1. Field of the Invention
The present invention relates to drug delivery devices, and, in particular, to drug delivery devices that utilize an aerosol generator to nebulize a drug solution.
2. Description of the Related Art
Conventional ultrasonic drug nebulizing devices nebulize a drug solution by transmitting acoustic waves from an acoustic wave generator to the drug solution. Some of these devices transmit the acoustic waves from the acoustic wave generator to the drug solution through a fluid. Typically, these devices provide a barrier between the fluid and the drug solution. The barrier seals the drug solution from communication with the fluid, and also allows the acoustic waves from the aerosol generator to pass therethrough, from the transmitting fluid to the drug solution.
These barriers are typically composed of materials such as metal, which are generally considered suitable because their thermal and mechanical properties enable them to partially transmit the ultrasonic energy present in the acoustic waves from the fluid to the drug solution. However, known barrier materials like metallic materials still do not transmit all of the ultrasonic energy transmitted from the generator to the barrier, and therefore, form an energy sink within the device. This inhibits various aspects of the operation of typical nebulizing devices, such as, for example, nebulizing efficiency, flow rate, and the range of drug viscosities that can be nebulized.
Additionally, barrier materials are usually limited to materials that can be formed into a barrier and installed securely into nebulizing devices. Consequently, various materials that may provide enhanced barriers have not been used because there has not been a suitable mechanism for disposing a barrier composed of such materials within a nebulizing device.
In addition, for some materials the relative thickness and/or structural attributes of the barrier require careful balancing. The material should have sufficient structural integrity and strength to permit it to be securely sealed between the transmitting fluid and drug solution, yet at the same time sufficiently thin and flexible to transmit acoustic (ultrasonic) waves from the transmitting fluid to the drug solution. Heretofore, this balance has only been achieved with limited success.
In accordance with the broad teachings of the invention, one aspect of the present invention relates to a nebulizing device comprising a housing having an inlet and an outlet, an aerosol generator in communication with a fluid, and a barrier between the fluid and a drug solution provided within the housing. The aerosol generator operates to form nebulized particles of the drug solution that can be communicated to a user through the outlet. The barrier is formed from polyetheretherketone.
Another aspect of the invention relates to a nebulizing device comprising a housing having an inlet and an outlet, an aerosol generator in communication with a fluid, a barrier between the fluid, and a drug solution provided in the housing. The aerosol generator operates to form nebulized particles from the drug solution that can be communicated to a user through the outlet. The housing contains therein a mounting surface on which the barrier is mounted. The barrier has a peripheral portion thereof with a greater thickness than a central portion thereof, the peripheral portion being secured to the mounting surface.
In one embodiment, the barrier is formed from two parts, including a first part having an opening therethrough. The opening generally defines the central portion of smaller thickness, and a second part covers the opening, with the first part being sealed with the second part.
In one embodiment, the peripheral portion of the barrier has a plurality of holes formed therein, and the mounting surface comprises a plurality of projections that are received within the holes. The projections are deformed in a manner that secures the barrier to the mounting surface.
Another aspect of the invention relates to a method of assembling a nebulizing device comprising forming a housing having an inlet and an outlet, forming an aerosol generator within the housing, forming a barrier that includes a peripheral portion thereof with a greater thickness than a central portion thereof, disposing the barrier within the housing, and introducing a fluid between the aerosol generator and the barrier. The aerosol generator operates to form nebulized particles from the drug solution that can be communicated to a user through the outlet.
In some embodiments, forming the peripheral portion of the barrier and the central portion of the barrier comprises securing a first part to a second part, the first part having an opening therethrough, the opening generally defining the central portion of smaller thickness, and the second part covering the opening.
In one embodiment, mounting the peripheral portion of the barrier to the mounting surface comprises forming a plurality of projections at the mounting surface, forming a plurality of holes in the peripheral portion, introducing the barrier to the mounting surface such that the plurality of holes receive the plurality of projections, and deforming the plurality of projections in a manner that secures the barrier to the mounting surface.
These and other objects, features, and characteristics of the present invention, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention. As used in the specification and in the claims, the singular form of “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.
A specific embodiment of the invention is now described with reference to the accompanying drawings, wherein:
As will be described in greater detail below, the mouthpiece module 14 generally functions to deliver nebulized drug solution particles to a user through an outlet port 26. Atmospheric air is drawn into the housing 12 through an air inlet port 28 formed on the rear of the mouthpiece housing 20, as seen in
The intermediate module 16 generally functions to contain a pool or reservoir of drug solution to be delivered to a user. The pool of drug solution includes a metered dose of the drug solution provided by the user to device 10. Intermediate module 16 also carries an aerosol generator that nebulizes the drug solution for delivery to the user.
The base module generally contains the device electronics and has a control interface 30, such as a manually operable button to enable the user to activate the device 10.
As illustrated in the cross-section of
In the embodiment illustrated in
In one embodiment, fluid 120 may primarily be comprised of water. In some instances, a sterilant, such as alcohol, or another sterilant, may be added to the fluid 120.
The aerosol generator may have additional or alternate structural and functional characteristics as described in International Application No. PCT/AU2003/001079 (International Publication Number WO 2004/017848), hereby incorporated by reference in its entirety. This invention also contemplates that any other aerosol generator present in the art could be used with the unique aspects of the present invention. For instance, the device may also be a traditional planar ultrasonic nebulizer, a vibrating mesh nebulizer, a vibrating plate nebulizer, or an electrospray nebulizer.
The drug solution present at the focal point of the acoustic waves will absorb the ultrasonic energy from drug solution 116. That is, the focused acoustic waves will generate a focused stream of drug solution, which the stream begins at a point that can also be considered the beginning of the fountain. Towards the top of the stream or fountain 128, the fountain sheds particles to aerosolize the drug solution. Some of the drug solution in the fountain 128 may not be nebulized, but rather form larger droplets of the drug solution that will be returned to the drug solution 116 as described later.
In some embodiments of the invention, the nebulization of the drug solution at fountain 128 may be enhanced when the focal point of the acoustic waves coincides (exactly or substantially) with a surface 130 of the drug solution in drug solution 116. In such embodiments, the level of surface 130 may be controlled with some particularity to enhance the operation of fountain 128.
According to some embodiments of the invention, and as previously mentioned, a guide tube 132 may be disposed within drug solution 116 such that a first end 134 (the lower end in the figures) of guide tube 132 may be positioned proximate to barrier 122, and a second end 136 of guide tube 132 may extend out of drug solution 116. In such instances, a portion of the drug solution may be urged into the guide tube at the first end 134 resulting in the fountain 128 being formed at the second end 136. The portion of the drug solution 116 within guide tube 132 is propelled toward second end 136 of guide tube 132 by the ultrasonic energy from the acoustic waves. At second end 136 of guide tube 132, the energized drug solution stream exits the guide tube 132.
Continuing with reference to
As described above and as illustrated in the figures (e.g.,
Referring again to
In some embodiments of the invention, activation of aerosol generator 118 may generate sufficient energy to enable aerosol particles of the drug solution to be propelled by fountain 128 into separator structure 124, and out the outlet 26. As particles are propelled by fountain 128 into separator structure 124, the atmosphere within separator structure 124 may be disturbed such that air present at separator inlet 312 may be drawn up into separator structure 124. That is, the movement of fountain 128 may create a negative pressure within the housing 12, in a region between the housing inlet port 28 and the separator inlet 312, and a positive pressure in the separator structure 124 above the fountain 128. Pulling air into separator structure 124 via separator inlet 312 may initiate the flow of intake gas along a delivery flow path, which will motivate the nebulized particles formed at the fountain 128 toward outlet port 26. Thus, the atmospheric disturbances caused by the nebulized particles from fountain 128 and the resulting flow of intake gas along the delivery flow may function in a cooperative manner to “drive” nebulized particles from fountain 128 to the user without requiring additional moving parts such as fans, compressors, or the like. Of course, such devices could be used to further increase the flow rate of nebulized drug should such a result is deemed desirable. As described later, a one-way valve, may optionally be disposed in the delivery flow path, at a position between the inlet and outlet. Such valve would close to prevent gas that may be inadvertently exhaled by a user through the outlet from being expelled to atmosphere through the air intake 28, but be normally open to allow nebulized particles to pass therethrough to the outlet for user visibility. It has been found that user's of nebulizers take comfort in seeing the nebulized drug being exhausted from the mouthpiece. This way they know that the device is working properly and that their medication is being delivered thereby enhancing patient satisfaction and compliance. Use of a one-way valve that is normally open permits a portion of the particles to be visually expelled from the mouthpiece.
Control interface 30 enables the user to interact with control electronics 1010 to control device 10. In addition to providing a housing for control electronics 1010 and control interface 30, the base module housing 24 includes a intermediate module interface 812 that enables base module 18 to be selectively coupled to intermediate module 16, as will be described later.
According to various embodiments of the invention, control interface 30 enables the user to control various aspects of the operation of device 10. Control interface 30 may include a knob, a button, a switch, a keypad, or other controls.
Alternatively, the device could be controlled by an external memory encoded with instructions or wirelessly via an RF or Infrared signal. In a non-limiting example, control interface 30 may include a power button 814 that may be depressed by the user. In one embodiment, the power button 814 may be formed from silicon, or other materials such that power button may resiliently move inwardly when depressed by the user, and return to its original configuration when released such as an elastomeric membrane switch. Power button 814 activates and de-activates the aerosol generator 118.
Referring to
As shown in
The intermediate module interface 812 includes a metal electrical connector receiver 824 and a collar receiver opening 826 formed in the upper surface 835 of the base module 18. Electrical connector receiver 824 is electrically connected with the control electronics 1010 and is connected to an electrical connector 1130 associated with the aerosol generator 118 in the intermediate module 16.
As shown in
The first slot 818 and second slot 820 in the intermediate module interface 812 of base module housing 24 may include a first slot region 830 and a second slot region 832, the second slot region 832 being smaller in width than first slot region 830.
First slot 818 and second slot 820 are adapted to receive tabbed protrusions 1132 and 1134 (see
In some instances, as illustrated in
More particularly, leaf springs 1011 are provided at a floor of each of first slot 818 and second slot 820 such that each of the leaf springs 1011 form a first slot region floor 1013 within first slot region 830 and a second slot region floor 1015 within second slot region 832, separated by a leaf spring ridge 1017. As is shown in
Base module housing 24 houses various components of base module 18. In one embodiment, as illustrated in
In some embodiments of the invention, as shown in
The base member 1020 of the base or control module housing 24 may also include one or more vents 1028. The vents 1028 enable atmospheric air outside of base module housing 24 to be communicated to various components within base module housing 24, such as control electronics 1010, for example. The vents 1028 and 910 provide for cooling of the base module electronics 1010.
In an embodiment of the invention, as shown in
In one embodiment, intermediate module housing 22 may be formed by joining first cup clamshell member 1210 and second cup clamshell member 1212 around drug solution pool container 1206 and aerosol generator housing 1208. First cup clamshell member 1210 and second cup clamshell member 1212 both have an upper edge defining an elongated curved groove 1216. First cup clamshell member 1210 has vertically extending elongated tabs 1218 along opposite ends thereof. Second cup clamshell member 1212 has vertically extending elongated grooves 1220 along opposite ends thereof. Drug solution pool container 1206 includes a peripheral, radially outwardly extending flange 1222. First cup clamshell member 1210 may be joined with second cup clamshell member 1212 around drug solution pool container 1206 and aerosol generator housing 1208 by inserting cup clamshell member tabs 1218 into cup clamshell member grooves 1220, and outwardly extending flange 1222 has a peripheral edge that is received into drug solution pool housing grooves 1216. First cup clamshell housing portion 1210 and second cup clamshell member 1212 may be joined around drug solution pool container 1206 and aerosol generator housing 1208 via a weld, an adhesive, a snap-fit, or other mechanisms for securing separate members to each other. In one embodiment, the composition of intermediate module housing 22 may be ABS.
As shown in
As can be appreciated from
As shown best in
As best seen in
Fluid 120 may be introduced into fluid chamber 1416 via chamber opening 1328 (see
In one embodiment of the invention, as seen most clearly in
It is contemplated that the structure 1418 can be formed from different materials, or from a plurality of different members. For example, the structure can be made from an elastomeric material, such as silicone or another elastomeric material, a sponge material, a closed cell foam material, or other materials. In another embodiment, the structure 1418 may include a rigid structure that is biased into the chamber 1416 by a spring (e.g., a coil spring or leaf spring) or other resilient member. The rigid structure would form a moving seal with the chamber 1416 and take up more or less of the chamber volume based on the fluid volume as described above. In this instance, the spring constant of the spring member would be tuned for optimal resistance. Where a bladder is employed, the spring constant is engineered with several variables in mind, such as the durometer and thickness of the bladder material.
In another contemplated embodiment, the structure comprises a resilient material part of the skirt wall 1409 of the chamber 1416. For example, the skirt wall 1416 may have a window formed therein, and a thin sheet of resilient material may cover and seal the window. Increasing volume of the fluid 120 in this embodiment would cause the resilient material to bulge outwardly.
The barrier 122 provided between fluid 120 and drug solution 116 may include a material that meets various design criteria. Design criteria may include, for example, a prescribed thickness, an elasticity, a durability at high temperatures, an acoustic wave transmission property, or other criteria. This construction enables acoustic waves to be transmitted through the barrier 122, from fluid 120 to drug solution 116.
As seen in
At an operation 1714, a second barrier part 1716 is formed, again by being stamped from a sheet or roll of material. Second barrier part 1716 includes an opening 1718 generally defining a central portion of barrier 122. Second barrier part 1716 may be of a second barrier thickness greater than the first barrier thickness. For example, the second barrier thickness may be approximately ten times greater than the first barrier thickness. Second barrier part 1716 may be composed of polyetheretherketone (PEEK), or other materials.
The method includes an operation 1720, at which the first barrier part 1712 is sealed to second barrier part 1716 to form barrier 122. Second barrier part 1716 is sealed to first barrier part 1712 at a peripheral portion of first barrier part 1712 to form a peripheral portion 1722 of barrier 122. Peripheral portion 1722 defines a central portion 1724 (see operation 1726) of barrier 122 with a smaller thickness than a thickness of peripheral portion 1722. In a non-limiting example, first barrier part 1712 and second barrier part 1716 may be sealed via an ultrasonic weld, or otherwise sealed.
At an operation 1726, a plurality of holes 1728 are formed in the peripheral portion 1722 of barrier 122. In one embodiment, holes 1728 may be die cut in peripheral portion 1722 of barrier 122.
The method may include an operation 1730, in which barrier mounting surface 1414 of the drug solution container 1206 is coated with one or more sealants 1732. For example, barrier mounting surface 1414 may be coated with a silicon-based adhesive, or other sealants.
The mounting surface 1414 includes a plurality of integrally formed projections 1734. At an operation 1736, peripheral portion 1722 of barrier 122 is mounted to barrier mounting surface 1414. Mounting barrier 122 to barrier mounting surface 1414 positions central portion 1724 of barrier 122 over barrier opening 1412. At operation 1736, projections 1734 are received within holes 1728 of barrier 122.
At operation 1738, projections 1734 are deformed. Deforming projections 1734 functions to clamp peripheral portion 1722 of barrier 122 to barrier mounting surface 1414.
Because the barrier 122 has a substantially thicker peripheral portion than central portion, it can be more easily secured or clamped to the barrier mounting surface 1414 in comparison with a barrier that would have a periphery with the same thickness as the central portion. In addition, the thickness of the central portion of the barrier 122 can be engineered for optimal performance without concern that it may be too thin for optimal securement to the mounting surface 1414. In other words, in one embodiment of the present invention, the thickness of the central portion of the barrier 122 independent of the thickness of the peripheral portion enables each portion to have an optimized thickness to support its associated functionality.
In another embodiment, the first barrier part 1722 and the second barrier part 1716 are molded as a one-piece integral structure, with the peripheral part being of a greater thickness than the central part. The greater thickness of the peripheral part is better adapted for securement to the barrier mounting surface, while the thinner central part is better adapted for transmitting acoustic waves.
In yet another embodiment, barrier 122 is sealed to the drug solution container 1206 through use of a thermal staking process. This process may be utilized whether the barrier has a laminate construction formed from two or more barrier parts 1712, 1716 or molded together as a single one-piece structure.
A mandrel 2300 is then heated to a suitable temperature capable of melting at least a portion of at least one of the barrier 122 or separating wall 1413. As best appreciated with reference to
The fixture portion is attached to a thermal press such as the 48H081TS manufactured by Dukane Corporation having a heater. As seen in
In use, the mandrel is used to thermally stake barrier 122 to drug solution container 1206. The thermal staking process includes selecting a material for the mounting surface 1414 of the separate wall 1413 and a material for barrier 122. The materials should have different melting temperatures. For instance, Polycarbonate having a melting temperature of approximately 300 degrees Fahrenheit may be chosen as the material drug solution container 1206, or at least for separating wall 1413 of the drug solution container 1206. Similarly, Polyetheretherketone having a melting temperature of approximately 700 degrees Fahrenheit may be chosen as the material for barrier 122. Of course a variety of other materials with different characteristics could also be utilized without departing from the scope of the present invention.
Next, barrier 122 and separating wall 1413 are sealed together by pressing bead 2318 against barrier 122. Bead 2318 conducts heat through barrier 122 into drug solution container 1206 to melt at least a portion of the separating wall while pressing barrier 122 to form a mounting surface 1414. With respect to the materials described above, the mandrel is heated to a temperature approximately between 300-700 degrees Fahrenheit. Barrier 122 remains substantially solid due to its higher melting point relative to the melting point of the mounting surface. The barrier/drug solution container assembly is then cooled to allow the mounting surface 1414 to sufficiently solidify (or cure). Of course, a similar effect could result by reversing the materials such that the barrier is melted rather than mounting surface 1414.
In one embodiment, the separating wall 1413 between the chamber 1416 and the cup region 1411 has an upper angled floor surface 1422 on which the drug solution 116 sits. The angled floor surface 1422 is essentially disposed one side of the opening 1412 formed in separating wall 1413. More specifically, an angled floor surface 1422 is disposed towards a same side of device 10 as outlet port 26. The floor surface 1422 on the opposite side of opening 1412 is essentially of a stepped configuration.
Opposite angled floor section 1422 and stepped floor section 1424 are shaped to drain toward barrier 122. The sloping configuration of floor surface 1422 is such that it continues to drain the drug solution 116 to the barrier 122 when the drug solution 116 is depleted and as the housing 12 may be tilted by a user during operation.
As best seen in
As shown in
The first housing member 1914 includes the outlet port 26. Outlet port 26 is disposed toward a side of device 10 to enable a user to position their mouth on mouthpiece housing 20 around outlet port 26 to receive the nebulized particles of the drug solution from device 10.
As best seen in
As best seen in
As best seen in
As shown in
In one embodiment of the invention, the inner mouthpiece member 1912 comprises two molded portions that are subsequently secured to one another. For example, in
Inner mouthpiece member 1912 includes a stop member 1932, a guide tube collar 1820, a baffle 310, the previously described base portion 1917, and separator structure 124. The base portion 1917 forms part of a cup interface portion 1818 that enables mouthpiece module 14 to be selectively coupled to intermediate module 16. In one embodiment, the cup interface portion 1818 includes a biased barbed tab 1822, and one or more rigid barbed tabs 1824. Biased barbed tab 1822 and rigid barbed tabs 1824 are disposed on cup interface portion 1818 such that biased barbed tab 1822 may engage front slot 1138 (see
Barbed tabs 1822 and 1824 are engaged with slots 1138 and 1140 by inserting rigid barbed tabs 1824 into rear slots 1140 and pivoting mouthpiece module 14 with respect to intermediate module 16 (or vice versa), about a fulcrum formed by the engagement between rigid barbed tabs 1824 and rear slots 1140, until biased barbed tab 1822 approaches front slot 1138. As biased barbed tab 1822 approaches front slot 1138, a force may be applied to biased barbed tab 1822 at an outer side of biased barbed tab 1822 that deforms biased barbed tab 1822 to enable biased barbed tab 1822 to engage front slot 1138. After biased barbed tab 1822 engages front slot 1138, a stop 1825 provided on the tab 1822 to impede further pivoting of mouthpiece module 14, at which point the force may be released, thereby effectively coupling mouthpiece module 14 to intermediate module 16 as the barbs associated with barbed tabs 1822 and 1824 engage mouthpiece interface portion 1222 in which slots 1138 and 1140 are formed. To uncouple mouthpiece module 14 from intermediate module 16, a force can be applied to biased barbed tab 1822 at the outer side of biased barbed tab 1822 that deforms biased barbed tab 1822 such that the barb associated therewith may be disengaged from slot 1138, enabling mouthpiece module 14 to be pivoted with respect to intermediate module 16. Biased barbed tab 1822 may be disposed on cup interface portion 1818 such that the user may apply a force to biased barbed tab 1822 by depressing depressible surface 1816 of extended portion 1812 associated with mouthpiece housing 20.
As shown in
Intake gas introduced into mouthpiece housing 20 through air intake vent 28 is separated by baffle 310. Specifically, referring to
After the intake gas (e.g., from atmosphere) that is used for drug delivery passes below baffle 310, it passes through an opening 1826 formed in inner mouthpiece base portion 1917 (see
As discussed previously, the device 10 may optionally be provided with a one-way valve 314 within the drug delivery flow path. As can be seen in
In one embodiment, one-way valve 314 is a passive valve. At a default or “normal” position, one-way valve 314 is open, enabling intake gas to pass freely therethrough from inlet port 28 to separator inlet 312. This normally open position enables nebulized particles generated at fountain 128 to be motivated to outlet port 26 when the device 10 is powered on. As a result, the open default position of one-way valve 314 enables device 10 to produce a visible aerosol at outlet port 26 when device 10 is activated without the user engaging device 10 at outlet port 26 to inhale. The presence, or absence, of the visible aerosol at outlet port 26 enables the user to determine whether device 10 is operating prior to engaging the mouth at outlet port 26. Being able to visualize the aerosol prior to inhalation may provide comfort to the user that the device 10 is functioning properly.
In one embodiment, one-way valve 314 will close when gas is introduced to device 10 at outlet port 26. This may occur, for example, when the user inadvertently exhales into device 10. Closing one-way valve 314 when gas is introduced to device 10 at outlet port 26 will inhibit gas from flowing in a reverse direction along the delivery flow path, which would force the drug solution that may be airborne within device 10 to be expelled via inlet port 28.
In one embodiment, the one-way valve 314 has a valve body defining an aperture 316, and a valve flap 318, integrally connected (by being integrally molded) with the body. The connection may be in the form of a “living hinge.” Under typical operating circumstances, valve flap 318 may permit intake gas to flow through valve aperture 316 from inlet port 28 to separator inlet 312. As is illustrated in
It should be appreciated that any normally open one-way valve can be used. In one embodiment, a ball and spring type check valve may be used. In one embodiment, the one way valve may be electrically operated, such as by a solenoid. In such an embodiment, the one way valve may be normally closed, and may be opened when the user is engaging outlet port 26 to inhale. For example, the electrically operated valve may be opened based on an automated detection of engagement of outlet port 26 by the user, or the valve may be opened based on a user control.
As can be appreciated from
According to one embodiment of the invention, an inner diameter of guide tube 132 may be varied to provide control over one or more aspects of the nebulization of the drug solution. For instance, by varying the inner diameter of guide tube 132, a nebulized particle size delivered to the user, a flow rate of the drug solution delivered to the user, or other aspects of the nebulization may be controlled. In a non-limiting example, guide tube 132 may include an inner diameter of between 2 mm and 3 mm, with smaller inner diameters producing smaller nebulized particles and/or a lower flow rate, and larger inner diameters producing larger nebulized particles and/or a higher flow rate.
For example, in
In some embodiments, the flow rate and/or the size of the nebulized particles is adapted to the lung size of the user. This is because the flow rate and/or the size of the nebulized particles impact the location in the lungs of the user where the drug solution will be delivered. For example, in delivering the drug solution to the same region of two sets of lungs associated with two separate users with different lung sizes, the drug must travel different distances. In the embodiments shown in
In a non-limiting example, illustrate by
As mentioned previously, and as can be appreciated from
In the illustrated embodiment, the signal transmitter is an infrared (IR) source 712, the receiver is an IR detector 714, and the conduit is an internally reflecting light pipe 716, 718 with mouthpiece surface 720 as will be described. Of course a variety of other signal transmitters/receivers could be used in accordance with the present invention that operate at different frequencies outside the Infrared band such as visible light or RF. In fact a multitude of different signals across the electromagnetic spectrum could be used without departing from the unique aspects of the present invention. The source 712 is disposed in the base module 18 and emits a signal along a detection path to the detector 714. The signal travels through base module light pipe 716 to a cup light pipe/base light pipe interface 722, disposed at the juncture between the base module 18 and intermediate module 16. When the intermediate module housing 22 is coupled to the base module housing 18, the cup/base light pipe interface 722 are joined in abutting relation, thus permitting radiation to pass from base light pipe 716 to cup light pipe 718. The signal passes through cup light pipe 718 to a mouthpiece/cup light pipe interface 724 carried by the mouthpiece housing 20. At mouthpiece/cup light pipe interface 724, the mouthpiece module 14 is provided with a reflective surface 720. Thus, when the mouthpiece housing 20 is coupled with the cup housing 22, the signal emitted from cup light pipe 718 is reflected by reflective mouthpiece surface 720 and retraces the optical path back to base module 18, where detector 714 receives the reflected radiation. If the modules 14, 16, and 18 are not satisfactorily coupled, the detection path will be broken, and the radiation will not be returned to the detector 714. Based on the absence of or insufficiency of radiation at detector 714, interlock system 710 will disable activation of device 10. For example, in one embodiment, the detector 714 is functionally coupled with the device control electronics, which disables the device 10 by preventing the aerosol generator (e.g., piezoelectric transducer) 118 from being activated when the signal conduit is broken.
In another contemplated embodiment, the transmitter sends a simple electrical signal that is transmitted through an electrical conduit from the base module 18, through the intermediate module 16 and to the mouthpiece module 14, where it may be detected by a signal receiver, or where it is then returned to a signal receiver in the base module. The signal receiver functionally cooperates with the device control electronics to disable the aerosol generator 118 when the signal is prevented from reaching the signal receiver. In such an embodiment, the respective interfaces between modules 14, 16, and 18 may comprise simple electrical contacts that are broken when a module is disengaged.
A variety of different switches could be used to create a signal interrupter that either makes or breaks contacts when the modules are disassembled or misaligned. The switch could be a mechanical switch using electrical contacts between the modules, or a push button switch that is actuated during assembly. Alternatively, the switch could utilize a magnetic field for actuation rather than mechanical contacts such as a reed switch or a magnet with a corresponding magnetic sensor such as a hall-effect sensor.
In another embodiment, a wireless proximity detector can be employed. In such an embodiment, a wireless transmitter sends a signal that may be received by a wireless receiver in the mouthpiece module. In this instance, the conduit may be considered the space through which the wireless signals are transmitted. When the receiver in mouthpiece housing is farther than a threshold distance from the transmitter, the conduit is broken as the signals can no longer be received by the receiver, and the control electronics will disable the aerosol generator 118.
One benefit to the interlock arrangement is when the base module 18 is coupled with the intermediate module 16, but before the mouthpiece module 14 is coupled with the intermediate module 16, the user cannot inadvertently activate the aerosol generator without the mouthpiece module 14 in place. By contrast, it should also be appreciated that when the mouthpiece module 14 is coupled with the intermediate module 16, but the base module 18 is disconnected from the intermediate module 16, inadvertent activation of aerosol generator 118 would have no effect on the drug solution because the control electronics of the base module 18 and power source would not be connected with the aerosol generator in the intermediate module 16. It can be appreciated, therefore, that in an embodiment that employs the mouthpiece module, and a signal module that contains all of the control electronics of the base module 18 and the aerosol generator of the drug solution pool of the intermediate module, then only an interlock detection between the mouthpiece module 14 and the rest of the assembly can be employed.
It should be appreciated that many of the principles and features described herein can be used in an embodiment of the present invention that does not employ the guide tube 132. In such a system, most of the volume of the drug solution within the device 10 is contained in a reservoir that feeds the drug solution to the pool region that rests on the aerosol generator 118 as the drug solution 116 becomes depleted. A valve system, such as a float valve, can be used to regulate or control distribution of the drug solution from the reservoir to the aerosol generator 118.
More particularly, in one embodiment illustrated in
A float valve 214 may be positioned at fill channel opening 212 in drug solution 116 such that when the level of upper surface 130 rises, float 214, which is buoyant in the drug solution, rises up to block the drug solution from flowing into drug solution 116 from fill channel 212. However, when the level of upper surface 130 begins to drop, float valve 214 falls away from fill channel opening 212, thereby enabling the drug solution in fill channel 212 to flow into drug solution 116 until the level of upper surface 130 rises to a point where float 214 again blocks fill channel opening 212. Float valve 214 may include an angled float surface 218. Angled float surface 218 may interface with an angled device surface 220 to bias float valve 214 against fill channel opening 212 as float valve 214 rises. In one embodiment, float valve 214 is composed of a closed cell foam material.
The large droplets of the drug solution formed at fountain 128 are separated from the nebulized particles of the drug solution formed at fountain 128 by the separator structure 124. Subsequent to separation, the large droplets are returned to drug solution reservoir 210 via drug solution return 146. In one embodiment, drug solution reservoir 110 may be annular.
In some embodiments of the invention, separator structure 124 may provide a drug delivery path from fountain 128 to outlet port 26 for the nebulized particles formed at fountain 128. As the nebulized particles travel along the drug delivery path, separator structure 124 provides surfaces that separate nebulized particles formed at fountain 128 from the larger droplets formed by the drug solution propelled out of drug solution 116 prior to delivery of the nebulized particles to the user. Subsequent to separation from the nebulized particles, the larger droplets are returned to drug solution 116.
This arrangement is disclosed more fully in U.S. Patent Application Ser. No. 60/659,919 (now U.S. Patent Publication No. 2006-0201502), entitled NEBULIZING DRUG DELIVERY DEVICE WITH INCREASED FLOW RATE, filed on even date herewith and hereby incorporated by reference in its entirety.
Probe 2212 is positioned to detect the AC signal generated by the AC applied to the aerosol generator. Of course the signal could be generated by various other devices. In other words, the drug solution itself may act as a conduit for the AC signal that conducts the AC signal to probe 2212. When the upper surface 130 of the drug solution 116 falls below the threshold level, the drug solution will no longer act be able to deliver the AC signal to probe 2212. Although probe 2212 is illustrated as being disposed within drug solution 116, detecting the AC signal directly, in other embodiments, probe 2212 may be disposed in contact with an outer surface of a wall of drug solution pool cup 1411 and may detect the AC signal capacitively through the wall.
The AC signal (or lack thereof) detected by probe 2212 may be relayed to control electronics 1010 via signal lead 2214. At base module interface 1112, signal lead includes a lead connector 2310 disposed within tabbed extrusion 1132 that transmits the AC signal to control electronics via leaf spring 1011.
In one embodiment, when the AC signal is not detected, control electronics 1011 may automatically deactivate device 10. For example, aerosol generator 118 may be deactivated. Or, control electronics 1011 may activate an alert, such as, for example, a visual or audible indicia, that may warn the user that upper level 130 of the drug solution may have dropped below the threshold level.
The threshold level as contemplated herein can be virtually “empty”. However, it may be desirable for the threshold level to be some drug solution volume above empty, to allow the user sufficient warning that the drug solution is near depletion. In addition, when the drug solution volume reaches below a certain level, its thermal mass also drops below a threshold that may make it more susceptible to temperature changes in the environment or due to components within the device itself. Such temperature changes may be undesirable, as it may alter the effectiveness of certain drug solutions. In one non-limiting example, it may be desirable in some embodiments of the present invention to provide the device 10 with a heater that heats the drug solution 116. Such a heating arrangement may be desirable to lower the viscosity of the drug solution pool, particularly when using a drug solution of a high viscosity. Such a heater may be provided in contact with the drug solution 116 itself, or surrounding the drug pool cup region 1411, as described in previously mentioned co-pending U.S. Patent Application Ser. No. 60/659,919 (now U.S. Patent Publication No. 2006-02015021, filed on even date herewith and entitled NEBULIZING DRUG DELIVERY DEVICE WITH INCREASED FLOW RATE, and which is incorporated by reference in its entirety. In the event that the amount of drug solution drops below a threshold level, the thermal mass of the drug solution 116 may be subject to over heating. This may be prevented by disabling the aerosol generator 118 through use of the control electronics 1011 when the amount of drug solution drops below a threshold level as described above.
In another embodiment, it is contemplated two different drug solution levels may be detected. In such a system, a first low level is detected and provides either an audible or visual alarm to the user. This may prompt the user to refill the device 10 with drug solution. At this first low level point, however, the drug solution may not be sufficiently low to cause device 10 to be disabled, and the aerosol generator will continue to function. At a second low level point (e.g., when the drug solution 116 is of a less than desirable thermal mass) the system control electronics 1011 will then disable the aerosol generator. In such a dual level detection arrangement, it is contemplated that the control electronics can sense two different current levels transmitted through the drug solution 116, as the current level decreases with the increased resistance due to drug solution depletion. In another embodiment, two or more different probes are provided for detecting the two or more different drug levels.
It should also be appreciated that many of the principles of the present invention can be employed without a level detector, or with a known, conventional level detector.
It should also be appreciated that many of the principles of the present invention can be applied to a dual system that employs more than one aerosol generator 118. This may be useful again where high viscosity drug solution is being used, in order to increase the amount of drug that can be delivered. This dual arrangement is also disclosed in the aforementioned Application No. 60/659,919, and has been incorporated herein by reference.
In addition to detecting drug level, probe 2212 could be used for a variety of other unique purposes. First, probe 2212 could be used to detect if cup region 1411 has been breached (including barrier 122 or separating wall 1413). If breached, probe 2212 would be able to detect the change in the signal. Secondly, probe 2212 could be used as a sensor to detect the operation of aerosol generator 118. For instance, in the event that the aerosol generator is a piezoelectric device, it has been found that the amplitude of the detected AC shifts as the frequency applied to the piezoelectric device changes. It is preferred to operate the device at its resonant frequency which may vary from component to component. The resonant frequency corresponds with the maximum amplitude of the AC signal. Therefore, the resonant frequency can be identified by locating the maximum amplitude. In essence, this process is tuning the device. In the preferred embodiment, the resonant frequency occurs somewhere between 2.3 to 2.7 MHz. To find the optimum operating frequency of the device 10, the detected AC may be analyzed as the AC is cycled from frequency to frequency.
Alternatively, rather than using probe 2212, the operation of the piezoelectric device can be detected without probe 2212 by measuring the current drawn by the piezoelectric device. The current drawn by the piezoelectric device increases as the piezoelectric device approaches its resonant frequency. Once again, the frequency of the AC may be cycled from frequency to frequency to determine the frequency that results in the maximum current draw. In the preferred embodiment, the maximum frequency occurs somewhere between 2.3 to 2.7 MHz. Although this process could be performed at anytime, the inventors presently consider it to be desirable to perform this diagnostic at startup each time the device is turned on. Once the optimum frequency for the device is determined, this value may be stored in memory in electronics 1010.
It should also be appreciated that many of the principles of the present invention can be applied to a system designed for implementation within a ventilator circuit. This may be useful again where high viscosity drug solution is being used, in order to increase the amount of drug that can be delivered. Such an embodiment is disclosed in the U.S. Patent Application Ser. No. 60/659,782 (now U.S. Patent Publication No. 2006-0201500), entitled NEBULIZING DRUG DELIVERY DEVICE FOR VENTILATOR, filed on an even date herewith, and which is incorporated by reference, in its entirety.
Referring to
The method includes an operation 2510 at which an activation command is received. The activation command may be initiated by a user that is using the device via, for example, a control interface, or may be automatically generated.
At an operation 2512, a determination is made as to whether one or more device modules included in the device are properly coupled. For example, a signal, emitted by a signal transmitter, may be received at a signal receiver. If the signal receiver does not receive the signal, the device modules are not properly coupled, and the method proceeds to an operation 2514. At operation 2514, an aerosol generator is deactivated. This includes both maintaining the current operating state of the aerosol generator if the aerosol generator is currently deactivated, and deactivating a currently activated aerosol generator. The deactivation of the aerosol generator prevents the device from generating, or attempting to generate, nebulized particles of drug solution for delivery to the user.
If, at operation 2516, the determination is made that the device modules are properly coupled based on, for example, reception of the signal by the signal receiver, then the method proceeds to an operation 2516. At operation 2516, the aerosol generator is activated. This includes both maintaining the current operating state of the aerosol generator if the aerosol generator is currently activated, and activating a currently deactivated aerosol generator. The activation of the aerosol generator enables the device to generate nebulized particles of drug solution for delivery to the user.
The method includes an operation 2518, at which a determination is made as to whether a threshold amount of drug solution is present in the device for nebulization. In some instances, this determination includes monitoring a signal of a probe associated with a pool of drug solution held within the device. The probe receives the signal from the aerosol generator through the pool of drug solution so long as the pool of drug solution includes an amount of the drug solution greater than the threshold amount, but does not receive the signal once the amount of the drug solution in the pool of drug solution falls below the threshold amount. If the signal is not received by the probe, signifying that the amount of the drug solution in the pool of drug solution is below the threshold amount, the method proceeds to operation 2514.
If, at operation 2518, the signal is received by the probe, signifying that the amount of the drug solution in the pool of drug solution is above the threshold amount, the method proceeds to an operation 2520. At operation 2520, a determination is made as to whether a deactivation command has been received. A deactivation command may be initiated by a user that is using the device via the control interface. If a deactivation command has been received, the method proceeds to operation 2514.
If, at operation 2520, a deactivation command has not been received, the method proceeds to operation 2522. At operation 2522, a determination is made as to whether the aerosol generator has been activated for a time that exceeds a time out period. The time out period may be automatically determined, or may be set by the user. The time out period may be set to protect various electronic components within the device from excessive stress, dose of the drug, or according to other considerations. If the time out period has been exceeded, the method proceeds to operation 2514. If the time out period has not been exceeded, the method returns to operation 2512.
It can thus be appreciated that embodiments of the present invention have now been fully and effectively accomplished. The foregoing embodiments have been provided to illustrate the structural and functional principles of the present invention, and are not intended to be limiting. To the contrary, the present invention is intended to encompass all modifications, alterations, and substitutions within the spirit and scope of the appended claims.
Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims.
This application claims priority under 35 U.S.C. §119(e) from provisional U.S. Patent Application Ser. No. 60/659,781 filed Mar. 9, 2005 the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3387607 | Gauthier et al. | Jun 1968 | A |
3433461 | Scarpa | Mar 1969 | A |
3490697 | Best, Jr. | Jan 1970 | A |
3806100 | Cornett et al. | Apr 1974 | A |
3918641 | Lehmann et al. | Nov 1975 | A |
4094317 | Wasnich | Jun 1978 | A |
4113809 | Abair et al. | Sep 1978 | A |
4200093 | Camp | Apr 1980 | A |
4656707 | Berte et al. | Apr 1987 | A |
4820453 | Huang | Apr 1989 | A |
4951661 | Sladek | Aug 1990 | A |
4976259 | Higson et al. | Dec 1990 | A |
5062419 | Rider | Nov 1991 | A |
5277175 | Riggs et al. | Jan 1994 | A |
5308180 | Pournoor et al. | May 1994 | A |
5361989 | Merchat et al. | Nov 1994 | A |
5429302 | Abbott | Jul 1995 | A |
5485827 | Zapol et al. | Jan 1996 | A |
5646470 | de Groot | Jul 1997 | A |
5687715 | Landis et al. | Nov 1997 | A |
5707352 | Sekins et al. | Jan 1998 | A |
5724965 | Handke et al. | Mar 1998 | A |
5756994 | Bajic | May 1998 | A |
5865171 | Cinquin | Feb 1999 | A |
5908158 | Cheiman | Jun 1999 | A |
6152383 | Chen | Nov 2000 | A |
6202642 | McKinnon et al. | Mar 2001 | B1 |
6234167 | Cox et al. | May 2001 | B1 |
6241162 | Takahashi et al. | Jun 2001 | B1 |
6283118 | Lu | Sep 2001 | B1 |
6328030 | Kidwell et al. | Dec 2001 | B1 |
6357671 | Cewers | Mar 2002 | B1 |
6402046 | Loser | Jun 2002 | B1 |
6443146 | Voges | Sep 2002 | B1 |
6478754 | Babaev | Nov 2002 | B1 |
6516802 | Hansen et al. | Feb 2003 | B2 |
6530570 | Ku | Mar 2003 | B2 |
6550476 | Ryder | Apr 2003 | B1 |
6628798 | Teshima et al. | Sep 2003 | B2 |
6640804 | Irvi et al. | Nov 2003 | B2 |
6727466 | Mayo et al. | Apr 2004 | B2 |
6854465 | Bordewick et al. | Feb 2005 | B2 |
7059320 | Feiner et al. | Jun 2006 | B2 |
7089941 | Bordewick et al. | Aug 2006 | B2 |
7211320 | Cooper et al. | May 2007 | B1 |
20020011248 | Hansen et al. | Jan 2002 | A1 |
20020082666 | Babaev | Jun 2002 | A1 |
20030205229 | Crockford et al. | Nov 2003 | A1 |
20040025882 | Madaus et al. | Feb 2004 | A1 |
20050042170 | Jiang et al. | Feb 2005 | A1 |
20060201500 | Von Hollen et al. | Sep 2006 | A1 |
20060201502 | Lieberman et al. | Sep 2006 | A1 |
20060243274 | Lieberman et al. | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
2003254386 | Oct 2006 | AU |
2070062 | Dec 1996 | RU |
2076746 | Apr 1997 | RU |
WO9526236 | Oct 1995 | WO |
WO-03035152 | May 2003 | WO |
WO 2004017848 | Mar 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060243274 A1 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
60659781 | Mar 2005 | US |