The present invention relates to a nebulizer.
The starting point for the present invention is a nebulizer as illustrated in WO 2006/125577 A2. The nebulizer has, as a reservoir for fluid which is to be atomized, an insertable rigid container having an inner bag containing the fluid and a pressure generator with a drive spring for delivering and atomizing the fluid. Preferably, the container is pre-installed in the nebulizer in the delivery state. Before being used for the first time a securing member of the nebulizer has to be opened or removed so that a housing of the nebulizer can be completely closed. Thus, the pre-installed container is opened by a delivery tube piercing a sealing and a septum to fluidically connect to the inner bag of the container. By rotating a lower housing part of the housing of the nebulizer the drive spring can be put under tension and fluid can be sucked into a compression chamber of the pressure generator. Simultaneously, the container is moved into the lower housing part in a stroke movement within the nebulizer and when tensioned for the first time the container may be pierced through its base by a piercing element in the lower housing part to allow venting of the container. After manual operation of a locking element the drive spring is released and the fluid in the pressure chamber is put under pressure by the drive spring and is delivered or atomized through a nozzle into a mouthpiece as an aerosol, without the use of propellant gas.
Object of the present invention is to provide a nebulizer with optimized or facilitated handling.
According to one aspect of the present invention, the nebulizer comprises a securing member preventing fluidic connection or opening of the container in a delivery state. The container is already disposed in the nebulizer in the deli-very state, i.e. pre-installed. The securing member can be manually opened, removed, released or destroyed to allow fluidic connection or opening of the container, in particular before or for first use of the nebulizer. The securing member comprises an actuator to open, remove, release or destroy the securing member. This allows optimized and/or facilitated handling. In particular, it allows intuitive operation of the nebulizer. For example, a user will intuitively grab, tear, tilt, pull or push the actuator to open, remove, release or destroy the securing member and, then, completely close the nebulizer for using the nebulizer.
According to a further aspect of the present invention, the securing member comprises a pre-determined breaking line along which the securing member can be opened, in particular by pulling the actuator. This allows facilitated and/or optimized handling. In particular, it allows defined opening or removal of the securing member.
According to another aspect of the present invention, the securing member can be opened, released or destroyed by turning a (lower) housing part of the nebulizer relative to the housing or upper housing part of the nebulizer, i.e. by torsioning the securing member or a preferably sleeve-like body thereof. In particular, the securing member or body is opened along a pre-determined breaking line by this torsioning. This facilitates the handling.
According to a further aspect of the present invention, the securing member is made of one piece and/or such that it can be opened, removed, released or destroyed in one piece. This allows an optimized or facilitated handling.
Preferably, the nebulizer comprises a housing part that is connectable to a housing of the nebulizer in a non-detachable manner after inserting or pre-installing the container. According a further aspect of the present invention, the housing part can be pre-mounted in another position, preferably in another rotational position, on the nebulizer or its housing than in the delivery state such that the housing part can be detached for inserting the container. This pre-mounting allows to re-open the nebulizer or its housing for inserting the container. Thus, the container can be inserted or pre-installed after producing the nebulizer. This allows optimized or facilitated handling.
The above aspects of the present invention and other aspects of the present invention as described the following can be realized independently from each other or in any combination.
A basic idea of the present invention is that even in its delivered state the nebulizer has a closed container provided therein and the nebulizer is constructed so that the container is opened inside the nebulizer before or during the first use of the nebulizer. This basic idea is called in the present invention also “pre-installed container”. This makes operation easier as there is no need to open the nebulizer, insert the container and close the nebulizer. Moreover, undesirable soiling or damage to the nebulizer caused by incorrect handling of the end-user when inserting the container can thus be prevented. Accordingly, there is better operational safety as it is impossible for the container to be wrongly inserted or otherwise misused during insertion.
Preferably, the container is not replaceable and in particular cannot be removed. This again leads to easier operation and hence improved operational reliability. This also prevents the nebulizer from being used or re-used in an undesirable or unauthorized manner.
In particular, the nebulizer cannot be opened and a lower housing part cannot be removed in order to replace the empty container with a full one in an undesirable manner.
The combination of the pre-installed container and the construction which makes the container non-replaceable results in particularly easy operation and high operational reliability as the user can only use the nebulizer as a single-use item until the container is empty, and undesirable or unauthorized further use of the nebulizer is prevented by the fact that the container cannot be replaced.
However, correspondingly easy operation and improved operational reliability for the user can also be achieved if the container is pre-installed at the pharmacy, for example, i.e. by trained staff, and optionally opened at the same time provided that the container is made non-exchangeable, in particular the nebulizer cannot be opened by the user (end-user).
Further advantages, features, characteristics and aspects of the present invention will become apparent from the claims and the following description of preferred embodiments with reference to the drawings. It shows:
In the Figures, the same reference numerals have been used for identical or similar parts, resulting in corresponding or comparable properties and advantages, even if the associated description is not repeated.
When the fluid 2, preferably a liquid, more particularly a pharmaceutical composition, is nebulized, an aerosol 14 (
The nebulizer 1 is provided with or comprises an insertable container 3 containing the fluid 2. The container 3 thus forms a reservoir for the fluid 2 which is to be nebulized. Preferably, the container 3 contains an amount of fluid 2 or active substance which is sufficient to provide up to 200 dosage units, for example, i.e. to allow up to 200 sprays or applications. A typical container 3, as disclosed in WO 96/0601 1 A1, holds e.g. a volume of about 2 to 10 ml.
The container 3 is substantially cylindrical or cartridge-shaped and once the nebulizer 1 has been opened the container can be inserted therein from below and changed if desired. It is preferably of rigid construction, the fluid 2 in particular being held in a collapsible bag 4 in the container 3.
The nebulizer 1 comprises preferably a pressure generator 5 for conveying and nebulizing the fluid 2, particularly in a preset and optionally adjustable dosage amount. The pressure generator 5 comprises preferably a holder 6 for the container 3, an associated drive spring 7, only partly shown, a releasing element 8 which can be manually operated to release the spring 7, a conveying element, such as a conveying tube 9, a non-return valve 10, a pressure chamber 11 and/or an nozzle 12 for nebulizing the fluid 2 into a mouthpiece 13. The container 3 is fixed or held in the nebulizer 1 via the holder 6 such that the conveying tube 9 penetrates into the container 3. The holder 6 may be constructed so that the container 3 can be exchanged.
As the drive spring 7 is axially tensioned the holder 6 with the container 3 and the conveying tube 9 is moved downwards in the drawings and fluid 2 is sucked out of the container 3 into the pressure chamber 11 of the pressure generator 5 through the non-return valve 10. Then, the nebulizer 1 is in the so called activated or tensioned state.
During the subsequent relaxation after actuation of the releasing element 8 the fluid 2 in the pressure chamber 11 is put under pressure as the conveying tube 9 with its now closed non-return valve 10 is moved back upwards by the relaxation of the drive spring 7 and now acts as a pressing ram or piston. This pressure forces the fluid 2 through the nozzle 12, whereupon it is nebulized into the aerosol 14, as shown in
Generally, the nebulizer 1 operates with a spring pressure of 5 to 200 MPa, preferably 10 to 100 MPa on the fluid 2, with a volume of fluid 2 delivered per stroke of 10 to 50 μ, preferably 10 to 20 μ, most preferably about 15 μ. The fluid 2 is converted into or nebulized as aerosol 14 the droplets of which have an aerodynamic diameter of up to 20 μηι, preferably 3 to 10 μηι. Preferably, the generated jet spray has an angle of 20° to 160°, preferably 80° to 100°. These values also apply to the nebulizer 1 according to the teaching of the present invention as particularly preferred values.
A user (not shown) can inhale the aerosol 14, while an air supply can be sucked into the mouthpiece 13 through at least one air supply opening 15.
Preferably, the nebulizer 1 or drive spring 7 can be manually activated or tensioned. The nebulizer 1 comprises preferably an upper housing part 16 and an inner part 17 which is rotatable relative thereto (
The housing part 18 can be rotated relative to the upper housing part 16, carrying with it the part 17b of the inner part 17. As a result the drive spring 7 is tensioned in the axial direction by means of a gear or transmission (not shown) acting on the holder 6. During tensioning the container 3 is moved axially downwards until the container 3 assumes an end position as shown in
During the nebulizing process the container 3 is moved back into its original position (non-tensioned position or state shown in
The housing part 18 preferably forms a cap-like lower housing part and fits around or over a lower free end portion of the container 3. As the drive spring 7 is tensioned the container 3 moves with its end portion (further) into the housing part 18 or towards the end face thereof, while an aeration means, such as an axially acting spring 20 arranged in the housing part 18, comes in contact with base 21 of the container 3 and pierces the container 3 or a base seal thereon with a piercing element 22 when the container 3 makes contact with it for the first time, to allow air in or aeration.
The nebulizer 1 may comprise a monitoring device 23 which counts the actuations of the nebulizer 1, preferably by detecting the rotation of the inner part 17 relative to the upper part 16 of the housing. Preferably, the monitoring device 23 blocks the actuation or use of the nebulizer 1, e.g. blocks the actuation of a releasing element 8, when a certain number of actuations or discharged doses has been reached or exceeded.
A preferred construction and mode of operation of a proposed inhaler or nebulizer 1 will now be described in more detail with reference to
Preferably, the container 3 is pre-installed. This can be realized in particular as shown in WO 2006/125577 A2 or as described in the following.
The container 3 is already mounted or pre-installed in the nebulizer 1 in the delivery state, as shown in
The container 3 comprises a fluid outlet 24 for outputting the fluid 2 to be dispensed. In particular, the fluid outlet 24 allows a fluidic connection between the container 3 or its bag 4 on one hand and the nebulizer 1, its pressure generator 5 or the conveying element on the other hand.
In the non-installed state of the container 3, i.e. before mounting or pre-installation of the container 3 in the nebulizer 1, the fluid outlet 24 is closed by a first or inner closure 25 and optionally by a second or outer closure 26. In particular, the second closure 26 covers the first closure 25.
The first or inner closure 25 is preferably formed by a septum, a membrane, a plastic seal or the like and/or is provided inside the container 3.
In the preferred embodiment, the second closure 26 is preferably formed by a seal, a foil, a cap or the like, in particular by a metallic and/or composite foil or the like, which is preferably hot-sealed or attached in any other suitable manner on or to a head end or axial end of the container 3. In the shown embodiment, the second closure 26 is formed preferably by a hot-sealed foil with an aluminum layer.
Preferably, the closures 25 and 26 are designed such that separate opening is possible, in particular such that the second closure 26 can be opened indepen-dently from the first closure 25 and/or has to be opened before the first closure 25.
Preferably, the closures 25 and 26 are designed such that successive opening is possible by means of one common element, in particular the conveying element or conveying tube 9 or the like, and/or by piercing.
In the preferred embodiment, the first closure 25 and second closure 26 are arranged one after the other and/or spaced in axial direction or direction of the stroke movement of the container 3 or with respect to the main outlet direction of the fluid 2.
Preferably, the first or inner closure 25 is formed or supported by a closure part 27 extending from the outlet or head end of the container 3 into the container 3 or bag 4. The second or outer closure 26 is preferably located adjacent to the head or axial end of the container 3 and/or held or connected to a flange 28, which can be formed by the closure part 27 or any other suitable part. However, other constructional solutions are possible.
In the delivery state according to
Generally, the container 3, fluid outlet 24 or closures 25 or 26 are opened in particular by means of a conveying element, such as the conveying tube 9, or the like and/or by piercing or in any other suitable manner. In particular, the opening is achieved by moving the container 3 relative to the nebulizer 1 or conveying element or tube 9 or the like and/or by movement in longitudinal or axial direction.
According to the present invention, the second closure 26 is already opened in the delivery state, preferably automatically by the nebulizer 1. In particular, the second closure 26 is opened during or by or when inserting the container 3 and/or during, by or when—preferably partly—closing the housing or housing part 18 of the nebulizer 1. Preferably, the first closure 25 is designed such that, when the conveying element pierces or opens the first closure 25, such as a septum, any material may not fall into the fluid 2, but will stay connected to the closure part 27 or the like and/or will be pivoted aside.
In particular, the container 3 is attached to or held by or secured in the housing part 18, in particular by a transportation lock 29, which is preferably arranged within or at the housing part 18. The transportation lock 29 holds the container 3 preferably temporarily, in particular before attaching the housing part 18 to the nebulizer 1 and/or in the delivery state. In particular, the transportation lock 29 holds the container fixed during the fluidic connection of container 3 and/or during the mechanic of container 3, here with holder 6.
Preferably, the second closure 26 is automatically opened, in particular pierced, when pre-installing the container 3 and/or attaching the housing part 18 to the nebulizer 1, in particular when snapping or pushing the housing part 18 partly on the nebulizer 1. Then, the opening or piercing is effected in the preferred embodiment by the conveying element or conveying tube 9 which extends in the delivery state through the second closure 26 and in particular into the closure part 27, i.e. partly into the container 3. Thus, a very compact arrangement and a small size or axial extension of the nebulizer 1 can be achieved in the delivery state. In particular, the housing part 18 can be snapped or pushed on or inserted into the nebulizer 1 or its housing in the delivery state significantly further than in case of the prior art.
In the delivery state, the first closure 25 and, thus the container 3 and the fluid outlet 24 remain closed.
In the delivery state, the nebulizer 1 or the housing part 18 is preferably secured, in particular by means of a securing means or member 30, such that the container 3 and/or housing part 18 are held sufficiently spaced from the nebulizer 1 or upper housing part 16 and/or prevented from being completely inserted or pushed on the conveying element or tube 9, the housing or inner housing part 17 or the like and/or such that (complete) opening of the container 3, namely of the first closure 25, is prevented.
In the shown embodiment, the securing means or member 30 is preferably mounted between the housing part 18 and the upper housing part 16 and preferably engages with or between the housing parts 16 and 18, so that the housing part or lower part 18 is axially secured or is kept or held sufficiently away or spaced from the upper housing part 16 to be able to hold the (still) closed container 3 or first closure 25 away from the conveying tube 9.
In the preferred embodiment, the securing member 30 is at least substantially hollow and/or cylindrical and is disposed axially between the (lower) housing part 18 and the upper housing part 16. To activate the nebulizer 1 or prepare its for use, i.e. to push the housing part 18 fully on in the axial direction and thereby open the container 3, the securing member 30 first has to be removed or released or opened.
In the shown preferred embodiment, the securing member 30 is constructed in the manner of a banderole or the like, made of plastics, for example, and/or can be manually opened, removed or destroyed. The securing member 30 may alternatively or simultaneously form or constitute a seal of origin. However, other embodiments of the securing member 30 are also possible, e.g. in the form of a security tag or the like.
The securing member 30 can be made of any suitable material, in particular of plastics, any composite or the like. Further, the securing member 30 can be made of paper, in particular like a paper sleeve as shown in
Further, examples will be explained later.
Preferably, the container 3 and/or housing part 18 are held positively or in a form-fit or interlocking manner in the delivery state. This is achieved in the preferred embodiment in particular by means of the transportation lock 29 acting between the container 3 and the housing part 18, and the securing means or member 30 acting between the housing part 18 and the housing of the nebulizer 1 or the upper housing part 16 or the like. However, the transportation lock 29 or securing means or member 30 could also act directly between the container 3 on one hand and the nebulizer 1, its housing, the upper housing part 16, the inner housing part 17 or the holder 6 on the other hand.
The pre-installed container 3, i.e. its first closure 25, is still closed in the delivery state, i.e. non-activated state with pre-installed container 3. In this non-activated position, the housing part 18 is preferably secured so that it cannot be lost and, in particular, cannot be released. Then, the housing part or lower part 18 of the nebulizer 1 can no longer be detached from the nebulizer 1 after it has been (partially) axially pushed on for the first time, i.e. the nebulizer 1 cannot be opened any longer, with the result that that the container 3 cannot be changed, i.e. cannot be removed again.
In order to secure the housing part 18, it is preferably held or latched positively or in an interlocking or form-fit manner. Preferably, the housing part 18 is secured by latching means 43 particularly comprising at least one latching lug 31, protrusion, nose or the like which engages in an associated latching recess 32 in the housing part 18 or the like and, thereby, secures the housing part 18 against axial removal by interlocking engagement. In the present embodiment, the latching lug 31 may be formed by or at a latching arm 33 which can preferably flex. Thus, a ratchet-like—or vice versa—latching means 43 for securing the housing part 18 to the nebulizer 1 or to its housing or the upper housing part 16 is formed. However, other constructional solutions are also possible.
Once the securing member 30 has been removed a user (not shown) can push the housing part 18 fully on in the axial direction and thereby open the container 3, i.e. first closure 25, by inserting the conveying element or conveying tube 9.
In the delivery state shown in
It should be noted that the opening of the container 3 is preferably carried out exclusively by mechanical means and/or manual actuation. However, it is additionally or alternatively possible to open it in other ways, e.g. by chemical, electrical, magnetic, pneumatic, hydraulic or similar means.
The proposed nebulizer 1 is activated after the removal of the securing member 30 and (total) axial pushing on of the housing part 18 and can be used in the same way as the nebulizer 1 shown in
As preferably the container 3 cannot then be removed, especially because the nebulizer 1 cannot be opened and the housing part 18 cannot be removed again, undesirable replacement of the container 3 by the user and in particular undesirable interim or subsequent opening of the nebulizer 1 by the user can be prevented.
To prevent unwanted opening of the container 3, particularly of the first closure 25, in the delivery state of the nebulizer 1, preferably the transportation lock 29 is provided. By frictional, forcible or interlocking engagement, for example, the transportation lock 29 prevents the container 3 from undesirably moving axially in the nebulizer 1, e.g. during transportation, in the event of accidental dropping of the nebulizer 1 or the like.
In the following, a preferred realization of the transportation lock 29 will be explained. It has to be noted that the transportation lock 29 can be realized independently from the preferred partial opening or piercing of the container 3 in the delivery state, in particular namely opening of the second closure 26. In particular, the proposed function and construction of the transportation lock 29 can be realized independently from the features of the present claims.
In the preferred embodiment, the transportation lock 29 comprises at least one gripping arm 35, preferably a plurality of gripping arms 35, for axially holding the container 3 in the delivery state, in particular by (radially) engaging around its preferably radially expanded base 21 or edge 36, as shown in
The gripping arms 35 are preferably held or formed by or attached to or molded unitary with a member 37 which may form the bottom or base or end face of the housing part 18. Preferably, the member 37 or bottom holds the gripping arms 35 such that the arms 35 can flex or pivot.
Preferably, the piercing element 22 is also formed by or held by the member 37.
It has to be noted that the member 37 and/or the transportation lock 29 may be inserted into the housing part 18. The transportation lock 29 or part thereof can also be formed by or in the housing part 18.
Preferably, the transportation lock 29 is formed by multiple or only two different parts, here the gripping arm(s) 35 and a control member 39 as explained later.
The transportation lock 29, in particular, the gripping arms 35, are holding the container 3 in the delivery state (closed transportation lock 29) preferably such that the container base 21 or vent opening 34 are axially spaced from the piercing element 22, as shown in
To open the transportation lock 29, the gripping arms 35 may be flexed radially outwardly. Preferably, the opening of the transportation lock 29 or the flexing of the gripping arms 35 occurs automatically when closing the nebulizer 1 or its housing completely, i.e. when snapping or pushing on the housing part 18 completely towards the upper housing part 16. During this (axial or telescopic) closing movement, the transportation lock 29 is opened and the container 3 released in axial direction preferably only in a last part of the movement and/or just little before the final completely closed position is reached or just when the final completely closed position is reached.
The closing movement of the nebulizer 1 opens the transportation lock 29 preferably automatically. In particular, the transportation lock 29 is opened by the direct or indirect interaction with or actuation by the housing of the nebulizer 1, the inner part 17 or its lower part 17b, a holding ring 38 bearing the spring 7 or the like. Preferably, the container 3 and/or first closure 25 are opened as well as the transportation lock 29 by means of a common actuation, here the closing movement of the nebulizer 1 or its housing or bottom part 18.
In the preferred embodiment, the transportation lock 29 comprises a control member 39, in particular a ring or the like, for actuating or opening or engaging with or pivoting preferably all gripping arms 35 simultaneously. In particular, the control member 39 or transportation lock 29 may convert a linear or axial movement into a pivot or radial movement of the gripping arms 35.
The control member 39 is shown in an upper position in
The control member 39 is axially moveable or shiftable in order to open the transportation lock 29. In particular, the control member 39 may be moved downwardly when completely closing the nebulizer 1 or its housing or completely pushing or snapping on the housing part 18. Preferably, the inner part 17 or ring 38 pushes the control member 39 downwardly or relatively to the gripping arms 35 so that the gripping arms 35 are released and, in particular, actively or positively opened or pivoted or flexed to open the transportation lock 29 and/or to release the container 3. In the shown embodiment, the control member 39 interacts with its axial end or an axial color or annular ring portion 40 with actuating portions 41 of the gripping arms 35 such that axially downward movement of the actuating portions 41 results in pivotation of the gripping arms 35 and radially outward flexing of the gripping arms 35. The flex characteristics of the gripping arms 35 depend on the used material, on the connection with member 37 and the like.
The control member 39 preferably opens the transportation lock 29 or gripping arms 35 positively.
However, other constructional solutions of the transportation lock 29 are possible. In this regard, reference is made in particular to WO 2006/125577 A2 which shows some other constructional solutions, which can be realized as well.
Preferably, in the non-activated state, i.e. when the housing part 18 has not been pushed on fully, the nebulizer 1 may be locked to prevent tensioning of the pressure generator 5, i.e. in particular to prevent rotation of the inner part 17 relative to the upper housing part 16. This may be important when the nebulizer 1 is supplied in the delivery state with the pressure generator 5 not under tension. Accordingly, the inhaler 1 may have a barrier, so that the inner part 17 can only be rotated relative to the upper housing part 16 when the housing part 18 has been pushed fully on.
Alternatively or additionally, the securing member 30 may block not only pushing on of the bottom part 18 in the delivery state, but also any rotation of the inner part 17 until the securing member 30 has been opened, released or removed.
Generally, it should be pointed out that in the proposed nebulizer 1 the container 3 can preferably be inserted, i.e. incorporated in the nebulizer 1. Consequently, the container 3 is preferably a separate component. However, the container 3 may theoretically be formed directly by the nebulizer 1 or part of the nebulizer 1 or may otherwise be integrated in the nebulizer 1.
In the shown embodiment, the latching means 43 comprises multiple, here two latching lugs 31 engaging into associated latching recesses 32.
The latching arms 33 and/or latching lugs 31 are preferably formed at or by the inner part 17, in particular the lower part 17b. The latching recesses 32 are preferably formed at or by the housing part 18 which can be closed to cover the inserted container 3. However, the construction could also be vice versa or realized in any other suitable manner.
In the shown embodiment, the latching means 43 or housing part 18 comprises a first undercut or shoulder 44 associated to the respective latching recess 32 so that the engaging or abutting latching lug 31 holds the housing part 18 in a non-detachable or inseparable manner in the delivery state as shown in
The latching means 43 forms or enables preferably a second form-fit engagement or holding of the housing part 18 in the activated state. This is realized in the shown embodiment in that the latching lugs 31 engage into further latching recesses 45 and/or behind second undercuts or shoulders 46 as shown in
It has to be noted that the latching means 43 can be realized e.g. with only one latching lug 31, protrusion, nose, locking element or the like if desired. In this case, the above description applies preferably as well or in a similar manner.
According to a preferred aspect, the housing part 18 may be pre-mounted to the nebulizer 1, its housing or to the inner part 17 without container 3 so that the nebulizer 1, its housing or the housing part 18 can be opened again, i.e. so that the latching means 43 does not prevent opening, for later inserting or pre-installing the container 3, in particular at another factory or at a pharmacy or the like. This pre-mounting of the housing part 18 is preferably achieved in that the housing part 18 is mounted in another position, preferably another ro-tational position, on the nebulizer 1, in particular the inner part 17 of lower part 17b.
The housing part 18 and the housing or inner part 17/17b of the nebulizer 1 are adapted to each other such that the housing part 18 can be pushed onto the part 17/17b in two different rotational positions, in the present embodiment in two positions offset by 180°. For this purpose, the housing part 18 may have at least one indention 48 or any other deformation or non-circular inner cross-section, in the shown embodiment it has two indentions 49 on opposite sites, corresponding or cooperating with a respective complementary form, in the shown embodiment with the monitoring device 23 of the inner part 17/lower part 17b. However, other constructional solutions are possible.
The at least one latching lug 31 on one hand and the at least one latching recess 32 and the at least one groove 47 on the other hand are distributed over the circumference such that the at least one latching lug 31 engages only into the respective groove 47 in the pre-mounted state of the housing part 18 and into the respective latching recess 32/45 in the other/rotational state (delivery state or activate state), i.e. in the usual mounting position, of the housing part 18. Preferably, the two latching lugs 31 are not positioned directly opposite to each other on the circumference of part 17/17b, but offset. Accordingly, the schematic sections according to
For assembly and pre-installing the container 3, the securing member 30 is mounted onto inner part 17/lower part 17b and, the housing part 18 including the pre-installed container 3 (the container 3 is held within the housing part 18 by the closed transportation lock 29) is pushed onto inner part 17/lower part 17b, in particular until the securing member 30 is reached and/or the first engagement of the latching means 43 is reached. Thus, the housing part 18 is connected to the nebulizer 1 or its housing or to the inner part 17 or housing part 16 in a non-detachable manner. With other words, the nebulizer 1 can not be opened any more, the container 3 can not be removed or replaced any more.
The securing member 30 can be manually opened, removed, released or destroyed to allow complete closing of the housing or nebulizer 1, i.e. to push the housing part 18 completely on the inner part 17, to reach the activated state, i.e. to allow fluidic connection or opening of the container 3.
Preferably, the securing member 30 comprises an actuator 50 to open, remove, release or destroy the securing member 30. The actuator 50 is preferably non-detachable from the securing member 30. Preferably, the securing member 30 is made as one piece, in particular integrally with the actuator 50.
Preferably, the securing member 30 is made of plastics. However, the securing member 30 can be made of any other suitable material or from different materials. In particular, the securing member 30 is molded.
The securing member 30 comprises preferably a body 51. The securing member 30 or body 51 is preferably hollow and/or preferably forms a sleeve, ring, loop, banderole, or the like. In particular, it forms a closed sleeve or ring.
In the shown embodiment, the actuator 50 may form part of the circumferential wall, ring or sleeve formed by the body 51.
The actuator 50 is preferably inseparable from the securing member 30 or body 51 even if the securing member 30 is opened, removed, released or destroyed to allow fluidic connection opening of the container 3 and/or to allow entering of the activated state.
The securing member 30 or body 51 preferably comprises engagement means, such as at least one stop 52, protruding radially inwardly and/or engaging between the housing part 18 on one hand and the nebulizer 1, its housing, the upper housing part 16 or the ring 38 on the other hand, in particular to form an axial stop or abutment for the housing part 18 in the delivery state against movement into the activated state. In the present embodiment, the engagement means are preferably formed by ribs or protrusions extending in particular axially and protruding radially inwardly. Preferably, the engagement means are and/or covered and/or formed by the body 51. However, other constructional solutions are possible as well.
In the following, the term “to open the securing member” or similar formulations shall include that the securing member 30 is removed, release, destroyed or the like.
To open the securing member 30, a user (not shown) pulls, tears, pivots, tilts, pushes, presses and/or removes the actuator 50. For this purpose, the actuator 50 may form or may be formed by a handhold 53, grip, lever, tag, flap, ring, clip or the like as shown in some examples in the further figures.
The securing member 30 or body 51 comprises preferably at least one predetermined breaking line 54 in order to facilitate opening and/or to ensure a defined opening. For example, the breaking line 54 may extend along and/or adjacent to the actuator 50 and/or on both or opposite sides of the actuator 50.
The breaking line 54 can be defined or pre-formed in particular by respective thinning of the material, a respective perforation or the like, in particular of the body 51.
In the shown embodiment, the breaking line 54 extends at least essentially in axial direction (the term “axial direction” means generally at least essentially parallel to the longitudinal or central axis or rotational axis of the nebulizer 1 and/or to the main dispensing direction of the aerosol 14/nebulizer 1).
Preferably, the securing member 30 locks the housing part 18 against rotation. This can be achieved in that the securing member 30 engages with the nebulizer 1 or upper housing part 16 and with the lower housing part 18 respectively in a form-fit manner, e.g. by axial engagement and/or by at least partially covering the preferably non-circular outer contour of the respective parts 16/18. However, other constructional solutions are possible as well.
After pulling the actuator 50, the securing member 30 or body 51 is open, preferably along at least one breaking line 54, so that the closed ring, sleeve or banderole of the securing member 30/body 51 is open and can be detached from the nebulizer 1 in particular by respective moving or flexing the free ends of the body 51 away from each other. Thus, the securing member 30 can be detached from the nebulizer 1. This allows to push the housing part 18 onto the inner part 17, i.e. towards the upper housing part 16, so that the container 3 is fluidically opened or connected and the housing of the nebulizer 1 is completely closed.
It has to be noted that the securing means 30 or the body 51 is preferably sufficiently flexible such when the actuator 50 has been pulled and the securing means 30 has been opened, the body 51 can be detached from the nebulizer 1.
In the present embodiment, the actuator 50 is directed to or points towards the housing part 18 and/or away from the mouthpiece 13 and/or essentially in axial direction.
In the following, further embodiments of the securing member 30 are explained with reference to the further figures, wherein only major differences are discussed or emphasized. The previous explanations and description of the previous embodiment and of the further embodiments apply preferably in addition or in a similar manner, even if not repeated.
The actuator 50 extends essentially in axial direction and/or towards the dispensing and/or mouthpiece 13 of the nebulizer 1.
The securing means 30 comprises in this embodiment preferably only one breaking line 54.
The breaking line 54 is essentially continuously curved and, for example, at least from an essentially axial extension at the upper circumference of the body 51 to an at least essentially circumferential direction at the lower circumference of the body 51.
The actuator 50 comprises preferably a portion 55 connecting the handhold 53, grip, lever, tag, flap, ring, clip or the like with the body 51. This portion 55 is preferably stem-like and/or flexible.
In this embodiment, the breaking line 54 extends more or less helically around the body 51.
In this embodiment, the breaking line 54 runs at least essentially in axial direction.
In this embodiment, the actuator 50 is at essentially strip-like and/or broadens towards its free end.
Further, the actuator 50 continues essentially the curvature of the breaking line 54. The actuator 50 or its portion 55 and the breaking line 54 extend essentially along a half circle.
The opening of the securing member 30 or actuator 50 is schematically indicated by the arrow shown in
The body 51 is formed preferably in one piece. The body 51 can comprise or form two parts or halves 51a and 51b which can be connected via a pivotal joint or hinge 51c, such as a living hinge. In this case, the parts or halves 51a and 51b may be relatively stiff or rigid. To open the body 51, the two parts or halves 51a and 51b are pivoted away from each other around the hinge 51c. This is possible after actuating the actuator 50, in particular after opening or breaking the body 51 along the breaking line 54.
It has to be noted that the concept of two parts or halves 51a and 51b connected by a pivotal connection or hinge 51c can be used in any other embodiment as well. Further, the two parts or halves 51a and 51b may be formed as separate parts and connected via any other type of joint or hinge 51c.
It has to be noted that the body 51 forms or comprises preferably an at least essentially closed and/or smooth surface over the circumference. However, other designs and constructions are possible as well.
In the present embodiment, the actuator 50 acts as a lever which is supported on one circumferential side in the upper region of the body 51 by a first connection or bearing 58 and on the other circumferential side in a lower region of the body 51 by a second connection or bearing 59. The connections or bearings 58, 59 are axially offset. When the actuator 50 is operated or tilted, the adjacent parts of the body 51 are moved away from each other. Thus, the diameter of the body 51 is increased and the securing member 30 can be disengaged and moved over the housing part 18 in order to detach the securing member 30 from the nebulizer 1.
The breaking line 54 extends preferably at least essentially along a helical line of the body 51. However, the breaking line 54 can follow other courses or paths.
In the present embodiment, the actuator 50 or its handhold 53 is pulled at least essentially in circumferential or tangential direction and/or around the body 51 to open the securing member 30.
The securing member 30 comprises one or two breaking lines 54 extending at least essentially along a circumference of the body 51 with axially curved or ends or start portions 54A.
The actuator 50 is located at the side face of the nebulizer 1. The handhold 53 is ring-like preferably similar to the one shown in the embodiment according to
The securing member 30 or body 51 is opened in a similar manner as in case of the embodiment according to
In the present embodiment, the actuator 50 is basically similar to the one shown in the embodiment according to
In the embodiment according to
In the shown embodiment, the actuator 50 is designed and/or located similar as in case of the embodiment according to
It has to be noted in general that the securing member 30 or actuator 50 or its portion 55 can be provided with symbols 67, in particular such as numerals, letters, colors, codes, signs and/or instructions or the like, in particular relating to the handling or opening and/or relating to the nebulizer 1, its medicament or fluid 2 or the like. This can be realized by using a respective, preferably self-adhering plate, tag 66 or tap or the like which could be used in addition to the actuator 50 or form the actuator 50 or any other part of the securing member 30. Alternatively or additionally, such symbols, signs, instructions or the like can be formed by molding, printing or the like, in particular on any suitable surface of any component of the securing member 30.
As already mentioned, individual features, aspects and/or principles of the embodiments described may also be combined with one another as desired and may be used particularly in the known nebulizer 1 according to
Unlike freestanding equipment or the like the proposed nebulizer 1 is preferably designed to be portable and in particular is a mobile hand operated device.
The proposed solution may, however, be used not only in the nebulizers 1 specifically described here but also in other nebulizers or inhalers, e.g. powder inhalers or so-called metered dose inhalers.
Preferably, the fluid 2 is a liquid, as already mentioned, especially an aqueous pharmaceutical formulation. However, it may also be some other pharmaceutical formulation, a suspension or the like.
According to an alternative embodiment the fluid 2 may also comprise particles or powder. In this case, instead of the expulsion nozzle 12, some other kind of supply device may be provided, especially an expulsion opening (not shown) or a supply channel (not shown) for supplying the fluid to or powder or the like into the mouthpiece 13. The optional air supply opening 15 then serves to supply ambient air preferably in parallel so as to general or allow an airflow with a sufficient volume for breathing in or inhaling through the mouthpiece 13.
If necessary the fluid 2 may also be atomized by means of a propellant gas.
Preferred ingredients and/or formulations of the preferably medicinal fluid 2 are listed in particular in WO 2009/047173 A2 which is incorporated herewith by reference. As already stated, these may be aqueous or non-aqueous solu-tions, mixtures, formulations containing ethanol or free from solvent, or the like.
In the following, a further, preferred embodiment of the inhaler or nebulizer 1 according to the present invention will be described in detail with reference to
The nebulizer 1 or its housing comprises a securing means 135 for holding the container 3 such that the container 3 is moveable back and forth for the conveying of the fluid 2, pressure generation and/or nebulization, but is inseparable from the housing or housing part 18, and/or such that the container 3 is unmoveably held in the delivery state of the nebulizer 1.
The securing means 135 is located or arranged preferably at or in the housing part 18 as shown in
Preferably, the securing means 135 comprises or consists of a metal and/or stamping part and/or consists of a single, unitary part as shown in
Preferably, the securing means 135 is made of steel, in particular spring steel.
Preferably, the securing means 135 is produced from sheet material by cutting, stamping or the like and/or by bending.
Preferably, the securing means 135 or the part forms a cage, in particular, encompasses the container 3 or an end portion thereof.
Preferably, the securing means 135 comprises holding elements 136 and/or locking elements 137. The elements 136 and 137 are preferably designed like arms, fingers leaves or the like. In particular, the elements 136, 137 are alternately distributed over a circumference of the container 3 and/or extend at least essentially axially or in the direction of the back and forth movement of the container 3.
Preferably, the elements 136 and 137 are held by or connected with a base 138 of the securing means 135.
Preferably, the securing means 135 or base 138 comprises or holds the piercing element 22 for piercing the container 3, i.e. opening the container base 21 or its venting hole 134 in the activated and tensioned state, i.e. when the container 3 reaches its lower end position. In the shown embodiment, the piercing element 22 is formed by a respective bending of a spring portion 139 of the securing means 135 or its base 138. The spring portion 139 can support or facilitate the (complete or final) connection of the container 3 to holder 6.
The securing means 135 or base 138 comprises preferably at least one or multiple fixing portions 140 for fixing the securing means 135 at or in the nebulizer 1 or housing or housing part 18. In particular, the fixing portions 140 may fix the securing means 135 when the securing means 135 is pressed into the housing part 18 by cooperating with the side wall of the housing part 18. However, it is also possible to overmold the securing means 135, its base 138, the fixing portions 140 or the like. Moreover, the securing means 135 could be connected with the housing part 18 or the like in any other suitable manner.
Preferably, the securing means 135 does not only prevent the separation of the container 3 from the nebulizer 1, its housing or housing part 18, but also forms the transportation lock 129 for holding the container 3 unmovable in the housing in the delivery state of the nebulizer 1.
In the shown embodiment, the container end or edge 141 is caught between end portions 136a and 137a of the elements 136 and 137. The holding elements 136 grip or extend over the edge 141 and the locking elements 137 or its end portions 137a grip or extend under the edge 141 or container base 21 so that the edge 141 and container 3 are securely held preventing any axial movement of the container 3 relative to the securing means 135 and relative to the associated housing part 18 in this state, i.e. with locked securing means 135/transportation lock 129.
The holding element 136 and the locking elements 137 are distributed alterna-tingly around the container 3 or edge 141.
Preferably, the end portions 136a of the holding elements 136 end in a first radial plane and the end portions 137a of the locking elements 137 end in another, second radial plane, wherein the two planes are axially offset to hold the edge 141 in between and/or wherein the second plane is located axially between the first plane and the lower end position of the container 3 or the lower end of the housing part 18 or the piercing element 22. Additionally or alternatively, the end portions 136a end on another radius (outer radius) than the end portions 137a and/or are axially spaced therefrom.
The end portions 136a and/or 137a are preferably form like claws or the like and/or extend preferably radially inwardly.
Preferably, the elements 136 and/or 137 can flex with its free ends radially outwardly.
For example, the ends of the end portions 136a may be inclined such that the container 3 may be inserted into or connected with the securing means 135 by a respective axial force so that the holding elements 136 flex outwardly to allow passing of edge 141. However, the holding elements 136 can be flexed outwardly also by a suitable tool (not shown) or the like when the container 3 is inserted, in particular with its edge 141, into the securing means 135.
Preferably, the holding elements 136 prevent separation of the container 3 from the securing means 135 and, thus, from the associated housing part 18 or the like.
The locking elements 137 or its end portions 137a can be flexed radially outwardly in order to open the axial holding or transportation lock 129 (this will be explained in detail with reference to
In the present embodiment, the locking elements 137 comprise actuation portions 137b (preferably formed at the free ends and/or between adjacent end portions 137a). Preferably, the actuation portions 137b form axial extensions which may be radially offset. The actuation portion 137b cooperate with an associated control member 142 or multiple control members 142 of the nebulizer 1 such that the locking elements 137 are flexed radially outwardly when (completely) closing the housing to open the transportation lock 129 (here primarily formed by the locking elements 137 or its end portions 137a).
The control member 142 is preferably formed as an axial protrusion. It can be formed by or at a ring 143 or any other bearing means of the nebulizer 1 for counter-bearing the drive spring 7 in the inner part 17 or by or at any other suitable component if the nebulizer such as the inner part 17.
The control member 142 may be formed like an axial protruding ring or shoulder or ridge which extends along the ring 143.
The control member 142 may additionally secure the holding elements 136 against axial opening when the housing is completely closed as schematically shown in
In the present embodiment, the securing means 135 has multiple functions. It holds the container 3 (in the activated state/with completely closed housing) such that it can move back and forth, in particular during conveying of the fluid 2, during pressure generation and/or during nebulization, wherein the container 3 is inseparable from the housing or the housing part 18. Further, the securing means 135 forms the transportation lock 129 and/or holds the container 3 unmovable in the delivery state of the nebulizer 1. Additionally or al-ternatively, the securing means 135 comprises an opening means, here the piercing element 22, for opening the venting hole 134 of the container 3.
Preferably, the securing means 135 forms a cage which cannot be separated from the container 3 after connecting it with the container 3.
The transportation lock 129 and the locking elements 137 are kept opened during the normal use of the nebulizer 1, in particular as long as the housing is (completely) closed. When the housing is opened, i.e. the housing part 18 is detached, the control member 142 may disengage from the actuation portions 137b so that the locking element 137 can close or flex inwardly again. Then, the locking elements 137 may grip with its end portions 137a over the edge 141 of the container 3 such that an additional lock is formed which prevents that the container 3 can be separated from the securing means 135/housing part 18.
The securing means 135 prevents separation of the container 3 from the housing part 18. Therefore, the container 3 can be replaced or exchanged only together with the housing part 18 if the housing part 18 can be detached from the nebulizer 1 or inner part 17 at all. However, it is also possible that the nebulizer 1 can not be opened. Then, the container 3 can not be replaced.
Number | Date | Country | Kind |
---|---|---|---|
10006584 | Jun 2010 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/059088 | 6/1/2011 | WO | 00 | 3/20/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/160932 | 12/29/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1828864 | Hopkins | Oct 1931 | A |
2015970 | Schoene | Oct 1935 | A |
2127401 | Gillican | Aug 1938 | A |
2161071 | McGrath et al. | Jun 1939 | A |
2321428 | Schloz | Jun 1943 | A |
2329311 | Waters | Sep 1943 | A |
2362103 | Smith | Nov 1944 | A |
2651303 | Johnson et al. | Sep 1953 | A |
2720969 | Kendall | Oct 1955 | A |
2793776 | Lipari | May 1957 | A |
2974880 | Stewart et al. | Mar 1961 | A |
3032823 | Sherman et al. | May 1962 | A |
3157179 | Allen et al. | Nov 1964 | A |
3172568 | Modderno | Mar 1965 | A |
3196587 | Hayward et al. | Jul 1965 | A |
3223289 | Bouet | Dec 1965 | A |
3299603 | Shaw | Jan 1967 | A |
3348726 | La Cross | Oct 1967 | A |
3354883 | Southerland | Nov 1967 | A |
3425591 | Pugh, Sr. | Feb 1969 | A |
3440144 | Anderson et al. | Apr 1969 | A |
3457694 | Tatibana | Jul 1969 | A |
3491803 | Galik | Jan 1970 | A |
3502035 | Fedit | Mar 1970 | A |
3580249 | Takaoka | May 1971 | A |
3590557 | Vogel | Jul 1971 | A |
3606106 | Yuhas | Sep 1971 | A |
3632743 | Geller et al. | Jan 1972 | A |
3655096 | Easter | Apr 1972 | A |
3674060 | Ruekberg | Jul 1972 | A |
3675825 | Morane | Jul 1972 | A |
3684124 | Song | Aug 1972 | A |
3802604 | Morane et al. | Apr 1974 | A |
3817416 | Costa | Jun 1974 | A |
3820698 | Franz | Jun 1974 | A |
3842836 | Ogle | Oct 1974 | A |
3858580 | Ogle | Jan 1975 | A |
3861851 | Schiemann | Jan 1975 | A |
3870147 | Orth | Mar 1975 | A |
3924741 | Kachur et al. | Dec 1975 | A |
3933279 | Maier | Jan 1976 | A |
3946732 | Hurscham | Mar 1976 | A |
3949751 | Birch et al. | Apr 1976 | A |
3951310 | Steiman | Apr 1976 | A |
3953995 | Haswell et al. | May 1976 | A |
3973603 | Franz | Aug 1976 | A |
4012472 | Lindsey | Mar 1977 | A |
4031892 | Hurschman | Jun 1977 | A |
4036439 | Green | Jul 1977 | A |
4048997 | Raghavachari et al. | Sep 1977 | A |
4067499 | Cohen | Jan 1978 | A |
4094317 | Wasnich | Jun 1978 | A |
4120995 | Phipps et al. | Oct 1978 | A |
4126559 | Cooper | Nov 1978 | A |
4153689 | Hirai et al. | May 1979 | A |
4174035 | Wiegner | Nov 1979 | A |
4177938 | Brina | Dec 1979 | A |
4178928 | Tischlinger | Dec 1979 | A |
4195730 | Hunt | Apr 1980 | A |
4245788 | Wright | Jan 1981 | A |
4275840 | Staar | Jun 1981 | A |
4315570 | Silver et al. | Feb 1982 | A |
4338765 | Ohmori et al. | Jul 1982 | A |
4377106 | Workman et al. | Mar 1983 | A |
4434908 | French | Mar 1984 | A |
4456016 | Nowacki et al. | Jun 1984 | A |
4458821 | Ostrowsky | Jul 1984 | A |
4463867 | Nagel | Aug 1984 | A |
4467965 | Skinner | Aug 1984 | A |
4474302 | Goldberg | Oct 1984 | A |
4476116 | Anik | Oct 1984 | A |
4515586 | Mendenhall et al. | May 1985 | A |
4516967 | Kopfer | May 1985 | A |
4524888 | Tada | Jun 1985 | A |
4603794 | DeFord et al. | Aug 1986 | A |
4677975 | Edgar et al. | Jul 1987 | A |
4727985 | McNeirney et al. | Mar 1988 | A |
4749082 | Gardiner et al. | Jun 1988 | A |
4796614 | Nowacki et al. | Jan 1989 | A |
4805377 | Carter | Feb 1989 | A |
4813210 | Masuda et al. | Mar 1989 | A |
4821923 | Skorka | Apr 1989 | A |
4840017 | Miller et al. | Jun 1989 | A |
4863720 | Burghart et al. | Sep 1989 | A |
4868582 | Dreinhoff | Sep 1989 | A |
4885164 | Thurow | Dec 1989 | A |
4905450 | Hansen et al. | Mar 1990 | A |
4926613 | Hansen | May 1990 | A |
4951661 | Sladek | Aug 1990 | A |
4952310 | McMahan et al. | Aug 1990 | A |
4964540 | Katz | Oct 1990 | A |
RE33444 | Lerner | Nov 1990 | E |
4973318 | Holm et al. | Nov 1990 | A |
4979941 | Ogle, II | Dec 1990 | A |
4982875 | Pozzi et al. | Jan 1991 | A |
5014492 | Fiorini et al. | May 1991 | A |
5025957 | Ranalletta et al. | Jun 1991 | A |
5059187 | Sperry et al. | Oct 1991 | A |
5060791 | Zulauf | Oct 1991 | A |
5067655 | Farago et al. | Nov 1991 | A |
5156918 | Marks et al. | Oct 1992 | A |
5174366 | Nagakura | Dec 1992 | A |
5207217 | Cocozza et al. | May 1993 | A |
5230884 | Evans et al. | Jul 1993 | A |
5237797 | Varlet | Aug 1993 | A |
5246142 | DiPalma et al. | Sep 1993 | A |
5261565 | Drobish et al. | Nov 1993 | A |
5263842 | Fealey | Nov 1993 | A |
5271153 | Reiboldt et al. | Dec 1993 | A |
5282304 | Reiboldt et al. | Feb 1994 | A |
5282549 | Scholz et al. | Feb 1994 | A |
5284133 | Burns et al. | Feb 1994 | A |
5289948 | Moss et al. | Mar 1994 | A |
5339990 | Wilder | Aug 1994 | A |
5352196 | Haber et al. | Oct 1994 | A |
5380281 | Tomellini et al. | Jan 1995 | A |
5385140 | Smith | Jan 1995 | A |
5394866 | Ritson et al. | Mar 1995 | A |
5408994 | Wass et al. | Apr 1995 | A |
5433343 | Meshberg | Jul 1995 | A |
5435282 | Haber et al. | Jul 1995 | A |
5435884 | Simmons et al. | Jul 1995 | A |
5451569 | Wong et al. | Sep 1995 | A |
5456522 | Beach | Oct 1995 | A |
5456533 | Streiff et al. | Oct 1995 | A |
5472143 | Bartels et al. | Dec 1995 | A |
5482030 | Klein | Jan 1996 | A |
5487378 | Robertson et al. | Jan 1996 | A |
5497944 | Weston et al. | Mar 1996 | A |
5499750 | Manifold | Mar 1996 | A |
5499751 | Meyer | Mar 1996 | A |
5503869 | Van Oort | Apr 1996 | A |
5509404 | Lloyd et al. | Apr 1996 | A |
5518147 | Peterson et al. | May 1996 | A |
5533994 | Meyer | Jul 1996 | A |
5541569 | Jang | Jul 1996 | A |
5544646 | Lloyd et al. | Aug 1996 | A |
5547094 | Bartels et al. | Aug 1996 | A |
5569191 | Meyer | Oct 1996 | A |
5574006 | Yanagawa | Nov 1996 | A |
5579760 | Kohler | Dec 1996 | A |
5584285 | Salter et al. | Dec 1996 | A |
5593069 | Jinks | Jan 1997 | A |
5599297 | Chin et al. | Feb 1997 | A |
5603943 | Yanagawa | Feb 1997 | A |
5614172 | Geimer | Mar 1997 | A |
5622162 | Johansson et al. | Apr 1997 | A |
5622163 | Jewett et al. | Apr 1997 | A |
5643868 | Weiner et al. | Jul 1997 | A |
5662098 | Yoshida | Sep 1997 | A |
5662271 | Weston et al. | Sep 1997 | A |
5676930 | Jager et al. | Oct 1997 | A |
5685846 | Michaels, Jr. | Nov 1997 | A |
5697242 | Halasz et al. | Dec 1997 | A |
5709202 | Lloyd et al. | Jan 1998 | A |
5722598 | Werding | Mar 1998 | A |
5738087 | King | Apr 1998 | A |
5740967 | Simmons et al. | Apr 1998 | A |
5763396 | Weiner et al. | Jun 1998 | A |
5775321 | Alband | Jul 1998 | A |
5782345 | Guasch et al. | Jul 1998 | A |
5827262 | Neftel et al. | Oct 1998 | A |
5829435 | Rubsamen et al. | Nov 1998 | A |
5833088 | Kladders et al. | Nov 1998 | A |
5848588 | Foley et al. | Dec 1998 | A |
5868287 | Kurokawa et al. | Feb 1999 | A |
5881718 | Mortensen et al. | Mar 1999 | A |
5884620 | Gonda et al. | Mar 1999 | A |
5902298 | Niedospial, Jr. et al. | May 1999 | A |
5934272 | Lloyd et al. | Aug 1999 | A |
5935101 | Kato et al. | Aug 1999 | A |
5941244 | Yamazaki et al. | Aug 1999 | A |
5950016 | Tanaka | Sep 1999 | A |
5950403 | Yamaguchi et al. | Sep 1999 | A |
5951882 | Simmons et al. | Sep 1999 | A |
5964416 | Jaeger et al. | Oct 1999 | A |
5975370 | Durliat | Nov 1999 | A |
5997263 | Van Lintel et al. | Dec 1999 | A |
6041777 | Faithfull et al. | Mar 2000 | A |
6041969 | Parise | Mar 2000 | A |
6053368 | Geimer | Apr 2000 | A |
6062430 | Fuchs | May 2000 | A |
6098618 | Jennings et al. | Aug 2000 | A |
6109479 | Ruckdeschel | Aug 2000 | A |
6110247 | Birmingham et al. | Aug 2000 | A |
6116233 | Denyer et al. | Sep 2000 | A |
6119853 | Garrill et al. | Sep 2000 | A |
6120492 | Finch et al. | Sep 2000 | A |
6123068 | Lloyd et al. | Sep 2000 | A |
6131566 | Ashurst et al. | Oct 2000 | A |
6145703 | Opperman | Nov 2000 | A |
6149054 | Cirrillo et al. | Nov 2000 | A |
6152296 | Shih | Nov 2000 | A |
6171972 | Mehregany et al. | Jan 2001 | B1 |
6176442 | Eicher et al. | Jan 2001 | B1 |
6179118 | Garrill et al. | Jan 2001 | B1 |
6186409 | Srinath et al. | Feb 2001 | B1 |
6199766 | Fox et al. | Mar 2001 | B1 |
6223933 | Hochrainer et al. | May 2001 | B1 |
6224568 | Morimoto et al. | May 2001 | B1 |
6237589 | Denyer et al. | May 2001 | B1 |
6259654 | de la Huerga | Jul 2001 | B1 |
6267154 | Felicelli et al. | Jul 2001 | B1 |
6279786 | de Pous et al. | Aug 2001 | B1 |
6302101 | Py | Oct 2001 | B1 |
6315173 | Di Giovanni et al. | Nov 2001 | B1 |
6319943 | Joshi et al. | Nov 2001 | B1 |
6336453 | Scarrott et al. | Jan 2002 | B1 |
6341718 | Schilthuizen et al. | Jan 2002 | B1 |
6349856 | Chastel | Feb 2002 | B1 |
6352152 | Anderson et al. | Mar 2002 | B1 |
6352181 | Eberhard | Mar 2002 | B1 |
6363932 | Forchione et al. | Apr 2002 | B1 |
6375048 | van der Meer et al. | Apr 2002 | B1 |
6392962 | Wyatt | May 2002 | B1 |
6395331 | Yan et al. | May 2002 | B1 |
6401710 | Scheuch et al. | Jun 2002 | B1 |
6401987 | Oechsel et al. | Jun 2002 | B1 |
6402055 | Jaeger et al. | Jun 2002 | B1 |
6405872 | Ruther et al. | Jun 2002 | B1 |
6412659 | Kneer | Jul 2002 | B1 |
6419167 | Fuchs | Jul 2002 | B1 |
6423298 | McNamara et al. | Jul 2002 | B2 |
6427682 | Klimowicz et al. | Aug 2002 | B1 |
6446054 | Mayorga Lopez | Sep 2002 | B1 |
6457658 | Srinath et al. | Oct 2002 | B2 |
6464108 | Corba | Oct 2002 | B2 |
6481435 | Hochrainer et al. | Nov 2002 | B2 |
6491897 | Freund et al. | Dec 2002 | B1 |
6503362 | Bartels et al. | Jan 2003 | B1 |
6513519 | Gallem | Feb 2003 | B2 |
6543448 | Smith et al. | Apr 2003 | B1 |
6548647 | Dietz et al. | Apr 2003 | B2 |
6550477 | Casper et al. | Apr 2003 | B1 |
6565743 | Poirier et al. | May 2003 | B1 |
6578741 | Ritsche et al. | Jun 2003 | B2 |
6581596 | Truitt et al. | Jun 2003 | B1 |
6584976 | Japuntich et al. | Jul 2003 | B2 |
6606990 | Stapleton et al. | Aug 2003 | B2 |
6620438 | Pairet et al. | Sep 2003 | B2 |
6626309 | Jansen et al. | Sep 2003 | B1 |
6640805 | Castro et al. | Nov 2003 | B2 |
6641782 | Mauchan et al. | Nov 2003 | B1 |
6669176 | Rock | Dec 2003 | B2 |
6679254 | Rand et al. | Jan 2004 | B1 |
6685691 | Freund et al. | Feb 2004 | B1 |
6698421 | Attolini | Mar 2004 | B2 |
6706726 | Meissner et al. | Mar 2004 | B2 |
6708846 | Fuchs et al. | Mar 2004 | B1 |
6725858 | Loescher | Apr 2004 | B2 |
6729328 | Goldemann | May 2004 | B2 |
6732731 | Tseng | May 2004 | B1 |
6745763 | Webb | Jun 2004 | B2 |
6779520 | Genova et al. | Aug 2004 | B2 |
6789702 | O'Connor et al. | Sep 2004 | B2 |
6792945 | Davies et al. | Sep 2004 | B2 |
6823862 | McNaughton | Nov 2004 | B2 |
6825441 | Katooka et al. | Nov 2004 | B2 |
6846413 | Kadel et al. | Jan 2005 | B1 |
6866039 | Wright et al. | Mar 2005 | B1 |
6889690 | Crowder et al. | May 2005 | B2 |
6890517 | Drechsel et al. | May 2005 | B2 |
6915901 | Feinberg et al. | Jul 2005 | B2 |
6929004 | Bonney et al. | Aug 2005 | B1 |
6932962 | Backstrom et al. | Aug 2005 | B1 |
6942127 | Raats | Sep 2005 | B2 |
6964759 | Lewis et al. | Nov 2005 | B2 |
6977042 | Kadel et al. | Dec 2005 | B2 |
6978916 | Smith | Dec 2005 | B2 |
6986346 | Hochrainer et al. | Jan 2006 | B2 |
6988496 | Eicher et al. | Jan 2006 | B1 |
6994083 | Foley et al. | Feb 2006 | B2 |
7040311 | Hochrainer et al. | May 2006 | B2 |
7066408 | Sugimoto et al. | Jun 2006 | B2 |
7090093 | Hochrainer et al. | Aug 2006 | B2 |
7131441 | Keller et al. | Nov 2006 | B1 |
7152760 | Peabody | Dec 2006 | B1 |
7258716 | Shekarriz et al. | Aug 2007 | B2 |
7314187 | Hochrainer et al. | Jan 2008 | B2 |
7331340 | Barney | Feb 2008 | B2 |
7341208 | Peters et al. | Mar 2008 | B2 |
7380575 | Stricklin | Jun 2008 | B2 |
7417051 | Banholzer et al. | Aug 2008 | B2 |
7451876 | Bossi et al. | Nov 2008 | B2 |
7451885 | Nyman | Nov 2008 | B2 |
7470422 | Freund et al. | Dec 2008 | B2 |
7556037 | Klein | Jul 2009 | B2 |
7559597 | Mori | Jul 2009 | B2 |
7571722 | Wuttke et al. | Aug 2009 | B2 |
7579358 | Boeck et al. | Aug 2009 | B2 |
7611694 | Schmidt | Nov 2009 | B2 |
7611709 | Bassarab et al. | Nov 2009 | B2 |
7621266 | Kladders et al. | Nov 2009 | B2 |
7645383 | Kadel et al. | Jan 2010 | B2 |
7652030 | Moesgaard et al. | Jan 2010 | B2 |
7665461 | Zierenberg et al. | Feb 2010 | B2 |
7681811 | Geser et al. | Mar 2010 | B2 |
7686014 | Boehm et al. | Mar 2010 | B2 |
7717299 | Greiner-Perth | May 2010 | B2 |
7723306 | Bassarab et al. | May 2010 | B2 |
7743945 | Lu et al. | Jun 2010 | B2 |
7779838 | Hetzer et al. | Aug 2010 | B2 |
7802568 | Eicher et al. | Sep 2010 | B2 |
7819342 | Spallek et al. | Oct 2010 | B2 |
7823584 | Geser et al. | Nov 2010 | B2 |
7837235 | Geser et al. | Nov 2010 | B2 |
7849851 | Zierenberg et al. | Dec 2010 | B2 |
7896264 | Eicher et al. | Mar 2011 | B2 |
7980243 | Hochrainer | Jul 2011 | B2 |
7994188 | Disse | Aug 2011 | B2 |
8062626 | Freund et al. | Nov 2011 | B2 |
8104643 | Pruvot | Jan 2012 | B2 |
8167171 | Moretti | May 2012 | B2 |
8298622 | Nakayama et al. | Oct 2012 | B2 |
8479725 | Hausmann et al. | Jul 2013 | B2 |
8495901 | Hahn et al. | Jul 2013 | B2 |
8650840 | Holakovsky et al. | Feb 2014 | B2 |
8651338 | Leak et al. | Feb 2014 | B2 |
8656910 | Boeck et al. | Feb 2014 | B2 |
8733341 | Boeck et al. | May 2014 | B2 |
8734392 | Stadelhofer | May 2014 | B2 |
8944292 | Moreau | Feb 2015 | B2 |
8950393 | Holakovsky et al. | Feb 2015 | B2 |
8960188 | Bach et al. | Feb 2015 | B2 |
8997735 | Zierenberg et al. | Apr 2015 | B2 |
9027854 | Moser et al. | May 2015 | B2 |
9192734 | Hausmann et al. | Nov 2015 | B2 |
9238031 | Schmelzer et al. | Jan 2016 | B2 |
9744313 | Besseler et al. | Aug 2017 | B2 |
20010008632 | Freund et al. | Jul 2001 | A1 |
20010028308 | De La Huerga | Oct 2001 | A1 |
20010032643 | Hochrainer et al. | Oct 2001 | A1 |
20010035182 | Rubin et al. | Nov 2001 | A1 |
20020000225 | Schuler et al. | Jan 2002 | A1 |
20020005195 | Shick et al. | Jan 2002 | A1 |
20020007155 | Freund et al. | Jan 2002 | A1 |
20020046751 | MacRae et al. | Apr 2002 | A1 |
20020060255 | Benoist | May 2002 | A1 |
20020074429 | Hettrich et al. | Jun 2002 | A1 |
20020079285 | Jansen et al. | Jun 2002 | A1 |
20020092523 | Connelly et al. | Jul 2002 | A1 |
20020111363 | Drechsel et al. | Aug 2002 | A1 |
20020129812 | Litherland et al. | Sep 2002 | A1 |
20020130195 | Jaeger et al. | Sep 2002 | A1 |
20020137764 | Drechsel et al. | Sep 2002 | A1 |
20020176788 | Moutafis et al. | Nov 2002 | A1 |
20030039915 | Holt et al. | Feb 2003 | A1 |
20030064032 | Lamche et al. | Apr 2003 | A1 |
20030066524 | Hochrainer et al. | Apr 2003 | A1 |
20030066815 | Lucas | Apr 2003 | A1 |
20030080210 | Jaeger et al. | May 2003 | A1 |
20030085254 | Katooka et al. | May 2003 | A1 |
20030098023 | Drachmann et al. | May 2003 | A1 |
20030106827 | Cheu et al. | Jun 2003 | A1 |
20030145849 | Drinan et al. | Aug 2003 | A1 |
20030178020 | Scarrott | Sep 2003 | A1 |
20030181478 | Drechsel et al. | Sep 2003 | A1 |
20030183225 | Knudsen | Oct 2003 | A1 |
20030187387 | Wirt et al. | Oct 2003 | A1 |
20030191151 | Chaudry et al. | Oct 2003 | A1 |
20030194379 | Brugger et al. | Oct 2003 | A1 |
20030196660 | Haveri | Oct 2003 | A1 |
20030209238 | Peters et al. | Nov 2003 | A1 |
20030226907 | Geser et al. | Dec 2003 | A1 |
20040004138 | Hettrich et al. | Jan 2004 | A1 |
20040010239 | Hochrainer et al. | Jan 2004 | A1 |
20040015126 | Zierenberg et al. | Jan 2004 | A1 |
20040019073 | Drechsel et al. | Jan 2004 | A1 |
20040055907 | Marco | Mar 2004 | A1 |
20040060476 | Sirejacob | Apr 2004 | A1 |
20040069799 | Gee et al. | Apr 2004 | A1 |
20040092428 | Chen et al. | May 2004 | A1 |
20040094147 | Schyra et al. | May 2004 | A1 |
20040134494 | Papania et al. | Jul 2004 | A1 |
20040134824 | Chan et al. | Jul 2004 | A1 |
20040139700 | Powell et al. | Jul 2004 | A1 |
20040143235 | Freund et al. | Jul 2004 | A1 |
20040164186 | Kladders et al. | Aug 2004 | A1 |
20040166065 | Schmidt | Aug 2004 | A1 |
20040182867 | Hochrainer et al. | Sep 2004 | A1 |
20040184994 | DeStefano et al. | Sep 2004 | A1 |
20040194524 | Jentzsch | Oct 2004 | A1 |
20040210199 | Atterbury et al. | Oct 2004 | A1 |
20040231667 | Horton et al. | Nov 2004 | A1 |
20050028812 | Djupesland | Feb 2005 | A1 |
20050028815 | Deaton et al. | Feb 2005 | A1 |
20050028816 | Fishman et al. | Feb 2005 | A1 |
20050061314 | Davies et al. | Mar 2005 | A1 |
20050089478 | Govind et al. | Apr 2005 | A1 |
20050098172 | Anderson | May 2005 | A1 |
20050126469 | Lu | Jun 2005 | A1 |
20050131357 | Denton et al. | Jun 2005 | A1 |
20050158394 | Staniforth et al. | Jul 2005 | A1 |
20050159441 | Hochrainer et al. | Jul 2005 | A1 |
20050183718 | Wuttke et al. | Aug 2005 | A1 |
20050191246 | Bechtold-Peters et al. | Sep 2005 | A1 |
20050194472 | Geser et al. | Sep 2005 | A1 |
20050239778 | Konetzki et al. | Oct 2005 | A1 |
20050247305 | Zierenberg et al. | Nov 2005 | A1 |
20050250704 | Bassarab et al. | Nov 2005 | A1 |
20050250705 | Bassarab et al. | Nov 2005 | A1 |
20050255119 | Bassarab et al. | Nov 2005 | A1 |
20050263618 | Spallek et al. | Dec 2005 | A1 |
20050268909 | Bonney et al. | Dec 2005 | A1 |
20050268915 | Wassenaar et al. | Dec 2005 | A1 |
20050269359 | Raats | Dec 2005 | A1 |
20060002863 | Schmelzer et al. | Jan 2006 | A1 |
20060016449 | Eicher et al. | Jan 2006 | A1 |
20060035874 | Lulla et al. | Feb 2006 | A1 |
20060037612 | Herder et al. | Feb 2006 | A1 |
20060067952 | Chen | Mar 2006 | A1 |
20060086828 | Bougamont et al. | Apr 2006 | A1 |
20060150971 | Lee et al. | Jul 2006 | A1 |
20060196500 | Hochrainer et al. | Sep 2006 | A1 |
20060225734 | Sagaser et al. | Oct 2006 | A1 |
20060239886 | Nakayama et al. | Oct 2006 | A1 |
20060239930 | Lamche et al. | Oct 2006 | A1 |
20060254579 | Grychowski et al. | Nov 2006 | A1 |
20060279588 | Yearworth et al. | Dec 2006 | A1 |
20060282045 | Wilkinson et al. | Dec 2006 | A1 |
20060285987 | Jaeger et al. | Dec 2006 | A1 |
20060289002 | Hetzer et al. | Dec 2006 | A1 |
20060293293 | Muller et al. | Dec 2006 | A1 |
20070062518 | Geser et al. | Mar 2007 | A1 |
20070062519 | Wuttke et al. | Mar 2007 | A1 |
20070062979 | Dunne | Mar 2007 | A1 |
20070090205 | Kunze et al. | Apr 2007 | A1 |
20070090576 | Geser et al. | Apr 2007 | A1 |
20070107720 | Boeck et al. | May 2007 | A1 |
20070119449 | Boehm et al. | May 2007 | A1 |
20070137643 | Bonney et al. | Jun 2007 | A1 |
20070163574 | Rohrschneider et al. | Jul 2007 | A1 |
20070181526 | Frishman | Aug 2007 | A1 |
20070183982 | Berkel et al. | Aug 2007 | A1 |
20070210121 | Stadelhofer | Sep 2007 | A1 |
20070221211 | Sagalovich | Sep 2007 | A1 |
20070264437 | Zimmermann et al. | Nov 2007 | A1 |
20070272763 | Dunne et al. | Nov 2007 | A1 |
20070298116 | Bechtold-Peters et al. | Dec 2007 | A1 |
20080017192 | Southby et al. | Jan 2008 | A1 |
20080029085 | Lawrence et al. | Feb 2008 | A1 |
20080060640 | Waldner et al. | Mar 2008 | A1 |
20080083408 | Hodson et al. | Apr 2008 | A1 |
20080092885 | von Schuckmann | Apr 2008 | A1 |
20080156321 | Bowman et al. | Jul 2008 | A1 |
20080163869 | Nobutani et al. | Jul 2008 | A1 |
20080197045 | Metzger et al. | Aug 2008 | A1 |
20080249459 | Godfrey et al. | Oct 2008 | A1 |
20080264412 | Meyer et al. | Oct 2008 | A1 |
20080265198 | Warby | Oct 2008 | A1 |
20080283553 | Cox et al. | Nov 2008 | A1 |
20080299049 | Stangl | Dec 2008 | A1 |
20080308580 | Gaydos et al. | Dec 2008 | A1 |
20090032427 | Cheu et al. | Feb 2009 | A1 |
20090060764 | Mitzlaff et al. | Mar 2009 | A1 |
20090075990 | Schmidt | Mar 2009 | A1 |
20090114215 | Boeck et al. | May 2009 | A1 |
20090166379 | Wright et al. | Jul 2009 | A1 |
20090170839 | Schmidt | Jul 2009 | A1 |
20090185983 | Freund et al. | Jul 2009 | A1 |
20090197841 | Kreher et al. | Aug 2009 | A1 |
20090202447 | Kreher et al. | Aug 2009 | A1 |
20090211576 | Lehtonen et al. | Aug 2009 | A1 |
20090221626 | Schmidt | Sep 2009 | A1 |
20090235924 | Holakovsky et al. | Sep 2009 | A1 |
20090272664 | Marshall et al. | Nov 2009 | A1 |
20090293870 | Brunnberg et al. | Dec 2009 | A1 |
20090306065 | Schmidt | Dec 2009 | A1 |
20090308772 | Abrams | Dec 2009 | A1 |
20090314287 | Spallek et al. | Dec 2009 | A1 |
20090317337 | Schmidt | Dec 2009 | A1 |
20100012120 | Herder et al. | Jan 2010 | A1 |
20100018524 | Jinks et al. | Jan 2010 | A1 |
20100018997 | Faneca Llesera | Jan 2010 | A1 |
20100044393 | Moretti | Feb 2010 | A1 |
20100056559 | Schmelzer et al. | Mar 2010 | A1 |
20100084531 | Schuchman | Apr 2010 | A1 |
20100095957 | Corbacho | Apr 2010 | A1 |
20100144784 | Schmelzer et al. | Jun 2010 | A1 |
20100168710 | Braithwaite | Jul 2010 | A1 |
20100237102 | Margheritis | Sep 2010 | A1 |
20100242557 | Spreitzer et al. | Sep 2010 | A1 |
20100242954 | Hahn et al. | Sep 2010 | A1 |
20100313884 | Elliman | Dec 2010 | A1 |
20100331765 | Sullivan et al. | Dec 2010 | A1 |
20110005517 | Boeck et al. | Jan 2011 | A1 |
20110041842 | Bradshaw et al. | Feb 2011 | A1 |
20110168175 | Dunne et al. | Jul 2011 | A1 |
20110239594 | Nottingham et al. | Oct 2011 | A1 |
20110240679 | Langlos | Oct 2011 | A1 |
20110245780 | Helmer et al. | Oct 2011 | A1 |
20110268668 | Lamche et al. | Nov 2011 | A1 |
20110277753 | Dunne et al. | Nov 2011 | A1 |
20110290239 | Bach et al. | Dec 2011 | A1 |
20110290242 | Bach et al. | Dec 2011 | A1 |
20110290243 | Bach et al. | Dec 2011 | A1 |
20120090603 | Dunne et al. | Apr 2012 | A1 |
20120132199 | Kiesewetter | May 2012 | A1 |
20120138049 | Wachtel | Jun 2012 | A1 |
20120138713 | Schuy et al. | Jun 2012 | A1 |
20120260913 | Bach et al. | Oct 2012 | A1 |
20120325204 | Holakovsky et al. | Dec 2012 | A1 |
20130012908 | Yeung | Jan 2013 | A1 |
20130056888 | Holakovsky et al. | Mar 2013 | A1 |
20130125880 | Holakovsky et al. | May 2013 | A1 |
20130125881 | Holakovsky et al. | May 2013 | A1 |
20130126389 | Holakovsky et al. | May 2013 | A1 |
20130206136 | Herrmann | Aug 2013 | A1 |
20130269687 | Besseler et al. | Oct 2013 | A1 |
20140121234 | Kreher et al. | May 2014 | A1 |
20140190472 | Holakovsky et al. | Jul 2014 | A1 |
20140228397 | Schmelzer et al. | Aug 2014 | A1 |
20140331994 | Holakovsky et al. | Nov 2014 | A1 |
20150040890 | Besseler et al. | Feb 2015 | A1 |
20150040893 | Besseler et al. | Feb 2015 | A1 |
20150041558 | Besseler et al. | Feb 2015 | A1 |
20150114387 | Bach et al. | Apr 2015 | A1 |
20150122247 | Besseler et al. | May 2015 | A1 |
20150258021 | Kreher et al. | Sep 2015 | A1 |
20150306087 | Schmelzer et al. | Oct 2015 | A1 |
20150320947 | Eicher et al. | Nov 2015 | A1 |
20150320948 | Eicher et al. | Nov 2015 | A1 |
20160095992 | Wachtel | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
2005201364 | Jul 2006 | AU |
1094549 | Jan 1981 | CA |
2233981 | Apr 1997 | CA |
2237853 | Jun 1997 | CA |
2251828 | Oct 1997 | CA |
2275392 | Jul 1998 | CA |
2297174 | Feb 1999 | CA |
2343123 | Apr 2000 | CA |
2434872 | Aug 2002 | CA |
2497059 | Mar 2004 | CA |
2497680 | Mar 2004 | CA |
2513167 | Oct 2004 | CA |
2557020 | Sep 2005 | CA |
2653183 | Dec 2007 | CA |
2653422 | Dec 2007 | CA |
1125426 | Jun 1996 | CN |
1849174 | Oct 2006 | CN |
101247897 | Aug 2008 | CN |
1653651 | Jul 1971 | DE |
2754100 | Jun 1978 | DE |
4117078 | Nov 1992 | DE |
19625027 | Jan 1997 | DE |
19615422 | Nov 1997 | DE |
19653969 | Jun 1998 | DE |
19902844 | Nov 1999 | DE |
10007591 | Nov 2000 | DE |
10104367 | Aug 2002 | DE |
10300983 | Jul 2004 | DE |
102004031673 | Jan 2006 | DE |
202006017793 | Jan 2007 | DE |
01102006025871 | Dec 2007 | DE |
83175 | Jul 1957 | DK |
140801 | Nov 1979 | DK |
0018609 | Nov 1980 | EP |
0289332 | Nov 1988 | EP |
0289336 | Nov 1988 | EP |
0354507 | Feb 1990 | EP |
0364235 | Apr 1990 | EP |
0372777 | Jun 1990 | EP |
0386800 | Sep 1990 | EP |
0412524 | Feb 1991 | EP |
0505123 | Sep 1992 | EP |
0520571 | Dec 1992 | EP |
0622311 | Nov 1994 | EP |
0642992 | Mar 1995 | EP |
0679443 | Nov 1995 | EP |
0735048 | Oct 1996 | EP |
0811430 | Mar 1997 | EP |
0778221 | Jun 1997 | EP |
0845253 | Jun 1998 | EP |
0845265 | Jun 1998 | EP |
0860210 | Aug 1998 | EP |
0916428 | May 1999 | EP |
0965355 | Dec 1999 | EP |
0970751 | Jan 2000 | EP |
1003478 | May 2000 | EP |
1017469 | Jul 2000 | EP |
1025923 | Aug 2000 | EP |
1068906 | Jan 2001 | EP |
1075875 | Feb 2001 | EP |
1092447 | Apr 2001 | EP |
1157689 | Nov 2001 | EP |
1211628 | Jun 2002 | EP |
1245244 | Oct 2002 | EP |
1312418 | May 2003 | EP |
1375385 | Jan 2004 | EP |
1521609 | Apr 2005 | EP |
1535643 | Jun 2005 | EP |
1595564 | Nov 2005 | EP |
1595822 | Nov 2005 | EP |
1726324 | Nov 2006 | EP |
1736193 | Dec 2006 | EP |
1795221 | Jun 2007 | EP |
1813548 | Aug 2007 | EP |
2135632 | Dec 2009 | EP |
2262348 | Nov 2006 | ES |
2505688 | Nov 1982 | FR |
2604363 | Apr 1988 | FR |
2673608 | Sep 1992 | FR |
2756502 | Jun 1998 | FR |
1524431 | Sep 1978 | GB |
2081396 | Feb 1982 | GB |
2101020 | Jan 1983 | GB |
2279273 | Jan 1995 | GB |
2291135 | Jan 1996 | GB |
2332372 | Jun 1999 | GB |
2333129 | Jul 1999 | GB |
2347870 | Sep 2000 | GB |
2355252 | Apr 2001 | GB |
2398253 | Aug 2004 | GB |
0700839.4 | Jul 2008 | GB |
S5684246 | Jul 1981 | JP |
H01288265 | Nov 1989 | JP |
H0228121 | Jan 1990 | JP |
H057246 | Feb 1993 | JP |
H0553470 | Mar 1993 | JP |
H06312019 | Nov 1994 | JP |
H07118164 | May 1995 | JP |
H07118166 | May 1995 | JP |
07323086 | Dec 1995 | JP |
H08277226 | Oct 1996 | JP |
H092442 | Jan 1997 | JP |
H0977073 | Mar 1997 | JP |
H09315953 | Dec 1997 | JP |
2001518428 | Oct 2001 | JP |
2001346878 | Dec 2001 | JP |
2002504411 | Feb 2002 | JP |
2002235940 | Aug 2002 | JP |
2003511212 | Mar 2003 | JP |
2003299717 | Oct 2003 | JP |
2004502502 | Jan 2004 | JP |
2004097617 | Apr 2004 | JP |
2005511210 | Apr 2005 | JP |
2005144459 | Jun 2005 | JP |
2007517529 | Jul 2007 | JP |
2007245144 | Sep 2007 | JP |
2007534379 | Nov 2007 | JP |
2008119489 | May 2008 | JP |
2008541808 | Nov 2008 | JP |
2010526620 | Aug 2010 | JP |
2010540371 | Dec 2010 | JP |
8100674 | Mar 1981 | WO |
8200785 | Mar 1982 | WO |
8300288 | Feb 1983 | WO |
8303054 | Sep 1983 | WO |
8605419 | Sep 1986 | WO |
8706137 | Oct 1987 | WO |
8803419 | May 1988 | WO |
8900889 | Feb 1989 | WO |
8900947 | Feb 1989 | WO |
8902279 | Mar 1989 | WO |
8903672 | May 1989 | WO |
8903673 | May 1989 | WO |
8905139 | Jun 1989 | WO |
9009780 | Sep 1990 | WO |
9009781 | Sep 1990 | WO |
9114468 | Oct 1991 | WO |
9206704 | Apr 1992 | WO |
9217231 | Oct 1992 | WO |
9221332 | Dec 1992 | WO |
9222286 | Dec 1992 | WO |
9313737 | Jul 1993 | WO |
9324164 | Dec 1993 | WO |
9325321 | Dec 1993 | WO |
9407607 | Apr 1994 | WO |
9417822 | Aug 1994 | WO |
9425371 | Nov 1994 | WO |
9427653 | Dec 1994 | WO |
9503034 | Feb 1995 | WO |
9532015 | Nov 1995 | WO |
9600050 | Jan 1996 | WO |
9606011 | Feb 1996 | WO |
9606581 | Mar 1996 | WO |
9623522 | Aug 1996 | WO |
9701329 | Jan 1997 | WO |
9706813 | Feb 1997 | WO |
9706842 | Feb 1997 | WO |
9712683 | Apr 1997 | WO |
9712687 | Apr 1997 | WO |
9720590 | Jun 1997 | WO |
9723208 | Jul 1997 | WO |
9727804 | Aug 1997 | WO |
9735562 | Oct 1997 | WO |
9741833 | Nov 1997 | WO |
9812511 | Mar 1998 | WO |
9827959 | Jul 1998 | WO |
9831346 | Jul 1998 | WO |
9839043 | Sep 1998 | WO |
9901227 | Jan 1999 | WO |
9907340 | Feb 1999 | WO |
9911563 | Mar 1999 | WO |
9916530 | Apr 1999 | WO |
9943571 | Sep 1999 | WO |
9962495 | Dec 1999 | WO |
9965464 | Dec 1999 | WO |
0001612 | Jan 2000 | WO |
0023037 | Apr 2000 | WO |
0023065 | Apr 2000 | WO |
0027543 | May 2000 | WO |
0033965 | Jun 2000 | WO |
0037336 | Jun 2000 | WO |
0049988 | Aug 2000 | WO |
0064779 | Nov 2000 | WO |
0113885 | Mar 2001 | WO |
0128489 | Apr 2001 | WO |
0164182 | Sep 2001 | WO |
0185097 | Nov 2001 | WO |
0187392 | Nov 2001 | WO |
0197888 | Dec 2001 | WO |
0198175 | Dec 2001 | WO |
0198176 | Dec 2001 | WO |
0204054 | Jan 2002 | WO |
0205879 | Jan 2002 | WO |
0217988 | Mar 2002 | WO |
0232899 | Apr 2002 | WO |
0234411 | May 2002 | WO |
02070141 | Sep 2002 | WO |
02089887 | Nov 2002 | WO |
03002045 | Jan 2003 | WO |
03014832 | Feb 2003 | WO |
03020253 | Mar 2003 | WO |
03022332 | Mar 2003 | WO |
03035030 | May 2003 | WO |
03037159 | May 2003 | WO |
03037259 | May 2003 | WO |
03049786 | Jun 2003 | WO |
03050031 | Jun 2003 | WO |
03053350 | Jul 2003 | WO |
03057593 | Jul 2003 | WO |
03059547 | Jul 2003 | WO |
03068299 | Aug 2003 | WO |
03087097 | Oct 2003 | WO |
03097139 | Nov 2003 | WO |
2004019985 | Mar 2004 | WO |
2004022052 | Mar 2004 | WO |
2004022132 | Mar 2004 | WO |
2004022244 | Mar 2004 | WO |
2004024157 | Mar 2004 | WO |
2004033954 | Apr 2004 | WO |
2004062813 | Jul 2004 | WO |
2004078236 | Sep 2004 | WO |
2004089551 | Oct 2004 | WO |
2004091704 | Oct 2004 | WO |
2004098689 | Nov 2004 | WO |
2004098795 | Nov 2004 | WO |
2005000476 | Jan 2005 | WO |
2005004844 | Jan 2005 | WO |
2005014175 | Feb 2005 | WO |
2005020953 | Mar 2005 | WO |
2005030211 | Apr 2005 | WO |
2005055976 | Jun 2005 | WO |
2005077445 | Aug 2005 | WO |
2005079997 | Sep 2005 | WO |
2005080001 | Sep 2005 | WO |
2005080002 | Sep 2005 | WO |
2005087299 | Sep 2005 | WO |
2005107837 | Nov 2005 | WO |
2005109948 | Nov 2005 | WO |
2005112892 | Dec 2005 | WO |
2005112996 | Dec 2005 | WO |
2005113007 | Dec 2005 | WO |
2006011638 | Feb 2006 | WO |
2006018392 | Feb 2006 | WO |
2006027595 | Mar 2006 | WO |
2006037636 | Apr 2006 | WO |
2006037948 | Apr 2006 | WO |
2006042297 | Apr 2006 | WO |
2006045813 | May 2006 | WO |
2006110080 | Oct 2006 | WO |
2006125577 | Nov 2006 | WO |
2006126014 | Nov 2006 | WO |
2007011475 | Jan 2007 | WO |
2007022898 | Mar 2007 | WO |
2007030162 | Mar 2007 | WO |
2007049239 | May 2007 | WO |
2007060104 | May 2007 | WO |
2007060105 | May 2007 | WO |
2007060106 | May 2007 | WO |
2007060107 | May 2007 | WO |
2007060108 | May 2007 | WO |
2007062721 | Jun 2007 | WO |
2007090822 | Aug 2007 | WO |
2007101557 | Sep 2007 | WO |
2007128381 | Nov 2007 | WO |
2007134965 | Nov 2007 | WO |
2007134966 | Nov 2007 | WO |
2007134967 | Nov 2007 | WO |
2007134968 | Nov 2007 | WO |
2007141201 | Dec 2007 | WO |
2007141203 | Dec 2007 | WO |
2008023017 | Feb 2008 | WO |
2008047035 | Apr 2008 | WO |
2008077623 | Jul 2008 | WO |
2008124666 | Oct 2008 | WO |
2008138936 | Nov 2008 | WO |
2008146025 | Dec 2008 | WO |
2009006137 | Jan 2009 | WO |
2009047021 | Apr 2009 | WO |
2009047173 | Apr 2009 | WO |
2009050978 | Apr 2009 | WO |
2009090245 | Jul 2009 | WO |
2009103510 | Aug 2009 | WO |
2009115200 | Sep 2009 | WO |
2010005946 | Jan 2010 | WO |
2010006870 | Jan 2010 | WO |
2010094305 | Aug 2010 | WO |
2010094413 | Aug 2010 | WO |
2010112358 | Oct 2010 | WO |
2010133294 | Nov 2010 | WO |
2010149280 | Dec 2010 | WO |
2011006711 | Jan 2011 | WO |
2011064160 | Jun 2011 | WO |
2011064163 | Jun 2011 | WO |
2011064164 | Jun 2011 | WO |
2011131779 | Oct 2011 | WO |
2011154295 | Dec 2011 | WO |
2011160932 | Dec 2011 | WO |
2012130757 | Oct 2012 | WO |
2012159914 | Nov 2012 | WO |
2012160047 | Nov 2012 | WO |
2012160052 | Nov 2012 | WO |
2012161685 | Nov 2012 | WO |
2012162305 | Nov 2012 | WO |
2013017640 | Feb 2013 | WO |
2013110601 | Aug 2013 | WO |
2013152861 | Oct 2013 | WO |
2013152894 | Oct 2013 | WO |
2014111370 | Jul 2014 | WO |
2015018901 | Feb 2015 | WO |
2015018903 | Feb 2015 | WO |
2015018904 | Feb 2015 | WO |
2015169431 | Nov 2015 | WO |
2015169732 | Nov 2015 | WO |
199901520 | Dec 1999 | ZA |
Entry |
---|
International Search Report, Form PCT/ISA/210, for corresponding PCT/EP2011/059088; dated Sep. 26, 2011. |
“Activate”. Collins English Dictionary, London: Collins, 2000, 2 pages. [Retrieved at http://search.credoreference.com/content/entry/hcengdict/activate/0 on Jun. 12, 2014]. |
“Lung Cancer”. Merck Manual Home Edition, pp. 1-7. [Accessed at www.merck.com/mmhe/print/sec04/ch057/ch057a.html, on Jul. 28, 2010]. |
Abstract in English for DE19902844, 1999. |
Abstract in English for DE4117078, 1992. |
Abstract in English for EP0354507, 1990. |
Abstract in English for FR2756502, 1998. |
Abstract in English for JPS5684246, 1979. |
Abstract in English of DE10007591, 2000. |
Abstract in English of DE202006017793, 2007. |
Abstract in English of FR2604363, Sep. 30, 1986. |
Abstract in English of JPH0553470, 1993. |
Abstract in English of JPH057246, 1993. |
Abstract in English of JPH07118164, 1995. |
Abstract in English of JPH07118166, 1995. |
Abstract in English of JPH08277226,1996. |
Abstract in English of JPH092442, 1997. |
Abstract in English of JPH09315953, 1997. |
Abstract in English of JPH0977073, 1997. |
Abstract in English of WO199706813, 1997. |
Abstract in English of WO199839043, 1998. |
Abstract in English of WO2002070141, 2002. |
Ackermann et al.; Quantitative Online Detection of Low-Concentrated Drugs via a SERS Microfluidic System; ChemPhysChem; 2007; vol. 8; No. 18; pp. 2665-2670. |
Beasley R et al: “Preservatives in Nebulizer solutions: Risks without Benefit” Pharmacotherapy, Boston, US, Bd. 18, Nr. 1, Jan. 1998. |
Beasley R et al: “Preservatives in Nebulizer solutions: Risks without Benefit” Pharmacotherapy, Boston, US, Bd. 18, Nr. 1, Jan. 1998, pp. 130-139. |
Bocci et al., “Pulmonary catabolism of interferons: alveolar absorption of 125I-labeled human interferon alpha is accompanied by partial loss of biological activity”. Antiviral Research, vol. 4, 1984, pp. 211-220. |
Chen, F-K et al., “A study of forming pressure in the tube-hydroforming process”. Journal of Materials Processing Technology, 192-193, 2007, p. 404-409. |
China Suppliers, Shanghai Lite Chemical Technology Co., Ltd. Product details on polyvinylpyrrolidones. Obtained online by the USPTO examiner on Apr. 24, 2011. |
Cras et al., “Comparison of chemical cleaning methods of glass in preparation for silanization”. Biosensors & Bioelectronics, vol. 14, 1999, pp. 683-688. |
Diamond et al., “Substance P Fails to Mimic Vagally Mediated Nonadrenergic Bronchodilation”. Peptides, vol. 3, 1982, pp. 27-29. |
Elwenspoek et al., “Silicon Micromachining”, Chapter 3, Mechanical Microsensors, Springer-Verlag Berlin Heidelberg, 2001, 4 pages. |
English Language Abstract of EP1068906, 2001. |
Fuchs et al., “Neopterin, biochemistry and clinical use as a marker for cellular immune reactions”. International Archives of Allergy and Immunology, vol. 101, No. 1, 1993, pp. 1-6, Abstract 1p. |
Han et al.; Surface activation of thin silicon oxides by wet cleaning and silanization; Thin Solid Films; 2006; vol. 510; No. 1-2; pp. 175-180. |
Henkel et al.; Chip modules for generation and manipulation of fluid segments for micro serial flow processes; Chemical Engineering Journal; 2004; vol. 101; pp. 439-445. |
Hoffmann et al., “Mixed self-assembled monolayers (SAMs) consisting of methoxy-tri(ethylene glycol)-terminated and alkyl-terminated dimethylchlorosilanes control the non-specific adsorption of proteins at oxidic surfaces”. Journal of Colloid and Interface Science, vol. 295, 2006, pp. 427-435. |
Husseini et al., “Alkyl Monolayers on Silica Surfaces Prepared Using Neat, Heated Dimethylmonochlorosilanes with Low Vapor Pressures”. Langmuir, vol. 19, 2003, pp. 5169-5171. |
IP et al., “Stability of Recombinant Consensus Interferon to Air-Jet and Ultrasonic Nebulization”. Journal of Pharmaceutical Sciences, vol. 84, No. 10, Oct. 1995, pp. 1210-1214. |
Jendle et al., “Intrapulmonary administration of insulin to healthy volunteers”. Journal of Internal Medicine, vol. 240, 1996, pp. 93-98. |
JP2005144459—English language abstract only. |
Kutchoukov et al., “Fabrication of nanofluidic devices using glass-to-glass anodic bonding” Sensors and Actuators A, vol. 114, 2004, pp. 521-527. |
Lougheed et al., “Insulin Aggregation in Artificial Delivery Systems”. Diabetologia, vol. 19, 1980, pp. 1-9. |
Mandal et al., “Cytophobic surface modification of microfluidic arrays for in situ parallel peptide synthesis and cell adhesion assays”. Biotechnology Progress, vol. 23, No. 4, 2007, pp. 972-978 (Author Manuscript Available in PMC, Sep. 21, 2009, 19 pages). |
Niven et al., “Some Factors Associated with the Ultrasonic Nebulization of Proteins”. Pharmaceutical Research, vol. 12, No. 1, 1995, pp. 53-59. |
Remington Pharmacy, Editor Alfonso R. Gennaro. 19th ed., Spanish Secondary Edition: Panamericana, Spain, 1995, Sciarra, J.J., “Aerosols”, pp. 2560-2582. The English translation is from the 1995 English Primary Edition, Sciarra, J.J., Chapter 95, R97-1185. |
Trasch et al., “Performance data of refloquant Glucose in the Evaluation of Reflotron”. Clinical Chemistry, vol. 30, 1984, p. 969 (abstract only). |
Wall et al., “High levels of exopeptidase activity are present in rat and canine bronchoalveolar lavage fluid”. International Journal of Pharmaceutics, vol. 97, Issue 1-3, pp. 171-181, 1993, Abstract pp. 1-2. |
Wang et al.; Self-Assembled Silane Monolayers: Fabrication with Nanoscale Uniformity; Langmuir; 2005; vol. 21; No. 5; pp. 1848-1857. |
Abstract in English for WO2009050978, 2009. |
Abstract in English for JP2002-235940, 2001. |
Number | Date | Country | |
---|---|---|---|
20130206136 A1 | Aug 2013 | US |