The present invention relates to a negative electrode active material for a lithium ion secondary battery and a lithium ion secondary battery.
Graphitic carbon materials are widely used as negative electrode active materials for lithium ion secondary batteries. A stoichiometric composition when lithium ions are charged in graphite is LiC6, and a theoretical capacity thereof can be calculated to have 372 mAh/g.
On the other hand, a stoichiometric composition when lithium ions are charged in silicon is Li15Si4 or Li22Si5, and a theoretical capacity thereof can be calculated to have 3577 mAh/g or 4197 mAh/g. As such, silicon is an attractive material which can store lithium 9.6 times or 11.3 times larger than that in graphite. However, when lithium ions are charged in silicon particles, the volume is expanded about 2.7 times or 3.1 times. Thus, the silicon particles are dynamically destroyed during the repetition of charging and discharging lithium ions. When the silicon particles are destroyed, the destroyed fine silicon particles are electrically isolated. In addition, a new electrochemical coating layer can be formed on the destroyed surface to increase an irreversible capacity so that charge-discharge cycle characteristics are significantly decreased.
By forming the silicon particles into nanoparticles as a negative electrode active material of a lithium ion secondary battery, mechanical destroy according to charging and discharging of lithium ions can be prevented. However, there are problems in that some of the silicon nanoparticles are electrically isolated by a change in volume according to charging and discharging of lithium ions, and this causes large deterioration of lifetime characteristics.
Regarding such a problem, for example, NPL 1 describes an example in which silicon nanoparticles pulverized by a ball milling method to have a diameter of about 10 nm are applied to a negative electrode for a lithium ion secondary battery.
In addition, PTL 1 discloses a technique of forming a network of silicon particles and silicon nanowires on a carrier formed by copper or the like.
PTL 1: JP 2008-269827 A
NPL 1: Energy Environ. Sci., 2013, 6, 2145-2155
When silicon is pulverized by a ball mill to decrease a particle diameter as in NPL 1, electrical isolation due to expansion and contraction of silicon can be suppressed, but such suppression is not sufficient.
In addition, when the silicon nanowires are provided on the surface of silicon as in PTL 1, a broad electrical conduction path can be secured.
However, when the electrical conduction path is secured, there is a room for further improvement in contact points between the silicon particles and the silicon nanowires and the state of the surface.
The present invention is intended to solve such a problem, and an object thereof is to provide a negative electrode active material for a lithium ion secondary battery, the negative electrode active material particularly having a high capacity and a long lifetime.
Here are features of the present invention for solving the problems mentioned above, for example.
A negative electrode material for a lithium ion secondary battery, containing: silicon nanoparticles; and silicon nanowires, wherein the silicon nanoparticles and the silicon nanowires are bound to each other.
In addition, more preferably, the negative electrode active material for a lithium ion secondary battery, wherein a surface of the silicon nanoparticle or the silicon nanowire is covered with a carbon coating layer.
According to the present invention, it is possible to realize a negative electrode active material for a lithium ion secondary battery, the negative electrode active material having a high capacity and a long lifetime. Problems, configurations, and advantageous effects which are other than noted above will be clarified from the following description of an embodiment.
Hereinafter, embodiments of the present invention will be described by means of the drawings and the like. The following descriptions show specific examples of the contents of the present invention, and the present invention is not restricted to these descriptions and can be variously changed and modified by those skilled in the art within the scope of technical ideas disclosed in the present specification.
The silicon nanowires 102 are bound to the surfaces of the silicon nanoparticles 101. The silicon nanowires 102 are not only bound to the silicon nanoparticles 101 serving as starting points for silicon nanowire growth but also in contact with silicon nanoparticles therearound to form electrical paths. That is, the silicon nanowire 102 takes a role in providing an electrical path for keeping electrical conduction between the silicon nanoparticles 101 favorable. With a change in volume according to charging and discharging of lithium ions, some of the silicon nanoparticles 101 are electrically isolated, which leads to deterioration of lifetime characteristics. When the silicon nanowires 102, which are bound to and in contact with the silicon nanoparticles 101, are used as a constituent element for the negative electrode active material, it is possible to prevent the silicon nanoparticles 101 from being electrically isolated and to dramatically improve the lifetime characteristics.
The silicon nanoparticle 101 can be approximated to an ellipsoid. A diameter of the silicon nanoparticle 101 is defined as an arithmetic average of a major axis and a minor axis of the silicon nanoparticle. The diameter of the silicon nanoparticle 101 needs to be 1 to 100 nm and more desirably 1 to 30 nm. When the diameter is 1 nm or less, a cohesion force between the silicon nanoparticles becomes strong, and as a result, the miniaturization effect is not manifested. In addition, when the diameter is 100 nm or more, there is a high possibility that the silicon nanoparticle is destroyed by mechanical strain according to charging and discharging of lithium ions. In order to prevent the silicon nanoparticle from, being destroyed even by mechanical strain due to high-speed charging and discharging, the diameter is desirably 30 nm or less. Regarding the silicon, particle 101, in addition to silicon particles having an elliptical shape, for example, silicon particles having a spherical shape or a scale shape can also be used.
As illustrated in
The silicon nanowire can be formed on the surface of the silicon particle 101 even when the carbon coating layer 103 is provided on the surface of the silicon particle 101.
The diameter of the silicon nanowire can be adjusted by growth temperature of a nanowire to be described later. For example, when the growth temperature is around 1000° C., the diameter of the silicon nanowire is about 30 nm, and when the growth temperature is around 800° C., the diameter can be adjusted to about 10 nm.
Meanwhile, a length of the silicon nanowire can be appropriately adjusted by growth time of the silicon nanowire.
The electrical conductivity of the silicon nanowire 102 can be improved by the formation of the carbon coating layer 103 on the surface of the silicon nanowire 102. As the carbon coating layer 103, a nano graphene structure and amorphous carbon can be used. In particular, when the carbon coating layer 103 has a nano graphene structure, the carbon coating layer 103 has an electrical conductivity of 1000 S/m or more, and thus the electrical conductivity can be added to the silicon nanowire 102. According to this, particularly, high-speed charging and discharging characteristics can be improved. The thickness of the carbon coating layer 103 is desirably 0.5 to 100 nm. When the thickness is 0.5 nm or less, there is a technical difficulty to uniformly cover the surface of the silicon nanowire 102. In addition, when the thickness is 100 nm or more, there is a high possibility that the carbon coating layer 103 is peeled off from the surface of the silicon nanowire 102.
By providing the carbon coating, it is possible to improve electrical conduction as well as Li ion conduction between the silicon nanoparticles by the network of the silicon nanowires.
Hereinafter, the present invention will be described in more detail by means of Examples, but the present invention is not limited to these Examples.
The silicon nanoparticles 101 were produced by pulverizing a bulk silicon material by a bead mill. To 500 mL of isopropyl alcohol, 100 g of silicon particles were added, and the resultant mixture was stirred well and then pulverized at a circumferential velocity of 100 mL/min for 90 min by using a bead mill apparatus charged with 200 g of zirconia beads having a diameter of 300 μm.
The silicon nanoparticles 101 can be produced from a bulk silicon material by various pulverization methods as well as by pulverization using a bead mill. In addition, the silicon nanoparticles can be also produced by growing silicon by a gas phase evaporation method such as laser ablation.
The silicon nanowires 102 can be produced using silicon nanoparticles as a base material by a thermal vapor deposition method in a state where the silicon nanowires are bound to the surfaces of the silicon nanoparticles. In addition, the silicon nanowires can be produced by various deposition methods.
Liquid silicon tetrachloride was used as a raw material of silicon and the silicon tetrachloride was introduced into a reactor by bubbling with hydrogen gas. The vapor pressure of silicon tetrachloride at 20° C. is 30 kPa and the amount of silicon tetrachloride introduced by bubbling is 34%. Herein, in order to introduce silicon tetrachloride at an amount equal to or less than 34%, it is necessary to cool silicon tetrachloride or to provide a separate line of hydrogen gas. In
The silicon nanoparticles are input in a sample boat, and the sample boat is disposed near the center of the reactor. The reactor is made of quartz and has a diameter of 5 cm and a length of 40 cm. In the upper hydrogen line of
Next, when the temperature reached 1000° C., the flow rate in the upper hydrogen line was changed to 160 mL/min and the flow rate in the hydrogen line of the lower bubbling hydrogen line was set to 40 mL/min. Under this condition, 6.8% silicon tetrachloride can be introduced. After growth at 1000° C. for 3 hr, the lower bubbling hydrogen line was closed, the flow rate in the upper hydrogen line was changed to 200 mL/min and then held at 1000° C. for 30 mm. According to this, the silicon nanowires can be produced on the surfaces of the silicon nanoparticles serving as a base material.
Thereafter, both the hydrogen lines were closed, argon gas was allowed to flow at a flow rate of 200 mL/min, and the temperature was decreased at a decreasing rate of 10° C./min to 800° C. When the temperature reached 800° C., propylene gas was introduced at a flow rate of 10 mL/min, and at the same time, the flow rate of argon gas was set to 190 mL/min, and then the carbon coating layer was grown for 1 nr.
Thereafter, a propylene gas line was closed, argon gas was allowed to flow at a flow rate of 200 mL/min and held for 30 min, and then natural cooling was performed. According to this, the carbon coating layer (thickness: 5 nm) having a nano graphene multi-layer structure can be produced on the surfaces of the silicon nanoparticle and the silicon nanowire. When the production of the silicon nanowires on the silicon nanoparticles and the production of the carbon coating layer subsequent to the production of the silicon nanowires were sequentially performed in this way, the formation of the native oxide film on the surfaces of the silicon nanoparticle and the silicon nanowire is prevented and thus a reducing and removing process of the native oxide film after the growth of the silicon nanowires is not necessary.
Incidentally, in
A composite active material of the silicon nanoparticles and the silicon nanowires produced as described above was observed with a scanning electron microscope. Photographs are shown in
The lithium ion secondary battery 1800 includes a positive electrode 1801, a separator 1802, a negative electrode 1803, a battery can 1804, a positive electrode current collector tab 1805, a negative electrode current collector tab 1806, an inner cover 1807, an internal pressure release valve 1808, a gasket 1809, a positive temperature coefficient (PTC) resistive element 1810, and a battery cover 1811. The battery cover 1811 is an integrated component formed by the inner cover 1807, the internal pressure release valve 1808, the gasket 1809, and the positive temperature coefficient resistive element 1810.
The positive electrode 1801 was produced by the following procedures. LiMn2O4 was used as a positive electrode active material. To 85.0 wt % of the positive electrode active material, 7.0 wt % of graphite powder and 2.0 wt % of acetylene black were added as a conductive material. Further, a solution obtained by dissolving 6.0 wt % of polyvinylidene fluoride (hereinafter, abbreviated as PVDF) in 1-methyl-2-pyrrolidone (hereinafter, abbreviated as NMP) was added as a binder, the resultant solution was mixed by a planetary mixer, and further air bubbles in the slurry were removed under vacuum, thereby preparing a homogeneous positive electrode mixture slurry. This slurry was applied uniformly and evenly onto both surfaces of an aluminum foil having a thickness of 20 μm by using an applicator. After applying the slurry, compression molding was performed thereon by a roll press machine to have an electrode density of 2.55 g/cm3. The obtained product was cut by a cutting machine to produce the positive electrode 1201 having a thickness of 100 μm, a length of 900 mm, and a width of 54 mm.
In this Example, LiMn2O4 has been used as the positive electrode active material, but for example, in addition thereto, LiCoO2, LiNiO2, and LiMn2O4 can be used. In addition, it is possible to use LiMnO3, LiMn2O3, LiMnO2, Li4Mn5O12, LiMn2-xMxO2 (provided that, M=at least one selected from the group consisting of Co, Ni, Fe, Cr, Zn, and Ti, x=0.01 to 0.2), Li2Mn3MO8 (provided that, M=at least one selected from the group consisting of Fe, Co, Ni, Cu, and Zn) , Li1-xAxMn2O4 (provided that, A=at least one selected from the group consisting of Mg, B, Al, Fe, Co, Ni, Cr, Zn, and Ca, x=0.01 to 0.1), LiNi2-xMxO2 (provided that, M=at least one selected from the group consisting of Co, Fe, and Ga, x=0.01 to 0.2), LiFeO2, Fe2 (SO4)3, LiCo1-xMxO2 (provided that, M=at least one selected from the group consisting of Ni, Fe, and Mn, x=0.01 to 0.2), LiNi1-xMxO2 (provided that, M=at least one selected from the group consisting of Mn, Fe, Co, Al, Ga, Ca, and Mg, x=0.01 to 0.2), Fe (MoO4)3, FeF3, LiFePO4, LiMnPO4, and the like.
The negative electrode 1803 was produced by the following procedures. A silicon nanowire-silicon nanoparticle negative electrode active material was used as the negative electrode active material. To 95.0 wt % of this negative electrode active material, a solution obtained by dissolving 5.0 wt % of PVDF in NMP was added as a binder. The resultant solution was mixed by a planetary mixer, and air bubbles in the slurry were removed under vacuum, thereby preparing a homogeneous negative electrode mixture slurry. This slurry was applied uniformly and evenly onto both surfaces of a rolled copper foil having a thickness of 10 μm by using an applicator. After applying the slurry, this electrode was subjected to compression molding by a roll press machine to have an electrode density of 1.3 g/cm3. The obtained product was cut by a cutting machine to produce the negative electrode 1803 having a thickness of 110 μm, a length of 950 mm, and a width of 56 mm.
The aforementioned composite material of the silicon nanoparticles and the silicon nanowires can not only be used alone as a negative electrode active material, but also be used as a negative electrode active material by mixing the composite material with various kinds of negative electrode active material. As an example, a case where the composite material is mixed with a material containing carbon as a main component, for example, a graphite material and then used is considered.
As a material having carbon to be mixed as a main component, natural graphite, synthetic graphite, natural graphite covered with amorphous carbon, synthetic graphite covered with amorphous carbon, nanoparticulate carbon, carbon nanotube, nanocarbon, and the like can be used.
The positive electrode current collector tab 1805 and the negative electrode current collector tab 1806 are ultrasonic welded to uncoated portions (current collector plate exposure surfaces) of the positive electrode 1801 and the negative electrode 1803 produced as described above, respectively. An aluminum lead piece was used for the positive electrode current collector tab 1805 and a nickel lead piece was used for the negative electrode current collector tab 1806.
Thereafter, the separator 1802 formed by a porous polyethylene film having a thickness of 30 μm is inserted between the positive electrode 1801 and the negative electrode 1803, and the positive electrode 1801, the separator 1802, and the negative electrode 1803 are wound. This winding body is stored in the battery can 1804, and the negative electrode current collector tab 1806 is connected to the can bottom of the battery can 1804 by a resistance welder. The positive electrode current collector tab 1805 is connected to the bottom surface of the inner cover 1807 by ultrasonic welding.
A nonaqueous electrolyte is injected before the battery cover 1811 of the upper part is attached to the battery can 1804. An electrolyte solvent is composed of ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) at a volume ratio of 1:1:1. As the electrolyte, LiPF6 having a concentration of 1 mol/L (about 0.8 mol/kg) was used. A lithium ion secondary battery can be obtained by adding such an electrolyte dropwise from the above of the winding body, and crimping and sealing the battery cover 1211 to the battery can 1204.
In this Example, as a solvent, ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) are used at a volume ratio of 1:1:1. However, as another solvent, propylene carbonate, butylene carbonate, γ-butyrolactone, diethyl carbonate, 1,2-dimethoxyethane, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphate triester, trimethoxymethane, dioxolane, diethylether, sulfolane, 3-methyl-2-oxazolidinone, tetrahydrofuran, 1,2-diethoxyethane, chloroethylene carbonate, chlorpropylene carbonate, or the like can be used, and the volume ratio thereof can be appropriately adjusted.
Next, scanning electron micrographs of the composite material (presence of carbon coating) of the silicon nanoparticles and the silicon nanowires actually produced are shown in
In Example 2, silicon nanoparticles were produced by pulverizing a bulk silicon material by a planetary ball mill. Production of a silicon nanowire-silicon nanoparticle negative electrode active material, production of a battery, and evaluation were performed in the similar manner to Example 1 except the above-described operation.
To a zirconia container having a capacity of 45 mL, 2 g of silicon particles and 20 g of zirconia beads (diameter: 100 μm) were added, 6 mL of isopropyl alcohol was added thereto, and then the obtained product was pulverized at a rotation number of 1100 rpm for 80 min.
Scanning electron micrographs of the composite material (presence of carbon coating) of the silicon nanoparticles and the silicon nanowires produced are shown in
For comparison, a battery was produced by using the silicon nanoparticles alone as an electrode active material and evaluation was performed thereon. The production of the battery and the evaluation were performed in the similar manner to Example 1 except the production of a negative electrode.
The negative electrode 1803 was produced by the following procedures. For a negative electrode active material, silicon nanoparticles were used alone as the negative electrode active material. To 95.0 wt % of this negative electrode active material, a solution obtained by dissolving 5.0 wt % of PVDF in NMP was added as a binder. The resultant solution was mixed by a planetary mixer, and air bubbles in the slurry were removed under vacuum, thereby preparing a homogeneous negative electrode mixture slurry. This slurry was applied uniformly and evenly onto both surfaces of a rolled copper foil having a thickness of 10 μm by using an applicator. After applying the slurry, this electrode was subjected to compression molding by a roll press machine to have an electrode density of 1.3 g/cm3. The obtained product was cut by a cutting machine to produce the negative electrode 1803 having a thickness of 110 μm, a length of 950 mm, and a width of 56 mm.
Evaluation results of Examples 1 and 2 and Comparative Example are shown in
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/080134 | 11/14/2014 | WO | 00 |