The present invention relates generally to fuel injectors, and more particularly relates to fuel injectors for internal combustion engines.
Fuel injectors typically include a valve needle which is actuated to open and close an injector port to regulate fuel to the engine. In many injectors, the valve needle is electromagnetically actuated by a coil assembly that induces a magnetic flux in an armature connected to the valve needle. The armature is attached to one end of the valve needle, while the opposing end of the needle is shaped to seal against the valve seat for opening and closing the injector port.
Misalignment between the valve needle and the valve seat is a major cause of excessive injector leakage. To ensure acceptable alignment, an upper guide and a lower guide are typically employed to maintain the needle-armature assembly in a position perpendicular and concentric to the valve seat sealing surface. More specifically, this requires good concentricity between the armature and needle guiding faces, good concentricity between the upper and lower guide faces, and sufficiently tight upper and lower guide clearances.
Failure to meet these concentricity requirements can cause many problems, including the needle tilting from the axis, the needle binding to the guides, the needle being bent by the guides, the needle wearing on the guiding faces, and in the worse scenario, a gap being formed in the circumferential sealing surface between the tip of the needle and the valve seat. Therefore, needle misalignment deteriorates the injector performance by increasing needle-guide friction, accelerating wear of needle and guides, and causing leakage. On the upper end of the armature-needle assembly, the needle misalignment results in uneven air gap between the two magnetic pole faces of the armature. This may cause non-uniform magnetic flux distribution, inconsistent stroke, and bad flow linearity.
It can therefore be seen that the formation of the upper and lower guides, as well as of the needle-armature assembly is of paramount importance. Typically, the upper and lower guides are small parts which are individually formed and attached to other structures forming the fuel injector valve. The separate guides usually have a complicated shape with a central guiding hole and several flow passing holes. This requires precision grinding on both the outer diameter and the inner diameter surfaces, as well as very tight tolerances to maintain the concentricity. Unfortunately, these guide pieces are usually hardened and are too small to be held appropriately for machining. Furthermore, the assembly and fastening method for these guides in the injector are complicated, and may introduce additional problems. All of the above also increases cost. Therefore, there exists a need to provide a fuel injector having lower and/or upper guides which improve overall performance by maintaining good concentricity between the guiding faces, the valve assembly and the valve seat, while providing simple and cost effective manufacture and assembly.
The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention. In the drawings:
While the invention will be described in connection with certain preferred embodiments, there is no intent to limit it to those embodiments. On the contrary, the intent is to cover all alternatives, modifications and equivalents as included within the spirit and scope of the invention as defined by the appended claims.
Turning now to the figures,
The valve assembly 12 generally comprises a valve body 50 enclosing a needle assembly 60. The upper end of the valve body 50 is attached to the housing 14 and the non-magnetic shell 32, preferably by an appropriate weld. A lower portion of the valve body 50 includes a seal ring 52 on its outer surface. A lower end of the valve body 50 includes a nozzle 54 defining a valve seat 56 and a valve port 57 (see FIG. 4). A metering plate 58 is attached to the nozzle 54 below the seat 56 and port 57 and includes a plurality of discharge holes for manipulating the flow of fuel to the engine.
The needle assembly 60 generally comprises a needle body 62 and an armature 66. The armature 66 includes a recessed portion 67 sized to receive the lower end of the spring 28. Thus, the recessed portion 67 is in fluid communication with the passage 26. The armature 66 generally includes a first set of flow holes 68 and a second set of flow holes 69. The first set of flow holes 68 are in communication with the recessed portion 67, while the second set 69 extend through the armature 66 from its upper surface to a lower surface. The second set of flow holes 69 are adapted to provide venting to prevent the armature 66 from being held upward adjacent the inner tube 20 by hydraulic sticking. Further, the presence of the holes 69 reduces the mass of the armature 66. An upper end of the needle body 62 is attached to the armature 66, preferably by laser welding or swaging. A lower end of the needle body 62 defines a needle tip 64 for sealingly engaging the valve seat 56.
The valve body 50 defines an inner bore 70 including a smaller lower bore portion 72 and a larger upper bore portion 74. The inner bore 70 receives the needle assembly 60. More specifically, the upper bore portion 74 receives the armature 66, while the lower bore portion 72 receives the needle body 62 and its connection to the armature 66. The outer diameter of the needle body 62 is smaller than the inner diameter of the lower bore portion 72, thus defining an annular flow passage 76 therebetween.
In operation, fuel passes through the filter 22 into the inlet passage 26, and then to the recessed portion 67 of the armature 66. Fuel then flows through the first passage defined by flow holes 68, and then into the second flow passage 76 defined between the needle body 62 and the valve body 50. Fuel thus flows down to the nozzle 54, and is regulated by the position of the needle tip 64 relative to the valve seat 56. The position of the needle body 62 and its tip 64 is regulated by the coil assembly 30. The solenoid or coil assembly 30 generates a magnetic flux that acts upon the armature 66 to move the needle assembly 60 into the open position against the spring 28. When the solenoid 30 is no longer energized, the force of the spring 28 moves the needle assembly 60 to close the valve 12 once again.
In order to achieve the need for concentricity while simplifying manufacture and assembly and reducing cost, the fuel injector 10 includes an upper guide 80 and a lower guide 90 that are integrally formed with the valve body 50. For example, the lower guide 90 is machined as a part of the injector valve body 50, as best seen in
As best seen in
Another embodiment of the invention is depicted in FIG. 3. The embodiment is similar in all respects to the prior embodiment, except with regard to the upper guide 80. More specifically, the upper guide 180 of this embodiment is generally formed by the inner surface 184 of the non-magnetic sleeve 32. As in the prior embodiment, the upper bore portion 74 is ground in conjunction with the lower guide 90 and its guide surface 94 to ensure perfect concentricity therebetween. Accordingly, the non-magnetic shell 32 is aligned concentrically to the upper bore portion 74 of the valve body 50 by using an expanding guide pin or mandrel that guides the inner diameter of the shell 32 to the inner diameter of the upper bore portion 74. Thus, when the non-magnetic shell 32 is used as the upper guide 180, both guides 180 and 90 are still concentric. The upper bore portion 74 is spaced from the armature to create an air gap, preferably about 100 microns in size, to prevent sticking.
In the prior embodiment of the upper guide 80, it is also preferable to guide the non-magnetic sleeve 32 to the inner diameter of the upper bore portion 74 by using the expanding guide pin. In this way, the inlet tube will be guided concentrically to the armature 66 by the shell 32. This ensures a parallel air gap between the pole faces of the inlet tube 20 and the armature 66. Preferably, the sleeve 32 is laser welded to the upper end of the valve body 50.
Additional factors are also important to maintain good alignment in the fuel injector. In addition to the concentric upper and lower guides 80 (or 180), 90, the concentricity of the needle assembly 60, and more particularly the outer diameter of the armature 66 and the needle body 62 are important. Further, the concentricity of the valve seat 56 to both the upper and lower guides 80 (or 180), 90, as well as the roundness and surface finish of the needle tip 64 and the valve seat cone 56, are also important. Accordingly, the armature 66 and the needle body 62 are assembled together, preferably by either laser welding or swaging. Then, the needle tip 64 and the outer diameter of both the needle body 62 and the armature 66 are simultaneously ground to achieve perfect concentricity between the guiding faces of the needle assembly 60 and perpendicularity of the armature 66 and needle tip 64 to the central axis. If the two ends of the needle assembly 60 have to be processed separately, the common datum face on the outer diameter of the needle body 62 should be used to hold the part for both grinding operations.
As in any grinding process, it is inevitable to have tolerance and deviation in the above-mentioned process. Some level of minor misalignment should be expected and allowed. Therefore, to guarantee a seal at the valve seat 56 with such minor misalignment, the needle tip 64 of the present invention is formed into a spherical shape. More particularly, the needle tip 64 preferably has a semi-spherical shape. Additionally, the valve seat 56 is preferably conically shaped whereby the needle tip and seat form a seal about a circular line. Unlike a conical needle tip to a conical seat engagement, the spherical needle tip 64 can accommodate a certain level of misalignment and still seals on a circular sealing surface formed in conjunction with the valve seat 56. It will also be recognized that the seat 56 could be spherical, i.e., convex, while the needle tip 64 is conical. This would still provide a circular line seal as just described.
Furthermore, the present invention further increases the insensitivity of the needle misalignment, by ideally positioning the lower guide 90. More specifically, the pivot point of the spherical needle tip 64 is aligned with the lower guide 90. As best seen in
Accordingly, it can be seen that the present invention provides better concentricity between the two upper and lower guides by integrally forming them in the valve body 50. Furthermore, this invention also eliminates two small but expensive parts, the upper and lower guides. It eliminates the precision grinding on both of the inner and outer diameter surfaces of the guides, the tight tolerances, and the difficulty with machining. Furthermore, the methods of assembling and fastening these guides in the injector are eliminated. Therefore, the present invention provides a simple and cost effective method of forming upper and lower guides to improve the reliability of the seal on the injector valve, improving over all performance.
The foregoing description of various embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise embodiments disclosed. Numerous modifications or variations are possible in light of the above teachings. The embodiments discussed were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
Number | Name | Date | Kind |
---|---|---|---|
5170945 | Daly et al. | Dec 1992 | A |
5192048 | Wakeman | Mar 1993 | A |
RE35101 | Kelly | Nov 1995 | E |
5544816 | Nally et al. | Aug 1996 | A |
5625946 | Wildeson et al. | May 1997 | A |
5642862 | Wakeman et al. | Jul 1997 | A |
6003790 | Fly | Dec 1999 | A |
6003791 | Reiter | Dec 1999 | A |
6027050 | Rembold et al. | Feb 2000 | A |
6045116 | Willke et al. | Apr 2000 | A |
6065692 | Brinn, Jr. | May 2000 | A |
6079642 | Maier | Jun 2000 | A |
6089473 | Keim | Jul 2000 | A |
6105884 | Molnar et al. | Aug 2000 | A |
6173913 | Shafer et al. | Jan 2001 | B1 |
6199776 | Andorfer | Mar 2001 | B1 |
Number | Date | Country |
---|---|---|
1 059 438 | May 2003 | EP |
2001-123910 | May 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20040046062 A1 | Mar 2004 | US |