A variety of wounds are now being treated using negative pressure wound therapy. However, many of these wounds have characteristics that limit the effectiveness of existing techniques. Wound dehiscence, in which the wound margins have substantial separation, pose significant problems in reapproximation of tissue and wound drainage. For example, there are a large number of patients undergoing amputations in the United States every year. These have different causes including traumatic injury, peripheral vascular disease, diabetes mellitus, and chronic venous insufficiency. Patients with diabetic conditions, for example, often suffer from restricted blood flow that can lead to tissue necrosis at the body extremities. For patients with severe symptoms, a transmetatarsal amputation (TMA) may be recommended to remove afflicted tissue while still salvaging a portion of the foot. In many cases, a transtibial or below-knee amputation (BKA) must be performed. An important factor in the recovery of a patient from amputation is how quickly the wound can be closed. Because the gap between tissue margins can be large, the wound is manually closed by suturing. There must be ongoing attention to prevent complications such as infection, wound dehiscence, and/or ischemia. The use of an immediate post-operative prosthesis (IPOP) is commonly employed to reduce the recovery period for BKA procedures, for example.
Other examples of wounds that can be difficult to achieve approximation of the wound margins can include ulcers in which the wound opening is surrounded by tissue overlying a cavity. The undermining of the tissue surrounding the wound opening can often present problems in drainage and rapid wound closure. There are also open wounds that can occur in both the extremities and the abdominal regions in which the wound margins must rotate over a substantial distance, often up to several centimeters or more, to achieve approximation of the margins. Thus a continuing need exists for improvements in wound closure devices and methods.
This disclosure relates to embodiments of negative pressure wound closure devices, systems, and methods for wounds resulting from amputation or other open wounds having non-aligned wound margins. In preferred embodiments, the system includes a negative pressure source and a collapsing structure that is placed on the wound to provide directed preferential closure. The collapsing structure can include embodiments in which a compressive force is imparted to tissue surrounding the wound or to tissue on the sides of a wound opening with a compression wound closure device that is operative to assist in the closure of a wound cavity. Thus, the collapsing structure can include, be attached to, or operate in conjunction with, a compression structure that operates to apply a force to the tissue adjoining an open wound to move a wound margin to a more closed position. In a preferred embodiment, a collapsing compression structure includes a number of cells separated by rigid or semi-rigid membranes that are hinged together at joints. In a preferred embodiment of the compression wound closure device, the structure changes conformation during a procedure to facilitate closure of the wound. The structure, in combination with the application of negative pressure, exerts a force to the wound to facilitate closure of the wound from the deepest internal point. The structure can be rigid, or alternatively, be pre-stressed to exert a compression force on the wound to more quickly bring the wound margins together.
Preferred embodiments of wound closure devices described herein can include scale elements that enable collapse of structures within an open wound and/or above the wound. The scales can comprise a detached collapsible layer, or can comprise discrete elements mounted to an overlying collapsing structure. The scale elements can have different shapes and sizes, such as circular or combinations of curved and flat edges, operative to interact with adjacent elements that enable collapse of the connected structures and provide fluid flow through the structure during application of negative pressure. The scale elements can have one or more rounded edges to facilitate sliding relative to tissue during placement and/or operation. The scale elements can have surfaces and/or edges that have a convex or concave shape. The scale elements can have shapes that generally conform to the arcuate shape of the wound or tissue surfaces contacting the scale elements. Thus, as the collapsing structure moves along an arcuate path, the scale elements move to facilitate an efficient movement of the structure which provides for closure of the wound margins. The arcuate shape can extend along one axis, such as a cylindrical shaped path or along two arcuate paths as in a domed structure. Alternatively, the scale elements can be curved or flat and sized to enable collapse without overlapping adjacent scale elements, scale elements can also include elastic elements or covering to enable movement and reducing friction with the tissue surfaces. The smaller sized scales are consequently spaced apart during wound closure but can abut one another after collapse. Note that a collapsing structure can comprise a single unit that is both positioned in the wound and above the wound.
In preferred embodiments, a moveable layer can be integrated with a collapsible structure within the wound opening wherein the moveable layer comprises a tissue protection layer that isolates underlying tissue/organs from the collapsing structure and can also extend under adjacent overlying tissue. The cell structure can be configured to apply a greater force to the fascia to improve facial closure.
A pressure applying device can comprise a bladder in which a fluid under pressure is used to regulate the amount of force applied to the wound. This drainless wound closure device can include temperature and/or pressure sensors and a control system to regulate fluid pressure within a range.
Preferred embodiments can include a drainless wound closure device in which a pressure applying device is positioned external to a wound opening. The pressure applying device contacts the tissue overlying or adjacent to the wound to apply a closure force that is operative to approximate the wound margins. This can be used in abdominal flap surgery, for example, in which sufficient pressure is applied to prevent the migration of fluids into the wound that must be drained from the wound. The applied pressure should not be so high as to cause injury to the wound that can arise due to the loss of blood flow, for example.
The device can be used without any sutures in cases where the skin on opposite sides of the wound is sufficiently aligned. Alternatively, sutures can be used to provide alignment in the case of a wound where the margins and/or the overlying skin are not well aligned or are not amenable to restructuring to make them so aligned.
Wound closure of open wounds in which the wound margins are not substantially parallel can include the amputation of limbs or other regions of the body having substantially curved contoured regions. Wound closure devices fitting over and/or within the wound can require an arcuate shape to be effective to close such wounds. Often different depths within the wound will close at different rates upon the application of negative pressure. It is critical to provide arcuately shaped devices that are effective to close the deeper portions of the wound margins in advance of the shallower portions to avoid the creation of separated wound margin regions that are not visible.
Wound closure devices in accordance with the invention can include one or more device components that are inserted within the wound to facilitate wound closure. A preferred embodiment can employ a double sided anchoring matrix that is inserted in all or a portion of the wound that will attach to both wound margins. The matrix can have apertures extending through the matrix to facilitate wound margin contact through the apertures. One or both sides of the matrix can have tissue anchors to grasp the margin surfaces. Adhesive material can also be used as a tissue anchor material. The matrix can comprise a bio-absorbable material that does not need to be removed from the wound upon wound closure. A further preferred embodiment uses an arcuately shaped closure device in which an outer portion has a larger dimension then an inner portion as the outer portion has a substantially greater length upon insertion into the wound.
In another preferred embodiment for treating an open wound, a common problem involves the drainage and closure of ulcerative conditions. A collapsing structure using negative pressure around therapy and a compression device that is operative to apply a force to the tissue surrounding the wound can also be used to facilitate wound closure. This procedure can also be used with or without sutures to close the wound.
Embodiments of the present invention relate to negative pressure wound closure devices, systems, and methods for wounds resulting from amputation or other open wound in which the wound margins undergo rotation to align and close. The embodiments as described herein include a negative pressure source and a compression structure that is placed on the wound to provide directed preferential closure. The compression structure can include a number of cells separated by rigid or semi-rigid membranes that are hinged together at joints. The structure changes conformation during a procedure to facilitate closure of the wound.
Although the wound closure device 100 is described as having a dome shape (i.e., a curvature along two axes), it is also contemplated that embodiments of the present invention can have curvature in only one dimension (i.e., a cylindrical geometry). As a non-limiting example, a wound closure device 100 in accordance with the present disclosure can cover a wound on a lateral surface of a bodily limb or extremity such as the thigh. The device can have a range of values of curvature to accommodate wounded extremities as varied as fingers or toes to legs or arms. In some embodiments, the radius of curvature of the device is different from the radius of curvature of the tissue under treatment such that, as a result, the device is at least partially spatially separated from the tissue surface.
The wound 150 can have a width (X) 152 and a depth (Y) 154. In some embodiments, the depth 154 of the wound 150 can be between 0.1 and 1 times the width 152 of the wound 150. Previously available treatments may incompletely treat wounds with such large aspect ratios of depth to width because they typically force the margins of the wound at a shallow portion 150b of the wound to approximate (i.e., come into contact) before the margins of the wound at a deep portion 150a of the wound. In the case where the shallow margins approximate first, the potential arises for seroma formation or infection of the wound below the surface. Embodiments of the present invention can ameliorate this problem by preferentially applying a greater lateral force 110a at the deep portion 150a of the wound 150 than at the shallow portion 150b of the wound as will be described in more detail below.
The compression structure 102 can be situated outside of the wound as shown in
The flaps 108 can be attached to the compression structure 102 and can extend to the peripheral edge 101 of the wound closure device 100. In some embodiments, the flaps 108 may include a first section 108a and a second section 108b that are made of different materials or have different properties. In certain embodiments, the first section 108a may be more flexible, stretchable, or elastic than the second section 108b. In some embodiments, the first section 108a, the second section 108b, or both may include anchoring elements 104. The anchoring elements 104 can be used with the flaps 108 on some or all sides of the wound 150 to attach the structure to a wrap 106 that surrounds the limb just proximal to the wound opening. In some embodiments, the second section 108b of the flaps 108 can be made of a stiff material that will not substantially change conformation as the compression structure 102 moves. This stiffness in a section of the flaps 108 can increase the closure force applied to the wound 150.
The wound closure device 100 can be covered with a cover element that can be custom-designed to fit the shape of a particular patient. In some embodiments, the cover element can include a foam or other biocompatible substance. The cover element may include prostheses or can be specially designed to distribute force due to body weight or pressure to prevent adverse wound events such dehiscence.
In some embodiments, a pump or other vacuum source can be used to apply negative pressure to the wound closure device 100. The pump can attach to the inlet 105 of the wound closure device 100. Additional vacuum sources can also be connected through an array of spaced inlets 105 in order to spatially distribute the suction force so that the force exerted on the compression structure 102 can be controlled separately from a fluid suction force. The amount of applied negative pressure can be adjusted depending on the size and shape of the wound. Pressures above 125 mm to as much as 250 mm or more can be used to assist in wound closure. The pressure can be reduced over time as the wound heals and reduces in size and depth. The vacuum source or pump can be further connected in some embodiments with a surgical drain device as described in greater detail below with reference to
In accordance with various embodiments, the inlet(s) 105 can be disposed on an attachment plate 115. The attachment plate 115 may or may not be rigid along certain directions and may be smooth on one or more surfaces. The attachment plate 115 can overlay the compression structure 102 and may also exhibit elastic or stretching properties. The material of the attachment plate 115 can be biocompatible film such as that provided in conjunction with the Renasys® system available from Smith & Nephew. A preferred embodiment can also be used with a gauge as also provided in the Renasys® system. The smooth attachment plate 115 enables the compression structure 102 to contract and expand freely without interference from the underlying tissue, and without damaging the underlying tissue. In a preferred embodiment, the attachment plate 115 includes micropores that allow the passage of fluid through the attachment plate 115 and into the inlet 105 for removal from the wound site. In some embodiments, the attachment plate 115 can contact a wound filling material as described in greater detail below with reference to
In some embodiments, the micropores can have different sizes in different regions and/or can have different pore densities in different regions in order to direct different force levels of the vacuum source to different regions of the device 100. Similarly, the compression structure 102 can be engineered with different internal cell sizes and/or cell densities to direct the distribution of forces from the vacuum source to different areas of the device 100.
The wound closure device 100 can be used without any sutures in cases where the skin edges on opposite sides of the wound 150 are sufficiently aligned. Alignment of the skin can be facilitated by surgically trimming the wound margins in advance of closure. In other cases, sutures can be selectively utilized to better align the skin on opposite sides of the wound 150. In various embodiments, the device can be used to treat a range of extremities including legs, arms, fingers, toes, hands, and feet. After a period of healing, the device 100 can be removed and optionally replaced with a smaller device.
As described briefly above, the peripheral edge 101 can be designed to impart a greater lateral force 110a than, for example, the lateral force at a point 110b within the wound closure device 100. This gradient of closure force as shown in
In some embodiments, a seal may be included on the flaps 108 or cover element to seal the wound closure device 100 and prevent air from entering or leaving the device while the pressure is changed inside, e.g., by application of negative pressure. The seal can include elastics or adhesives to press a portion of the device 100 such as the peripheral edge 101 against the skin of the patient to produce an airtight seal. In certain embodiments, the seal is included at the peripheral edge 101 of the wound closure device 100.
As shown in
In some embodiments, the interior of each cell 503 contains internal membranes or walls 505 to enhance structural stiffness in one or more directions. The internal membranes or walls 505 can be connected by hinged elements 506. As a result of this enhanced stiffness, the cells 503 can preferentially collapse along a specific dimension (e.g., length, width, or height) as shown in
The surgical drain device 660 can include apertures to allow wound margins on opposite sides of the drain device 660 to come into contact. In some embodiments, the surgical drain device 660 has a plurality of removable drainage tubes that can be withdrawn from the device. In various embodiments, the surgical drain device 660 is made of a bio-absorbable material such that the body of the device can be left in the wound 150 without needing to be removed. The material 670 can be attached to the tube elements 675 such that removal of material 670 from the wound 150 will extract the tubes 675 from drain device 660. The surgical drain device is described in greater detail below with reference to
One embodiment of a cell framework for a compression structure 102 according to the invention is shown in
In another embodiment, shown in
The cells 502 in certain embodiments can be made, in whole or in part, from a shape memory material. Various shape memory materials can be used which return from a deformed state (temporary shape) to their original (permanent) shape. This change in shape can be induced by an external stimulus or trigger. In one embodiment, the original or “permanent” shape of the wound closure device is the “collapsed” configuration. When the wound closure device is initially applied at the wound, the device can be deformed in a temporary expanded state. The device can preferentially revert to its original or “collapsed” state or, alternatively, cause the device to first expand to engage the tissue. The “collapse” force of the shape memory structure can be in addition to or an alternative to the vacuum force induced by the negative pressure source. In certain embodiments, the application of a negative pressure to the wound closure device can cause the device to revert to its original state.
In some embodiments, the flaps 108 can attach at least in part to the tissue of a patient including dermal tissue. As the tissue to be grasped by the flaps 108 has different structural characteristics then the wrap 106, a second group of anchor elements can be adapted to grasp tissue and can have a different shape and grasping force then the first anchor elements 404. As discussed in greater detail below, barbs can have bilateral prongs that tend to collapse upon insertion in tissue and yet expand when pulled in an opposite direction such that a certain pulling force can be applied to tissue as the compression structure 102 collapses. However, the prongs or cone shape anchor element can have a release force such that the barbs can be manually pulled from the tissue without causing injury. In some embodiments, the flaps 108 attach to both tissue and the wrap 106.
The characteristics of the anchors, and their resulting force profiles, can vary by a number of parameters, such as the length of the anchor, the shape of the anchor, the structure of grasping features, the material(s) used for the anchor, the relative flexibility/rigidity of the anchors, and the spacing/density of the anchors.
The number of drain tubes in the surgical drain device 660 can vary depending upon the needs of the device, including the amount of fluid to be drained and the size of the wound and shape of the device. Typically, the device will contain from 2 to about 20 drain tubes. In a preferred embodiment, the device contains preferably at least 3 tubes, and for larger areas from about 5 to about 12 tubes.
The drain tubes 30 can be fabricated from any biocompatible thermoplastic or thermoset material. Examples include surgical grade silicone rubber, polyurethane, polyamide, polyimide, PEEK (polyether ether ketone), polycarbonate, PMMA (polymethylmethacrylate), and polyvinylchloride. The drain tubes 30 are intended to be removed after fluid build-up has reduced to a level that is stable without drainage. However, in an alternative embodiment, the drain tubes 30 can be made of a biodegradable material and can be left in place. The drain tubes 30 can be flexible so as to conform to the tissues surrounding the device and to accommodate movement of the patient without causing discomfort. The drain tubes can be open ended or close ended. In a preferred embodiment, the drain tubes are close ended and possess apertures or holes along their length for the uptake of fluid.
The adhesion matrix 25, including any drain tube channels 35 and hooks or barbs, can be fabricated from a biodegradable polymer material, as these structures are intended to remain in place in the patient's body after removal of the drain tubes 30, so as not to disrupt the healing process. Examples of suitable biodegradable or resorbable materials include Vicryl (polyglycolic acid), Monocryl (glycolic acid-ε-caprolactone copolymer), PDS (polydioxanone, PDO), PLA (polylactic acid, polylactide), PLLA (poly-L-lactic acid), PDLA (poly-D-lactic acid), PGA (polyglycolic acid, polyglycolide), PLGA (poly(lactic-co-glycolic acid)), PHB (polyhydroxybutyrate), and PCL (polycaprolactone). In a preferred embodiment, the adhesion matrix 25, including any drain tube channels 35, is formed of an open network of polymer chains that has sufficient porosity to allow infiltration by cells and fluid flow across the material. Cellular infiltration can promote tissue adhesion and the biodegradation of the polymer after the wound has healed. In some embodiments, the adhesion matrix 25 including any drain tube channels 35 is permeable to seroma fluid but not permeable to cells. In other embodiments, the adhesion matrix 25, including any drain tube channels 35, is permeable to fluid and electrolytes but is impermeable to proteins. The permeability properties of the matrix polymer material that makes up the basic substrate of the adhesion matrix 25 can be the same or different compared to the material that makes up the drain tube channels 35. In a preferred embodiment, the polymer chains, or fibers composed of polymer chains, of the adhesion matrix 25 are aligned along an axis substantially perpendicular to the axes of the nearest drain tubes 30. This alignment pattern promotes the flow of fluid through or along the surface of the adhesion matrix 25 towards the drain tubes.
The adhesion matrix 25, and thus the overall drain device 660, can have any form suitable for insertion into the wound or seroma where it is to be inserted. Generally, the form is that of a thin sheet or flexible planar mesh having an essentially rectangular shape. However, the shape can be rounded, circular, elliptical, oval, or irregular. Preferably the corners are rounded so as to minimize mechanical irritation of surrounding tissues. The size of the device is also determined by the particular use and anatomy of the patient. For example, the adhesion matrix can have an overall width and length in the range from about 2 cm to 25 cm, such as about 10 cm×12 cm or about 20 cm×25 cm. The thickness of the adhesion matrix 25 can be from about 0.5 mm to about 1 cm; where the sheet of material is preferably less than 5 mm in thickness and preferably the adhesion matrix 25 is about 1-2 mm thick. The thickness of the entire drain device 660, including the sheet of the adhesion matrix 25, drain tubes 30, and any hooks or glue pads is about 5 mm or less, 10 mm or less, or about 5-10 mm
The adhesion matrix 25 can be coated with an adhesive material such as surgical glue either in addition to or instead of using hook or barb structures that stabilize tissue layers on either side of the drain device. Any type of surgical adhesive suitable for use within the body can be used, including polyethylene glycol polymers, adhesive proteins, gelatin-thrombin mixtures, albumin-glutaraldehyde, and fibrin-based sealants. Cyanoacrylates are to be avoided, as they cause inflammation if used internally. An adhesive coating can be placed on one or both surfaces of the adhesion matrix 25. Adhesive coatings can be applied to the device prior to its placement in a patient, i.e., as part of the device fabrication process. An adhesive coating can cover all or a portion of a surface of the device 660. A surgical adhesive can be used in the form of a fibrous mat or pad that is soaked or coated with an adhesive composition. The mat or pad is preferably fabricated from a biodegradable polymer, such as the type used to prepare the adhesion matrix 25. One or more layers of adhesive material can be placed between the device and surrounding tissue at the time of placement in the patient.
When the wound closure device 100 containing the compression structure 102 is applied to a wound 150 and negative pressure is applied, the wound margins will begin to approximate beginning with the deep portion of the wound 150a. As the wound margins rotate towards one another, the compression structure 102 must also compress along the lateral direction 117. Compression or collapse of the compression structure 102 can be achieved by several methods.
Although the wound closure device 100 is described as having a dome shape (i.e., a curvature along two axes), it is also contemplated that embodiments of the present invention can have curvature in only one dimension (i.e., a cylindrical geometry). As a non-limiting example, a wound closure device 100 in accordance with the present disclosure can cover a wound on a lateral surface of a bodily limb or extremity such as the thigh. The device can have a range of values of curvature to accommodate wounded extremities as varied as fingers or toes to legs or arms. In some embodiments, the radius of curvature 116 of a portion of the device (RC2) is different from the radius of curvature 156 of the tissue (RC1) under treatment such that, as a result, the device is at least partially spatially separated from the tissue surface.
The wound 150 can have a width (X) 152 and a depth (Y) 154. In some embodiments, the depth 154 of the wound 150 can be between 0.1 and 1 times the width 152 of the wound 150. Previously available treatments may incompletely treat wounds with such large aspect ratios of depth to width because they typically force the margins of the wound at a shallow portion 150b of the wound to approximate (i.e., come into contact) before the margins of the wound at a deep portion 150a of the wound. In the case where the shallow margins approximate first, the potential arises for seroma formation or infection of the wound below the surface. Embodiments of the present invention can ameliorate this problem by preferentially applying a greater lateral force 110a at the deep portion 150a of the wound 150 than at the shallow portion 150b of the wound as will be described in more detail below. In accordance with various embodiments, a portion 114 of the wound closure device 100 can be positioned over tissue adjacent to the wound 150. In some embodiments, the length of the portion 114 adjacent to the wound 150 can be 0.4 to 0.8 times the depth 154 of the wound 150.
The collapsible structure 102 can be situated outside of the wound as shown in
The collapsible structure 102 can include rigid or semi-rigid membranes 109 connecting walls 107 between cells 103. The lower set of membranes 109 can form a surface having a smaller radius of curvature 116 than the radius of curvature 156 of the surface of the tissue proximate to the wound. In some embodiments, the smaller radius of curvature is enforced by stiffened or firm elements within the collapsible structure 102. The difference in the radius of curvature 116 of the collapsible structure 102 relative to the radius of curvature of the tissue surface can impart additional force at the lateral ends of the collapsible structure 102. In some embodiments, the firmness or stiffness of the radius of curvature of the collapsible structure 102 can help allow the structure to resist buckling when a negative pressure is applied at the port 105. In some embodiments, the collapsible structure 102 can include a lateral portion that can apply an inward force to the deep portion 150a of the wound 150 to cause the deep portion 150a to close before the shallow portion 150b. In accordance with various embodiments, the collapsible structure 102 can contact the portion of the tissue adjacent to the wound opening and can include a stiff edge.
The drape 118 can provide a leak-free seal between the wound closure device 100 and the tissue surface. In some embodiments, the drape 118 can be made from materials including plastics or tapes and further including biocompatible materials. In some embodiments, the drape 118 can include adhesives or surgical glues as described above with reference to the adhesion matrix 25. The drape 118 can improve sterility of the wound 150 during healing by preventing ingress of dirt or bacteria. In some embodiments, the drape 118 can affix a lateral portion of the collapsible structure 102 to tissue surrounding at least the deep portion 150a of the wound 150.
The wound closure device 100 can be covered with a cover element that can be custom-designed to fit the shape of a particular patient. In some embodiments, the cover element can include a foam or other biocompatible substance. The cover element may include prostheses or can be specially designed to distribute force due to body weight or pressure to prevent adverse wound events such dehiscence.
In some embodiments, a pump or other vacuum source can be used to apply negative pressure to the wound closure device 100. The pump can attach to the inlet 105 of the wound closure device 100. Additional vacuum sources can also be connected through an array of spaced inlets 105 in order to spatially distribute the suction force so that the force exerted on the collapsible structure 102 can be controlled separately from a fluid suction source. The amount of applied negative pressure can be adjusted depending on the size and shape of the wound. Pressures above 125 mm to as much as 250 mm or more can be used to assist in wound closure. The pressure can be reduced over time as the wound heals and reduces in size and depth. The vacuum source or pump can be further connected in some embodiments with a surgical drain device as described in greater detail above with reference to
In accordance with various embodiments, the inlet(s) 105 can be disposed on an attachment plate 115. The attachment plate 115 may or may not be rigid along certain directions and may be smooth on one or more surfaces. The attachment plate 115 can overlay the collapsible structure 102 and may also exhibit elastic or stretching properties. The material of the attachment plate 115 can be biocompatible film such as that provided in conjunction with the Renasys® system available from Smith & Nephew. A preferred embodiment can also be used with a gauge as also provided in the Renasys® system. The smooth attachment plate 115 enables the collapsible structure 102 to contract and expand freely without interference from the underlying tissue, and without damaging the underlying tissue. In a preferred embodiment, the attachment plate 115 includes micropores that allow the passage of fluid through the attachment plate 115 and into the inlet 105 for removal from the wound site. In some embodiments, the attachment plate 115 can contact a wound filling material as described in greater detail above with reference to
In some embodiments, the micropores can have different sizes in different regions and/or can have different pore densities in different regions in order to direct different force levels of the vacuum source to different regions of the device 100. Similarly, the collapsible structure 102 can be engineered with different internal cell sizes and/or cell densities to direct the distribution of forces from the vacuum source to different areas of the device 100.
The wound closure device 100 can be used without any sutures in cases where the skin edges on opposite sides of the wound 150 are sufficiently aligned. Alignment of the skin can be facilitated by surgically trimming the wound margins in advance of closure. In other cases, sutures can be selectively utilized to better align the skin on opposite sides of the wound 150. In various embodiments, the device can be used to treat a range of extremities including legs, arms, fingers, toes, hands, and feet. After a period of healing, the device 100 can be removed and optionally replaced with a smaller device.
In many cases, the ends of the wound 105 undergo much smaller translation then the center. To accommodate this, the collapsible structure 102 can be configured with larger cells in the center and smaller cells at the ends of the wound in some embodiments.
The wound closure device 100 can also include a compression element 121 such as a clamp to increase the amount of force applied at the deep portion 150a of the wound. In some embodiments, the compression element 121 can include only discrete points of contact around the wound such as with a surgical clamp or distractor or can surround the wound at all sides such as with an elastic band. In some embodiments, the compression element 121 can include a tacky or rubberized surface or an adhesive to improve contact with the tissue and prevent relative movement of the compression element 121 over the tissue surface during wound closure.
Some types of incisions and wounds are characterized by a greater area at the base (i.e., the deepest portion) of the wound than at the skin surface.
In some embodiments, the surgical drain device 660 can include tissue anchors 440 as described previously. The tissue anchors 440 can attach to the wound margins on the underside of the skin flaps 1604 and at the base of the wound. In some embodiments, the tissue anchors 440 can improve approximation of wound margins that, due to tissue inelasticity or wound geometry, simply cannot stretch enough to meet under pressure from the bladder 1010.
In accordance with various embodiments, the stem 1020 can be a collapsible element that can collapse in both the horizontal and vertical directions (i.e., the depth and lateral directions according to the wound geometry). As negative pressure is applied, the stem 1020 can collapse in the vertical direction to allow wound margins in the undermined portion 1612 of the wound 1610 to approximate. The stem 1020 can also collapse in the horizontal direction to allow the wound margins in the surface portion of the wound (i.e., the skin flaps 1604) to approximate. In some embodiments, the stem 1020 can contain a collapsible structure as described above with reference to previous embodiments.
The bladder 1010 of the wound closure device 1000 can be made of any suitable material including, but not limited to, plastics, rubbers, or fabrics. The bladder 1010 can have a level of malleability and compliance such that it can mold to fill irregularities across a tissue surface. In some embodiments, the bladder 1010 may be filled with air or other gases, liquids such as saline, or colloidal materials such as gels or foams. In some embodiments, the bladder can be inflated by introducing filler material through the port 1012. As a non-limiting example, the bladder 1010 can be filled by a pump such as a hand- or battery-operated portable pump. One skilled in the art will appreciate that other methods of filling the bladder 1010 are also contemplated as being within the scope of the present invention including in-house and other stationary pressure sources, mouth-blowing, and integrated pumps or micro-pumps mounted within or on the bladder 1010. In some embodiments, the pressure within the bladder 1010 can be adjusted by the patient. In some embodiments, the bladder 1010 can include an integrated or detachable pressure gauge to measure the level of pressure within the bladder 1010.
The porous stem 1020 can be made of any suitable material including, but not limited to, biocompatible foam or gauze. In accordance with various embodiments, the porous stem 1020 can compress as negative pressure is applied as shown in the transformation of the stem between
As with most wounds, an inset wound 1610 may be sensitive to the applied pressure. If the applied pressure is too great, adverse healing may ensue due to restricted blood flow or other causes. The pressure sensor 1014 can detect the magnitude of the applied force on the tissue at the surface of the skin. In some embodiments, the pressure sensor 1014 may be connected to the inlet 1012 to relieve overpressure within the bladder 1010 when the level of pressure on the tissue surface is too high.
When applied to a wound 1610, the wound closure device 1000 can include a drape 1050 to create a leak-free seal between the wound closure device 1000 and the surface of the tissue 1600. In some embodiments, the drape 1050 can be made from materials including plastics or tapes and further including biocompatible materials. In some embodiments, the drape 1050 can include adhesives or surgical glues as described above. The drape 1050 can improve sterility of the wound 1610 during healing by preventing ingress of dirt or bacteria. In some embodiments, the drape 1610 can extend from the wound 1610 to beyond at least the high points 1602 of the surrounding tissue surface. In some embodiments, the drape 1050 includes an inlet 105 through which negative pressure may be applied to the wound closure device 1000.
In step 1222, negative pressure is applied to the second wound closure device and the partially closed wound opening to further contract the wound opening such that the wound margins on opposite sides of the wound opening contact each other to thereby close the wound. Step 1222 is preferably performed without suturing or with minimal suturing of the wound. In optional step 1224, negative pressure therapy continues to be applied after closure of the wound.
In some embodiments, the wound closure device can define one or more curved axes along which collapsing motion can occur. In an exemplary embodiment, the curved axes can be parallel azimuthal lines at nearly constant radius in a cylindrical coordinate system at different points along the height of the cylinder. The wound closure device can collapse primarily along the curved axis in some embodiments. In some embodiments, the wound closure device can define at least two curved axes that are perpendicular. For example, a first curved axis can be an azimuthal line at nearly constant radius in a cylindrical coordinate system with the height axis across the wound margins and a second curved axis can be an azimuthal line at nearly constant radius in a cylindrical coordinate system with the height axis along the wound margins.
As shown in
In various embodiments, elements of structure 2005 can include, but is not limited to, biocompatible plastics such as polytetrafluoroethylene-based polymers. The structure can be biocompatible and/or sterile in various embodiments.
In exemplary embodiments, the structure 2005 can include scales or lamellae 2010. The scales can be thin with thickness of less than 2 mm and have rounded edges to reduce friction. The shapes and thicknesses can vary across the array of scale elements. The scales 2010 can be layered in the structure 2005 to reduce or prevent gaps that allow tissue ingrowth or adhesion. In some embodiments, each scale 2010 can be attached to the structure 102. For example, each scale can be attached at a pivot point 2002 on a wall 107 where the wall 107 connects to a rigid or semi-rigid membrane 109. In various embodiments, the attachment 2020 between a scale 2010 and the wall 107 can be a mechanical attachment such as a peg or can be an adhesive. The pivot points 2002 can be hinges or flexure points. In some embodiments, the scales 2010 can include channels 2012 along portions of the scale 2010. The channels 2012 can allow fluid flow and scale movement while preventing tissue ingrowth between scales 2010. The scales can overlap adjacent scales, can be dovetailed or interleaved to accommodate relative movement between adjacent scale elements or rows of elements as illustrated. Note, for example, as elements 109 pivot about hinge points 2002, elements on a first side of panel 107 rotate in a first direction 2007 towards panel 107 under negative pressure. Elements 2011 on the opposite side of panel 107 rotate in a second direction 2009 towards the panel 107. In preferred embodiments, the elements 2010, 2011 can be mounted rigidly to the overlying structure 102 at a single point or at a plurality of points for each element. Alternatively, that can rotate around a single point or be limited to rotate through an angle or range. The scale elements can form an array that is used to contract a flat tissue surface or a curved surface or surfaces as described herein. The scales can extend peripherally over skin tissue, for example, or can extend peripherally from a structure positioned within the wound and between tissues and extend laterally from the wound opening. The scales can also be mounted to a domed structure as shown in
A procedure known as a fasciotomy can be performed to relieve pressure or tension in an area of tissue or muscle and can be used to treat acute compartment syndrome among other conditions. The fasciotomy includes creation of an incision that can be 5 to 10 inches (12.7 to 25.4 cm) long and cutting of the fascia surrounding the muscle to relieve pressure. As a result, muscle often can intrude or bulge out of the wound and make subsequent closure of the wound by bringing together the wound margins significantly more difficult. If the wound is not closed within 7-10 days, for example, the configuration of skin and muscle tissue can “freeze” in place as tissue adhesions take hold. Thus, it can be crucial to address wound closure in as timely a manner as possible. Systems and methods described herein can facilitate closure of fasciotomy wounds and other types of wounds as described previously herein.
In another preferred embodiment, the wound closure device 2170 can have tissue anchors 2057 on peripheral surfaces to engage adjacent tissue. Anchors 2057 are described, for example, in U.S. Pat. No. 9,421,132 and also in U.S. Pat. No. 9,597,484, the entire contents of these patents being incorporated herein by reference. Also, scales that extend outside the peripheral edges of structure 2170 can also optionally include tissue anchors 2055 on one or both sides. In the depicted embodiment, anchors 2055 can grasp the overlying tissue 2100, thereby applying a lateral force toward the opposing wound margin to aid in closure while the scales 2050 slide over the underlying tissue 2150.
The structure or wound filler material 2170 can connect to scaled elements 2050 in some embodiments. Alternatively, a layer of scales can be provided separately in which the scales comprising an interconnected array of elements that form a flexible layer positioned between the collapsing structure and a tissue layer such as muscle or fascia, or at layer of fat, for a surface of skin or dermis. The elements 2050 can be placed between the underlying muscle tissue 2150 and the skin and/or fatty tissue 2100 to promote relative translation between the components as the wound closes. As the wound closes, the scales 2050 can slide across one another and move or slide relative to the underlying and overlying tissue. The scale elements 2050 can prevent adhesion between the muscle tissue 2150 and the overlying fatty tissue or skin 2100. In some embodiments, the scale elements 2050 and wound filler material 2170 can replace the use of foam in wound recovery.
The wound closure device 1000 can be applied in several stages. First, the deflated bladder 1010 can be placed over the wound and the drape 1050 can be pulled taut over the bladder 1010 and secured to surrounding tissue at the perimeter of the drape 1050. Next, the bladder can be inflated through the inlet 1012. As the bladder 1010 inflates, it is confined between the tissue surface and the drape 1050 and the pressure inside the bladder 1010 begins to increase. As a result, the pressure on the tissue causes the overhanging tissue in the undermined portion to press down on the base of the wound and stabilize.
In some embodiments, the wound and overlying tissue layers can be substantially concave. This type of wound can be difficult to heal because force cannot be leveraged from adjacent or surrounding tissue into the depression caused by the concavity. Systems and methods described herein can address this difficulty by providing the inflated bladder 1010 confined by the drape 1050. In some embodiments, the volume of the inflated bladder 1010 is such that it can still apply a sufficient pressure to the concave wound to stabilize the tissue layers within the wound. In some embodiments, the pressure applied by the bladder or other suitable pressure applying device 1010 to the wound, wound opening, or surrounding tissue can be in a range from 10 to 50 mmHg (approximately 10 to 50 Torr), in a range from 20 to 40 mmHg (approximately 20 to 40 Torr), or in a range from 30 to 35 mmHg (approximately 30 to 35 Torr).
In some embodiments, each inflatable section 2811 can have an inlet 2810 to allow inflation of the section. In some embodiments, a pressure regulator 2815 can be located near the inlet 2810 to supply a consistent air pressure. In some embodiments, the pressure regulator 2815 can act as a vent that prevents overpressure inside the inflatable section. In some embodiments, the pressure regulator 2815 can be operatively connected to a sensor 2820 within the inflatable member 2811. If the sensor detects an overpressure condition, the pressure regulator 2815 can vent the inflatable member until an appropriate pressure is reached.
In various embodiments, the sensor 2820 can include a pressure sensor that directly detects the pressure within each of the inflatable members. In some embodiments, the sensor 2820 can measure the gas or fluid pressure directly in each section or indirectly through its effect on the tissue. For example, the sensor 2820 can include an optical sensor that can perform a colorimetric measurement on the tissue and determine a level of perfusion of the tissue. If perfusion is minimal, it may be an indication that the wound closure device 1000 is pressing too hard on the tissue and cutting off blood flow in the microvasculature. In such an embodiment, the pressure regulator 2815 can receive a signal to reduce the pressure at that area until normal perfusion is restored.
In some embodiments, the sensor 2820 can include a temperature sensor to sense the temperature of adjacent tissue. For example, the sensor 2820 can include a thermistor. As pressure is applied to the tissue, capillaries within the tissue can be occluded or blocked and blood perfusion into the tissue can be adversely affected. As the tissue experiences reduced circulation, the color and temperature of the tissue can change. Sensors 2820 associated with each individual inflatable section 2811 can detect localized temperature of the tissue at the position adjacent to that inflatable section 2811. In some embodiments, the sensor 2820 can directly contact the tissue, e.g., the sensor 2820 can be placed between the tissue and the inflatable section(s) 2811. Although
A pump 2850 can provide positive pressure, negative pressure, or both to the wound closure device 1000. The pump 2850 can be connected to a drain outlet 2805 to provide negative pressure to the interior of the wound closure device. Negative pressure applied through the drain outlet 2805 can help the inflatable sections 2811 apply pressure to the wound. In addition, any fluid that exits through the stitches 2605 can be pulled out of the wound closure device 1000 and into the pump 2850.
The pump 2850 can also provide the positive pressure needed to inflate the inflatable sections 2811. In some embodiments, a manifold can be used to connect a single pump 2850 to a myriad of inflatable sections 2811 simultaneously. In alternative embodiments, separate tubes can be used to connect the inlet 2810 of each inflatable section 2811 with separate pumps 2850. The manifold can include valves that close off individual lines to individual inflatable sections 2811.
The pump 2850 can be mechanical, electrical, or hand-operated (e.g., a syringe pump). Although a single pump 2850 is shown in
In some embodiments, inflatable bladder sections 2811 can be used in conjunction with systems and methods described herein to promote healing of wounds 150 at extremities caused, for example, as a result of amputation. As shown in
The data processing device 3102 can control the pump 2850, the pressure regulators 2815, or valves in the manifold that connects the pump to the inlets 2810 of each inflatable section 2811. The data processing device 3102 can analyze or monitor the sensor data received from the sensors 2820 in some embodiments to determine if the tissue is receiving adequate blood flow. If the pressure that is applied to the tissue is too high, the micro-capillaries in the tissue can become occluded or blocked preventing blood flow. Outward indications of a lack of blood flow in the microvasculature can include changes in tissue color (e.g., the tissue becomes less pink/red and more white) and changes in temperature (e.g., the temperature of the tissue can fall as warm blood is prevented from entering). The sensors 2820 can detect these changes in various embodiments. The data processing device 3102 can process, monitor, or analyze the sensor data to determine if blood flow in the tissue is becoming restricted. The data processing device 3102 can then adjust the pressure regulating device (e.g., the pump 2850, pressure regulators 2815, or valves) using a control circuit to change the pressure applied to the tissue. In some embodiments involving an array of sensors 2850, the data processing device 3102 can receive data from each of the sensors in the array and control the pressure in the inflatable section 2811 adjacent to the sensor 2820 that is indicating low blood flow in the tissue. In some embodiments, the sensors 2850 can measure data related to the pressure or contact area of the inflatable section 2811. For example, the sensor 2850 can measure whether an inflatable section is or is not contacting the tissue surface or whether the inflatable section 2811. In some embodiments, the data processing device 3102 can control the pressure regulating device to increase the pressure in an inflatable section when a related sensor detects that the pressure being exerted by that inflatable section 2811 on the tissue surface is insufficient to create downward force on the wound.
The wound closure device 2800 can include a biodegradable insert 3110 in some embodiments. The biodegradable insert 3110 can stabilize the wound and provide structure to the interior of the wound opening in some embodiments. The biodegradable insert 3110 can remain in the wound after closure and dissolve thus obviating the need for removal of the insert. In some embodiments, the biodegradable insert 3110 can include a surgical drain device 660 as described above with reference to other embodiments.
Note that negative pressure can optionally be applied in combination with the downward pressure applying device before the wound is closed and/or after the wound is closed. The wound can be closed during treatment with the pressure applying device without sutures.
The method 3200 includes sensing data related to pressure, temperature, and/or blood flow at the tissue surface or within the tissue or wound opening (step 3208). The method 3200 includes monitoring and/or analyzing sensor data with a data processing device to determine whether blood flow is restricted within the wound and/or at the tissue surface (step 3210). For example, the data processing device 3102 described above can receive and analyze or monitor the sensor data. The method 3200 includes controlling a level of pressure applied to the tissue surface by the pressure-applying device adjacent to the wound opening using a pressure regulating device (step 3212). The data processing device can control the pressure regulating device if a determination is made that blood flow is restricted at the tissue surface or within the wound in various embodiments. As described above, the pressure regulating device can include pumps, valves along tubes or manifolds, or pressure regulators.
In some embodiments, a sequential inflation procedure can be used to apply pressure in stages as the wound 150 closes from deep to shallow. The inflatable sections 2911 nearest the edge of the drape 2920 can first be inflated to create pressure laterally at the deepest portion. Next, the adjacent inflatable sections 2911 can progressively be inflated in sequence until even the inflatable sections 2911 laterally adjacent to the shallowest portion 150b of the wound 150 are inflated. This sequence can progress over time periods from seconds to minutes to days as tissue healing proceeds.
The collapsible structure 3310 can be substantially similar to those described above. In some embodiments, the collapsible structure 3310 can have one or more channels therethrough to allow for passage of liquid or other exudate from within the wound. In some embodiments, the collapsible structure 3310 can include a foam or foam-like substance. In such embodiments, the channels 3312 can include areas where the foam has been cut or removed.
One or more of the scales 3302 in the moveable scale structure 3305 can be shaped to enable sliding of neighboring scales to collapse the moveable scale structure 3005. For example, the scales 3302 can include a tissue contact portion 3302a and a raised portion 3302b. The tissue contact portion 3302a can contact the tissue 3325 at the bottom of the wound and slide freely along the bottom tissue 3325 to avoid adherence of the moveable scale structure 3305 to the tissue 3325 during healing. In some embodiments, a surface of the tissue contact portion 3302a that contacts the wound tissue 3325 can include a substance that forms an anti-adhesion layer. For example, the substance can be a polytetrafluoroethylene-based polymer, a liquid lubrication layer, or a semi-liquid lubrication layer such as a hydrogel.
The raised portion 3302b of each scale 3302 can be configured to slide over the top of the contact portion 3302a of the adjacent scale 3302 in some embodiments. In some embodiments, the raised portion 3302b of each scale can be connected to the collapsible structure 3310 by a mechanical attachment 3304. The mechanical attachment 3304 can include a peg or post that inserts into a hole in the collapsible structure or that creates a hole in the collapsible structure 3310 when inserted therethrough. In some embodiments, the mechanical attachment 3304 can include rear-facing barbs or an “umbrella”-like feature that prevents the mechanical attachment 3304 from being removed from the collapsible structure 3310. In some embodiments, the mechanical attachment 3304 can provide additional strength to the collapsible structure in the vertical direction. This additional mechanical strength can improve asymmetric directionality of the collapse of the collapsible structure 3310 in some embodiments. For example, the mechanical attachment 3304 can cause the collapsible structure 3310 to preferentially collapse in the horizontal direction to bring the wound margins 3320 closer together rather than collapsing in a vertical direction.
The movement of scales 3302 relative to one another is illustrated by the change between
In accordance with various embodiments described herein, the collapsible structure 102 and one or more of the scales 3402 can be molded as a single piece. In accordance with other embodiments described herein, the collapsible structure 102 and one or more of the scales 3402 in the moveable scale structure can be molded separately and joined after individual manufacture.
The foot structures 3502 comprise sliding elements that are shaped to move smoothly over tissue as the collapsible structure 102 collapses during wound closure and healing. In some embodiments, a portion of the foot structures 3502 that contact tissue can have a beveled or rounded edge to avoid snagging tissue as the foot structures 3502 move. The foot structures 3502 can include an anti-adhesion component such as a coating and/or material properties of the foot structures 3502 can promote sliding of the foot over tissue. In some embodiments, the collapsible structure 102 and the foot structures 3502 can be molded as a single piece, i.e., can be molded together as one during manufacture. In other embodiments, all or a portion of the foot structures 3502 can be molded or manufactured separately from the collapsible structure 102 and separately attached.
The sliding elements 3302, 3402, 3502 can be sized to have a surface area that distributes any force on the tissue (e.g., from application of negative pressure at the collapsible structure 102) over a larger area to reduce risk of injury to the underlying tissue. For foot structures 3502 that do not extend over or under adjacent structures or elements, the connecting walls or members can have different lengths across the structure such that the foot structures 3502 attached to substantially parallel walls move between each other during lateral contraction and thus interdigitate with respect to each other. Such movement of the foot structures 3502 can allow lateral contraction in a range of 30% to 60% (and preferably between 40% and 60%) relative to the initial lateral width upon implantation.
In some embodiments, segments of the membranes 109 that connect between walls 107 to form the cells 103 can be shorter than segments of wall 107 in the collapsible structure 103. By making the segments of the membranes 109 shorter than segments of the walls 107, foot structures 3502 lined along a first wall 107 will slot into the gaps (or interdigitate) formed between foot structures 3502 lined along an adjacent, second wall.
The base 3504 of each foot structure 3502 can have rounded edges in some embodiments. Because the foot structure 3502 may press into tissue and create a depression, the rounded edges can assist in enabling the foot structure 3502 to slide over the tissue surface without damaging the tissue. In some embodiments, a diameter of the base 3504 of each foot structure 3502 can be in a range from 4 mm to 40 mm. Similarly, an area of the bottom surface of the base 3504 can be in a range from 12 mm2 to 12 cm2. In some embodiments, the collapsible structure 102 does not include a foot structure 3502 attached to every cross-junction but rather has pattern gaps where no foot structure is attached to allow for larger diameter foot structures that do not interfere with one another as they move.
In some applications, wound closure devices as described herein can improve closure of wounds wherein the side walls of the wound include both skin (dermal) tissue and fat tissue as well as the underlying fascia. When the skin, fat and fascia are retracted, there is a tendency for underlying organs to bulge outward into the wound opening. The partial obstruction between the wound margins created by bulging organs can inhibit closure of the fascia as compared to the overlying tissue. Additionally, overlying fat tissue has a high pliability as compared to fascia. The pliability of the fat tissue creates the possibility of “tissue creep” where tissue under a tension load (such as a pulling force) gradually lengthens. This phenomenon contributes to faster wound closure as the margins can approximate more quickly if the tissue creeps (i.e., lengthens) to allow the sides to come together. Because fat tissue creeps faster and farther than fascia, the possibility arises that wound closure devices that pull evenly on both the fat tissue and fascia can cause fat and connected skin tissue from opposite sides of the wound to meet and close before the fascia tissue from opposite sides has closed. As a result, the wound is closed to at the skin surface but a hernia is created underneath where organs protrude through the unclosed fascia layer. To address this issue, systems and methods for wound closure described herein can apply differential force to dermal and fat tissue relative to the fascia tissue to encourage the fascia tissue to ultimately close at the same rate or same time as overlying dermal tissue.
Upon application of negative pressure, the walls 3602 preferably remain relatively rigid in the vertical direction or angled direction while moving closer together in the horizontal directions. As the walls 3602 come together, the portions of adjacent walls near the first end 3602a of the walls can touch before the portions of adjacent walls near the second end 3602b of the walls. Thus, further collapse of the wound closure device 3600 near the first end 3602a of the walls can begin to become inhibited while collapse of the wound closure device 3600 near the second end 3602b of the walls can still continue. Thus, approximation of the dermal tissue (near the first end 3602a of the walls) can proceed slower than approximation of the fascia tissue (near the second end 3602b of the walls). The taper angle 3611 of the walls 3605 can vary between 2° and 30°, for example, where smaller angles provide greater contraction at the top of the device. In addition, the wings 3613 of a given wall 3602 (i.e., the material outside of the dashed line in
The membrane 3610 can extend under overlying fat or fascia tissue that defines wound margins by at least 5 mm, and preferably in a range of 1-10 cm or more. The membrane can further comprise a composite structure having upper and lower layers that slide. In some embodiments, the membrane 3610 can optionally include a fluid transport layer.
The elasticity of the membrane enables movement thereof to accommodate free movement of the collapsing structure, e.g., by as much as 2-10 cm depending upon the size of the patient and the wound opening. The elastic membrane can also comprise a Dacron material, a polyurethane material, or other biocompatible films or meshes.
The walls 3602 can be attached to the scales 3608 at the second end 3602b of each wall or at a hinge point or location between the walls of cells, such that any particular wall and scale move in concert. The attachment of wall 3602 to scale 3608 can be accomplished using a range of methods including formation as separate components and attachment with adhesive or connector or formation together in a single forming process out of a single piece of material (such as by molding).
The membrane 3610 can be made of elastic biocompatible polymer materials such as polyurethane that accommodates a range of relative movements between the scales. The membrane 3610 can extend beyond the sides of the wound margins to be inserted between adjacent tissue layers and/or organs, such as the abdominal organs. The elastic properties of the membrane accommodate the lateral contraction of the wound closure component, whereby portions of the membrane move in both x and y directions to varying distance. The elastic properties of the membrane thereby reduce or eliminate folding over of portions of the integrated membrane 3610 as the device contracts.
The tissue protection layer 3620 can separate the walls 3602 of the wound closure device 3600 from underlying organs below the fascia tissue 3630. Components of the tissue protection layer 3620 (whether scales 3608, protective membrane 3610, or both) can extend under the abdominal wall. That is, the tissue protection layer 3610 can include portions 3609 that extend under the fascia tissue 3609 to facilitate movement of the fascia tissue 3609 during application of negative pressure and collapse. The extended portions 3609 also discourage adhesion between the fascia layer 3530 and underlying organs.
The tissue protection layer 3620 can be connected to the walls 3602 of the wound closure device 3600 using connectors 3607. The connectors 3607 can be physical linkages such as fasteners or bridges of material between components of the tissue protection layer 3620 and the walls 3602 in some embodiments. In other embodiments, the connectors 3607 can include adhesives.
Membranes can be fabricated having suitable flexibility and resilience as described in U.S. Pat. No. 8,172,746, the entire contents of which is incorporated by reference and wherein the elasticity of the membrane can be engineered using polymers and composites described therein.
While the present inventive concepts have been described with reference to particular embodiments, those of ordinary skill in the art will appreciate that various substitutions and/or other alterations may be made to the embodiments without departing from the spirit of the present inventive concepts. Accordingly, the foregoing description is meant to be exemplary and does not limit the scope of the present inventive concepts.
A number of examples have been described herein. Nevertheless, it should be understood that various modifications may be made. For example, suitable results may be achieved if the described techniques are performed in a different order and/or if components in a described system, device, or method are combined in a different manner and/or replaced or supplemented by other components or their equivalents. Accordingly, other implementations are within the scope of the present inventive concepts.
This application claims priority to U.S. Provisional Application No. 62/779,193, filed Dec. 13, 2018. This application is also a continuation-in-part of International Patent Application PCT/US2018/038851, filed Jun. 21, 2018, which is a continuation-in-part of U.S. patent application Ser. No. 15/629,596, filed Jun. 21, 2017, which is a continuation-in-part of International Patent Application No. PCT/US2016/067051, filed Dec. 15, 2016, which is a continuation-in-part of U.S. patent application Ser. No. 15/066,527, filed Mar. 10, 2016, and which claims priority to U.S. Provisional Patent Application 62/267,728, filed Dec. 15, 2015, the contents of the above applications being incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1006716 | Bloomer | Oct 1911 | A |
3014483 | Frank | Dec 1961 | A |
3194239 | Sullivan | Jul 1965 | A |
3578003 | Everett | May 1971 | A |
3789851 | LeVeen | Feb 1974 | A |
3812616 | Koziol | May 1974 | A |
3952633 | Nakai | Apr 1976 | A |
4000845 | Zeller | Jan 1977 | A |
4467805 | Fukuda | Aug 1984 | A |
4608041 | Nielsen | Aug 1986 | A |
4637819 | Ouellette et al. | Jan 1987 | A |
4699134 | Samuelsen | Oct 1987 | A |
4771482 | Shlenker | Sep 1988 | A |
4815468 | Annand | Mar 1989 | A |
5176663 | Svedman | Jan 1993 | A |
5264218 | Rogozinski | Nov 1993 | A |
5332149 | Gepfer | Jul 1994 | A |
5368910 | Langdon | Nov 1994 | A |
5368930 | Samples | Nov 1994 | A |
5376067 | Daneshvar | Dec 1994 | A |
5409472 | Rawlings et al. | Apr 1995 | A |
5415715 | Delage et al. | May 1995 | A |
5423857 | Rosenman et al. | Jun 1995 | A |
5512041 | Bogart | Apr 1996 | A |
5514105 | Goodman, Jr. et al. | May 1996 | A |
5562107 | Lavendar et al. | Oct 1996 | A |
5584859 | Brotz | Dec 1996 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5695777 | Donovan et al. | Dec 1997 | A |
5853863 | Kim | Dec 1998 | A |
5928210 | Ouellette et al. | Jul 1999 | A |
5960497 | Castellino et al. | Oct 1999 | A |
6000403 | Cantwell | Dec 1999 | A |
6080168 | Levin et al. | Jun 2000 | A |
6086591 | Bojarski | Jul 2000 | A |
6142982 | Hunt et al. | Nov 2000 | A |
6176868 | Detour | Jan 2001 | B1 |
6291050 | Cree et al. | Sep 2001 | B1 |
6398767 | Fleischmann | Jun 2002 | B1 |
6471715 | Weiss | Oct 2002 | B1 |
6500112 | Khouri | Dec 2002 | B1 |
6503208 | Skovlund | Jan 2003 | B1 |
6530941 | Muller et al. | Mar 2003 | B1 |
6548727 | Swenson | Apr 2003 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6566575 | Stickels et al. | May 2003 | B1 |
6641575 | Lonky | Nov 2003 | B1 |
6685681 | Lockwood et al. | Feb 2004 | B2 |
6695823 | Lina et al. | Feb 2004 | B1 |
6712830 | Esplin | Mar 2004 | B2 |
6712839 | Lonne | Mar 2004 | B1 |
6767334 | Randolph | Jul 2004 | B1 |
6770794 | Fleischmann | Aug 2004 | B2 |
6776769 | Smith | Aug 2004 | B2 |
6787682 | Gilman | Sep 2004 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6883531 | Perttu | Apr 2005 | B1 |
6893452 | Jacobs | May 2005 | B2 |
6936037 | Bubb et al. | Aug 2005 | B2 |
6951553 | Bubb et al. | Oct 2005 | B2 |
6977323 | Swenson | Dec 2005 | B1 |
6994702 | Johnson | Feb 2006 | B1 |
7004915 | Boynton et al. | Feb 2006 | B2 |
7025755 | Epstein | Apr 2006 | B2 |
7070584 | Johnson et al. | Jul 2006 | B2 |
7117869 | Heaton et al. | Oct 2006 | B2 |
7128735 | Weston | Oct 2006 | B2 |
7144390 | Hannigan et al. | Dec 2006 | B1 |
7153312 | Torrie et al. | Dec 2006 | B1 |
7156862 | Jacobs et al. | Jan 2007 | B2 |
7172615 | Morriss et al. | Feb 2007 | B2 |
7189238 | Lombardo et al. | Mar 2007 | B2 |
7196054 | Drohan et al. | Mar 2007 | B1 |
7198046 | Argenta et al. | Apr 2007 | B1 |
7216651 | Argenta et al. | May 2007 | B2 |
D544092 | Lewis | Jun 2007 | S |
7262174 | Jiang et al. | Aug 2007 | B2 |
7279612 | Heaton et al. | Oct 2007 | B1 |
7315183 | Hinterscher | Jan 2008 | B2 |
7351250 | Zamierowski | Apr 2008 | B2 |
7361184 | Joshi | Apr 2008 | B2 |
7367342 | Butler | May 2008 | B2 |
7381211 | Zamierowski | Jun 2008 | B2 |
7381859 | Hunt et al. | Jun 2008 | B2 |
7413571 | Zamierowski | Aug 2008 | B2 |
7438705 | Karpowicz et al. | Oct 2008 | B2 |
7494482 | Orgill et al. | Feb 2009 | B2 |
7524315 | Blott et al. | Apr 2009 | B2 |
7534240 | Johnson | May 2009 | B1 |
7540848 | Hannigan et al. | Jun 2009 | B2 |
7553306 | Hunt et al. | Jun 2009 | B1 |
7553923 | Williams et al. | Jun 2009 | B2 |
7569742 | Haggstrom et al. | Aug 2009 | B2 |
7578532 | Schiebler | Aug 2009 | B2 |
D602583 | Pidgeon et al. | Oct 2009 | S |
7611500 | Lina et al. | Nov 2009 | B1 |
7612248 | Burton et al. | Nov 2009 | B2 |
7615036 | Joshi et al. | Nov 2009 | B2 |
7617762 | Ragner | Nov 2009 | B1 |
7618382 | Vogel et al. | Nov 2009 | B2 |
7622629 | Aali | Nov 2009 | B2 |
7625362 | Boehringer et al. | Dec 2009 | B2 |
7645269 | Zamierowski | Jan 2010 | B2 |
7651484 | Heaton et al. | Jan 2010 | B2 |
7670323 | Hunt et al. | Mar 2010 | B2 |
7678102 | Heaton | Mar 2010 | B1 |
7683667 | Kim | Mar 2010 | B2 |
7699823 | Haggstrom et al. | Apr 2010 | B2 |
7699830 | Martin | Apr 2010 | B2 |
7699831 | Bengtson et al. | Apr 2010 | B2 |
7700819 | Ambrosio et al. | Apr 2010 | B2 |
7708724 | Weston | May 2010 | B2 |
7713743 | Villanueva et al. | May 2010 | B2 |
7722528 | Arnal et al. | May 2010 | B2 |
7723560 | Lockwood et al. | May 2010 | B2 |
7753894 | Blott et al. | Jul 2010 | B2 |
7754937 | Boehringer et al. | Jul 2010 | B2 |
7776028 | Miller et al. | Aug 2010 | B2 |
7777522 | Yang et al. | Aug 2010 | B2 |
7779625 | Joshi et al. | Aug 2010 | B2 |
D625801 | Pidgeon et al. | Oct 2010 | S |
7811269 | Boynton et al. | Oct 2010 | B2 |
7815616 | Boehringer et al. | Oct 2010 | B2 |
7820453 | Heylen et al. | Oct 2010 | B2 |
7846141 | Weston | Dec 2010 | B2 |
7857806 | Karpowicz et al. | Dec 2010 | B2 |
7863495 | Aali | Jan 2011 | B2 |
7892181 | Christensen et al. | Feb 2011 | B2 |
7896856 | Petrosenko et al. | Mar 2011 | B2 |
7909805 | Weston | Mar 2011 | B2 |
7910789 | Sinyagin | Mar 2011 | B2 |
7931774 | Hall et al. | Apr 2011 | B2 |
7942866 | Radi et al. | May 2011 | B2 |
7951124 | Boehringer et al. | May 2011 | B2 |
7964766 | Blott et al. | Jun 2011 | B2 |
7976519 | Bubb et al. | Jul 2011 | B2 |
7976524 | Kudo et al. | Jul 2011 | B2 |
7981098 | Boehringer et al. | Jul 2011 | B2 |
8030534 | Radl et al. | Oct 2011 | B2 |
8057447 | Olson et al. | Nov 2011 | B2 |
8062272 | Weston | Nov 2011 | B2 |
8062295 | McDevitt et al. | Nov 2011 | B2 |
8062331 | Zamierowski | Nov 2011 | B2 |
8067662 | Aali et al. | Nov 2011 | B2 |
8070773 | Zamierowski | Dec 2011 | B2 |
8080702 | Blott et al. | Dec 2011 | B2 |
8100887 | Weston et al. | Jan 2012 | B2 |
8114126 | Heaton et al. | Feb 2012 | B2 |
8123781 | Zamierowski | Feb 2012 | B2 |
8128615 | Blott et al. | Mar 2012 | B2 |
8129580 | Wilkes et al. | Mar 2012 | B2 |
8142419 | Heaton et al. | Mar 2012 | B2 |
8162909 | Blott et al. | Apr 2012 | B2 |
8172816 | Kazala, Jr. et al. | May 2012 | B2 |
8182413 | Browning | May 2012 | B2 |
8187237 | Seegert | May 2012 | B2 |
8188331 | Barta et al. | May 2012 | B2 |
8192409 | Hardman et al. | Jun 2012 | B2 |
8197467 | Heaton et al. | Jun 2012 | B2 |
8207392 | Haggstrom et al. | Jun 2012 | B2 |
8215929 | Shen et al. | Jul 2012 | B2 |
8235955 | Blott et al. | Aug 2012 | B2 |
8235972 | Adahan | Aug 2012 | B2 |
8246590 | Hu et al. | Aug 2012 | B2 |
8246606 | Stevenson et al. | Aug 2012 | B2 |
8246607 | Karpowicz et al. | Aug 2012 | B2 |
8257328 | Augustine et al. | Sep 2012 | B2 |
8273105 | Cohen et al. | Sep 2012 | B2 |
8298200 | Vess et al. | Oct 2012 | B2 |
8328776 | Kelch et al. | Dec 2012 | B2 |
8337411 | Nishtala et al. | Dec 2012 | B2 |
8353931 | Stopek et al. | Jan 2013 | B2 |
8357131 | Olson | Jan 2013 | B2 |
8362315 | Aali | Jan 2013 | B2 |
8376972 | Fleischmann | Feb 2013 | B2 |
8399730 | Kazala, Jr. et al. | Mar 2013 | B2 |
8430867 | Robinson et al. | Apr 2013 | B2 |
8439882 | Kelch | May 2013 | B2 |
8444392 | Turner et al. | May 2013 | B2 |
8444611 | Wilkes et al. | May 2013 | B2 |
8447375 | Shuler | May 2013 | B2 |
8454990 | Canada et al. | Jun 2013 | B2 |
8460255 | Joshi et al. | Jun 2013 | B2 |
8460257 | Locke et al. | Jun 2013 | B2 |
8481804 | Timothy | Jul 2013 | B2 |
8486032 | Seegert et al. | Jul 2013 | B2 |
8500704 | Boehringer et al. | Aug 2013 | B2 |
8500776 | Ebner | Aug 2013 | B2 |
8523832 | Seegert | Sep 2013 | B2 |
8535296 | Blott et al. | Sep 2013 | B2 |
8562576 | Hu et al. | Oct 2013 | B2 |
8608776 | Coward et al. | Dec 2013 | B2 |
8622981 | Hartwell et al. | Jan 2014 | B2 |
8628505 | Weston | Jan 2014 | B2 |
8632523 | Eriksson et al. | Jan 2014 | B2 |
8673992 | Eckstein et al. | Mar 2014 | B2 |
8679080 | Kazala, Jr. et al. | Mar 2014 | B2 |
8679153 | Dennis | Mar 2014 | B2 |
8680360 | Greener et al. | Mar 2014 | B2 |
8708984 | Robinson et al. | Apr 2014 | B2 |
8715256 | Greener | May 2014 | B2 |
8721629 | Hardman et al. | May 2014 | B2 |
8746662 | Poppe | Jun 2014 | B2 |
8747375 | Barta et al. | Jun 2014 | B2 |
8764732 | Hartwell | Jul 2014 | B2 |
8784392 | Vess et al. | Jul 2014 | B2 |
8791315 | Lattimore et al. | Jul 2014 | B2 |
8791316 | Greener | Jul 2014 | B2 |
8801685 | Armstrong et al. | Aug 2014 | B2 |
8802916 | Griffey et al. | Aug 2014 | B2 |
8814842 | Coulthard et al. | Aug 2014 | B2 |
8821535 | Greener | Sep 2014 | B2 |
8843327 | Vernon-Harcourt et al. | Sep 2014 | B2 |
8853486 | Wild et al. | Oct 2014 | B2 |
8882730 | Zimnitsky et al. | Nov 2014 | B2 |
8936618 | Sealy et al. | Jan 2015 | B2 |
8945030 | Weston | Feb 2015 | B2 |
8951235 | Allen et al. | Feb 2015 | B2 |
8956336 | Haggstrom et al. | Feb 2015 | B2 |
9044579 | Blott et al. | Jun 2015 | B2 |
9050398 | Armstrong et al. | Jun 2015 | B2 |
9061095 | Adie et al. | Jun 2015 | B2 |
9084845 | Adie et al. | Jul 2015 | B2 |
9180132 | Fein et al. | Nov 2015 | B2 |
9180231 | Greener | Nov 2015 | B2 |
9204801 | Locke et al. | Dec 2015 | B2 |
9220822 | Hartwell | Dec 2015 | B2 |
9226737 | Dunn | Jan 2016 | B2 |
9301742 | Dunn | Apr 2016 | B2 |
9339248 | Tout et al. | May 2016 | B2 |
9352076 | Boynton et al. | May 2016 | B2 |
9408755 | Larsson | Aug 2016 | B2 |
9421132 | Dunn | Aug 2016 | B2 |
9555170 | Fleischmann | Jan 2017 | B2 |
9597484 | Dunn | Mar 2017 | B2 |
9655807 | Locke et al. | May 2017 | B2 |
9737649 | Begin et al. | Aug 2017 | B2 |
9757500 | Locke et al. | Sep 2017 | B2 |
9770368 | Robinson et al. | Sep 2017 | B2 |
9801986 | Greener | Oct 2017 | B2 |
9820888 | Greener et al. | Nov 2017 | B2 |
D805039 | Dejanovic et al. | Dec 2017 | S |
9844472 | Hammond et al. | Dec 2017 | B2 |
9849023 | Hall et al. | Dec 2017 | B2 |
9895270 | Coward et al. | Feb 2018 | B2 |
9962295 | Dunn et al. | May 2018 | B2 |
10070994 | Dodd et al. | Sep 2018 | B2 |
10117782 | Dagger et al. | Nov 2018 | B2 |
10124098 | Dunn et al. | Nov 2018 | B2 |
10130520 | Dunn et al. | Nov 2018 | B2 |
10143485 | Locke et al. | Dec 2018 | B2 |
10166148 | Dunn | Jan 2019 | B2 |
10179073 | Hartwell et al. | Jan 2019 | B2 |
10201642 | Hartwell et al. | Feb 2019 | B2 |
10245185 | Hicks et al. | Apr 2019 | B2 |
10405861 | Dunn | Sep 2019 | B2 |
10537657 | Phillips et al. | Jan 2020 | B2 |
10575991 | Dunn | Mar 2020 | B2 |
10660992 | Canner et al. | May 2020 | B2 |
10729590 | Simmons et al. | Aug 2020 | B2 |
10814049 | Dunn | Oct 2020 | B2 |
11083631 | Dunn et al. | Aug 2021 | B2 |
20010029956 | Argenta et al. | Oct 2001 | A1 |
20010034499 | Sessions et al. | Oct 2001 | A1 |
20020022861 | Jacobs et al. | Feb 2002 | A1 |
20020077661 | Saadat | Jun 2002 | A1 |
20020161346 | Lockwood et al. | Oct 2002 | A1 |
20030065360 | Jacobs et al. | Apr 2003 | A1 |
20030108587 | Orgill et al. | Jun 2003 | A1 |
20030114816 | Underhill et al. | Jun 2003 | A1 |
20030114818 | Benecke et al. | Jun 2003 | A1 |
20030114821 | Underhill et al. | Jun 2003 | A1 |
20030120249 | Wulz et al. | Jun 2003 | A1 |
20030121588 | Pargass et al. | Jul 2003 | A1 |
20030178274 | Chi | Sep 2003 | A1 |
20030220660 | Kortenbach et al. | Nov 2003 | A1 |
20040006319 | Lina et al. | Jan 2004 | A1 |
20040010275 | Jacobs et al. | Jan 2004 | A1 |
20040030304 | Hunt et al. | Feb 2004 | A1 |
20040054346 | Zhu et al. | Mar 2004 | A1 |
20040064132 | Boehringer et al. | Apr 2004 | A1 |
20040147465 | Jiang et al. | Jul 2004 | A1 |
20040162512 | Liedtke et al. | Aug 2004 | A1 |
20040243073 | Lockwood et al. | Dec 2004 | A1 |
20040267312 | Kanner et al. | Dec 2004 | A1 |
20050107731 | Sessions | May 2005 | A1 |
20050119694 | Jacobs et al. | Jun 2005 | A1 |
20050131414 | Chana | Jun 2005 | A1 |
20050142331 | Anderson et al. | Jun 2005 | A1 |
20050182445 | Zamierowski | Aug 2005 | A1 |
20050209574 | Boehringer et al. | Sep 2005 | A1 |
20050222544 | Weston | Oct 2005 | A1 |
20050222613 | Ryan | Oct 2005 | A1 |
20050240220 | Zamierowski | Oct 2005 | A1 |
20050258887 | Ito et al. | Nov 2005 | A1 |
20050267424 | Eriksson et al. | Dec 2005 | A1 |
20060020269 | Cheng | Jan 2006 | A1 |
20060058842 | Wilke et al. | Mar 2006 | A1 |
20060064124 | Zhu et al. | Mar 2006 | A1 |
20060069357 | Marasco | Mar 2006 | A1 |
20060079599 | Arthur | Apr 2006 | A1 |
20060135921 | Wiercinski et al. | Jun 2006 | A1 |
20060213527 | Argenta et al. | Sep 2006 | A1 |
20060217795 | Besselink et al. | Sep 2006 | A1 |
20060257457 | Gorman et al. | Nov 2006 | A1 |
20060259074 | Kelleher et al. | Nov 2006 | A1 |
20060271018 | Korf | Nov 2006 | A1 |
20070027414 | Hoffman et al. | Feb 2007 | A1 |
20070027475 | Pagedas | Feb 2007 | A1 |
20070032755 | Walsh | Feb 2007 | A1 |
20070032763 | Vogel | Feb 2007 | A1 |
20070038172 | Zamierowski | Feb 2007 | A1 |
20070052144 | Knirck et al. | Mar 2007 | A1 |
20070055209 | Patel et al. | Mar 2007 | A1 |
20070104941 | Kameda et al. | May 2007 | A1 |
20070118096 | Smith et al. | May 2007 | A1 |
20070123816 | Zhu et al. | May 2007 | A1 |
20070123973 | Roth et al. | May 2007 | A1 |
20070129660 | McLeod et al. | Jun 2007 | A1 |
20070149910 | Zocher | Jun 2007 | A1 |
20070161937 | Aali | Jul 2007 | A1 |
20070179421 | Farrow | Aug 2007 | A1 |
20070185463 | Mulligan | Aug 2007 | A1 |
20070213597 | Wooster | Sep 2007 | A1 |
20070219513 | Lina et al. | Sep 2007 | A1 |
20070265585 | Joshi et al. | Nov 2007 | A1 |
20070282309 | Bengtson et al. | Dec 2007 | A1 |
20070282374 | Sogard et al. | Dec 2007 | A1 |
20070299541 | Chernomorsky et al. | Dec 2007 | A1 |
20080041401 | Casola et al. | Feb 2008 | A1 |
20080103462 | Wenzel et al. | May 2008 | A1 |
20080108977 | Heaton et al. | May 2008 | A1 |
20080167593 | Fleischmann | Jul 2008 | A1 |
20080177253 | Boehringer et al. | Jul 2008 | A1 |
20080243096 | Svedman | Oct 2008 | A1 |
20080275409 | Kane et al. | Nov 2008 | A1 |
20080287973 | Aster et al. | Nov 2008 | A1 |
20080306456 | Riesinger | Dec 2008 | A1 |
20090005716 | Abuzaina et al. | Jan 2009 | A1 |
20090005744 | Karpowicz et al. | Jan 2009 | A1 |
20090018578 | Wilke et al. | Jan 2009 | A1 |
20090018579 | Wilke et al. | Jan 2009 | A1 |
20090043268 | Eddy et al. | Feb 2009 | A1 |
20090069760 | Finklestein | Mar 2009 | A1 |
20090069904 | Picha | Mar 2009 | A1 |
20090093550 | Rolfes et al. | Apr 2009 | A1 |
20090099519 | Kaplan | Apr 2009 | A1 |
20090105670 | Bentley et al. | Apr 2009 | A1 |
20090131888 | Joshi | May 2009 | A1 |
20090137973 | Karpowicz et al. | May 2009 | A1 |
20090204423 | DeGheest et al. | Aug 2009 | A1 |
20090227938 | Fasching et al. | Sep 2009 | A1 |
20090227969 | Jaeb et al. | Sep 2009 | A1 |
20090246238 | Gorman et al. | Oct 2009 | A1 |
20090259203 | Hu et al. | Oct 2009 | A1 |
20090293887 | Wilkes et al. | Dec 2009 | A1 |
20090299255 | Kazala, Jr. et al. | Dec 2009 | A1 |
20090299256 | Barta et al. | Dec 2009 | A1 |
20090299303 | Seegert | Dec 2009 | A1 |
20090299307 | Barta et al. | Dec 2009 | A1 |
20090299341 | Kazala, Jr. et al. | Dec 2009 | A1 |
20090299342 | Cavanaugh, II et al. | Dec 2009 | A1 |
20090312685 | Olsen et al. | Dec 2009 | A1 |
20100022972 | Lina et al. | Jan 2010 | A1 |
20100022990 | Karpowicz et al. | Jan 2010 | A1 |
20100028407 | Del Priore et al. | Feb 2010 | A1 |
20100030132 | Niezgoda et al. | Feb 2010 | A1 |
20100036333 | Schenk, III et al. | Feb 2010 | A1 |
20100047324 | Fritz et al. | Feb 2010 | A1 |
20100081983 | Zocher et al. | Apr 2010 | A1 |
20100087854 | Stopek et al. | Apr 2010 | A1 |
20100100022 | Greener et al. | Apr 2010 | A1 |
20100100063 | Joshi et al. | Apr 2010 | A1 |
20100106106 | Heaton et al. | Apr 2010 | A1 |
20100106184 | Coward et al. | Apr 2010 | A1 |
20100106188 | Heaton et al. | Apr 2010 | A1 |
20100121286 | Locke et al. | May 2010 | A1 |
20100121287 | Smith et al. | May 2010 | A1 |
20100125233 | Edward et al. | May 2010 | A1 |
20100137775 | Hu et al. | Jun 2010 | A1 |
20100137890 | Martinez et al. | Jun 2010 | A1 |
20100150991 | Bernstein | Jun 2010 | A1 |
20100160874 | Robinson et al. | Jun 2010 | A1 |
20100160876 | Robinson et al. | Jun 2010 | A1 |
20100160901 | Hu et al. | Jun 2010 | A1 |
20100179515 | Swain et al. | Jul 2010 | A1 |
20100198128 | Turnlund et al. | Aug 2010 | A1 |
20100211030 | Turner et al. | Aug 2010 | A1 |
20100256672 | Weinberg et al. | Oct 2010 | A1 |
20100262092 | Hartwell | Oct 2010 | A1 |
20100262106 | Hartwell | Oct 2010 | A1 |
20100262126 | Hu et al. | Oct 2010 | A1 |
20100280468 | Haggstrom et al. | Nov 2010 | A1 |
20100292717 | Petter-Puchner et al. | Nov 2010 | A1 |
20100298866 | Fischvogt | Nov 2010 | A1 |
20100305490 | Coulthard et al. | Dec 2010 | A1 |
20100312159 | Aali et al. | Dec 2010 | A1 |
20100318046 | Boehringer et al. | Dec 2010 | A1 |
20110004173 | Hu et al. | Jan 2011 | A1 |
20110009838 | Greener | Jan 2011 | A1 |
20110015594 | Hu et al. | Jan 2011 | A1 |
20110015595 | Robinson et al. | Jan 2011 | A1 |
20110021965 | Karp et al. | Jan 2011 | A1 |
20110022082 | Burke et al. | Jan 2011 | A1 |
20110054283 | Shuler | Mar 2011 | A1 |
20110054365 | Greener | Mar 2011 | A1 |
20110059291 | Boyce et al. | Mar 2011 | A1 |
20110060204 | Weston | Mar 2011 | A1 |
20110066096 | Svedman | Mar 2011 | A1 |
20110077605 | Karpowicz et al. | Mar 2011 | A1 |
20110082480 | Viola | Apr 2011 | A1 |
20110105963 | Hu et al. | May 2011 | A1 |
20110106026 | Wu et al. | May 2011 | A1 |
20110110996 | Schoenberger et al. | May 2011 | A1 |
20110112458 | Holm et al. | May 2011 | A1 |
20110113559 | Dodd | May 2011 | A1 |
20110130774 | Criscuolo et al. | Jun 2011 | A1 |
20110152800 | Eckstein et al. | Jun 2011 | A1 |
20110172760 | Anderson | Jul 2011 | A1 |
20110178451 | Robinson et al. | Jul 2011 | A1 |
20110196420 | Ebner | Aug 2011 | A1 |
20110213287 | Lattimore et al. | Sep 2011 | A1 |
20110213319 | Blott et al. | Sep 2011 | A1 |
20110224631 | Simmons et al. | Sep 2011 | A1 |
20110224632 | Zimnitsky et al. | Sep 2011 | A1 |
20110224634 | Locke et al. | Sep 2011 | A1 |
20110236460 | Stopek et al. | Sep 2011 | A1 |
20110238026 | Zhang et al. | Sep 2011 | A1 |
20110238095 | Browning | Sep 2011 | A1 |
20110238110 | Wilke et al. | Sep 2011 | A1 |
20110245682 | Robinson et al. | Oct 2011 | A1 |
20110245788 | Marquez Canada | Oct 2011 | A1 |
20110264138 | Avelar et al. | Oct 2011 | A1 |
20110270201 | Bubb et al. | Nov 2011 | A1 |
20110270301 | Cornet et al. | Nov 2011 | A1 |
20110275964 | Greener | Nov 2011 | A1 |
20110282136 | Browning | Nov 2011 | A1 |
20110282309 | Adie et al. | Nov 2011 | A1 |
20110282310 | Boehringer et al. | Nov 2011 | A1 |
20110305736 | Wieland et al. | Dec 2011 | A1 |
20110313374 | Lockwood et al. | Dec 2011 | A1 |
20110319804 | Greener | Dec 2011 | A1 |
20120004631 | Hartwell | Jan 2012 | A9 |
20120010637 | Stopek et al. | Jan 2012 | A1 |
20120016321 | Wu et al. | Jan 2012 | A1 |
20120016322 | Coulthard et al. | Jan 2012 | A1 |
20120029449 | Khosrowshahi | Feb 2012 | A1 |
20120029455 | Perez-Foullerat et al. | Feb 2012 | A1 |
20120035560 | Eddy et al. | Feb 2012 | A1 |
20120041402 | Greener | Feb 2012 | A1 |
20120059399 | Hoke et al. | Mar 2012 | A1 |
20120059412 | Fleischmann | Mar 2012 | A1 |
20120065664 | Avitable et al. | Mar 2012 | A1 |
20120071841 | Bengtson | Mar 2012 | A1 |
20120073736 | O'Connor et al. | Mar 2012 | A1 |
20120083755 | Lina et al. | Apr 2012 | A1 |
20120095426 | Visscher et al. | Apr 2012 | A1 |
20120109188 | Viola | May 2012 | A1 |
20120121556 | Fraser et al. | May 2012 | A1 |
20120123358 | Hall et al. | May 2012 | A1 |
20120130327 | Marquez Canada | May 2012 | A1 |
20120136326 | Croizat et al. | May 2012 | A1 |
20120136328 | Johannison et al. | May 2012 | A1 |
20120143113 | Robinson et al. | Jun 2012 | A1 |
20120143158 | Yang et al. | Jun 2012 | A1 |
20120144989 | Du Plessis et al. | Jun 2012 | A1 |
20120150078 | Chen et al. | Jun 2012 | A1 |
20120150133 | Heaton et al. | Jun 2012 | A1 |
20120157942 | Weston | Jun 2012 | A1 |
20120165764 | Allen et al. | Jun 2012 | A1 |
20120172778 | Rastegar et al. | Jul 2012 | A1 |
20120172926 | Hotter | Jul 2012 | A1 |
20120191054 | Kazala, Jr. et al. | Jul 2012 | A1 |
20120191132 | Sargeant | Jul 2012 | A1 |
20120197415 | Montanari et al. | Aug 2012 | A1 |
20120203189 | Barta et al. | Aug 2012 | A1 |
20120209226 | Simmons et al. | Aug 2012 | A1 |
20120209227 | Dunn | Aug 2012 | A1 |
20120220968 | Confalone et al. | Aug 2012 | A1 |
20120222687 | Czajka, Jr. et al. | Sep 2012 | A1 |
20120238931 | Rastegar et al. | Sep 2012 | A1 |
20120253302 | Corley | Oct 2012 | A1 |
20120277773 | Sargeant et al. | Nov 2012 | A1 |
20120302440 | Theliander et al. | Nov 2012 | A1 |
20130012891 | Gross et al. | Jan 2013 | A1 |
20130023842 | Song | Jan 2013 | A1 |
20130066365 | Belson et al. | Mar 2013 | A1 |
20130096518 | Hall et al. | Apr 2013 | A1 |
20130110058 | Adie et al. | May 2013 | A1 |
20130110066 | Sharma et al. | May 2013 | A1 |
20130131564 | Locke et al. | May 2013 | A1 |
20130138054 | Fleischmann | May 2013 | A1 |
20130150813 | Gordon et al. | Jun 2013 | A1 |
20130150814 | Buan | Jun 2013 | A1 |
20130190705 | Vess et al. | Jul 2013 | A1 |
20130197457 | Kazala, Jr. et al. | Aug 2013 | A1 |
20130204213 | Heagle et al. | Aug 2013 | A1 |
20130245527 | Croizat et al. | Sep 2013 | A1 |
20130253401 | Locke et al. | Sep 2013 | A1 |
20130274717 | Dunn | Oct 2013 | A1 |
20130310781 | Phillips et al. | Nov 2013 | A1 |
20130317465 | Seegert | Nov 2013 | A1 |
20130325142 | Hunter et al. | Dec 2013 | A1 |
20130331757 | Belson | Dec 2013 | A1 |
20140066868 | Freedman et al. | Mar 2014 | A1 |
20140068914 | Coward et al. | Mar 2014 | A1 |
20140088455 | Christensen et al. | Mar 2014 | A1 |
20140094730 | Greener et al. | Apr 2014 | A1 |
20140109560 | Ilievski et al. | Apr 2014 | A1 |
20140163415 | Zaiken et al. | Jun 2014 | A1 |
20140180225 | Dunn | Jun 2014 | A1 |
20140180229 | Fuller et al. | Jun 2014 | A1 |
20140194836 | Kazala, Jr. et al. | Jul 2014 | A1 |
20140194837 | Robinson et al. | Jul 2014 | A1 |
20140195004 | Engqvist et al. | Jul 2014 | A9 |
20140213994 | Hardman et al. | Jul 2014 | A1 |
20140228789 | Wilkes et al. | Aug 2014 | A1 |
20140249495 | Mumby et al. | Sep 2014 | A1 |
20140316359 | Collinson et al. | Oct 2014 | A1 |
20140336602 | Karpowicz et al. | Nov 2014 | A1 |
20140343517 | Jameson | Nov 2014 | A1 |
20140343518 | Riesinger | Nov 2014 | A1 |
20150000018 | Brandt | Jan 2015 | A1 |
20150005722 | Hu et al. | Jan 2015 | A1 |
20150025484 | Simmons et al. | Jan 2015 | A1 |
20150030806 | Fink | Jan 2015 | A1 |
20150057762 | Harms et al. | Feb 2015 | A1 |
20150065805 | Edmondson et al. | Mar 2015 | A1 |
20150065968 | Sealy et al. | Mar 2015 | A1 |
20150075697 | Gildersleeve | Mar 2015 | A1 |
20150080947 | Greener | Mar 2015 | A1 |
20150100008 | Chatterjee | Apr 2015 | A1 |
20150112290 | Dunn | Apr 2015 | A1 |
20150112311 | Hammond et al. | Apr 2015 | A1 |
20150119837 | Thompson, Jr. et al. | Apr 2015 | A1 |
20150119865 | Barta et al. | Apr 2015 | A1 |
20150148760 | Dodd et al. | May 2015 | A1 |
20150150729 | Dagger et al. | Jun 2015 | A1 |
20150157758 | Blucher et al. | Jun 2015 | A1 |
20150159066 | Hartwell et al. | Jun 2015 | A1 |
20150164174 | West | Jun 2015 | A1 |
20150174304 | Askem et al. | Jun 2015 | A1 |
20150190288 | Dunn et al. | Jul 2015 | A1 |
20150196431 | Dunn et al. | Jul 2015 | A1 |
20150216732 | Hartwell et al. | Aug 2015 | A1 |
20150320434 | Ingram et al. | Nov 2015 | A1 |
20150320602 | Locke et al. | Nov 2015 | A1 |
20150374561 | Hubbard, Jr. et al. | Dec 2015 | A1 |
20160022885 | Dunn et al. | Jan 2016 | A1 |
20160030646 | Hartwell et al. | Feb 2016 | A1 |
20160067939 | Liebe et al. | Mar 2016 | A1 |
20160144085 | Melin et al. | May 2016 | A1 |
20160166744 | Hartwell | Jun 2016 | A1 |
20160184496 | Jaecklein et al. | Jun 2016 | A1 |
20160235897 | Boynton et al. | Aug 2016 | A1 |
20160287765 | Canner et al. | Oct 2016 | A1 |
20160354086 | Dunn | Dec 2016 | A1 |
20170007462 | Hartwell et al. | Jan 2017 | A1 |
20170007751 | Hartwell et al. | Jan 2017 | A1 |
20170065751 | Toth | Mar 2017 | A1 |
20170156611 | Burnett et al. | Jun 2017 | A1 |
20170165116 | Dunn | Jun 2017 | A1 |
20170281838 | Dunn | Oct 2017 | A1 |
20180140465 | Dunn et al. | May 2018 | A1 |
20190105202 | Dunn et al. | Apr 2019 | A1 |
20190231599 | Dagger et al. | Aug 2019 | A1 |
20190231944 | Dunn et al. | Aug 2019 | A1 |
20190262182 | Collinson et al. | Aug 2019 | A1 |
20200038023 | Dunn | Feb 2020 | A1 |
20200268562 | Dunn | Aug 2020 | A1 |
20200330661 | Canner et al. | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
2012261793 | Jan 2013 | AU |
2013206230 | Jun 2013 | AU |
2747743 | Jul 2010 | CA |
2701233 | Nov 2010 | CA |
1438904 | Aug 2003 | CN |
101257938 | Sep 2005 | CN |
101112326 | Jan 2008 | CN |
101123930 | Feb 2008 | CN |
101208115 | Jun 2008 | CN |
101257938 | Sep 2008 | CN |
101588836 | Nov 2009 | CN |
101744688 | Jun 2010 | CN |
201519362 | Jul 2010 | CN |
102038575 | May 2011 | CN |
102046117 | May 2011 | CN |
102196830 | Sep 2011 | CN |
102256637 | Nov 2011 | CN |
102781380 | Nov 2012 | CN |
202568632 | Dec 2012 | CN |
103071197 | May 2013 | CN |
103405846 | Nov 2013 | CN |
103501709 | Jan 2014 | CN |
203408163 | Jan 2014 | CN |
104736110 | Jun 2015 | CN |
104768474 | Jul 2015 | CN |
104812343 | Jul 2015 | CN |
2949920 | Mar 1981 | DE |
102005007016 | Aug 2006 | DE |
102012001752 | Aug 2013 | DE |
1320342 | Jun 2003 | EP |
2094211 | Sep 2009 | EP |
2279016 | Feb 2011 | EP |
2341955 | Jul 2011 | EP |
2366721 | Sep 2011 | EP |
2367517 | Sep 2011 | EP |
2368523 | Sep 2011 | EP |
2404571 | Jan 2012 | EP |
2404626 | Jan 2012 | EP |
2529767 | Dec 2012 | EP |
2547375 | Jan 2013 | EP |
2563421 | Mar 2013 | EP |
2567682 | Mar 2013 | EP |
2567717 | Mar 2013 | EP |
2594299 | May 2013 | EP |
2601984 | Jun 2013 | EP |
2623137 | Aug 2013 | EP |
2759265 | Jul 2014 | EP |
2829287 | Jan 2015 | EP |
2852419 | Apr 2015 | EP |
2872085 | May 2015 | EP |
3225261 | Oct 2017 | EP |
2378392 | Feb 2003 | GB |
2389794 | Dec 2003 | GB |
2423019 | Aug 2006 | GB |
2489947 | Oct 2012 | GB |
2496310 | May 2013 | GB |
2524510 | Sep 2015 | GB |
20140129 | Mar 2016 | IE |
S62-57560 | Mar 1987 | JP |
H03-041952 | Feb 1991 | JP |
H09-503923 | Apr 1997 | JP |
2006-528038 | Dec 2006 | JP |
2007-505678 | Mar 2007 | JP |
2007-531567 | Nov 2007 | JP |
2008-529618 | Aug 2008 | JP |
2009-525087 | Jul 2009 | JP |
2009-536851 | Oct 2009 | JP |
2010-526597 | Aug 2010 | JP |
2011-500170 | Jan 2011 | JP |
2011-521740 | Jul 2011 | JP |
2011-523575 | Aug 2011 | JP |
2011-526798 | Oct 2011 | JP |
2012-504460 | Feb 2012 | JP |
2012-105840 | Jun 2012 | JP |
2012-513826 | Jun 2012 | JP |
2012-529974 | Nov 2012 | JP |
2013-526938 | Jun 2013 | JP |
2014-168573 | Sep 2014 | JP |
2018-519864 | Jul 2018 | JP |
62504 | Apr 2007 | RU |
1818103 | May 1993 | SU |
WO-199420041 | Sep 1994 | WO |
WO-200059424 | Oct 2000 | WO |
WO-200134223 | May 2001 | WO |
WO-2001085248 | Nov 2001 | WO |
WO-200189392 | Nov 2001 | WO |
WO-200205737 | Jan 2002 | WO |
WO-2003003948 | Jan 2003 | WO |
WO-2003049598 | Jun 2003 | WO |
WO-2004018020 | Mar 2004 | WO |
WO-2004037334 | May 2004 | WO |
WO-2005046761 | May 2005 | WO |
WO-2005105174 | Nov 2005 | WO |
WO-2006041496 | Apr 2006 | WO |
WO-2006046060 | May 2006 | WO |
WO-2006087021 | Aug 2006 | WO |
WO-2006100053 | Sep 2006 | WO |
WO-2007030601 | Mar 2007 | WO |
WO-2007120138 | Oct 2007 | WO |
WO-2007133618 | Nov 2007 | WO |
WO-2008005532 | Jan 2008 | WO |
WO-2008027449 | Mar 2008 | WO |
WO-2008039223 | Apr 2008 | WO |
WO-2008039839 | Apr 2008 | WO |
WO-2008064502 | Jun 2008 | WO |
WO-2008091521 | Jul 2008 | WO |
WO-2008104609 | Sep 2008 | WO |
WO-2009019495 | Feb 2009 | WO |
WO-2009071926 | Jun 2009 | WO |
WO-2009071933 | Jun 2009 | WO |
WO-2009093116 | Jul 2009 | WO |
WO-2009112062 | Sep 2009 | WO |
WO-2009112848 | Sep 2009 | WO |
WO-2009114624 | Sep 2009 | WO |
WO-2009156709 | Dec 2009 | WO |
WO-2009158125 | Dec 2009 | WO |
WO-2009158126 | Dec 2009 | WO |
WO-2009158132 | Dec 2009 | WO |
WO-2010033725 | Mar 2010 | WO |
WO-2010051073 | May 2010 | WO |
WO-2010059612 | May 2010 | WO |
WO-2010075178 | Jul 2010 | WO |
WO-2010078349 | Jul 2010 | WO |
WO-2010079359 | Jul 2010 | WO |
WO-2010075180 | Jul 2010 | WO |
WO-2010092334 | Aug 2010 | WO |
WO-2010097570 | Sep 2010 | WO |
WO-2010147535 | Dec 2010 | WO |
WO-2011023384 | Mar 2011 | WO |
WO-2011087871 | Jul 2011 | WO |
WO-2011091169 | Jul 2011 | WO |
WO-2011106722 | Sep 2011 | WO |
WO-2011115908 | Sep 2011 | WO |
WO-2011116691 | Sep 2011 | WO |
WO-2011135284 | Nov 2011 | WO |
WO-2011135286 | Nov 2011 | WO |
WO-2011135287 | Nov 2011 | WO |
WO-2011137230 | Nov 2011 | WO |
WO-2011144888 | Nov 2011 | WO |
WO-2012021553 | Feb 2012 | WO |
WO-2012038727 | Mar 2012 | WO |
WO-2012069793 | May 2012 | WO |
WO-2012069794 | May 2012 | WO |
WO-2012082716 | Jun 2012 | WO |
WO-2012082876 | Jun 2012 | WO |
WO-2012087376 | Jun 2012 | WO |
WO-2012106590 | Aug 2012 | WO |
WO-2012112204 | Aug 2012 | WO |
WO-2012136707 | Oct 2012 | WO |
WO-2012142473 | Oct 2012 | WO |
WO-2012156655 | Nov 2012 | WO |
WO-2012168678 | Dec 2012 | WO |
WO-2013007973 | Jan 2013 | WO |
WO-2013012381 | Jan 2013 | WO |
WO-2013043258 | Mar 2013 | WO |
WO2014165275 | Mar 2013 | WO |
WO-2013071243 | May 2013 | WO |
WO-2013074829 | May 2013 | WO |
WO-2013076450 | May 2013 | WO |
WO-2013079447 | Jun 2013 | WO |
WO-2013079947 | Jun 2013 | WO |
WO-2013136181 | Sep 2013 | WO |
WO-2013175309 | Nov 2013 | WO |
WO-2013175310 | Nov 2013 | WO |
WO-2014013348 | Jan 2014 | WO |
WO-2014014842 | Jan 2014 | WO |
WO-2014014871 | Jan 2014 | WO |
WO-2014014922 | Jan 2014 | WO |
WO-2014024048 | Feb 2014 | WO |
WO-2014140578 | Sep 2014 | WO |
WO-2014158526 | Oct 2014 | WO |
WO-2014165275 | Oct 2014 | WO |
WO-2014178945 | Nov 2014 | WO |
WO-2014194786 | Dec 2014 | WO |
WO-2015008054 | Jan 2015 | WO |
WO-2015061352 | Apr 2015 | WO |
WO-2015109359 | Jul 2015 | WO |
WO-2015110409 | Jul 2015 | WO |
WO-2015110410 | Jul 2015 | WO |
WO-2015169637 | Nov 2015 | WO |
WO-2015172108 | Nov 2015 | WO |
WO-2015193257 | Dec 2015 | WO |
WO-2016018448 | Feb 2016 | WO |
WO-2016176513 | Nov 2016 | WO |
WO-2016179245 | Nov 2016 | WO |
WO-2016184913 | Nov 2016 | WO |
WO-2017063036 | Apr 2017 | WO |
2017106576 | Jun 2017 | WO |
2018044949 | Mar 2018 | WO |
WO-2018038665 | Mar 2018 | WO |
WO-2018041805 | Mar 2018 | WO |
WO-2018044944 | Mar 2018 | WO |
2018237206 | Dec 2018 | WO |
Entry |
---|
U.S. Appl. No. 15/066,527, filed Mar. 10, 2016, U.S. Pat. No. 10,575,991, Issued. |
U.S. Appl. No. 15/629,596, filed Jun. 21, 2017, 2017-0281838, Allowed. |
Pending U.S. Appl. No. 16/805,276, filed Feb. 28, 2020. |
U.S. Appl. No. 13/365,615, filed Feb. 3, 2012, U.S. Pat. No. 9,226,737, Issued. |
U.S. Appl. No. 13/942,493, filed Jul. 15, 2013, U.S. Pat. No. 9,421,132, Issued. |
U.S. Appl. No. 14/581,685, filed Dec. 23, 2014, U.S. Pat. No. 9,301,742, Issued. |
U.S. Appl. No. 15/083,675, filed Mar. 29, 2016, U.S. Pat. No. 10,405,861, Issued. |
U.S. Appl. No. 15/243,320, filed Aug. 22, 2016, 2016-0354086, Published. |
U.S. Appl. No. 16/539,801, filed Aug. 13, 2019, 2020-0038023, Published. |
U.S. Appl. No. 15/629,596, filed Jun. 21, 2017, U.S. Pat. No. 10,814,049, Issued. |
U.S. Appl. No. 16/805,276, filed Feb. 28, 2020, 2020-0268562, Published. |
U.S. Appl. No. 14/403,163, filed Nov. 21, 2014, U.S. Pat. No. 10,117,782, Issued. |
U.S. Appl. No. 16/177,146, filed Oct. 31, 2018, 2019-0231599, Published. |
U.S. Appl. No. 14/774,689, filed Sep. 10, 2015, U.S. Pat. No. 10,124,098, Issued. |
U.S. Appl. No. 16/177,189, filed Oct. 31, 2018, 2019-0231944, Published. |
U.S. Appl. No. 15/570,268, filed Oct. 27, 2017, 2018-0140465, Published. |
U.S. Appl. No. 15/030,841, filed Apr. 20, 2016, U.S. Pat. No. 10,660,992, Issued. |
U.S. Appl. No. 14/415,539, filed Jan. 16, 2015, U.S. Pat. No. 9,962,295, Issued. |
U.S. Appl. No. 14/415,470, filed Jan. 16, 2015, U.S. Pat. No. 10,130,520, Issued. |
U.S. Appl. No. 15/973,270, filed May 7, 2018, 2019-0105202, Published. |
U.S. Appl. No. 16/191,237, filed Nov. 14, 2018, 2019-0290495, Published. |
U.S. Appl. No. 16/328,698, filed Feb. 26, 2019, 2019-0262182, Published. |
International Search Report and Written Opinion for Application No. PCT/US2019/066382, dated Apr. 8, 2020, 14 pages. |
Argenta et al., Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann Plast Surg. Jun. 1997;38(6):563-76. |
Armstrong et al., Negative pressure wound therapy after partial diabetic foot amputation: a multicentre, randomised controlled trial. Lancet. Nov. 12, 2005;366(9498):1704-10. |
Atkins et al., Does negative pressure wound therapy have a role in preventing poststernotomy wound complications? Surg Innov. Jun. 2009;16(2):140-6. |
Blume et al., Comparison of negative pressure wound therapy using vacuum-assisted closure with advanced moist wound therapy in the treatment of diabetic foot ulcers: a multicenter randomized controlled trial. Diabetes Care. Apr. 2008;31(4):631-6. |
Easterlin et al., A Novel Technique of Vacuum-assisted Wound Closure That Functions as a Delayed Primary Closure. Wounds. Dec. 2007;19(12):331-3. |
Gomoll et al., Incisional vacuum-assisted closure therapy. J Orthop Trauma. Nov.-Dec. 2006;20(10):705-9. |
Grauhan et al., Prevention of poststernotomy wound infections in obese patients by negative pressure wound therapy. J Thorac Cardiovasc Surg. May 2013;145(5):1387-92. |
Kaplan et al., Early intervention of negative pressure wound therapy using Vacuum-Assisted Closure in trauma patients: impact on hospital length of stay and cost. Adv Skin Wound Care. Mar. 2009;22(3):128-32. |
Masden et al., Negative pressure wound therapy for at-risk surgical closures in patients with multiple comorbidities: a prospective randomized controlled study. Ann Surg. Jun. 2012;255(6):1043-7. |
Pachowsky et al., Negative pressure wound therapy to prevent seromas and treat surgical incisions after total hip arthroplasty. Int Orthop. Apr. 2012;36(4):719-22. |
Reddix et al., Incisional vacuum-assisted wound closure in morbidly obese patients undergoing acetabular fracture surgery. Am J Orthop (Belle Mead NJ). Sep. 2009;38(9):446-9. |
Reddix et al., The effect of incisional negative pressure therapy on wound complications after acetabular fracture surgery. J Surg Orthop Adv. 2010 Summer;19(2):91-7. |
Stannard et al., Incisional negative pressure wound therapy after high-risk lower extremity fractures. J Orthop Trauma. Jan. 2012;26(1):37-42. |
Stannard et al., Negative pressure wound therapy to treat hematomas and surgical incisions following high-energy trauma. J Trauma. Jun. 2006;60(6):1301-6. |
The Free Dictionary, Adhere. The Free Dictionary, accessed Mar. 23, 2017, 6 pages. URL: http://www.thefreedictionary.com/adhere. |
Bengfezi et al., Elevation as a treatment for fasciotomy wound closure. Can J Plast Surg. 2013 Fall;21(3):192-4. |
Epstein et al., Lipoabdominoplasty Without Drains or Progressive Tension Sutures: An Analysis of 100 Consecutive Patients. Aesthetic Surgery Journal. Apr. 2015;35(4):434-440. |
Hougaard et al., The open abdomen: temporary closure with a modified negative pressure therapy technigue. Int Wound J. Jun. 2014;11 Suppl 1:13-6. |
Jauregui et al., Fasciotomy closure technigues. J Orthop Surg (Hong Kong). Jan. 2017;25(1):2309499016684724. 8 pages. |
Kapischke et al., Self-fixating mesh for the Lichtenstein procedure—a prestudy. Langenbecks Arch Surg. Apr. 2010;395(4):317-22. |
Macias et al., Decrease in Seroma Rate After Adopting Progressive Tension Sutures Without Drains: A Single Surgery Center Experience of 451 Abdominoplasties over 7 Years. Aesthetic Surgery Journal. Mar. 2016;36(9):1029-1035. |
Pollock et al., Progressive Tension Sutures in Abdominoplasty: A Review of 597 Consecutive Cases. Aesthetic Surgery Journal. Aug. 2012;32(6):729-742. |
Quaba et al., The no-drain, no-quilt abdominoplasty: a single-surgeon series of 271 patients. Plast Reconstr Surg. Mar. 2015;135(3):751-60. |
Rothenberg et al., Emerging Insights on Closed Incision NPWT and Transmetatarsal Amputations, http://www.podiatrytoday.com/emerging-insights-closed-incision-npwt-and-transmetatarsal-amputations. Apr. 2015;28(4):1-5. |
International Preliminary Report on Patentability by the International Bureau of WIPO for International Patent Application No. PCT/US2016/067051 dated Jun. 19, 2018. |
International Search Report and Written Opinion for Application No. PCT/US2018/038851, dated Jan. 15, 2019, 19 pages. |
Supplementary European Search Report for Application No. 16876731.7, dated May 7, 2019, 8 pages. |
U.S. Appl. No. 15/066,527, filed Mar. 10, 2016, 2017-0165116, Allowed. |
U.S. Appl. No. 15/629,596, filed Jun. 21, 2017, 2017-0281838, Published. |
Number | Date | Country | |
---|---|---|---|
20200188564 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62779193 | Dec 2018 | US | |
62267728 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2018/038851 | Jun 2018 | US |
Child | 16714470 | US | |
Parent | 15629596 | Jun 2017 | US |
Child | PCT/US2018/038851 | US | |
Parent | PCT/US2016/067051 | Dec 2016 | US |
Child | 15629596 | US | |
Parent | 15066527 | Mar 2016 | US |
Child | PCT/US2016/067051 | US |