical Microsensors, Springer-Verlag Berlin Heidelberg, 2001, 4 pages.
English Language Abstract of EP1068906, 2001.
Fuchs et al., “Neopterin, biochemistry and clinical use as a marker for cellular immune reactions”. International Archives of Allergy and Immunology, vol. 101, No. 1, 1993, pp. 1-6, Abstract 1p.
Han et al.; Surface activation of thin silicon oxides by wet cleaning and silanization; Thin Solid Films; 2006; vol. 510; No. 1-2; pp. 175-180.
Henkel et al.; Chip modules for generation and manipulation of fluid segments for micro serial flow processes; Chemical Engineering Journal; 2004; vol. 101; pp. 439-445.
Hoffmann et al., “Mixed self-assembled monolayers (SAMs) consisting of methoxy-tri(ethylene glycol)-terminated and alkyl-terminated dimethylchlorosilanes control the non-specific adsorption of proteins at oxidic surfaces”. Journal of Colloid and Interface Science, vol. 295, 2006, pp. 427-435.
Husseini et al., “Alkyl Monolayers on Silica Surfaces Prepared Using Neat, Heated Dimethylmonochlorosilanes with Low Vapor Pressures”. Langmuir, vol. 19, 2003, pp. 5169-5171.
IP et al., “Stability of Recombinant Consensus Interferon to Air-Jet and Ultrasonic Nebulization”. Journal of Pharmaceutical Sciences, vol. 84, No. 10, Oct. 1995, pp. 1210-1214.
Jendle et al., “Intrapulmonary administration of insulin to healthy volunteers”. Journal of Internal Medicine, vol. 240, 1996, pp. 93-98.
JP2005144459—English language abstract only.
Kutchoukov et al., “Fabrication of nanofluidic devices using glass-to-glass anodic bonding” Sensors and Actuators A, vol. 114, 2004, pp. 521-527.
Lougheed et al., “Insulin Aggregation in Artificial Delivery Systems”. Diabetologia, vol. 19, 1980, pp. 1-9.
Mandal et al., “Cytophobic surface modification of microfluidic arrays for in situ parallel peptide synthesis and cell adhesion assays”. Biotechnology Progress, vol. 23, No. 4, 2007, pp. 972-978 (Author Manuscript Available in PMC, Sep. 21, 2009, 19 pages).
Niven et al., “Some Factors Associated with the Ultrasonic Nebulization of Proteins”. Pharmaceutical Research, vol. 12, No. 1, 1995, pp. 53-59.
Remington Pharmacy, Editor Alfonso R. Gennaro. 19th ed., Spanish Secondary Edition: Panamericana, Spain, 1995, Sciarra, J.J., “Aerosols”, pp. 2560-2582. The English translation is from the 1995 English Primary Edition, Sciarra, J.J., Chapter 95, R97-1185.
Trasch et al., “Performance data of refloquant Glucose in the Evaluation of Reflotron”. Clinical Chemistry, vol. 30, 1984, p. 969 (abstract only).
Wall et al., “High levels of exopeptidase activity are present in rat and canine bronchoalveolar lavage fluid”. International Journal of Pharmaceutics, vol. 97, Issue 1-3, pp. 171-181, 1993, Abstract pp. 1-2.
Wang et al.; Self-Assembled Silane Monolayers: Fabrication with Nanoscale Uniformity; Langmuir; 2005; vol. 21; No. 5; pp. 1848-1857.
Abstract in English for WO2009050978, 2009.
Abstract in English for JP2002-235940, 2001.
Related Publications (1)
Number Date Country
20130206136 A1 Aug 2013 US