Negative-angle forming die

Information

  • Patent Grant
  • 6526797
  • Patent Number
    6,526,797
  • Date Filed
    Thursday, June 7, 2001
    23 years ago
  • Date Issued
    Tuesday, March 4, 2003
    21 years ago
Abstract
The present invention provides a negative-angle forming die comprising a lower die half having a supporting portion for placing a sheet metal work, and an upper die half to be lowered straightly downward onto the lower die half for forming the work, an intrusion forming portion formed in the lower die half at an edge portion near the supporting portion inward of a downward stroke line of the upper die half, a rotary cam rotatably provided in the lower die half, a slide cam including an intrusion forming portion and slidably opposed to the rotary cam, and an automatic retractor provided in the lower die half for pivoting the rotary cam back to a position thereby allowing the work to be taken out of the lower die half after a forming operation, the work placed on the supporting portion of the lower die half being formed by the intrusion forming portion of the rotary cam and the intrusion forming portion of the slide cam, the slide cam forming the work by sliding, the automatic retractor pivoting back the rotary cam after the forming operation for allowing the work to be taken out of the lower die half, wherein the rotary cam has two ends each including a supporting shaft projecting therefrom, the supporting shafts being supported by the lower die half for rotatably supporting the rotary cam, positioning means for fixing an axial position of the rotary cam being provided in the lower die half and the rotary cam.
Description




BACKGROUND OF THE INVENTION




The present invention relates to a negative-angle forming die for forming a sheet metal. Herein, the negative-angle forming die is used for a formation made at a location more inward of a lower die half than a straight downward stroke line of an upper die half.




The negatively angled forming of a work provided as a sheet metal into a shape having a portion more inward of the lower die half than the straight downward stroke line of the upper die half is generally performed by using a slide cam.




According to a prior-art intrusion forming process of the sheet metal work, the work is placed on the lower die half and the upper die half is lowered vertically. At this time a drive cam of the upper die half drives a driven cam of the lower die half, forming the work from a side. After the formation is completed and the upper die half is lifted, then the driving cam is retracted by a spring.




In the above arrangement, the driven cam slid onto the work from the side has a forming portion which is formed as a single piece in the same shape as the work as after the formation. The lower die half however, must allow the work to be taken out from the lower die half after the formation, and for this reason, a portion of the lower die half providing the intrusion formation must be made separable for retraction, or a rear portion thereof must be cut off so that the work can be moved forward and taken out. This does not pose a serious problem if the extent of the intrusion is small. However, the problem becomes serious if the extent of the intrusion is large, or if the work is to be formed into a long frame having a groove-like section such as in a formation of an automobile front pillar-outer from a sheet metal. Specifically, since the groove width of the work is so narrow, that if the portion of the lower die half corresponding to the groove is divided or cut off, it becomes impossible for the forming portion of the driven cam to form clearly. In addition, strength of the lower die decreases. Thus, it was impossible to perform a clear-shaped intrusion formation.




Further, a formed product sometimes has a twist or distortion, which must be corrected. However, for example, many automobile parts that provide the outer skin of the automobile, such as a side panel, fender, roof, bonnet, trunk lid, door panel, front pillar-outer and so on are formed to have a three-dimensional surface or line, and therefore it is practically impossible to make correction after the formation. In assembling the automobile sheet-metal parts, if there is a twist or distortion in the parts, it is difficult to fit the parts together. Without solving this problem, it was impossible to provide a high quality automobile sheet metal structure, and it was impossible to maintain a required level of product accuracy in the formed sheet metal products.




In order to solve the above-described problem, an arrangement was proposed, in which the straight downward stroke of the upper die half is converted to a rotary movement of a rotary cam to pivot to form the portion in the lower die half more inward than the straight downward stroke line of the upper die half. In this arrangement, after the forming operation, the rotary cam is pivoted back to a state where the completed work can be taken out of the lower die. This arrangement will be described in more detail.




Specifically, as shown in

FIG. 9

to

FIG. 12

, this negative-angle forming die comprises a lower die half


102


including a supporting portion


101


on which a work W is placed and an upper die half


103


which is lowered straightly down onto the lower die half


102


to press thereby forming the work W. The lower die half


102


is rotatably provided with a rotary cam


106


supported in an upwardly opening axial groove


104


. The groove


104


has a portion close to the supporting portion


101


formed with an intrusion forming portion


105


located more inward than a stroke line of the upper die half


103


. The lower die half


102


rotatably supports a rotary cam


106


. The upper die half


103


is provided with a slide cam


108


opposed to the rotary cam


106


and provided with an intrusion forming portion


107


. The lower die half is further provided with an automatic retractor


109


which moves the rotary cam


106


back to the sate that allows the work W to be taken out of the lower die half


102


after the formation. The work W placed on the supporting portion


101


of the lower die half


102


is formed by the intrusion forming portion


105


of the rotary cam


106


and the intrusion forming portion


107


of the slide cam


108


. The work W is formed by a rotary movement of the rotary cam


106


and a sliding movement of the slide cam


108


. After the formation, the automatic retractor


109


pivots back the rotary cam


106


, allowing the work W to be taken out of the lower die half


102


.




Now, an operation of this negative-angle forming die will be described.




First, as shown in

FIG. 9

, the upper die half


103


is positioned at its upper dead center. At this stage, the work W is placed on the supporting portion


101


of the lower die half


102


. The rotary cam


106


is held at its retracted position by the automatic retractor


109


.




Next, the upper die half


103


begins to lower, and first, as shown in

FIG. 10

, a lower surface of the slide cam


108


makes contact with a pivoting plate


111


without causing the slide cam


108


to interfere with the intrusion forming portion


105


of the rotary cam


106


, pivoting the rotary cam


106


clockwise as in

FIG. 10

, thereby placing the rotary cam


106


at a forming position. Then, a pad


110


presses the work W.




When the upper die half


103


continues to lower, the slide cam


108


which is under an urge outward of the die half begins a sliding movement as the sliding cam in a laterally leftward direction, against the urge from a coil spring


112


. This is a state shown in

FIG. 11

, where the intrusion forming portion


105


of the pivoted rotary cam


106


and the intrusion forming portion


107


of the slide cam


108


perform formation of the work W.




After the intrusion formation, the upper die half


103


begins to rise. The slide cam


108


, which is urged outwardly of the die half by the coil spring


112


, moves in a laterally rightward direction as in

FIG. 12

, and keeps rising without interfering with the work W as after the intrusion formation. On the other hand, the rotary cam


106


is released from the holding by the slide cam


108


, and therefore is pivoted in a leftward direction as in

FIG. 12

by the automatic retractor


109


. Thus, when the work W is taken out of the lower die half after the intrusion formation, the work W can be removed without interference with the intrusion forming portion


105


of the rotary cam


106


.




According to the negative-angle forming process described above, the lower surface of the slide cam


108


urged by the coil spring


112


contacts the pivoting plate


111


urged by the coil spring


113


of the automatic retractor


109


, rotating the rotary cam


106


in the clockwise direction to the shaping position, and thereafter, the pad


110


presses the work W. With this arrangement, urging force from the pad


110


to the work W is so strong that the work W under the formation can be slightly pivoted counterclockwise as in the figure. In another case, the urge of the coil spring


112


of the slide cam


108


is not well balanced with the urge of the coil spring


113


of the automatic retractor


109


, resulting in a slight pivoting movement of the rotary cam


106


out of the predetermined position for the formation. These situations sometimes make impossible to form into an accurate curve. For example, it is sometimes impossible to provide a product of an accuracy level in the order of {fraction (1/100)} mm, and it was sometimes impossible to achieve a high quality negative-angle formation.




Further, as will be understood from FIG.


9


through

FIG. 12

, the rotary cam


106


is supported by the lower die half


102


through direct contact of the cam's outer circumference except for the groove portion


104


. With this structure, accurate and difficult machining must be made to the rotary cam


106


and the supporting portion (a bore having a generally circle section) of the lower die half


102


which supports the rotary cam


106


.




Further, since most of the outer wall of the rotary cam


106


is used for support by the lower die half


102


, the negative angle forming die tends to be large and expensive.




Now, in consideration of the background described above, the present invention aims to solve these problems: that slight pivoting movement makes a rotary cam out of a predetermined forming position, making an unwanted step in a curved surface of the work or making unable to form into an accurate curve; that it is difficult to provide a product of accuracy in the order of {fraction (1/100)} mm is difficult; and that it is impossible to provide a formed sheet metal product of a high quality. The present invention aims to maintain the rotary cam at a predetermined forming position thereby providing a formed sheet metal product of a high quality. In order to achieve this object, the present invention provides a negative-angle forming die comprising a lower die half having a supporting portion for placing a sheet metal work, and an upper die half to be lowered straightly downward onto the lower die half for forming the work, an intrusion forming portion formed in the lower die half at an edge portion near the supporting portion inward of a downward stroke line of the upper die half, a rotary cam rotatably provided in the lower die half, a slide cam including an intrusion forming portion and slidably opposed to the rotary cam, and an automatic retractor provided in the lower die half for pivoting the rotary cam back to a position thereby allowing the work to be taken out of the lower die half after a forming operation, the work placed on the supporting portion of the lower die half being formed by the intrusion forming portion of the rotary cam and the intrusion forming portion of the slide cam, the slide cam forming the work by sliding, the automatic retractor pivoting back the rotary cam after the forming operation for allowing the work to be taken out of the lower die half, wherein the rotary cam has two ends each including a supporting shaft projecting therefrom, the supporting shafts being supported by the lower die half for rotatably supporting the rotary cam, positioning means for fixing an axial position of the rotary cam being provided in the lower die half and the rotary cam.




Further, in consideration of the background described above, the present invention aims to solve these problems: that slight pivoting movement makes a rotary cam out of a predetermined forming position, making an unwanted step in a curved surface of the work or making unable to form into an accurate curve; and it is difficult to provide a product of accuracy in the order of {fraction (1/100)} mm is difficult; and that it is impossible to provide a formed sheet metal product of a high quality. The present invention aims to minimize the unwanted movement of the rotary cam at the time of the intrusion formation and maintain the rotary cam at a predetermined forming position, thereby providing a formed sheet metal product of a high quality. In order to achieve this object, the present invention provides a negative-angle forming die comprising a lower die half having a supporting portion for placing a sheet metal work, and an upper die half to be lowered straightly downward onto the lower die half for forming the work, an intrusion forming portion formed in the lower die half at an edge portion near the supporting portion inward of a downward stroke line of the upper die half, a rotary cam rotatably provided in the lower die half, a slide cam including an intrusion forming portion and slidably opposed to the rotary cam, and an automatic retractor provided in the lower die half for pivoting the rotary cam back to a position thereby allowing the work to be taken out of the lower die half after a forming operation, the work placed on the supporting portion of the lower die half being formed by the intrusion forming portion of the rotary cam and the intrusion forming portion of the slide cam, the slide cam forming the work by sliding, the automatic retractor pivoting back the rotary cam after the forming operation for allowing the work to be taken out of the lower die half, wherein the rotary cam has two ends each including a supporting shaft projecting therefrom, the supporting shafts being supported by the lower die half for rotatably supporting the rotary cam, a backup portion being formed in the lower die half for supporting a surface of the rotary cam on a side away from a side receiving the slide cam.




Further, the present invention does not rely on the multi-diameter rotary cam in a case in which there is a large variation in the distance of the intrusion forming portion from the axis. Specifically, the present invention provides a negative-angle forming die, wherein the intrusion forming portion varies a pressing side-portion of the rotary cam contacted by the backup portion in accordance with a distance from an axis of pivoting.











BRIEF DESCRIPTION OF THE DRAWINGS




[FIGS.


1


(


a


) and


1


(


b


)] Two sectional views of an automobile sheet-metal part before and after a formation by the negative-angle forming die according to the present invention.




[FIG.


2


] A sectional side view showing a state where an upper die half forming the sheet-metal part in

FIG. 1

has been lowered to a lower dead center.




[FIG.


3


] A conceptual diagram showing support and positioning of a rotary cam according to the present invention.




[FIG.


4


] A front view of a positioning block as an example of positioning means according the present invention.




[FIG.


5


] A view en from a direction indicated by Arrow V in FIG.


4


.




[FIG.


6


] A front view of a receiving block as an example of the positioning means according to the present invention.




[FIG.


7


] A side of the receiving block in FIG.


6


.




[FIG.


8


] A plan view of a prior art multi-diameter rotary cam used in a prior art in a case where a distance from a rotary cam axis varies widely.




[FIG.


9


] A sectional side view of a prior art negative-angle forming die, with an upper die half thereof being at its upper dead center.




[FIG.


10


] A sectional side view of the prior art negative-angle forming die in

FIG. 9

, with the upper die half in its downward stroke, beginning to contact a lower die half thereby making contact with a work.




[FIG.


11


] A sectional side view,of the prior art negative-angle forming die in

FIG. 9

, with the upper die half being at its lower dead center.




[FIG.


12


] A sectional side view of the prior art negative-angle forming die in

FIG. 9

as after the intrusion forming, with the upper die half lifted to its upper dead center.











EMBODIMENT




The present invention will now be described in detail, based on an embodiment shown in the attached drawings.





FIG. 1

shows sectional views of an automobile sheet-metal part before and after a formation by the negative-angle forming die. A work W shown in FIG.


1


(


b


) has a lower portion shaped by an intrusion forming process.




It should be noted here that this part is formed to have a three-dimensional curved surface/line to provide an outer skin of the automobile.




Referring now to

FIG. 2

, a lower die half


1


has an upper portion formed with a supporting portion


2


for the work W. The lower die half


1


rotatably supports a rotary cam


5


, which has a side close to the supporting portion


2


, formed with an intrusion forming portion for forming a recessed portion located inward of a stroke line of an upper die half


3


. Code C indicates a center of pivoting movement of the rotary cam


5


. In order to take the work W out of the lower die half


1


after the work W has been formed, the lower die half


1


is provided with an unillustrated automatic retractor such as an air cylinder. The rotary cam


5


is supported by a pivot-supporting member


6


fixed to the lower die half by a bolt


7


.




The upper die half


3


is provided with a slide cam


8


and a pad


9


.




In order to maintain the rotary cam at a predetermined axial position thereby providing a high quality sheet-metal product, as shown in

FIG. 3

, the lower die half


1


and the rotary cam


5


are provided with positioning means for fixing the axial position of the rotary cam


5


.

FIG. 3

is a conceptual diagram of the positioning means.




The shaft-like rotary cam


5


has two ends each provided with a supporting shaft


11


extending therefrom. Each of the supporting shafts


11


is fitted into a tubular metal


12


fixed to a bearing


13


. The metal


12


rotatably supports the rotary cam


5


. The supporting shaft


11


has a base plate


14


fixed by a bolt to the end of the rotary cam


5


. The bearing


13


to which the supporting shaft


11


is fitted is fixed to the lower die half


1


by a bolt


16


.




The rotary cam


5


is supported at its ends by the bearings


13


as described above. If the rotary cam is directly contacted with the lower die half as in the prior art, accurate machining is required. However, since most portion of the rotary cam


5


is not directly contacted with the lower die half


1


, machining of the rotary cam


5


and the lower die half


1


becomes easy.




In order to fix the axial position of the rotary cam


5


, an axial positioning block


17


is fixed to the lower die half


1


by a bolt


18


. The positioning block


17


is opposed by a receiving block


19


fixed on the rotary cam


5


by a bolt


18


, to be fitted by the positioning block


17


for positioning the rotary cam


5


at a predetermined position. With this arrangement, even if the rotary cam


5


receives an axial load during the pressing operation, the rotary cam


5


is prevented from axial movement by the engagement between the receiving block


19


and the positioning block


17


. According to this embodiment, the positioning block


17


is formed convex, whereas the receiving block


17


is formed concave. The present invention is not limited by this however. For example, the positioning block may be made concave and the receiving block may be made convex. Further, these still do not limit the present invention. For example, a movement prevention wall may be provided at a position capable of preventing the rotary cam from unwanted movement during the forming operation. It should be noted here that according to the present embodiment, the positioning block


17


of the lower die half is made convex for ease of use because this arrangement allows dirt, oil and so on to fall easily.




FIG.


4


and

FIG. 5

show the positioning block


17


, whereas FIG.


6


and

FIG. 7

show the receiving block


19


. Since the rotary cam


5


is generally columnar, the positioning block


17


is formed to have an arcuate recess to fit the columnar outer circumference of the rotary cam


5


, whereas the receiving block


19


is formed to fit the positioning block


17


.




The rotary cam


5


is rotatably supported at its end portions by the bearings


13


. Differing from the prior art in which the lower die half


1


supports by using most of the outer circumference of the rotary cam


5


, as shown in

FIG. 2

, the support is provided by partial contact.




The rotary cam


5


includes a rotary cam main body


21


serving as a core portion having; an upper portion provided with an intrusion forming portion


4


fixed by a bolt


23


, a side portion provided with a pressing side-member


24


fixed by a bolt


25


, and a bottom portion provided by a pivoting contact member


26


fixed by a bolt


27


.




The rotary cam


5


not only has the pivoting contact member


26


contacting the pivoting support member


6


but also has the pressing side-member


24


contacting a backup portion


28


of the lower die half


1


. With this arrangement, when the intrusion forming portion


4


of the rotary cam


5


and the intrusion forming portion


22


of the slide cam


8


press the work W, the backup portion


28


contacts the pressing side-member


24


thereby preventing the rotary cam


5


from deformation. By providing the backup portion


28


, the deformation of the rotary cam


5


can be positively prevented, and it becomes possible to manufacture a high-quality sheet-metal formed product.




The slide cam


8


slides on an actuator cam


33


fixed to an upper-die-half base plate


31


by a bolt


32


, and further slides on a cam base


35


fixed to the lower die half


1


by a bolt


34


.




The slide cam


8


holds the intrusion forming portion


22


fixed by a bolt


39


to a bracket


38


fixed to a base portion


36


by a bolt


37


.




In the base portion


36


of the slide cam


8


, a wear plate


41


fixed by a bolt


40


slides on a wear plate


42


fixed to the cam base


35


by a bolt


43


.




Further, a wear plate


43


fixed to a lower surface of the bracket


38


by a bolt


50


slides on a wear plate


45


fixed by a bolt


44


to the rotary cam main body


21


of the rotary cam


5


.




When forming a negative angle in a work, generally, a distance of the intrusion forming portion from the pivot axis varies along the axis. This poses no problem as long as the distance of the intrusion forming portion from the axis is small. However, if the distance is large as shown in

FIG. 8

, a multi-diameter rotary cam


201


having different diameters along the axis is used. The multi-diameter rotary cam


201


has angled edges


202


which often leave a score in the work W.




In order to solve this problem, according to the present invention, if the distance of the intrusion forming portion from the pivot axis varies widely, no multi-diameter rotary cam is used but the pressing side-member


24


is used in accordance with the distance from the axis. The pressing side-member


24


has a portion gradually varied in accordance with the distance variation from the axis of the intrusion forming portion.




The present invention provides, as has been described, a negative-angle forming die comprising a lower die half having a supporting portion for placing a sheet metal work, and an upper die half to be lowered straightly downward onto the lower die half for forming the work, an intrusion forming portion formed in the lower die half at an edge portion near the supporting portion inward of a downward stroke line of the upper die half, a rotary cam rotatably provided in the lower die half, a slide cam including an intrusion forming portion and slidably opposed to the rotary cam, and an automatic retractor provided in the lower die half for pivoting the rotary cam back to a position thereby allowing the work to be taken out of the lower die half after a forming operation, the work placed on the supporting portion of the lower die half being formed by the intrusion forming portion of the rotary cam and the intrusion forming portion of the slide cam, the slide cam forming the work by sliding, the automatic retractor pivoting back the rotary cam after the forming operation for allowing the work to be taken out of the lower die half, wherein the rotary cam has two ends each including a supporting shaft projecting therefrom, the supporting shafts being supported by the lower die half for rotatably supporting the rotary cam, positioning means for fixing an axial position of the rotary cam being provided in the lower die half and the rotary cam. Therefore, the present invention has solved these problems: that slight pivoting movement makes a rotary cam out of a predetermined forming position, making an unwanted step in a curved surface of the work or making unable to form into an accurate curve; that it is difficult to provide a product of accuracy in the order of {fraction (1/100)} mm is difficult; and that it is impossible to provide a formed sheet metal product of a high quality. According to the present invention, the rotary cam can be maintained at a predetermined forming attitude, and therefore it has become possible to provide a high-quality sheet-metal formed product.




Further, the present invention provides a negative-angle forming die comprising a lower die half having a supporting portion for placing a sheet metal work, and an upper die half to be lowered straightly downward onto the lower die half for forming the work, an intrusion forming portion formed in the lower die half at an edge portion near the supporting portion inward of a downward stroke line of the upper die half, a rotary cam rotatably provided in the lower die half, a slide cam including an intrusion forming portion and slidably opposed to the rotary cam, and an automatic retractor provided in the lower die half for pivoting the rotary cam back to a position thereby allowing the work to be taken out of the lower die half after a forming operation, the work placed on the supporting portion of the lower die half being formed by the, intrusion forming portion of the rotary cam and the intrusion forming portion of the slide cam, the slide cam forming the work by sliding, the automatic retractor pivoting back the rotary cam after the forming operation for allowing the work to be taken out of the lower die half, wherein the rotary cam has two ends each including a supporting shaft projecting therefrom, the supporting shafts being supported by the lower die half for rotatably supporting the rotary cam, a backup portion being formed in the lower die half for supporting a surface of the rotary cam on a side away from a side receiving the slide cam. Therefore, the present invention has solved these problems: that slight pivoting movement makes a rotary cam out of a predetermined forming position, making an unwanted step in a curved surface of the work or making unable to form into an accurate curve; that it is difficult to provide a product of accuracy in the order of {fraction (1/100)} mm is difficult; and that it is impossible to provide a formed sheet metal product of a high quality. According to the present invention, unwanted movement of the rotary cam at the time of the intrusion formation is minimized and the rotary cam can be maintained at a predetermined forming position, therefore it has become possible to provide a high-quality sheet-metal formed product.




Further, according to the present invention, the intrusion forming portion varies a pressing side-portion of the rotary cam contacted by the backup portion in accordance with a distance from an axis of pivoting. Therefore, in the case where the distance of the intrusion forming portion from the axis varies widely, the intrusion forming can be performed without using a multi-diameter cam but by using the pressing side-member in accordance with the distance from the axis, without risk of scoring the work.



Claims
  • 1. A negative-angle forming die comprising a lower die half having a supporting portion for placing a sheet metal work, and an upper die half to be lowered straightly downward onto the lower die half for forming the work, an intrusion forming portion formed in the lower die half at an edge portion near the supporting portion, a rotary cam rotatably provided in the lower die half, a slide cam including an intrusion forming portion and slidably opposed to the rotary cam, and an automatic retractor provided in the lower die half for pivoting the rotary cam back to a position thereby allowing the work to be taken out of the lower die half after a forming operation, the work placed on the supporting portion of the lower die half being formed by the intrusion forming portion of the rotary cam and the intrusion forming portion of the slide cam, the slide cam forming the work by sliding, the automatic retractor pivoting back the rotary cam after the forming operation for allowing the work to be taken out of the lower die half, wherein the rotary cam has two ends each including a supporting shaft projecting therefrom, the supporting shafts being supported by the lower die half for rotatably supporting the rotary cam, positioning means for fixing the axial position of the rotary cam, said positioning means comprising an axial positioning block carried by the lower die half and a receiving block carried by the rotary cam, wherein each of the axial positioning block and the receiving block have mating surfaces which when, in contact with each other, prevent axial movement of the rotary cam.
  • 2. A negative-angle forming die comprising a lower die half having a supporting portion for placing a sheet metal work, and an upper die half to be lowered straightly downward onto the lower die half for forming the work, an intrusion forming portion formed in the lower die half at an edge portion near the supporting portion inward of a downward stroke line of the upper die half, a rotary cam rotatably provided in the lower die half, a slide cam including an intrusion forming portion and slidably opposed to the rotary cam, and an automatic retractor provided in the lower die half for pivoting the rotary cam back to a position thereby allowing the work to be taken out of the lower die half after a forming operation, the work placed on the supporting portion of the lower die half being formed by the intrusion forming portion of the rotary cam and the intrusion forming portion of the slide cam, the slide cam forming the work by sliding, the automatic retractor pivoting back the rotary cam after the forming operation for allowing the work to be taken out of the lower die half, wherein the rotary cam has two ends each including a supporting shaft projecting therefrom, the supporting shafts being supported by the lower die half for rotatably supporting the rotary cam, a backup portion being formed in the lower die half for supporting a surface of the rotary cam on a side away from a slide receiving the slide cam, said forming die further comprising positioning means for fixing the axial position of the rotary cam, said positioning means comprising:a receiving block fixedly carried by the rotary cam; and an axial positioning block carried by the lower die half; wherein the receiving block and the axial positioning block have juxtaposed mating concave and convex surfaces which fix the axial position of the rotary cam during forming of the sheet metal work.
  • 3. The die of claim 1, wherein the convex surface is on the receiving block and the concave surface is on the axial positioning block.
  • 4. The die of claim 1, wherein the concave surface is on the receiving block and the convex surface is on the axial positioning block.
Priority Claims (1)
Number Date Country Kind
2001-060153 Mar 2001 JP
US Referenced Citations (7)
Number Name Date Kind
4365500 Klukow Dec 1982 A
4434644 Gargrave et al. Mar 1984 A
5746082 Matsuoka May 1998 A
5784916 Matsuoka Jul 1998 A
6038908 Kinoshita Mar 2000 A
6196040 Matsuoka Mar 2001 B1
6230536 Matsuoka May 2001 B1
Foreign Referenced Citations (2)
Number Date Country
11-226672 Aug 1999 JP
2000-51948 Feb 2000 JP