The present invention generally relates to blood collection devices and more specifically to self-sealing, needle free blood collection devices.
Collecting blood from a patient, though a necessary and routine medical procedure, is often a difficult task, particularly in the case of children, small adults, and the elderly, who may have small or “rolling” veins. As a result, multiple needle punctures of the patient may be required to obtain proper access to a vein, causing distress to both the patient and the caregiver. Worse, this procedure may have to be repeated several times over the course of the patient's hospital stay to draw blood samples for prescribed tests or on-going patient monitoring.
To get blood from the patient into a vial, the conventional method is to employ a device that combines a needle holder with a blood collection vial. This device typically has a double-ended sharpened cannula with one sharpened end being unprotected for insertion into a vein of the patient's arm and the opposite, second, sharpened end being located within a flange used to receive a sealed blood vial. As the blood vial is pressed into the flange, the second sharpened end of the cannula pierces the blood vial's septum to initiate the flow of blood from the patient into the vial for collection. While this approach may be satisfactory for single-puncture applications where a one-time withdrawal or administration of fluids is to occur, the double-ended cannula and cannula holder device are not well-suited for multiple or long-term uses. Manipulation of the device when exchanging vials can be painful to a patient, and when one vial is disconnected so that another can replace it, the patient's blood may flow out the cannula in the meantime, causing contamination.
In order to address some of these concerns, as is now known and widely practiced in the art, an intravenous (referred to as “I.V.”) tubing set including a venipuncture needle (sharpened cannula), a length of plastic tubing extending from the needle, and a solution bag at the opposite end of the tubing have been used. The tubing may also include one or more valve ports along its length for access to the I.V. line. In use, the venipuncture needle is inserted into a patient's vein, just as with the typical blood collection device. However, once the I.V. line is placed in connection with the venipuncture needle, the needle can remain in position long-term, allowing blood to be withdrawn and medicines and other solutions to be administered intravenously on multiple occasions without having to repeatedly puncture the patient. In employing the typical I.V. tubing set, blood is often collected in the solution bag attached to the tubing or in a vacuumized blood collection vial through a valve port positioned along the tubing. Blood collection vials are typically manufactured with a partial vacuum within the vial and are sealed with a puncturable membrane that functions to maintain the partial vacuum within the vial yet allow access to the vial to collect blood. When the sealing membrane is punctured, the vial draws the patient's blood into the vial due to its partial vacuum. Because of the partial vacuum manufactured into blood collection vials, they are often referred to as being “vacuumized.”
Prior art valve ports often entail conventional female connectors so that extension sets or gas sampling lines, syringes, or other such medical devices can be connected to a patient's I.V. line. The conventional female connector is open or unsealed, so that upon disconnection of the medical device, any residual fluids within the connector could come into contact with the patient or caregiver, risking contamination. Because of this risk, self-sealing, needle-free female luer connectors have been developed and employed in the art such that, upon disconnection, the female connector seals itself and traps any residual fluids within the patient's I.V. line.
Where a venipuncture needle and tube are employed and blood is to be withdrawn through a valve port in the patient's I.V. line into a blood collection vial, the conventional double-ended needle cannula holders have still been employed to facilitate the transfer of blood through the valve port and into the vial. One of the valve ports in the patient's I.V. line may be configured with a pierceable septum so that the free end of the sharpened cannula can be inserted into the valve port through the septum, rather than directly into the patient, and the holder at the opposite end of the cannula can accept a blood collection vial as before. However, this method, though effective, is not as desirable because the use of the sharpened cannula for insertion into the valve port presents opportunities for inadvertent needle punctures and resulting contamination of the caregiver and patient.
Alternatively, because I.V. line valve ports may now also be configured with self-sealing female luer connectors, vial holders known in the art may be utilized having a single sharpened cannula extending within the holder for acceptance of the vial, while the opposite end is generally configured as a conventional open male connector (with no valve) for interfacing the female connector on the I.V. line. In this way, needle-free connection between the vial holder and the patient's I.V. line is achieved. However, because the male connector is open and unsealed, any residual blood in or about the connector will be exposed when the holder is disconnected from the I.V. female connector valve port after use. Further, the single-needle cannula, though shielded by the vial holder and the required piercing of the vial septum by the cannula still pose a risk of an inadvertent needle puncture or cross-contamination. Relatedly, the required handling of the vials, including the removal of a full vial and the replacement of an empty vial in the holder, may pose additional risks that could be avoided if the vial and holder were an integral, self-sealing blood collection unit.
Therefore, those skilled in the art have recognized a need for a needle free blood collection device that includes a self-sealing male luer connector that may be connected to a female luer connector for the safe and effective collection of blood without the risks associated with the use of sharpened needles and changing vials in a holder. Further, those skilled in the art have recognized a need for a self-sealing male luer connector that may be connected to a female luer connector that forms a part of a patient's I.V. line. Even further, there has been recognized a need for an integral self-sealing male luer connector with a blood collection vial under partial vacuum such that a blood sample may be taken with the integral device and that device may then be disconnected from a female connector and forwarded for analysis. The present invention fulfills these needs and others.
Briefly and in general terms, the present invention is directed to a needle free vacuumized blood collection device for collecting blood from a patient in a vial through a needle free male connector having a valve. Mounted within an internal bore of the male connector is a valve element that opens or closes a flow passage to the blood collection vial. A spring device biases the valve element in the distal direction to a closed, or non-flow, configuration. Upon connection of the male connector to a female connector having a blunt or flat front surface, the valve element is automatically shifted to the flow configuration so that blood from the patient is collected in the vial. The valve element includes an activation arm extending outward from the male connector to contact the female connector device to shift the valve element to the flow configuration.
In further aspects, the activation arm of the valve element is configured to extend radially outwardly from the distal end of the valve element beyond the outside surface of the body of the male connector to engage the female connector upon insertion of the male connector of the blood collection device therein. As such, the activation arm cooperates with the proximal movement of the female connector during connection to shift the valve element proximally, thereby activating the device and allowing for fluid flow through the flow opening in the distal end of the valve element and the flow passage in the central post and into the collection vial. In another aspect, two substantially opposite activation arms exist on the valve element and two corresponding lateral openings or notches are formed in the tubular male connector so as to accommodate the axial movement of the valve element.
In more detailed aspects in accordance with the invention, to form the activation arms, opposite radially-outwardly extending tabs may be formed integral with the valve element's tube onto which a resilient end cap is mounted. As a result, the activation arms have the required stiffness to transmit the activation forces to the valve element to activate the device, while the distally-facing surfaces of the arms are made of a flexible, conforming material that serves to seal the activation arms within the notches and prevent leakage around the distal end of the valve element.
In yet further detailed aspects, the male connector is formed as part of a body member, which includes a body flange projecting in the proximal direction. The body member flange is configured to receive the open end of the collection vial. The body member flange may be formed with lengthwise, spaced-part, radially-inwardly extending ribs configured to engage the vial and removably secure the vial in place within the body member flange. A stopper is mounted, such as by press-fit, within the body member flange to provide a sealing mounting cavity for the vacuumized vial.
In another aspect, the body member includes a spring support at its proximal end to provide a mounting for a spring device so that the biasing forces of the spring device will be directed in the distal direction to close the valve element. In one case, the support device comprises a pair of brackets between which a spreader bar is mounted. In another aspect in accordance with the invention, the spring device includes two spaced-apart spring legs formed at the proximal end of the valve tube that straddle the spreader bar. The width of the spreader bar is selected to force the spring legs apart thus storing mechanical energy in the legs resulting in the spring device being biased in the distal direction. In a more detailed aspect, the shape of the spreader bar is in a rounded wedge so that further proximal movement of the spring device causes the development of increased mechanical biasing forces in the distal direction.
In another detailed aspect, the valve element includes an elliptically-shaped flow opening that is forced closed by a smaller diameter bore in the distal tip of the male connector when the valve element is forced to the distal direction. In another detailed aspect, the spring device is configured so that it provides constant biasing force against the valve element in the distal direction even when the valve element is in the non-flow configuration.
In yet a further detailed aspect, the valve tube includes a lateral opening at its proximal end to form part of the flow passage through the valve element. The stopper includes a counterbore that is small enough so that when the lateral opening of the valve tube is within the counterbore, the counterbore seals the lateral opening.
These and other features and advantages of the present invention will become apparent from the following detailed description of the preferred embodiments which, taken in conjunction with the accompanying drawings, illustrate by way of example the principles of the invention.
Referring now in more detail to the drawings for purposes of illustration, wherein like reference numerals designate corresponding or like elements among the several views, there is shown in
As a matter of reference only, the term “distal” is meant to refer to the direction toward the patient 28 and “proximal” is meant to refer to the direction away from the patient, or toward the collection device 20 or dispensing device such as the solution bag 30 shown. Also, “downstream” is meant to refer to the direction of the patient while “upstream” is meant to refer to the direction of the solution bag 30.
Referring now to
Referring now to
In the embodiment of
In the non-flow configuration shown in
With continued reference to
Projecting in the proximal direction from the planar wall of the body member is the spring support 48. The spring support has two brackets 64 extending in the proximal direction, one of which is shown in
Turning now to the spring device 60, in one embodiment the spring device is formed at the proximal end of the valve element 34 and is configured as a pair of proximally-extending spring legs 70 so as to straddle the spreader bar 68. The spring legs may be configured to have a distance between them that is smaller than the transverse width of the spreader bar. When the valve element is moved in the proximal direction, the spring legs are forced to flex outwardly as they pass over the spreader bar thereby developing and storing bias energy. In the embodiments shown herein, even in the rest or “non-flow” configuration shown in
To further facilitate the storage of energy in the spring legs 70 for biasing the valve element 34 is the distal direction, the spreader bar 68 may be formed with tapered side surfaces 72. In the embodiment shown in
Referring now to
In order to obtain the necessary resiliency for radial compression at the distal end yet have column strength to move longitudinally along the male connector bore 50, the valve element 34 can be formed from a rigid or semi-rigid central valve tube 82 having the flexible end cap 80 disposed at its distal end 76. The end cap is configured having an at-rest outside dimension substantially equivalent to the larger inside diameter 79 of the bore of the male connector so as to effectively seal the distal end of the valve element within the bore along its length. When the valve element is shifted distally within the bore so that the end cap is within the distally tapered portion 77 of the bore, which has a smaller diameter than the natural at-rest outer diameter of the end cap, the end cap is then compressed radially inwardly. As such, the flow opening 74 formed in the end cap, which is naturally in an open configuration, is closed due to the distal movement of the valve element and the corresponding compression of the end cap within the distally tapered position of the bore. In this way, the distal end 58 of internal bore is completely sealed by the end cap when the valve element is in its distally-biased position, and no fluid flow is allowed in or out of the blood collection device when it is disconnected before and after use. It can also be noted that the distal surface 76 of the end cap is substantially flush with the distal end 58 of the male connector and is thereby accessible for contact or surface sterilization.
Referring further to
However, in another embodiment, it may be desirable to removably mount the male connector 32 onto the vial 42 so as to be able to selectively access the vial's contents by completely removing the connector. As such, in the embodiment shown, the spaced-apart, lengthwise, inwardly projecting ribs 94 are formed about the interior surface of the body member flange so as to frictionally engage the outside surface of the vial and removably secure the vial in place within the body member flange, with the seal of the vial being maintained on its inside surface by the stopper.
Referring still to
In one embodiment, the valve element 34 includes a lateral hole 102 located substantially at the proximal end of the valve element that interconnects with a longitudinal hole 52 disposed along the axis 66 of the valve element. Together, the lateral hole, the longitudinal hole, and the opening 74 through the end cap 80 form the flow passage 52. In the embodiment shown in
Turning now to
As also shown in
With continued reference to
Referring now briefly to
Because of the non-flow configuration of the device 20 shown in
With further reference to
Referring now to
With continued reference to
As shown, the blood collection device 20 in these embodiments is configured so as to integrally include the distally projecting male connector 32, the circumferential threaded collar 36, the body member 38, the spring support brackets 64, and the annular body member flange 40. As such, it will be appreciated by those skilled in the art that these devices are well-suited for manufacture as an integrated single valve housing component 128 through an injection molding process. In this way, the housing 128 may be formed from a wide variety of medical grade plastics such as rigid or semi-rigid thermoplastics including, but not limited to, high density polyethylene, polypropylene, polycarbonate, ABS, acrylic, or any of the olefins. Similarly, the stopper 46 may also be formed from an injection or plug molding technique. Because in an embodiment the stopper is designed to be press fit into the male connector's body member flange 40 and to selectively seal off the valve element's cross-hole 102, it is preferred that the stopper be made of a flexible, conforming material such as silicone rubber, thermoplastic vulcanate, or thermoplastic elastomer. Once the stopper is formed in a separate molding operation, it may then be simply press-fit within the male connector's body member flange.
Referring now to
Referring again briefly to
Turning now to
Still referring to
In use, the blood collection device 20 in accordance with the present invention may be connected to a female luer connector 22 or other such connector that is part of a patient's I.V. administration set 24 (
It should be appreciated that in addition to the application shown in
It will be appreciated by those skilled in the art that the blood collection device 20 of the present invention is thus configured to allow needle free access to and collection from a patient's I.V. administration set 24 with the ease and simplicity of male-to-female luer connection and the operability of a selectively openable, pre-vacuumized collection vial achieved without the risks associated with additional vial handling and the shielded needle cannulas known and used in the art. It will be further appreciated that the device may be centrifuged as are conventional septum-covered vials and then the blood withdrawn from the collection vial the same way it was collected, through connection of the male connector with a typical female connector configured on a blood testing machine or the like. The blood may also be withdrawn by machines equipped with conventional needle cannulas by removing the male connector body member from the vial before placing the vial in the machine.
Therefore, the blood collection device of the present invention is well-suited for safe and effective blood collection from a patient's I.V. line. While a particular form of the invention has been illustrated and described, it will also be apparent to those skilled in the art that various modifications can be made without departing from the scope of the invention. For example, the circular luer opening of devices may be altered to other shapes for a customized purpose, as when specialized drugs are used. The lateral hole at the proximal end of the valve tube may have a different position or have a different number of holes. In another embodiment, there may not be a need to seal the proximal hole of the valve tube. Accordingly, it is not intended that the invention be limited except by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2931668 | Baley | Apr 1960 | A |
2968497 | Treleman | Jan 1961 | A |
3127892 | Bellamy, Jr. et al. | Apr 1964 | A |
3304047 | Martin | Feb 1967 | A |
3334860 | Bolton, Jr. | Aug 1967 | A |
3986508 | Barrington | Oct 1976 | A |
4066067 | Micheli | Jan 1978 | A |
4080965 | Phillips | Mar 1978 | A |
4121585 | Becker, Jr. | Oct 1978 | A |
4133441 | Mittleman et al. | Jan 1979 | A |
4195632 | Parker et al. | Apr 1980 | A |
4233982 | Bauer et al. | Nov 1980 | A |
4245635 | Kontos | Jan 1981 | A |
4340049 | Munsch | Jul 1982 | A |
4379458 | Bauer et al. | Apr 1983 | A |
4387879 | Tauschinski | Jun 1983 | A |
4397442 | Larkin | Aug 1983 | A |
4457749 | Bellotti et al. | Jul 1984 | A |
4511359 | Vaillancourt | Apr 1985 | A |
4623332 | Lindmayer et al. | Nov 1986 | A |
4662878 | Lindmayer | May 1987 | A |
4723603 | Plummer | Feb 1988 | A |
4774964 | Bonaldo | Oct 1988 | A |
4774965 | Rodriguez et al. | Oct 1988 | A |
4781702 | Herrli | Nov 1988 | A |
4816024 | Sitar et al. | Mar 1989 | A |
4834271 | Litwin | May 1989 | A |
4862913 | Wildfang | Sep 1989 | A |
4883483 | Lindmayer | Nov 1989 | A |
4915687 | Sivert | Apr 1990 | A |
4917669 | Bonaldo | Apr 1990 | A |
4935010 | Cox et al. | Jun 1990 | A |
4950260 | Bonaldo | Aug 1990 | A |
5006114 | Rogers et al. | Apr 1991 | A |
5065783 | Ogle, II | Nov 1991 | A |
5070885 | Bonaldo | Dec 1991 | A |
5098385 | Walsh | Mar 1992 | A |
5108376 | Bonaldo | Apr 1992 | A |
5122123 | Vaillancourt | Jun 1992 | A |
5139483 | Ryan | Aug 1992 | A |
5147333 | Raines | Sep 1992 | A |
5154703 | Bonaldo | Oct 1992 | A |
RE34223 | Bonaldo | Apr 1993 | E |
5199948 | McPhee | Apr 1993 | A |
5201725 | Kling | Apr 1993 | A |
5203775 | Frank et al. | Apr 1993 | A |
5211634 | Vaillancourt | May 1993 | A |
5215537 | Lynn et al. | Jun 1993 | A |
5215538 | Larkin | Jun 1993 | A |
5242393 | Brimnall | Sep 1993 | A |
5251873 | Atkinson et al. | Oct 1993 | A |
5269771 | Thomas et al. | Dec 1993 | A |
5273533 | Bonaldo | Dec 1993 | A |
5279571 | Larkin | Jan 1994 | A |
5281206 | Lopez | Jan 1994 | A |
5284475 | Mackal | Feb 1994 | A |
5295657 | Atkinson | Mar 1994 | A |
5306243 | Bonaldo | Apr 1994 | A |
5330450 | Lopez | Jul 1994 | A |
5334159 | Turkel | Aug 1994 | A |
5344414 | Lopez et al. | Sep 1994 | A |
5360413 | Leason et al. | Nov 1994 | A |
5370636 | Von Witzleben | Dec 1994 | A |
5380306 | Brinon | Jan 1995 | A |
5385372 | Utterberg | Jan 1995 | A |
5390898 | Smedley et al. | Feb 1995 | A |
5395348 | Ryan | Mar 1995 | A |
5397314 | Farley et al. | Mar 1995 | A |
5400500 | Behnke et al. | Mar 1995 | A |
5401245 | Haining | Mar 1995 | A |
5402982 | Atkinson et al. | Apr 1995 | A |
5405323 | Rogers et al. | Apr 1995 | A |
5405331 | Behnke et al. | Apr 1995 | A |
5405333 | Richmond | Apr 1995 | A |
5411499 | Dudar et al. | May 1995 | A |
5417673 | Gordon | May 1995 | A |
5423791 | Bartlett | Jun 1995 | A |
5425465 | Healy | Jun 1995 | A |
5433330 | Yatsko et al. | Jul 1995 | A |
5439451 | Collinson et al. | Aug 1995 | A |
5441487 | Vedder | Aug 1995 | A |
5456668 | Ogle, II | Oct 1995 | A |
5456675 | Wolbring et al. | Oct 1995 | A |
5464399 | Boettger | Nov 1995 | A |
5470319 | Mayer | Nov 1995 | A |
5470327 | Helgren et al. | Nov 1995 | A |
5474536 | Bonaldo | Dec 1995 | A |
5480393 | Bommarito | Jan 1996 | A |
5492147 | Challender et al. | Feb 1996 | A |
5501426 | Atkinson et al. | Mar 1996 | A |
5514117 | Lynn | May 1996 | A |
5518026 | Benjey | May 1996 | A |
5520665 | Fleetwood | May 1996 | A |
5533708 | Atkinson et al. | Jul 1996 | A |
5533983 | Haining | Jul 1996 | A |
5540661 | Tomisaka et al. | Jul 1996 | A |
5549566 | Elias et al. | Aug 1996 | A |
5549577 | Siegel et al. | Aug 1996 | A |
5549651 | Lynn | Aug 1996 | A |
5552118 | Mayer | Sep 1996 | A |
5555908 | Edwards et al. | Sep 1996 | A |
5569235 | Ross et al. | Oct 1996 | A |
5573516 | Tyner | Nov 1996 | A |
5575769 | Vaillancourt | Nov 1996 | A |
5578059 | Patzer | Nov 1996 | A |
5584819 | Kopfer | Dec 1996 | A |
5597536 | Mayer | Jan 1997 | A |
5616129 | Mayer | Apr 1997 | A |
5616130 | Mayer | Apr 1997 | A |
RE35539 | Bonaldo | Jun 1997 | E |
5645538 | Richmond | Jul 1997 | A |
5674206 | Allton et al. | Oct 1997 | A |
5676346 | Leinsing | Oct 1997 | A |
5685866 | Lopez | Nov 1997 | A |
5738144 | Rogers | Apr 1998 | A |
RE35841 | Frank et al. | Jul 1998 | E |
5779074 | Burns | Jul 1998 | A |
5782816 | Werschmidt et al. | Jul 1998 | A |
5806831 | Paradis | Sep 1998 | A |
5820601 | Mayer | Oct 1998 | A |
5839715 | Leinsing | Nov 1998 | A |
5848994 | Richmond | Dec 1998 | A |
6029946 | Doyle | Feb 2000 | A |
6068011 | Paradis | May 2000 | A |
6079432 | Paradis | Jun 2000 | A |
6106502 | Richmond | Aug 2000 | A |
6113068 | Ryan | Sep 2000 | A |
6142446 | Leinsing | Nov 2000 | A |
6206860 | Richmond | Mar 2001 | B1 |
6290206 | Doyle | Sep 2001 | B1 |
6299132 | Weinheimer et al. | Oct 2001 | B1 |
6485472 | Richmond | Nov 2002 | B1 |
6541802 | Doyle | Apr 2003 | B2 |
6745998 | Doyle | Jun 2004 | B2 |
7140592 | Phillips | Nov 2006 | B2 |
20030032940 | Doyle | Feb 2003 | A1 |
20030060779 | Richmond | Mar 2003 | A1 |
20030136932 | Doyle | Jul 2003 | A1 |
20030183795 | Doyle | Oct 2003 | A1 |
20040124389 | Phillips | Jul 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20060058773 A1 | Mar 2006 | US |