Needle safety shield

Information

  • Patent Grant
  • 9022990
  • Patent Number
    9,022,990
  • Date Filed
    Monday, April 4, 2011
    13 years ago
  • Date Issued
    Tuesday, May 5, 2015
    9 years ago
Abstract
A needle safety shield 10 for use with a syringe 10 having a barrel 14, a needle and a plunger rod 16. The safety shield 10 has a first tube 22. A second tube 26 is arranged for sliding movement within the first tube 22. A pin 46 is connected to one of the first and second tubes 22, 26. An activation ring 32 has a stop 72. A drive spring 34 biases the activation ring 32 in a proximal direction to place the stop 72 in engagement with the pin 46 to retain the first and second tubes 22, 26 in a retracted configuration. The movement of the plunger rod 16 to engage the activation ring 32 compresses the drive spring 34, moving the activation ring 32 distally, and moving the stop 72 out of engagement with the pin 46, allowing the drive spring 34 to move the first and second tubes 22, 26 into an extended configuration.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application is a section 371 of International Application No. PCT/US2011/031053, filed Apr. 4, 2011, which was published in the English language on Oct. 11, 2012 under International Publication No. WO 2012/138318, the disclosure of which is incorporated herein by reference.


BACKGROUND OF THE INVENTION

The present invention is directed to a needle safety shield for a syringe having a barrel, a needle and a plunger rod. More, particularly, the present invention is directed to a needle safety shield having a position biased actuation assembly.


Needlestick injuries are a well known occupational hazard for healthcare workers. Unintended needlesticks have the potential for transmitting blood-borne viruses such as hepatitis B and C and the human immunodeficiency virus (HIV) to the recipient. After a needlestick injury, certain procedures must be followed to minimize the risk of infection for the recipient, such as laboratory blood tests and post-exposure prophylaxis started immediately after exposure to a pathogen, such as one of the aforementioned viruses, in order to prevent infection by the pathogen and the development of the associated disease.


Conventional safety devices intended to reduce the frequency of post-injection needlesticks typically have a sheath partially or completely surrounding the pharmaceutical syringe. The sheath may be held in a retracted position exposing the needle for aspiration and injection and may be automatically deployed around a needle afterwards.


One example of a common safety injection device for a syringe is disclosed in U.S. Pat. No. 7,678,086. The disclosed safety injection device has a support sheath secured to a syringe barrel. Prior to an injection, a needlestick protection sheath is held in a retracted position exposing the syringe needle by radially outwardly biased latches that rest on a shoulder of the interior wall of the support sheath. At the end of the injection, the head of the syringe piston dislodges the latches allowing a thrust spring to move the protection sheath to an extended position beyond the distal end of the needle, thereby preventing exposure of a healthcare worker to the needle tip. At least one known deficiency of the safety injection device is that a shock or vibration prior to assembly of the syringe may unexpectedly cause the latches to release and the protection sheath to move to the extended position.


Accordingly, there is a need in the art for a safety injection device having a protection sheath that can not be inadvertently activated.


BRIEF SUMMARY OF THE INVENTION

Briefly stated, one aspect of the invention is directed to a needle safety shield for a pharmaceutical syringe having a barrel with a proximal end and a distal end, a piston rod having a distal end slideably received in the barrel, a free proximal end of the piston rod having an actuator head with a rim. The safety shield comprises an outer tube having the syringe barrel therein. A proximal end of the outer tube forms a coupling ring connecting the proximal end of the syringe barrel to the outer tube. The coupling ring is configured to receive the rim of the actuator head therein. The coupling ring has a radially inwardly-extending support. An activation ring is slideably received in the coupling ring. The activation ring comprises a radially inwardly-extending stop movable relative to the support. An inner tube is in an annular space formed between the syringe barrel and the outer tube. An inner-tube pin extends radially outwardly from a proximal end of the inner tube. The inner tube is slideable between a retracted position in which the inner-tube pin is releasably retained on the support by the stop and an extended position in which the inner-tube pin is released by the stop and the inner tube projects beyond the distal end of the syringe barrel. A thrust spring has a proximal end bearing against the activation ring and a distal end bearing against the inner tube. A compressive force is applied to the actuation ring by the thrust spring when the inner tube is in the retracted position. The thrust spring moves the inner tube from the retracted position to the extended position when the rim of the actuator head displaces the activation ring releasing the inner-tube pin from the actuation-ring stop.


Another aspect of the invention is a needle safety shield for a pharmaceutical syringe having a barrel with a proximal end and a distal end, a piston rod having a distal end slideably received in the barrel, a free proximal end of the piston rod having an actuator head with a rim. The safety shield comprises an outer tube having the syringe barrel therein. A proximal end of the outer tube forms a coupling ring connecting the proximal end of the syringe barrel to the outer tube. The coupling ring is configured to receive the rim of the actuator head therein. The coupling ring has a radially inwardly-extending support with an inclined surface. An activation ring is slideably received in the coupling ring. The activation ring comprises a radially inwardly-extending stop movable axially relative to the support. An inner tube is in an annular space formed between the syringe barrel and the outer tube. An inner-tube pin extends radially outwardly from a proximal end of the inner tube. The inner tube is slideable between a retracted position in which the inner-tube pin is releasably retained on the inclined surface of the support by the stop and an extended position in which the inner-tube pin is released by the stop and the inner tube projects beyond the distal end of the syringe barrel. A thrust spring is in the inner tube. The thrust spring has a proximal end bearing against the activation ring and a distal end bearing against the inner tube. A compressive force is applied to the actuation ring by the thrust spring when the inner tube is in the retracted position. The thrust spring moves the inner tube from the retracted position to the extended position when the rim of the actuator head displaces the activation ring releasing the inner-tube pin from the actuation-ring stop.


Another aspect of the invention is a needle safety shield for use with a syringe having a barrel, a needle and a plunger rod. The safety shield has a first tube. A second tube is arranged for sliding movement within the first tube. A pin is connected to one of the first and second tubes. An activation ring has a stop. A drive spring biases the activation ring in a proximal direction to place the stop in engagement with the pin to retain the first and second tubes in a retracted configuration. The movement of the plunger rod to engage the activation ring compresses the drive spring, moving the activation ring distally, and moving the stop out of engagement with the pin, allowing the drive spring to move the first and second tubes into an extended configuration.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of preferred embodiments of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings embodiments which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.


In the drawings:



FIG. 1 is a side cross-sectional view of an embodiment of the needle safety shield containing a pharmaceutical syringe in accordance with the present invention;



FIG. 2 is a side cross-sectional view of the needle safety shield of FIG. 1, showing the inner tube in the extended position;



FIG. 3 is a top perspective view of the outer tube of FIG. 1;



FIG. 4 is a bottom perspective view of a lower portion of the outer tube of FIG. 1;



FIG. 5 is a top perspective view of the inner tube of FIG. 1;



FIG. 6 is side cross sectional view of the mid-portion of the inner tube and the lower portion of the outer tube of FIG. 1 showing the fingers of the outer tube in the locked position;



FIG. 7 is a top perspective view of the coupling ring of FIG. 1;



FIG. 8 is a top perspective view of the actuation ring of FIG. 1;



FIG. 9 is a top perspective view of an upper portion of the needle safety shield of FIG. 1 with the pharmaceutical syringe removed; and



FIG. 10A-10C is a sequence of top perspective views in partial cross-section of the upper portion of the needle safety shield of FIG. 1 showing the progressive axial displacement of the piston rod and the release of the inner-tube pin from the releasable latch.





DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to embodiments of the invention, examples of which are illustrated in the accompanying drawings. The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention.


As used in the description of the invention and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The words “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. The words “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


The words “right,” “left,” “lower” and “upper” designate directions in the drawings to which reference is made. The words “inwardly” and “outwardly” refer to directions toward and away from, respectively, the geometric center of the needle safety shield, and designated parts thereof. The terminology includes the words noted above, derivatives thereof and words of similar import.


Although the words first, second, etc., are used herein to describe various elements, these elements should not be limited by these words. These words are only used to distinguish one element from another. For example, a first tube could be termed a second tube, and, similarly, a second tube could be termed a first tube, without departing from the scope of the present invention.


As used herein, the words “if” may be construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” may be construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.


The following description is directed towards various embodiments of a needle safety shield in accordance with the present invention.


Referring to the drawings in detail, where like numerals indicate like elements throughout, there is shown in FIGS. 1-10C a preferred embodiment of the needle safety shield, generally designated 10, and hereinafter referred to as the “safety shield” 10 in accordance with the present invention. The safety shield 10 is for use with a syringe 12. The syringe 12 is preferably a pharmaceutical syringe. However, the syringe 12 may have non-pharmaceutical uses in industry and/or the home. The syringe 12 has a barrel 14 with a proximal end 14a and a distal end 14b. In some embodiments, a needle 13 may be attached fixedly or removably to the distal end 14b of the barrel 14. A piston (or plunger) rod 16 is movable in the barrel 14. In some embodiments, a free proximal end 16a of the piston rod 16 has an actuator head 18 with a rim 20 and a distal end 16b of the piston rod 16 is slideably received in the barrel 14.


The safety shield 10 comprises at least a first (or outer) tube 22 having the syringe 12 therein. In some embodiments, a coupling ring 24 having a support 66 (see FIG. 7) is connected to the first tube 22. Preferably, the proximal end 22a (see FIG. 3) of the outer tube 22 and the coupling ring 24 are formed as a single part connecting the proximal end 14a of the syringe barrel 14 to the outer tube 22. In some embodiments, the outer tube 22 and the coupling ring 24 may be fabricated as separate parts that are subsequently assembled as a single part by a joining process such as ultrasonic welding.


A second (or inner) tube 26 is in the first tube 22. The second tube 26 is arranged for sliding movement within the first tube 22. Preferably, the second tube 26 is in an annular space 28 formed between the syringe barrel 14 and the outer tube 22. A pin 46 (see FIG. 5) is connected to one of the first and second tubes 22, 26. In some embodiments, the pin 46 is preferably connected to the second tube 26.


An activation ring 32 having a stop 72 is provided. (See FIG. 8) In some embodiments, the activation ring 32 may be slideably received in the coupling ring 24.


A drive (or thrust) spring 34 biases the activation ring 32 in a proximal direction to place the stop 72 in engagement with the pin 46 to retain the first and second tubes 22, 26 in a retracted configuration. In some embodiments, when the safety shield 10 is in the retracted configuration the support 66 and stop 72 form a pocket (or latch) 48 in which the pin 46 is received. (See FIGS. 10A-10C). Preferably, the pocket 48 is formed by an inclined surface 70 on the support 66 extending radially and at an angle to the axis 36 of the first and second tubes 22, 26 and a first surface 74 on the stop 72 extending radially and parallel to the axis 36.


The drive spring 34 moves the internal tube 26 along the longitudinal axis 36 from a retracted position 36a (see, FIG. 1) to an extended position 36b (see, FIG. 2). More particularly, movement of the plunger rod 16 to engage the activation ring 32 compresses the drive spring 34, moving the activation ring 32 distally, and moving the stop 72 out of engagement with the pin 46, allowing the drive spring 34 to move the second tube 26 into an extended configuration


Referring to FIGS. 3-4, the outer tube 22 has a proximal end 22a and a distal end 22b. In some embodiments, the proximal end 22a of the outer tube 22 has a radially outwardly extending flange 38 with an axially extending side wall 40. The distal end 22b of the outer tube 22 has a taper 42 with an axially-extending, radially inwardly-biased finger 44.


Referring to FIGS. 5-6, the inner tube 26 has a proximal end 26a and a distal end 26b. In some embodiments, the pin 46 extends radially outwardly from the proximal end 26a of the inner tube 26. The inner tube 26 is slideable axially between a retracted position 36a in which the pin 46 is releasably retained by the activation-ring stop 72 described below and an extended position 36b in which the inner-tube pin 46 is released by the activation-ring stop 72 and the inner tube 26 projects beyond the distal end 14b of the syringe barrel 14.


The inner tube 26 has an interior wall 50 with a circumferential step 52 spaced from the proximal end 26a of the inner tube 26. As shown in FIGS. 1-2 and 10A-10C, the step 52 operatively couples the inner tube 26 to the thrust spring 34 by providing a bearing surface for the distal end 34b of the spring 34.


Referring to FIGS. 2, 5 and 6, the outer surface 54 of the inner tube 26 has a detent 56 in register with the finger 44 of the outer tube 22 when the inner tube 26 is in the extended position 36b. The detent 56 is configured to releasably receive the finger 44. The distal end 22b of the outer tube 22 has an inner surface 23 with a radially inwardly extending shoulder 23a having an inner diameter less than an outer diameter of an opposing shoulder 54a extending radially outwardly from an outer surface 54 of the inner tube 26. The radially inwardly extending shoulder 23a cooperates with the radially outwardly extending opposing shoulder 54a to limit the axial distance the inner tube may move.


Referring to FIGS. 1, 2, 7 and 9, the coupling ring 24 has an axially extending interior wall 58 with a proximal end 58a and a distal end 58b. The coupling ring 24 is configured to receive therein the rim 20 of the actuator head 18. In some embodiments, the outer tube 22 is connected to the coupling ring 24 by a compression fit between the axially extending side wall 40 of the flange 38 of the outer tube 22 and the distal end 58b of the axially extending interior wall 58 of the coupling ring 24. An annular ring 60 spaced from the distal end 58b extends radially inwardly from the interior wall 58. A radially inwardly extending seat 62 is supported by the annular ring 60. The seat 62 supports the proximal end 14a of the syringe barrel 14. A radially inwardly extending barrel latch 64 is supported by the annular ring 60. The barrel latch 64 secures the syringe barrel 14 to the seat 62.


The coupling ring 24 has an inner-tube support 66 extending radially inwardly from the annular ring 60. In some embodiments, the support 66 has an inclined surface 70 extending radially and axially. The inclined surface 70 forms part of a latch 48 releasably retaining the inner tube 26 in the retracted position 36a as further described below.


Referring to FIGS. 1, 2, 8, 9 and 10A, the activation ring 32 comprises a radially inwardly-extending stop 72 movable relative to the support 66. The inner-tube pin 46 is releasably retained on the support 66 by the stop 72. Preferably, the stop 72 is adjacent to and movable axially relative to the support 66. In some embodiments, the support 66 and the stop 72 form the releasable latch 48 (see, FIG. 10A).


The stop 72 may have a first surface 74 extending radially and axially and a second surface 76 also extending radially and axially. The first surface 74 may be in sliding contact with the inclined surface 70 of the support 66 of the coupling ring 24. Alternatively, the first surface 74 may be spaced apart from the inclined surface 70. In some embodiments, the second surface 76 may be inclined with respect to the first surface 74 or may have a curvature.


In some embodiments, the releasable latch 48 has a catch 78 (see, FIG. 10A) formed by the inclined surface 70 of the support 66 and the first surface 74 of the stop 72. The inner-tube pin 46 may be releasably retained in the catch 78 when the inner tube 26 is in the retracted position 36a. The inclined surface 70 and the second surface 76 may form an inclined plane along which the inner-tube latch pin 46 slides when the rim 20 of the actuator head 18 axially displaces the activation ring 32. (See FIGS. 10B and 10C). In some embodiments, the inner tube 26 may rotate when the inner-tube pin 46 is released from the stop 72.


Referring to FIGS. 1, 2, 8 and 9, the thrust spring 34 has a proximal end 34a bearing against the activation ring 32 and a distal end 34b bearing against the inner tube 26. A compressive force is applied to the actuation ring 32 by the thrust spring 34 when the inner tube 26 is in the retracted position 36a. The thrust spring 34 moves the inner tube 26 from the retracted position 36a to the extended position 36b when the rim 20 of the actuator head 18 axially displaces the activation ring 32 releasing the inner-tube latch pin 46 from the inner-tube latch 48.


In some embodiments, the thrust spring 34 is in the inner tube 26. The activation ring 32 has a radially inwardly-extending spring support 80. The proximal end 34a of the thrust spring 34 bears against the spring support 80 and the distal end 34b of the thrust spring 34 bears against the step 52 in the interior wall 50 of the inner tube 26.


The safety shield 10 and syringe 12 are used in combination. In an initial state shown in FIGS. 1, 7 and 10A, the proximal end 14a of the barrel 14 of the syringe 12 is supported by the seat 62 of the coupling ring 24 and is secured in place by the barrel latch 64. The inner tube 26 is held in the retracted position 36a by the inner-tube pin 46 releasably retained in the catch 78 formed by the inclined surface 70 of the support 66 of the coupling ring 24 and the first surface 74 of the stop 72 of the activation ring 32 which, in turn, is held snug against the proximal end 14a of the syringe barrel 14 by a force applied to the spring support 80 of the activation ring 32 by a compressed thrust spring 34. The rim 20 of the actuator head 18 of the piston rod 16 is spaced from the actuation ring 32.


Referring to FIG. 10B, in a second state, the actuator head 18 of the piston rod 16 has been depressed a sufficient axial distance to cause the rim 20 of the actuator head 18 to axially displace the actuation ring 32. The axial displacement of the actuation ring 32, in turn, releases the catch 78, freeing the inner-tube pin 46 from the latch 48, by forming an inclined plane comprising the inclined surface 70 of the support 66 and the fourth surface 76 of the stop 72.


Referring to FIG. 10C, in a third state, under the force applied by the compressed thrust spring 34 to the circumferential step 52 in the interior wall 50 of the inner tube 26, the inner-tube latch pin 46 is driven down and off the inclined plane as the inner tube 26 rotates until the inner-tube pin 46 has passed the stop 72 and is moved axially toward the extended position 36b shown in FIG. 2.


Because the inner-tube pin 46 is releasably retained in the latch 48 and because the latch 48 is “closed” until the actuator head 18 of the piston rod 16 has been depressed a sufficient axial distance to cause the rim 20 of the actuator head 18 to axially displace the actuation ring 32 which, in turn, releases the catch 78, freeing the inner-tube pin 46 from the latch 48, neither shock or vibration prior to assembly of the syringe may unexpectedly cause the protection sheath to move to the extended position. Accordingly, the various embodiments of the invention provide a device which should not activate during transportation of the device or during assembly of the syringe into the device or during transport of the final assembly with the syringe inside.


The foregoing detailed description of the invention has been disclosed with reference to specific embodiments. However, the disclosure is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Those skilled in the art will appreciate that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. Therefore, the disclosure is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.


All references, patent applications, and patents mentioned above are incorporated herein by reference in their entirety and are not to be construed as an admission that any of the cited documents constitutes prior art, or as an admission against interest in any manner.

Claims
  • 1. A needle safety shield for a pharmaceutical syringe having a barrel with a proximal end and a distal end, a piston rod having a distal end slideably received in the barrel, a free proximal end of the piston rod having an actuator head with a rim, the safety shield comprising: an outer tube having the syringe barrel therein, a proximal end of the outer tube forming a coupling ring connecting the proximal end of the syringe barrel to the outer tube, the coupling ring configured to receive the rim of the actuator head therein, the coupling ring having a radially inwardly-extending support;an activation ring slideably received in the coupling ring, the activation ring comprising a radially inwardly-extending stop movable relative to the support;an inner tube in an annular space formed between the syringe barrel and the outer tube, an inner-tube pin extending radially outwardly from a proximal end of the inner tube, the inner tube slideable between a retracted position in which the inner-tube pin is releasably retained on the support by the stop and an extended position in which the inner-tube pin is released by the stop and the inner tube projects beyond the distal end of the syringe barrel; anda thrust spring having a proximal end bearing against the activation ring and a distal end bearing against the inner tube, a compressive force being applied to the actuation ring by the thrust spring when the inner tube is in the retracted position,wherein the thrust spring moves the inner tube from the retracted position to the extended position when the rim of the actuator head displaces the activation ring releasing the inner-tube pin from the actuation-ring stop.
  • 2. The needle safety shield of claim 1, wherein the radially inwardly-extending stop is movable axially relative to the support.
  • 3. The needle safety shield of claim 1, wherein the radially inwardly-extending support has an inclined surface, the inner-tube pin is releasably retained on the inclined surface by the stop, and the inner tube rotates when the inner-tube pin is released from the stop.
  • 4. The needle safety shield of claim 1, wherein the thrust spring is in the inner tube.
  • 5. The needle safety shield of claim 1, wherein the inner tube has an interior wall with a circumferential step spaced from the proximal end of the inner tube, the activation ring has a radially inwardly-extending spring support, and the proximal end of the thrust spring bears against the spring support and the distal end of the thrust spring bears against the step in the interior wall of the inner tube.
  • 6. The needle safety shield of claim 1, wherein the coupling ring further comprises: an axially extending interior wall;an annular ring extending radially inwardly from a distal end of the interior wall;a radially inwardly-extending seat supported by the annular ring, the seat supporting the proximal end of the syringe barrel; anda radially inwardly-extending barrel latch supported by the annular ring, the barrel latch securing the syringe barrel to the seat.
  • 7. The needle safety shield of claim 1, wherein a distal end of the outer tube has a taper with an axially extending, radially inwardly-biased finger, and the inner tube has an outer surface with a detent in register with the finger when the inner tube is in the extended position, the detent configured to releasably receive the finger.
  • 8. The needle safety shield of claim 1, wherein a distal end of the outer tube has an inner surface with a radially inwardly-extending shoulder having an inner diameter less than an outer diameter of an opposing shoulder extending radially outwardly from an outer surface of the inner tube, the radially inwardly-extending shoulder cooperating with the radially outwardly-extending opposing shoulder to limit the axial distance the inner tube may move.
  • 9. A needle safety shield for a pharmaceutical syringe having a barrel with a proximal end and a distal end, a piston rod having a distal end slideably received in the barrel, a free proximal end of the piston rod having an actuator head with a rim, the safety shield comprising: an outer tube having the syringe barrel therein, a proximal end of the outer tube forming a coupling ring connecting the proximal end of the syringe barrel to the outer tube, the coupling ring configured to receive the rim of the actuator head therein, the coupling ring having a radially inwardly-extending support with an inclined surface;an activation ring slideably received in the coupling ring, the activation ring comprising a radially inwardly-extending stop movable axially relative to the support;an inner tube in an annular space formed between the syringe barrel and the outer tube, an inner-tube pin extending radially outwardly from a proximal end of the inner tube, the inner tube slideable between a retracted position in which the inner-tube pin is releasably retained on the inclined surface of the support by the stop and an extended position in which the inner-tube pin is released by the stop and the inner tube projects beyond the distal end of the syringe barrel; anda thrust spring in the inner tube, the thrust spring having a proximal end bearing against the activation ring and a distal end bearing against the inner tube, a compressive force being applied to the actuation ring by the thrust spring when the inner tube is in the retracted position,wherein the thrust spring moves the inner tube from the retracted position to the extended position when the rim of the actuator head displaces the activation ring releasing the inner-tube pin from the actuation-ring stop.
  • 10. The needle safety shield of claim 9, wherein a distal end of the outer tube has an inner surface with a radially inwardly-extending shoulder having an inner diameter less than an outer diameter of an opposing shoulder extending radially outwardly from an outer surface of the inner tube, the radially inwardly-extending shoulder cooperating with the radially outwardly-extending opposing shoulder to limit the axial distance the inner tube may move.
  • 11. A needle safety shield for use with a syringe having a barrel, a needle and a plunger rod, comprising: a first tube;a second tube arranged for sliding movement within the first tube:a pin connected to one of the first and second tubes;an activation ring having a stop; anda drive spring biasing the activation ring in a proximal direction to place the stop in engagement with the pin to retain the first and second tubes in a retracted configuration,wherein movement of the plunger rod to engage the activation ring compresses the drive spring, moving the activation ring distally, and moving the stop out of engagement with the pin, allowing the drive spring to move the first and second tubes into an extended configuration.
  • 12. The needle safety shield of claim 11, wherein the pin is connected to the second tube.
  • 13. The needle safety shield of claim 12, further comprising a coupling ring connected to the first tube and having a support.
  • 14. The needle safety shield of claim 13, wherein in the retracted configuration the support and stop form a pocket in which the pin is received.
  • 15. The needle safety shield of claim 14, wherein the pocket is formed by an inclined surface on the support extending radially and at an angle to an axis of the first and second tubes, and a first surface on the stop extending radially and parallel to the axis.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2011/031053 4/4/2011 WO 00 10/25/2013
Publishing Document Publishing Date Country Kind
WO2012/138318 10/11/2012 WO A
US Referenced Citations (119)
Number Name Date Kind
1921034 La Marche Aug 1933 A
3880163 Ritterskamp Apr 1975 A
4631057 Mitchell Dec 1986 A
4723943 Spencer Feb 1988 A
4747831 Kulli May 1988 A
4828548 Walter May 1989 A
4832696 Luther et al. May 1989 A
4871355 Kikkawa Oct 1989 A
4887998 Martin et al. Dec 1989 A
4911693 Paris Mar 1990 A
4923447 Morgan May 1990 A
4927416 Tomkiel May 1990 A
4929237 Medway May 1990 A
4931040 Haber et al. Jun 1990 A
4943282 Page et al. Jul 1990 A
4966592 Burns et al. Oct 1990 A
4986819 Sobel Jan 1991 A
5026349 Schmitz et al. Jun 1991 A
5106379 Leap Apr 1992 A
5108378 Firth et al. Apr 1992 A
5112307 Haber et al. May 1992 A
5141500 Hake Aug 1992 A
5163918 Righi et al. Nov 1992 A
5201708 Martin Apr 1993 A
5201720 Borgia et al. Apr 1993 A
5261880 Streck et al. Nov 1993 A
5267972 Anderson Dec 1993 A
5279581 Firth et al. Jan 1994 A
5346480 Hess et al. Sep 1994 A
5360410 Wacks Nov 1994 A
5380296 Smedley et al. Jan 1995 A
5411487 Castagna May 1995 A
5501672 Firth et al. Mar 1996 A
5531706 de la Fuente Jul 1996 A
5558651 Crawford et al. Sep 1996 A
5573513 Wozencroft Nov 1996 A
5591138 Vaillancourt Jan 1997 A
5601536 Crawford et al. Feb 1997 A
5803918 Vetter et al. Sep 1998 A
5817064 DeMarco et al. Oct 1998 A
5855839 Brunel Jan 1999 A
5891104 Shonfeld et al. Apr 1999 A
5891105 Mahurkar Apr 1999 A
5913846 Szabo Jun 1999 A
5989226 Hymanson Nov 1999 A
5997513 Smith et al. Dec 1999 A
6013059 Jacobs Jan 2000 A
6033386 Novacek et al. Mar 2000 A
6086566 Arnissolle Jul 2000 A
6159184 Perez et al. Dec 2000 A
6171284 Kao et al. Jan 2001 B1
6186980 Brunel Feb 2001 B1
6296625 Vetter et al. Oct 2001 B1
6319233 Jansen et al. Nov 2001 B1
6319234 Restelli et al. Nov 2001 B1
6344032 Perez et al. Feb 2002 B1
6416323 Grenfell et al. Jul 2002 B1
6419658 Restelli et al. Jul 2002 B1
6475194 Domici, Jr. et al. Nov 2002 B2
6547764 Larsen et al. Apr 2003 B2
6565540 Perouse et al. May 2003 B1
6569115 Barker et al. May 2003 B1
6585702 Brunel Jul 2003 B1
6613022 Doyle Sep 2003 B1
6623459 Doyle Sep 2003 B1
6685676 Jansen et al. Feb 2004 B2
6719730 Jansen et al. Apr 2004 B2
6918889 Brunel Jul 2005 B1
6949086 Ferguson et al. Sep 2005 B2
6966898 Pouget et al. Nov 2005 B1
6997901 Popovsky Feb 2006 B2
7029461 Ferguson et al. Apr 2006 B2
7097636 Pessin Aug 2006 B2
7144389 Ferguson et al. Dec 2006 B2
7300421 Lowry et al. Nov 2007 B1
7429256 Chevallier et al. Sep 2008 B2
7582073 Barrelle et al. Sep 2009 B2
7678086 Chevallier Mar 2010 B2
7699814 Lande Apr 2010 B2
7824379 Doyle Nov 2010 B2
7875006 Pessin Jan 2011 B2
7938808 Pessin May 2011 B2
8118787 Chevallier et al. Feb 2012 B2
8192407 Pessin Jun 2012 B2
20010031949 Asbaghi Oct 2001 A1
20010039401 Ferguson et al. Nov 2001 A1
20020002354 Vetter et al. Jan 2002 A1
20020045864 Perez et al. Apr 2002 A1
20020068921 McWethy et al. Jun 2002 A1
20020156426 Gagnieux et al. Oct 2002 A1
20020161337 Shaw et al. Oct 2002 A1
20020193746 Chevallier Dec 2002 A1
20030050607 Gagnieux et al. Mar 2003 A1
20030229314 McWethy et al. Dec 2003 A1
20040015137 Hohlfelder et al. Jan 2004 A1
20040144668 Marshall et al. Jul 2004 A1
20040193120 Ferguson et al. Sep 2004 A1
20040236283 Tang Nov 2004 A1
20040267206 Rimlinger et al. Dec 2004 A1
20050020985 Doyle Jan 2005 A1
20050080383 Woehr Apr 2005 A1
20050119623 Pessin Jun 2005 A1
20050148933 Raven et al. Jul 2005 A1
20050148943 Chevalier Jul 2005 A1
20050165353 Pessin Jul 2005 A1
20060184133 Pessin Aug 2006 A1
20060200077 Righi et al. Sep 2006 A1
20060264887 Lande Nov 2006 A1
20070088287 Chevallier Apr 2007 A1
20070179441 Chevallier Aug 2007 A1
20070239117 Chelak et al. Oct 2007 A1
20080021409 Pessin Jan 2008 A1
20080208140 Barrelle Aug 2008 A1
20080294120 Chevallier et al. Nov 2008 A1
20080312603 Chevallier et al. Dec 2008 A1
20090105661 Chevallier et al. Apr 2009 A1
20100217205 Chevallier et al. Aug 2010 A1
20120022465 Stamp et al. Jan 2012 A1
20120095408 Eaton et al. Apr 2012 A1
Foreign Referenced Citations (43)
Number Date Country
0904792 Mar 1999 EP
0966983 Dec 1999 EP
1 066 848 Jan 2001 EP
1474194 Nov 2004 EP
1532997 May 2005 EP
1235603 May 2006 EP
2653667 May 1991 FR
2762790 Nov 1998 FR
2794650 Dec 2000 FR
2807665 Oct 2001 FR
2830764 Apr 2003 FR
2830765 Apr 2003 FR
2835753 Aug 2003 FR
2837107 Sep 2003 FR
2860162 Apr 2005 FR
2861598 May 2005 FR
2922455 Apr 2009 FR
H05-500621 Feb 1993 JP
H08-010324 Jan 1996 JP
H09-502893 Mar 1997 JP
2843677 Jan 1999 JP
H11-319090 Nov 1999 JP
2003-501218 Jan 2003 JP
2003-511106 Mar 2003 JP
2004-528075 Sep 2004 JP
2005-516741 Jun 2005 JP
2006-505340 Feb 2006 JP
9426334 Nov 1994 WO
9835714 Aug 1998 WO
99 17823 Apr 1999 WO
0124856 Apr 2001 WO
0130427 May 2001 WO
0137898 May 2001 WO
0141841 Jun 2001 WO
0185239 Nov 2001 WO
02072182 Sep 2002 WO
02089878 Nov 2002 WO
03068298 Aug 2003 WO
03077977 Sep 2003 WO
2004043524 May 2004 WO
2004087242 Oct 2004 WO
2005039678 May 2005 WO
2006027445 Mar 2006 WO
Non-Patent Literature Citations (79)
Entry
Office Action issued Oct. 24, 2013 in U.S. Appl. No. 11/861,567 by Pessin.
Int'l Search Report issued Dec. 12, 2012 in Int'l Application PCT/US2012/039385.
Int'l Search Report and Written Opinion issued Dec. 22, 2011 in Int'l Application PCT/US2011/031053.
Office Action issued Mar. 28, 2007 in U.S. Appl. No. 10/550,524.
Int'l Search Report issued Sep. 22, 2004 in Int'l Application No. PCT/FR2004/000755.
Office Action issued Apr. 17, 2009 in U.S. Appl. No. 11/861,567.
Office Action issued Jan. 13, 2010 in U.S. Appl. No. 11/861,567.
Office Action issued Sep. 1, 2009 in JP Application No. 2006-505752.
Office Action issued Jun. 8, 2010 in JP Application No. 2006-505752.
Office Action issued Dec. 7, 2010 in JP Application No. 2006-505752.
Japanese Office Action mailed Mar. 16, 2010 in JP Appln No. 2006-537346.
Search Report Issued Jul. 9, 2009 in EP Application No. 08 166 632.3.
Search Report Issued Jun. 13, 2008 in FR Application No. 0758496.
Office Action issued Mar. 22, 2011 in U.S. Appl. No. 12/738,509.
Office Action issued Aug. 25, 2011 in U.S. Appl. No. 12/738,509.
Int'l Search Report issued May 11, 2009 in Int'l Application No. PCT/FR2008/051908; Written Opinion.
Search Report issued Jun. 17, 2008 in FR Application No. 0758497; Written Opinion.
Office Action issued Dec. 23, 2011 in CN Application No. 200880112730.3.
Japanese Office Action mailed Feb. 2, 2010 in Japanese Appln No. 2006-536115.
Office Action Issued Oct. 2, 2008 in U.S. Appl. No. 10/576,938.
Office Action Issued Jul. 21, 2009 in U.S. Appl. No. 10/576,938.
Preliminary Search Report Issued Jun. 21, 2004 in FR Application No. 0312327.
International Search Report and Written Opinion mailed Jun. 6, 2005 in Int'l Application No. PCT/FR2004/002654.
Office Action Issued Dec. 22, 2008 in EP Application No. 04817285.2.
Int'l Preliminary Report on Patentability Issued Jul. 27, 2006 in Int'l Application No. PCT/FR2004/002654.
Office Action dated Mar. 9, 2010 in U.S. Appl. No. 10/576,938.
Office Action issued Sep. 14, 2010 in Japanese Appl Ser No. 2006-536115.
Int'l Preliminary Report on Patentability issued Oct. 8, 2013 in Int'l Application No. PCT/US2011/031053.
Office Action issued Dec. 18, 2006 in U.S. Appl. No. 10/507,913 by Pessin.
Office Action issued Sep. 7, 2007 in U.S. Appl. No. 10/507,913 by Pessin.
Office Action issued Dec. 17, 2008 in U.S. Appl. No. 10/507,913 by Pessin.
Office Action issued Oct. 8, 2009 in U.S. Appl. No. 10/507,913 by Pessin.
Office Action issued Apr. 23, 2009 in EP Application No. 04 818 444.4.
Office Action issued Nov. 23, 2010 in EP Application No. 04 818 444.4.
Office Action issued Apr. 17, 2013 in EP Application No. 04 818 444.4.
Int'l Search Report issued Sep. 11, 2003 in Int'l Application No. PCT/FR2003/000722.
Search Report and English translation of Written Opinion issued Jul. 9, 2009 in EP Application No. 08 166 632.3.
Office Action issued Apr. 21, 2005 in U.S. Appl. No. 10/995,035 by Pessin.
Office Action issued Oct. 5, 2005 in U.S. Appl. No. 10/995,035 by Pessin.
Office Action issued Sep. 28, 2010 in JP Application No. 2007-528915.
Office Action issued Sep. 6, 2011 in JP Application No. 2007-528915.
Int'l Search Report issued Jan. 3, 2006 in Int'l Application No. PCT/FR2005/001983.
Int'l Preliminary Report on Patentability issued Feb. 28, 2007 in Int'l Application No. PCT/FR2005/01983.
Int'l Search Report issued Jan. 25, 2006 in Int'l Application No. PCT/FR2005/001926.
Int'l Preliminary Report on Patentability issued Feb. 28, 2007 in Int'l Application No. PCT/FR2005/001926.
Office Action issued May 15, 2009 in U.S. Appl. No. 11/574,333 by Pessin.
Office Action issued Sep. 10, 2008 in U.S. Appl. No. 11/574,333 by Pessin.
Office Action issued Dec. 13, 2007 in U.S. Appl. No. 11/574,333 by Pessin.
Office Action issued Aug. 20, 2010 in U.S. Appl. No. 11/574,176 by Pessin.
Int'l Preliminary Report on Patentability issued Feb. 21, 2006 in Int'l Application No. PCT/FR2004/000755.
Search Report issued Mar. 4, 2004 in FR Application No. 0312642.
Int'l Search Report issued Apr. 4, 2005 in Int'l Application No. PCT/FR2004/002597.
Int'l Preliminary Report on Patentability issued Dec. 12, 2013 in Int'l Application No. PCT/US2012/039385.
Office Action issued Mar. 11, 2009 in U.S. Appl. No. 10/577,380 by Chevallier.
Office Action issued Feb. 16, 2012 in CN Application No. 200880112413.1.
Search Report and Written Opinion issued Jun. 13, 2008 in FR Application No. 0758495.
Int'l Search Report and Written Opinion issued May 11, 2009 in Int'l Application No. PCT/FR2008/051907.
Int'l Preliminary Report on Patentability issued Jun. 1, 2010 in Int'l Application No. PCT/FR2008/051907.
Office Action issued Mar. 22, 2011 in U.S. Appl. No. 12/738,422.
Office Action issued Aug. 18, 2011 in U.S. Appl. No. 12/738,422.
Office Action issued Jul. 1, 2009 in U.S. Appl. No. 12/254,266 by Chevallier.
Office Action issued Feb. 4, 2010 in U.S. Appl. No. 12/254,266 by Chevallier.
Office Action issued Nov. 3, 2011 in U.S. Appl. No. 12/254,266 by Chevallier.
Office Action issued Apr. 23, 2012 in U.S. Appl. No. 12/254,266 by Chevallier.
Office Action issued May 10, 2013 in U.S. Appl. No. 12/254,266 by Chevallier.
Office Action issued Oct. 10, 2013 in U.S. Appl. No. 12/254,266 by Chevallier.
U.S. Appl. No. 13/666,588 by Feret, filed Nov. 1, 2012.
Int'l Preliminary Report on Patentability issued Jun. 1, 2010 in Int'l Application No. PCT/FR2008/051908.
Search Report issued Jun. 24, 2004 in FR Application No. 0312327.
Office Action issued Sep. 28, 2010 in JP Application No. 2007-528913.
Search Report issued Feb. 22, 2005 in EP Application No. 04 29 2750.
Office Action issued Nov. 28, 2006 in EP Application No. 04 292 750.
Office Action issued Mar. 11, 2008 in EP Application No. 04 292 750.
Office Action issued Sep. 11, 2009 in EP Application No. 05 792 448.
Int'l Preliminary Report on Patentability issued Oct. 17, 2013 in Int'l Application No. PCT/US2011/031053.
Office Action issued Jun. 16, 2014 in U.S. Appl. No. 10/576,938 by Chevalier.
Office Action issued Jun. 24, 2014 in U.S. Appl. No. 12/738,509 by Chevalier.
Office Action issued Dec. 3, 2014 in U.S. Appl. No. 12/738,509 by Chevalier.
Office Action issued Jan. 8, 2015 in U.S. Appl. No. 10/576,938 by Chevalier.
Related Publications (1)
Number Date Country
20140163476 A1 Jun 2014 US