The present invention relates, in general, to a device and method for wound therapy that is capable of treating a variety of chronic and acute wound types, including, but not limited to, infection wounds, venous ulcers, arterial ulcers, diabetic ulcers, burn wounds, post amputation wounds, surgical wounds, and the like. Specifically, the present disclosure is related to wound treatment devices for a wound, for example, on a foot and methods that utilize a negative pressure therapy device for treatment of same.
Negative pressure therapy has been one method used for the treatment of a variety of wounds by practitioners in the art. Conventional negative pressure therapy devices are generally large in size and often require the use of complicated equipment such as suction pumps, vacuum pumps and complex electronic controllers. Additionally, U.S. Patent Pre-Grant Publication Nos. 2007/0265585 and 2007/0265586, the entire contents of which are herein incorporated by reference, also disclose negative pressure therapy devices.
Since the negative pressure therapy devices utilize negative pressure, it is desirable to minimize the opportunity for leaks in same, so as to prevent increased damage to the patient and/or wound, or unnecessarily prolonged damage to the patient and/or wound.
With respect to a wound located on a foot, there are specific drawbacks involving the time needed to deploy a conventional negative pressure wound therapy device. In addition, due to the shape of a foot, obtaining a satisfactory seal over the wound can be problematic and contribute to the increased time needed to deploy a conventional negative pressure wound therapy device.
Other wound locations on a patient's body may present drawbacks and problems similar to those associated with a wound on a foot. Therefore, nothing in this description should be meant to restrict the present invention to be used only with a wound on a foot. Rather, as would be appreciate by one of ordinary skill in the art, the benefits of the present invention can be appreciated and utilized through use of with any wound that is susceptible to negative pressure wound treatment.
While current negative pressure wound therapy devices are presumably effective for their intended purposes, there is a need for a device that allows a medical professional flexibility in placing the negative pressure wound therapy device, so as to provide the patient with a comfortable and efficient treatment.
Generally, a negative pressure wound therapy device according to one embodiment of the present invention includes a housing material having a first side and a second side, a gasket disposed on the first side of the housing material, an adhesive disposed on the first side of the housing material, a port disposed through the housing material, a liner disposed on the adhesive, a non-woven absorption material, and, a wound interface layer surrounding the non-woven absorption material.
The port may be configured to prevent exudates from flowing through the port towards the pump (which supplies the negative pressure).
The gasket is sized and configured such that when the housing material is folded back upon itself to surround a wound on an appendage, at least a first portion of the gasket is adhered to a second portion of the gasket.
In another embodiment of the present invention, the present invention provides a kit for a negative pressure wound therapy device including a housing material having a first side and a second side, a gasket disposed on the first side of the housing material, an adhesive disposed on the first side of the housing material, a port disposed through the housing material, and a liner disposed on the adhesive. The kit may also include a non-woven absorption material that can be secured to the housing by the adhesive and disposed on a wound after removal of the liner.
The kit may also include a wound interface layer to be disposed between the non-woven absorption material and the wound.
Alternatively, the kit may further include a wound interface layer surrounding the non-woven absorption material.
The kit may also include a second liner disposed on first side of the housing material.
The kit further may include a stiffener disposed on second side of the housing material.
In another embodiment the port may be configured to prevent exudates from flowing through the port.
In still another embodiment, the kit may include tubing and a pump.
In another embodiment of the invention, the invention provides a method of treating a wound with negative pressure wound therapy that includes the steps of disposing a non-woven absorption material above a wound, removing at least a portion of a liner from a housing material having a first side with an adhesive and a port disposed through the housing material, positioning the housing material around an appendage of the patient having the wound, folding the housing material, positioning the port adjacent the non-woven absorption material, sealing the housing material to the appendage, and, applying negative pressure to the wound.
The method may further include the step of disposing a wound interface layer in between the non-woven absorption material and the wound.
The method may include wherein the housing material is sealed to the appendage such that a first portion of the gasket is adhered to a second portion of the gasket. Additionally, a third portion of the gasket may be adhered to a fourth portion of the gasket.
The method may further include wherein the step of disposing the wound interface layer in between the non-woven absorption material and the wound includes the step of surrounding the non-woven absorption material with the wound interface layer.
The method may further include removing a second liner and/or a stiffener from the housing material.
The method may also include folding the housing material such that a portion of the housing material is folded onto a second portion of the housing material.
The folding of the housing material may be in a direction that is perpendicular to a longitudinal axis of the appendage, or it may be in a direction that is parallel to a longitudinal axis of the appendage.
The method may include removing at least a portion of a liner from a housing material includes removing all of the liner.
The method may also include collecting and retaining exudates within the non-woven absorption material.
The method may further include preventing exudates from flowing through the port.
A device and method as described herein is believed to provide a variety of benefits to aid in the treatment of a wound with negative pressure wound therapy.
First, such a device and method would provide for a device to be applied with a multitude of configurations when compared with conventional devices that come completely pre-arranged. In other words, a medical professional is able to determine the best location for the wound interface layer and non-woven absorption material and position those portions of the devices separate and apart from the housing material with the port. This will increase the ability to utilize such a device and method on wounds that, because of the location of the wound, are difficult to effectively treat with negative pressure wound therapy.
In addition, the design is believed to provide an improved seal compared with some of the negative pressure wound therapy devices that are currently commercially available. The improved seal results in less time needed to confirm that the device has obtained overall satisfactory seal and less time adjusting the device to eliminate gaps and other spaces that allow negative pressure to dissipate and result in the device performing with a reduced efficiency.
In addition, since the device includes the gasket and the non-woven absorption material, the device can be used with a pump that is much smaller than conventionally used pumps. This is because the non-woven absorption material absorbs the exudates. Therefore, the pump does not need a large container to collect the exudates. In addition, since the device provides a satisfactory seal, the pump can be operated with small batteries, such as AA batteries.
Other benefits of the present invention will become readily apparent to those of ordinary skill in the art with this disclosure and the attached drawings before them.
The present invention will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that the accompanying drawings depict only typical embodiments, and are, therefore, not to be considered to be limiting of the scope of the present disclosure, the embodiments will be described and explained with specificity and detail in reference to the accompanying drawings as provided below.
It will be readily understood that the components of the embodiments as generally described and illustrated in the Figures herein could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of various embodiments, as represented in the Figures, is not intended to limit the scope of the present disclosure, but is merely representative of various embodiments. While the various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present invention should be or are in any single embodiment of the invention. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present invention. Thus, discussion of the features and advantages, and similar language, throughout this specification may, but do not necessarily, refer to the same embodiment.
Furthermore, the described features, advantages, and characteristics of the invention may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the invention can be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the invention.
As shown in the attached drawings, a negative pressure wound therapy device 10 for treating a wound on, for example, a foot 12 according to one or more embodiments of the present includes a housing material 14 with a first side 16 and a second side 18. The housing material 14 is flexible such that it can be folded. In addition, it should be comprised of a material that will allow negative pressure to be provided to a wound disposed underneath the housing material 14.
Around at least a portion of the periphery 20 of the first side 16 housing material 14 is a gasket 22.
It is preferred that the gasket 22 is a hydro-gel material. Incorporated herein by reference is U.S. Pre Grant Publication No. 2009/0299251, assigned to the applicant, that provides additional details and disclosure regarding the use of a gasket in a negative pressure wound therapy device.
The gasket 22 is sized and configured such that when the housing material is folded back upon itself to surround a wound on an appendage, at least a first portion 100 of the gasket 22 is adhered to a second portion 102 of the gasket 22. If the appendage is a foot 12, for example, a third portion 104 of the gasket 22 may also be adhered to a fourth portion 106 of the gasket 22. In other words, on both sides of the foot 12, the gasket 22 adheres to itself when the housing material 14 is folded to surround the wound on an appendage.
The gasket 22 has a thickness, and it is contemplated that the thickness of the gasket 22, for example, is between 3 to 5 mils and the width of the gasket 22 is approximately ⅜ of an inch.
In one embodiment of the invention the gasket 22 may be a hydrogel. Such materials are currently available from Katecho, in Des Moines, Iowa (USA). It is preferred that the gasket 22 be a material that be biocompatible with skin. In addition the gasket 22 material should mildly adhere to the skin, but not adhere to the skin in the same manner as the adhesive on the housing material 14. In addition, the gasket 22 material should be mildly flowable. Furthermore, the gasket 22 material should be non-reactive to normal medical device sterility processes. Another contemplated material is a silicone gel; however, it is currently believed to be too cost prohibitive to utilize the silicone gel.
It is contemplated that one of ordinary skill in the art will appreciate that other shapes and designs of the housing material 14 and gasket 22 could be used. In addition, it is contemplated that other configurations of the gasket 22 could be used. For example, the gasket 22 could be comprised of a plurality of pieces arranged such that some of the pieces will adhere to other pieces when the housing material is folded.
An adhesive (not shown) is also located on at least a portion of the first side 16 of the housing material 14.
The wound therapy device 10 also includes a port 24 that allows the device 10 to communicate with a pump 60 via tubing 62. The port 24 is configured so that it projects outward of the second side 18 of the housing material 14. It is preferred, but not required, that the pump 60 be a pump such as those described in U.S. Pat. Pre Grant Publication No. 2009/0299306, the entirety of which is incorporated herein by reference. It is contemplated that the port 24 is configured to prevent exudates and/or liquids removed from the wound from flowing through the port 24 and contaminating the pump 60.
Before use, the device 10 is stored with a liner 30 disposed on the first side 16 of the housing material 14. It is preferred that the liner 30 include a first portion 32 and a second portion 34. Disposed on the second side 18 of the housing 14 may be a stiffener 36 to provide the device 10 with temporary rigidity. The stiffener 36 may be removably attached to the second side of the housing 14 with an adhesive and functions to provide the flexible housing material 14 with some rigidity.
Separate from the housing material 14, the wound therapy device 10 (and kit for same) also includes a non-woven absorption material 26. The non-woven absorption material 26 will absorb liquids and exudates from the wound and it will facilitate communication of negative pressure from the port 24 to the wound. The non-woven absorption material 26 may comprise any number of different materials that are capable of absorbing the liquid and exudates removed from the wounds, while at the same time allowing negative pressure to be communicated to the wound from the pump 60.
The device 10 (and kit) also includes a wound interface layer 28. The wound interface layer 28 may be, for example Silverlon®. The wound interface layer 28 may surround the non-woven absorption material 26 so that it forms one piece. Alternatively, the wound interface layer 28 may be provided as a completely separate piece.
The wound interface layer 28 and non-woven absorption material 26 are included in the kit, but separate from the housing material 14 with liner 30. In other words, the wound interface layer 28 and non-woven absorption material 26 are not attached to the housing material 14. Unlike conventional devices and kits, this configuration will allow the wound interface layer 28 and non-woven absorption material 26 to be positioned independent of the housing material 14. In turn, this will allow for an unlimited amount of different configurations.
The device 10 (and kit) will now be described in relation to a method of using same.
A physician or other person will position the non-woven absorption material 26 above the wound on, for example, a foot 12. A second piece (not shown) of non-woven absorption material 26 can be used if the wound is disposed in a position that would result in the port being in a position that is uncomfortable for the patient, or could easily be damaged. The non-woven absorption material 26 will allow for the communication of negative pressure from the pump 60 to the wound, and therefore, it should be placed and arranged such that it extends from the wound to the port 24. This also allows for configurations where the port 24 is to be placed a distance from the wound.
Prior to placement of the non-woven absorption material 26, the wound interface layer 28 may be positioned between the wound and non-woven absorption material 26. In the embodiments where the wound interface layer 28 surrounds the non-woven absorption material 26, this step will occur upon the placement of the non-woven absorption material 26.
After placement of the non-woven absorption material 26, the first portion 32 of the liner 30 may be removed. Alternatively, if a liner 30 comprising a single piece is used, only a portion of the liner 30 is preferably removed.
The patient's foot 12 may then be placed on the device 10. The second portion 34 of the liner 30 may then be removed. Again, if a singularly pieced liner 30 is used, the remaining portion of the liner 30 can be removed. Alternatively, the entire liner may be removed.
The device 10 may then be folded onto itself to seal around the wound, so that a first portion 200 of the housing material 14 is folded back onto a second portion 202 of a housing material 14. It is preferred that the folding be relatively perpendicular to the longitudinal axis of the patient's foot 12, but it could also be parallel with the longitudinal axis of the foot 12 and still be within the scope of the present invention. Again, in order to allow for communication of negative pressure from the pump 60 to the wound, it is necessary that the port 24 be disposed above a portion of the non-woven absorption material 26.
As mentioned above, with the folding of the housing material, at least a first portion 100 of the gasket 22 will be folded back onto a second portion 102 of the gasket 22 and adhered thereto. And, a third portion 104 of the gasket 22 may also be folded back and adhered to a fourth portion 106 of the gasket 22. This is believed to allow the device to provide sufficient negative pressure to the wound and provide a sufficient seal of the device.
The stiffener 36 may then be removed and any excess portions of the housing material 14 may be folded, for example, under the foot 12. The port 24 may be connected with tubing 62 to the pump 60. The pump 60 will provide negative pressure which will remove exudates and liquid from the wound. The liquid and exudates will be absorbed and retained in the non-woven absorption material 26.
Without further elaboration, it is believed that one skilled in the art can use the preceding description to utilize the present disclosure to its fullest extent. The examples and embodiments disclosed herein are to be construed as merely illustrative and not a limitation of the scope of the present disclosure in any way. It will be apparent to those having skill in the art that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the disclosure provided herein. In other words, various modifications and improvements of the embodiments specifically disclosed in the description above are within the scope of the appended claims. Note that elements recited in means-plus-function format are intended to be construed in accordance with 35 U.S.C. §112 ¶6. The scope of the invention is therefore defined by the following claims.
This application is a continuation of U.S. patent application Ser. No. 12/762,149 filed Apr. 16, 2010 which claims priority to U.S. Provisional Application No. 61/212,947 filed on Apr. 17, 2009, the entirety of both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
695270 | Beringer | Mar 1902 | A |
1480562 | Mock | Jan 1924 | A |
2280915 | Johnson | Apr 1942 | A |
2367690 | Purdy | Jul 1943 | A |
2568933 | Robbins | Sep 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
3367332 | Groves | Feb 1968 | A |
3486504 | Austin, Jr. | Dec 1969 | A |
3572340 | Lloyd et al. | Mar 1971 | A |
3610238 | Rich, Jr. | Oct 1971 | A |
3874387 | Barbieri | Apr 1975 | A |
3972328 | Chen | Aug 1976 | A |
3993080 | Loseff | Nov 1976 | A |
4102342 | Akiyama et al. | Jul 1978 | A |
4112947 | Nehring | Sep 1978 | A |
4136696 | Nehring | Jan 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4217894 | Franetzki | Aug 1980 | A |
4219019 | Coates | Aug 1980 | A |
4224945 | Cohen | Sep 1980 | A |
4250882 | Adair | Feb 1981 | A |
4316466 | Babb | Feb 1982 | A |
4382441 | Svedman | May 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4468227 | Jensen | Aug 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4534356 | Papadakis | Aug 1985 | A |
4551141 | McNeil | Nov 1985 | A |
4573965 | Russo | Mar 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4655766 | Theeuwes et al. | Apr 1987 | A |
4681562 | Beck et al. | Jul 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4778446 | Jensen | Oct 1988 | A |
4778456 | Lokken | Oct 1988 | A |
4792328 | Beck et al. | Dec 1988 | A |
4795435 | Steer | Jan 1989 | A |
4820284 | Hauri | Apr 1989 | A |
4921488 | Maitz et al. | May 1990 | A |
4936834 | Beck et al. | Jun 1990 | A |
4950483 | Ksander et al. | Aug 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4972829 | Knerr | Nov 1990 | A |
4979944 | Luzsicza | Dec 1990 | A |
4994022 | Steffler et al. | Feb 1991 | A |
5055198 | Shettigar | Oct 1991 | A |
5056510 | Gilman | Oct 1991 | A |
5073172 | Fell | Dec 1991 | A |
5100396 | Zamierowski | Mar 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5152757 | Eriksson | Oct 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5215519 | Shettigar | Jun 1993 | A |
5238732 | Krishnan | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5266928 | Johnson | Nov 1993 | A |
5279608 | Cherif Cheikh | Jan 1994 | A |
5328614 | Matsumura | Jul 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5380280 | Peterson | Jan 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5445604 | Lang | Aug 1995 | A |
5489280 | Russell | Feb 1996 | A |
5498338 | Kruger et al. | Mar 1996 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5562107 | Lavender et al. | Oct 1996 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5643189 | Masini | Jul 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5678564 | Lawrence et al. | Oct 1997 | A |
5733337 | Carr et al. | Mar 1998 | A |
5759570 | Arnold | Jun 1998 | A |
5785688 | Joshi et al. | Jul 1998 | A |
5830496 | Freeman | Nov 1998 | A |
5833646 | Masini | Nov 1998 | A |
5843011 | Lucas | Dec 1998 | A |
5857502 | Buchalter | Jan 1999 | A |
5868933 | Patrick et al. | Feb 1999 | A |
5876611 | Shettigar | Mar 1999 | A |
5964723 | Augustine | Oct 1999 | A |
6071267 | Zamierowski | Jun 2000 | A |
6103951 | Freeman | Aug 2000 | A |
6110197 | Augustine et al. | Aug 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
D434150 | Turney et al. | Nov 2000 | S |
6142982 | Hunt et al. | Nov 2000 | A |
6168800 | Dobos et al. | Jan 2001 | B1 |
6176307 | Danos et al. | Jan 2001 | B1 |
6225523 | Masini | May 2001 | B1 |
6254567 | Treu et al. | Jul 2001 | B1 |
6255552 | Cummings et al. | Jul 2001 | B1 |
6261283 | Morgan et al. | Jul 2001 | B1 |
6287521 | Quay et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6398767 | Fleischmann | Jun 2002 | B1 |
6402724 | Smith et al. | Jun 2002 | B1 |
6440167 | Shimizu | Aug 2002 | B2 |
6450773 | Upton | Sep 2002 | B1 |
6458109 | Henley et al. | Oct 2002 | B1 |
6465708 | Augustine | Oct 2002 | B1 |
6471685 | Johnson | Oct 2002 | B1 |
6471982 | Lydon et al. | Oct 2002 | B1 |
6482491 | Samuelsen et al. | Nov 2002 | B1 |
6491684 | Joshi et al. | Dec 2002 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6599262 | Masini | Jul 2003 | B1 |
6626891 | Ohmstede | Sep 2003 | B2 |
6648862 | Watson | Nov 2003 | B2 |
6673028 | Argenta et al. | Jan 2004 | B1 |
6676610 | Morton et al. | Jan 2004 | B2 |
6685681 | Lockwood et al. | Feb 2004 | B2 |
6695823 | Lina et al. | Feb 2004 | B1 |
6695824 | Howard et al. | Feb 2004 | B2 |
6752794 | Lockwood et al. | Jun 2004 | B2 |
6755807 | Risk et al. | Jun 2004 | B2 |
6764462 | Risk, Jr. et al. | Jul 2004 | B2 |
6767334 | Randolph | Jul 2004 | B1 |
6787682 | Gilman | Sep 2004 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6824533 | Risk, Jr. et al. | Nov 2004 | B2 |
6855135 | Lockwood et al. | Feb 2005 | B2 |
6856821 | Johnson | Feb 2005 | B2 |
6936037 | Bubb | Aug 2005 | B2 |
6951553 | Bubb et al. | Oct 2005 | B2 |
6960179 | Gura | Nov 2005 | B2 |
6977323 | Swenson | Dec 2005 | B1 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
6994702 | Johnson | Feb 2006 | B1 |
7004915 | Boynton et al. | Feb 2006 | B2 |
7022113 | Lockwood et al. | Apr 2006 | B2 |
7067709 | Murate et al. | Jun 2006 | B2 |
7070584 | Johnson et al. | Jul 2006 | B2 |
7077832 | Fleischmann | Jul 2006 | B2 |
7087806 | Scheinberg et al. | Aug 2006 | B2 |
7108683 | Zamierowski | Sep 2006 | B2 |
7117869 | Heaton et al. | Oct 2006 | B2 |
7118545 | Boyde | Oct 2006 | B2 |
7128735 | Weston | Oct 2006 | B2 |
7141714 | Nielsen | Nov 2006 | B2 |
7195624 | Lockwood | Mar 2007 | B2 |
7214202 | Vogel | May 2007 | B1 |
7216651 | Argenta et al. | May 2007 | B2 |
7361184 | Joshi | Apr 2008 | B2 |
7381859 | Hunt et al. | Jun 2008 | B2 |
7438705 | Karpowicz et al. | Oct 2008 | B2 |
7470830 | Sigurjonsson et al. | Dec 2008 | B2 |
7494482 | Orgill et al. | Feb 2009 | B2 |
7507870 | Nielsen et al. | Mar 2009 | B2 |
7524286 | Johnson | Apr 2009 | B2 |
7524315 | Blott et al. | Apr 2009 | B2 |
7534240 | Johnson | May 2009 | B1 |
7534927 | Lockwood | May 2009 | B2 |
7569742 | Haggstrom et al. | Aug 2009 | B2 |
7611500 | Lina et al. | Nov 2009 | B1 |
7612247 | Oyaski | Nov 2009 | B2 |
7615036 | Joshi et al. | Nov 2009 | B2 |
7625362 | Boehringer et al. | Dec 2009 | B2 |
7645253 | Gura et al. | Jan 2010 | B2 |
7645269 | Zamierowski | Jan 2010 | B2 |
7699823 | Haggstrom et al. | Apr 2010 | B2 |
7699830 | Martin | Apr 2010 | B2 |
7700819 | Ambrosio et al. | Apr 2010 | B2 |
7708724 | Weston | May 2010 | B2 |
7717313 | Criscuolo et al. | May 2010 | B2 |
7731702 | Bybordi et al. | Jun 2010 | B2 |
7753894 | Blott et al. | Jul 2010 | B2 |
7759537 | Bishop et al. | Jul 2010 | B2 |
7759538 | Fleischmann | Jul 2010 | B2 |
7759539 | Shaw et al. | Jul 2010 | B2 |
7775998 | Riesinger | Aug 2010 | B2 |
7776028 | Miller et al. | Aug 2010 | B2 |
7779625 | Joshi et al. | Aug 2010 | B2 |
7790945 | Watson, Jr. | Sep 2010 | B1 |
7790946 | Mulligan | Sep 2010 | B2 |
7794438 | Henley et al. | Sep 2010 | B2 |
7794450 | Blott et al. | Sep 2010 | B2 |
7811269 | Boynton et al. | Oct 2010 | B2 |
7815616 | Boehringer et al. | Oct 2010 | B2 |
7825289 | Vess | Nov 2010 | B2 |
7828782 | Suzuki | Nov 2010 | B2 |
7838717 | Haggstrom et al. | Nov 2010 | B2 |
7846141 | Weston | Dec 2010 | B2 |
7858838 | Holm et al. | Dec 2010 | B2 |
7862339 | Mulligan | Jan 2011 | B2 |
7883494 | Martin | Feb 2011 | B2 |
7896856 | Petrosenko et al. | Mar 2011 | B2 |
7909805 | Weston | Mar 2011 | B2 |
7910791 | Coffey | Mar 2011 | B2 |
7922703 | Riesinger | Apr 2011 | B2 |
7927318 | Risk, Jr. et al. | Apr 2011 | B2 |
7931630 | Nishtala et al. | Apr 2011 | B2 |
7959624 | Riesinger | Jun 2011 | B2 |
7964766 | Blott et al. | Jun 2011 | B2 |
7976519 | Bubb et al. | Jul 2011 | B2 |
7998125 | Weston | Aug 2011 | B2 |
8012169 | Joshi | Sep 2011 | B2 |
8034037 | Adams et al. | Oct 2011 | B2 |
8062272 | Weston | Nov 2011 | B2 |
8062273 | Weston | Nov 2011 | B2 |
8080702 | Blott et al. | Dec 2011 | B2 |
8084663 | Watson, Jr. | Dec 2011 | B2 |
8100887 | Weston et al. | Jan 2012 | B2 |
8105295 | Blott et al. | Jan 2012 | B2 |
8118794 | Weston et al. | Feb 2012 | B2 |
8128615 | Blott et al. | Mar 2012 | B2 |
8133211 | Cavanaugh, II et al. | Mar 2012 | B2 |
8147468 | Barta et al. | Apr 2012 | B2 |
8152785 | Vitaris | Apr 2012 | B2 |
8162907 | Heagle | Apr 2012 | B2 |
8162909 | Blott et al. | Apr 2012 | B2 |
8188331 | Barta et al. | May 2012 | B2 |
8202261 | Kazala, Jr. et al. | Jun 2012 | B2 |
8207392 | Haggstrom et al. | Jun 2012 | B2 |
8235955 | Blott et al. | Aug 2012 | B2 |
8241261 | Randolph et al. | Aug 2012 | B2 |
8251979 | Malhi | Aug 2012 | B2 |
8257326 | Vitaris | Sep 2012 | B2 |
8257327 | Blott et al. | Sep 2012 | B2 |
8257328 | Augustine et al. | Sep 2012 | B2 |
8282611 | Weston | Oct 2012 | B2 |
8294586 | Pidgeon et al. | Oct 2012 | B2 |
8298200 | Vess et al. | Oct 2012 | B2 |
8303552 | Weston | Nov 2012 | B2 |
8308714 | Weston et al. | Nov 2012 | B2 |
8323264 | Weston et al. | Dec 2012 | B2 |
8348910 | Blott et al. | Jan 2013 | B2 |
8398614 | Blott et al. | Mar 2013 | B2 |
8404921 | Lee et al. | Mar 2013 | B2 |
8444612 | Patel et al. | May 2013 | B2 |
8449509 | Weston | May 2013 | B2 |
8494349 | Gordon | Jul 2013 | B2 |
8535296 | Blott et al. | Sep 2013 | B2 |
8569566 | Blott et al. | Oct 2013 | B2 |
8641691 | Fink | Feb 2014 | B2 |
8663198 | Buan et al. | Mar 2014 | B2 |
8708998 | Weston et al. | Apr 2014 | B2 |
8715256 | Greener | May 2014 | B2 |
8764732 | Hartwell | Jul 2014 | B2 |
8808274 | Hartwell | Aug 2014 | B2 |
8814842 | Coulthard et al. | Aug 2014 | B2 |
8905985 | Allen et al. | Dec 2014 | B2 |
8926592 | Blott et al. | Jan 2015 | B2 |
9011353 | Hardman et al. | Apr 2015 | B2 |
9061095 | Adie et al. | Jun 2015 | B2 |
9084845 | Adie et al. | Jul 2015 | B2 |
20010016205 | Shimizu | Aug 2001 | A1 |
20010029956 | Argenta | Oct 2001 | A1 |
20010034499 | Sessions et al. | Oct 2001 | A1 |
20020065494 | Lockwood et al. | May 2002 | A1 |
20020068913 | Fleischmann | Jun 2002 | A1 |
20020115952 | Tumey | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20020150720 | Howard et al. | Oct 2002 | A1 |
20020161346 | Lockwood et al. | Oct 2002 | A1 |
20020183702 | Henley et al. | Dec 2002 | A1 |
20020198503 | Risk et al. | Dec 2002 | A1 |
20020198504 | Risk et al. | Dec 2002 | A1 |
20030014022 | Lockwood et al. | Jan 2003 | A1 |
20030014025 | Allen et al. | Jan 2003 | A1 |
20030021775 | Freeman | Jan 2003 | A1 |
20030040687 | Boynton et al. | Feb 2003 | A1 |
20030050594 | Zamierowski | Mar 2003 | A1 |
20030088202 | Gilman | May 2003 | A1 |
20030097086 | Gura | May 2003 | A1 |
20030108587 | Orgill et al. | Jun 2003 | A1 |
20030125649 | Mcintosh et al. | Jul 2003 | A1 |
20030144619 | Augustine | Jul 2003 | A1 |
20030171675 | Rosenberg | Sep 2003 | A1 |
20030175798 | Raees et al. | Sep 2003 | A1 |
20030208149 | Coffey | Nov 2003 | A1 |
20030212357 | Pace | Nov 2003 | A1 |
20030212431 | Brady et al. | Nov 2003 | A1 |
20030225347 | Argenta et al. | Dec 2003 | A1 |
20040019342 | Nagasuna et al. | Jan 2004 | A1 |
20040030304 | Hunt et al. | Feb 2004 | A1 |
20040039391 | Argenta et al. | Feb 2004 | A1 |
20040039415 | Zamierowski | Feb 2004 | A1 |
20040054338 | Bybordi et al. | Mar 2004 | A1 |
20040064132 | Boehringer et al. | Apr 2004 | A1 |
20040122434 | Argenta et al. | Jun 2004 | A1 |
20040127834 | Sigurjonsson et al. | Jul 2004 | A1 |
20040127862 | Bubb et al. | Jul 2004 | A1 |
20040127863 | Bubb et al. | Jul 2004 | A1 |
20040167482 | Watson | Aug 2004 | A1 |
20040225208 | Johnson | Nov 2004 | A1 |
20040241214 | Kirkwood et al. | Dec 2004 | A1 |
20040249353 | Risks, Jr. et al. | Dec 2004 | A1 |
20050004534 | Lockwood et al. | Jan 2005 | A1 |
20050010153 | Lockwood et al. | Jan 2005 | A1 |
20050020955 | Sanders et al. | Jan 2005 | A1 |
20050028828 | Heaton et al. | Feb 2005 | A1 |
20050033214 | Cantor | Feb 2005 | A1 |
20050058694 | Nielsen | Mar 2005 | A1 |
20050070835 | Joshi | Mar 2005 | A1 |
20050080372 | Nielsen et al. | Apr 2005 | A1 |
20050090787 | Risk et al. | Apr 2005 | A1 |
20050148913 | Weston | Jul 2005 | A1 |
20050222527 | Miller et al. | Oct 2005 | A1 |
20050261642 | Weston | Nov 2005 | A1 |
20050261643 | Bybordi et al. | Nov 2005 | A1 |
20060025727 | Boehringer et al. | Feb 2006 | A1 |
20060029650 | Coffey | Feb 2006 | A1 |
20060041247 | Petrosenko et al. | Feb 2006 | A1 |
20060069365 | Sperl et al. | Mar 2006 | A1 |
20060079852 | Bubb et al. | Apr 2006 | A1 |
20060100586 | Karpowicz | May 2006 | A1 |
20060100594 | Adams et al. | May 2006 | A1 |
20060116620 | Oyaski | Jun 2006 | A1 |
20060149170 | Boynton et al. | Jul 2006 | A1 |
20070010797 | Nishtala et al. | Jan 2007 | A1 |
20070038172 | Zamierowski | Feb 2007 | A1 |
20070055209 | Patel et al. | Mar 2007 | A1 |
20070118096 | Smith | May 2007 | A1 |
20070141128 | Blott et al. | Jun 2007 | A1 |
20070167884 | Mangrum et al. | Jul 2007 | A1 |
20070179460 | Adahan | Aug 2007 | A1 |
20070185426 | Ambrosio et al. | Aug 2007 | A1 |
20070185463 | Mulligan | Aug 2007 | A1 |
20070219532 | Karpowicz et al. | Sep 2007 | A1 |
20070225663 | Watt et al. | Sep 2007 | A1 |
20070265585 | Joshi et al. | Nov 2007 | A1 |
20070265586 | Joshi et al. | Nov 2007 | A1 |
20080004549 | Anderson et al. | Jan 2008 | A1 |
20080004559 | Riesinger | Jan 2008 | A1 |
20080039759 | Holm et al. | Feb 2008 | A1 |
20080077091 | Mulligan | Mar 2008 | A1 |
20080082059 | Fink et al. | Apr 2008 | A1 |
20080108977 | Heaton et al. | May 2008 | A1 |
20080119802 | Riesinger | May 2008 | A1 |
20080167593 | Fleischmann | Jul 2008 | A1 |
20080183119 | Joshi | Jul 2008 | A1 |
20080188820 | Joshi | Aug 2008 | A1 |
20080208147 | Argenta et al. | Aug 2008 | A1 |
20080223378 | Henderson et al. | Sep 2008 | A1 |
20080306407 | Taylor | Dec 2008 | A1 |
20080306456 | Riesinger | Dec 2008 | A1 |
20090005746 | Nielsen et al. | Jan 2009 | A1 |
20090036873 | Nielsen et al. | Feb 2009 | A1 |
20090054855 | Blott et al. | Feb 2009 | A1 |
20090054856 | Mormino et al. | Feb 2009 | A1 |
20090069759 | Blott et al. | Mar 2009 | A1 |
20090105670 | Bentley et al. | Apr 2009 | A1 |
20090125004 | Shen et al. | May 2009 | A1 |
20090131888 | Joshi | May 2009 | A1 |
20090177135 | Rogers et al. | Jul 2009 | A1 |
20090192499 | Weston et al. | Jul 2009 | A1 |
20090198201 | Adahan | Aug 2009 | A1 |
20090216170 | Robinson et al. | Aug 2009 | A1 |
20090221977 | Blott et al. | Sep 2009 | A1 |
20090227968 | Vess | Sep 2009 | A1 |
20090227969 | Jaeb et al. | Sep 2009 | A1 |
20090234306 | Vitaris | Sep 2009 | A1 |
20090234307 | Vitaris | Sep 2009 | A1 |
20090234309 | Vitaris et al. | Sep 2009 | A1 |
20090240185 | Jaeb et al. | Sep 2009 | A1 |
20090240218 | Braga et al. | Sep 2009 | A1 |
20090254053 | Svensby et al. | Oct 2009 | A1 |
20090254054 | Blott et al. | Oct 2009 | A1 |
20090264837 | Adahan | Oct 2009 | A1 |
20090270820 | Johnson | Oct 2009 | A1 |
20090299251 | Buan | Dec 2009 | A1 |
20090299255 | Kazala, Jr. et al. | Dec 2009 | A1 |
20090299256 | Barta et al. | Dec 2009 | A1 |
20090299257 | Long et al. | Dec 2009 | A1 |
20090299306 | Buan | Dec 2009 | A1 |
20090299307 | Barta et al. | Dec 2009 | A1 |
20090299341 | Kazala, Jr. et al. | Dec 2009 | A1 |
20090299342 | Cavanaugh, II et al. | Dec 2009 | A1 |
20090306580 | Blott et al. | Dec 2009 | A1 |
20090312723 | Blott et al. | Dec 2009 | A1 |
20090312728 | Randolph et al. | Dec 2009 | A1 |
20090326487 | Vitaris | Dec 2009 | A1 |
20100010477 | Augustine et al. | Jan 2010 | A1 |
20100036334 | Heagle et al. | Feb 2010 | A1 |
20100036367 | Krohn | Feb 2010 | A1 |
20100042074 | Weston et al. | Feb 2010 | A1 |
20100063483 | Adahan | Mar 2010 | A1 |
20100063484 | Heagle | Mar 2010 | A1 |
20100069858 | Olson | Mar 2010 | A1 |
20100069863 | Olson | Mar 2010 | A1 |
20100087767 | McNeil | Apr 2010 | A1 |
20100100063 | Joshi et al. | Apr 2010 | A1 |
20100100075 | Weston et al. | Apr 2010 | A1 |
20100105963 | Hu et al. | Apr 2010 | A1 |
20100106114 | Weston et al. | Apr 2010 | A1 |
20100121286 | Locke et al. | May 2010 | A1 |
20100122417 | Vrzalik et al. | May 2010 | A1 |
20100125258 | Coulthard et al. | May 2010 | A1 |
20100150991 | Bernstein | Jun 2010 | A1 |
20100160879 | Weston | Jun 2010 | A1 |
20100185163 | Heagle | Jul 2010 | A1 |
20100207768 | Pidgeon et al. | Aug 2010 | A1 |
20100249733 | Blott | Sep 2010 | A9 |
20100268198 | Buan et al. | Oct 2010 | A1 |
20100274207 | Weston | Oct 2010 | A1 |
20100278518 | Gordon | Nov 2010 | A1 |
20100280468 | Haggstrom et al. | Nov 2010 | A1 |
20100286635 | Watson, Jr. | Nov 2010 | A1 |
20100286638 | Malhi | Nov 2010 | A1 |
20100298866 | Fischvogt | Nov 2010 | A1 |
20100305490 | Coulthard et al. | Dec 2010 | A1 |
20100305524 | Vess et al. | Dec 2010 | A1 |
20100318043 | Malhi et al. | Dec 2010 | A1 |
20100324510 | Andresen et al. | Dec 2010 | A1 |
20100324516 | Braga et al. | Dec 2010 | A1 |
20100331797 | Patet et al. | Dec 2010 | A1 |
20110004172 | Eckstein et al. | Jan 2011 | A1 |
20110009835 | Blott | Jan 2011 | A1 |
20110015593 | Svedman et al. | Jan 2011 | A1 |
20110028918 | Hartwell | Feb 2011 | A1 |
20110028921 | Hartwell et al. | Feb 2011 | A1 |
20110034892 | Buan | Feb 2011 | A1 |
20110046584 | Haggstrom et al. | Feb 2011 | A1 |
20110054421 | Hartwell | Mar 2011 | A1 |
20110054422 | Locke et al. | Mar 2011 | A1 |
20110054423 | Blott et al. | Mar 2011 | A1 |
20110087176 | Blott | Apr 2011 | A2 |
20110087178 | Weston | Apr 2011 | A2 |
20110087180 | Weston | Apr 2011 | A2 |
20110092927 | Wilkes et al. | Apr 2011 | A1 |
20110092958 | Jacobs | Apr 2011 | A1 |
20110106030 | Scholz | May 2011 | A1 |
20110112492 | Bharti et al. | May 2011 | A1 |
20110118683 | Weston | May 2011 | A1 |
20110130712 | Topaz | Jun 2011 | A1 |
20110172615 | Greener et al. | Jul 2011 | A2 |
20110230849 | Coulthard et al. | Sep 2011 | A1 |
20110251567 | Blott et al. | Oct 2011 | A1 |
20110282309 | Adie et al. | Nov 2011 | A1 |
20120053538 | Blott et al. | Mar 2012 | A1 |
20120109084 | Blott et al. | May 2012 | A1 |
20120157942 | Weston | Jun 2012 | A1 |
20140283847 | Sanders et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
2 198 243 | Feb 1996 | CA |
2 367 460 | Oct 2000 | CA |
2 390 513 | May 2001 | CA |
2 121 688 | Jul 2001 | CA |
2 408 305 | Nov 2001 | CA |
2 458 285 | Mar 2003 | CA |
2 157 772 | Sep 2003 | CA |
2 809 828 | Sep 1978 | DE |
3 935 818 | May 1991 | DE |
4 012 232 | Oct 1991 | DE |
198 44 355 | Apr 2000 | DE |
0 020 662 | Jul 1984 | EP |
0 355 186 | Feb 1990 | EP |
0 777 504 | Oct 1998 | EP |
0 782 421 | Jul 1999 | EP |
1 897 569 | Aug 2002 | EP |
0 708 620 | May 2003 | EP |
1 088 569 | Aug 2003 | EP |
1 440 667 | Mar 2006 | EP |
1 284 777 | Apr 2006 | EP |
1 171 065 | Mar 2007 | EP |
1 476 217 | Mar 2008 | EP |
1 121 163 | Nov 2008 | EP |
2 098 257 | Sep 2009 | EP |
1163907 | Oct 1958 | FR |
114754 | Apr 1918 | GB |
641061 | Aug 1950 | GB |
1224009 | Mar 1971 | GB |
1549756 | Aug 1979 | GB |
2195255 | Apr 1988 | GB |
WO 0291964 | May 2002 | GB |
2378392 | Feb 2003 | GB |
2415908 | Jan 2006 | GB |
2003-165843 | Jun 2003 | JP |
1251912 | Apr 1983 | SU |
WO 8401904 | May 1984 | WO |
WO 9011795 | Oct 1990 | WO |
WO 9100718 | Jan 1991 | WO |
WO 9220299 | Nov 1992 | WO |
WO 9605873 | Feb 1996 | WO |
WO 9901173 | Jan 1999 | WO |
WO 0007653 | Feb 2000 | WO |
WO 0050143 | Aug 2000 | WO |
WO 0059424 | Oct 2000 | WO |
WO 0119430 | Mar 2001 | WO |
WO 0134223 | May 2001 | WO |
WO 0137922 | May 2001 | WO |
WO 0185248 | Nov 2001 | WO |
WO 0193793 | Dec 2001 | WO |
WO 02083046 | Oct 2002 | WO |
WO 02092783 | Nov 2002 | WO |
WO 03045492 | Jun 2003 | WO |
WO 03057307 | Jul 2003 | WO |
WO 03092620 | Nov 2003 | WO |
WO 2004024300 | Mar 2004 | WO |
WO 2004037334 | May 2004 | WO |
WO 2005025666 | Mar 2005 | WO |
WO 2005051461 | Jun 2005 | WO |
WO 2005070480 | Aug 2005 | WO |
WO 2005082435 | Sep 2005 | WO |
WO 2007024230 | Mar 2007 | WO |
WO 2007030601 | Mar 2007 | WO |
WO 2009066105 | May 2009 | WO |
WO 2009066106 | May 2009 | WO |
WO 2010121186 | Oct 2010 | WO |
WO 2012022484 | Feb 2012 | WO |
Entry |
---|
US 6,306,115, 10/2001, Kelly et al. (withdrawn) |
U.S. Appl. No. 10/599,720, filed Oct. 6, 2006, Blott et al. |
U.S. Appl. No. 12/192,000, filed Apr. 14, 2008, Hartwell et al. |
U.S. Appl. No. 12/192,000, filed Aug. 14, 2008, Hartwell et al. |
Achterberg, V., Ph.D., Hydroactive dressings and serum proteins: an in vitro study, Journal of Wound Care, February, vol. 5, No. 2, 1996 (pp. 79-82). |
Argenta, Louis C., et al., “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment; Clinical Experience”, Ann Plas Surg 1997;38:563-577 (Dec. 10, 1996). |
Aubrey, D.A. et al., Treatment of the Perineal Wound after Proctectomy by Intermittent Irrigation, Arch. Surg., Oct. 1984, 119, 1141-1144. |
Bagautdinov, N.A., “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” in current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye. Volkov et al. (Chuvashia State University, Cheboksary, USSR 1986) pp. 94-96 (with English translation). |
Biblehimer, Helen L., “Dealing With a Wound that Drains 1.5 Liters a Day,” RN, Aug. 1986, pp. 21-23, USA. |
Bier, A., Hyperemia as a Therapeutic Agent, Ed. Dr. Gustavus M. Blech, A. Robertson & Co., Chicago 1905. |
Brubacher, Lynda L., “To Heal a Draining Wound”, RN, Mar. 1982, pp. 30-35, USA. |
Bucalo et al. “Inhibition of Cell Proliferation by Chronic Wound Fluid.” Wound Repair and Regeneration. Miami, 1993. pp. 181-186. |
Chariker, M.E., et al, “Effective Management of Incisional and Cutaneous Fistulae with Closed Suction Wound Drainage,” Contemporary Surgery. Jun. 1989, pp. 59-63, vol. 34 USA. |
Chintamani, et al., “Half versus full vacuum suction drainage after modified radical mastectomy for breast cancer—a prospective randomized clinical trial”, Research Article (Jan. 27, 2005), 1-5. |
Costunchenok, B.M., et al., Effect of Vacuum on Surgical Purulent Wounds, Vestnik Chirurgia Sep. 18-20, 1986 (in Russian with English translation). |
Davydov et al. “Pathogenic Mechanism of the Effect of Vacuum Therapy on the Course of the Wound Process” pp. 43-46 (Dec. 1990). |
Davydov, Yu A., et al., “Concepts for Clinical Biological Management of the Wound Process in the Treatment of Purulent Wounds Using Vacuum Therapy”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik Khirurgii, BlueSky Publishing, La Costa, California (2004), 15-17. |
Davydov, Yu A., et al., “The Bacteriological and Cytological Assessment of Vacuum Therapy of Purulent Wounds”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik Khirurgii, BlueSky Publishing, La Costa, California (2004), 11-14. |
Davydov, Yu A., et al., “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik Khirurgii, BlueSky Publishing, La Costa, California (2004), 5-7. |
De Lange, M.Y. , et al., “Vacuum-Assisted Closure: Indications and Clinical Experience”, Eur J Plast Surg (2000) 2;178-182 (Feb. 9, 2000). |
Dilmaghani et al., “A Method for Closed Irrigation and Suction Therapy in Deep Wound Infections,” Journal of Bone and Joint Surgery, 1969, vol. 51-A, No. 2, pp. 323-342. |
Fleischmann et al., Vacuum Sealing: Indication, Technique, and Results, Eur J Orthop Surg Traumatol, (1995) 5:37-40. |
Fleischmann, W. Wund Forum Spezial, “Vakuumversiegelung zur Behandlung von Problemwunden” (with English translation: Vacuum Sealing for Treatment of Problematical Wounds), IHW '94, 6 pages. |
Garcia-Rinaldi, R., et al., Improving the Efficiency of Wound Drainage Catheters, Amer. Journ. of Surg., Sep. 1975, 130, 372-373. |
Hartz, R.S., et al., Healing of the Perineal Wound, Arch. Surg., Apr. 1980, 115, 471-474. |
Health Technology, Literature R., “Vacuum Assisted Closure Therapy for Wound Care”, Health Technology Literature Review (Dec. 2004), 3-59. |
Jeter, K. et al., “Managing Draining Wounds and Fistulae: New and Established Methods” Chronic Wound Care pp. 240-246, 1990. |
Johnson, F.E., An Improved Technique for Skin Graft Placement using a Suction Drain, Surgery, Gynecology & Obstetrics, Dec. 1984, 159(6), 584-585. |
KCI, Inc., If It's Not V.A.C. Therapy, It's Not Negative Pressure Wound Therapy, KCI Brochure, Jan. 2005, 1-5. |
Khirugii, Vestnik, “A Collection of Published Studies Complementing the Research and Innovation of Wound Care”, The Kremlin Papers, Perspectives in Wound Care, Russian Medical Journal, Vestnik Khirugii, Blue Sky Publishing (2004), 2-17. |
Kostiuchenok, B. M., et al., “The Vacuum Effect in the Surgical Treatment of Purulent Wounds”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik Khirurgii, BlueSky Publishing, La Costa, California (2004), 3-4. |
Landes, R.R. and I. Melnick, An Improved Suction Device for Draining Wounds, Arch. Surg., May 1972, 104, p. 707. |
Linden van der, Willem, Randomized Trial of Drainage After Cholecystectomy, Modern Operative Techniques, Voluje 141, Feb. 1981, pp. 289-294. |
McFarlane, R. M., “The Use of Continuous Suction Under Skin Flaps”, F.R.C.S.(c), vol. 1, pp. 77-86 (1958). |
McLaughlan, James, Sterile Microenvironment for Postoperative Wound Care, The Lancet, pp. 503-504, Sep. 2, 1978. |
Meyer, Weight-Loaded Syringes as a Simple and Cheap Alternative to Pumps for Vacuum-Enhanced Wound Healing, Plastic and Reconstructive Srug., Jun. 2005, 2174-2176 (Correspondence). |
Morykwas, Michael J., et al., “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation”, Ann Plast Surg 1997;38:553-562 (Dec. 10, 1996). |
Nakayama, Y., et al., “A New Method for the Dressing of Free Skin Grafts”, Plastic and Reconstructive Surgery, Dec. 1990 pp. 1216-1219, UK. |
Nursing75, Wound Suction: Better Drainage with Fewer Problems, Nursing, vol. 5, No. 10, Oct. 1975, pp. 52-55. |
Ramirez, O.M., et al., Optimal Wound Healing under Op-Site Dressing, Ideas and Innovations, 73(3), pp. 474-475. |
Ranson, John H. M.D., Safer Intraperitoneal Sump Drainage, Surgery Gynnecology and Obstetrics, pp. 841-842, 1973 vol. 137. |
Sames, C.P., Sealing of Wounds with Vacuum Drainage, Br. Med. Journ., Nov. 5, 1977, p. 1223, Correspondence. |
Solovev, V. A., et al., “The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract—Guidelines” USSR Ministry of Health, S. M. Kirov Gorky State Medical Institute, 1987 (with English translation). |
Solovev, V.A. “Treatment and Prevention of Suture Failures after Gastric Resection” (Dissertation Abstract) (S.M. Kirov Gorky State Medical Institute, Gorky USSR 1988). |
Stewart, Joanne, Ph.D., World Wide Wounds—Next generation of products for wound management—2002 (13 pages). |
Svedman, P., “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers,” Scand J. Plast. Reconst. Surg., 19:211-213, 1985. |
Svedman, P., “Irrigation Treatment of Leg Ulcers,” The Lancet, Sep. 1983, 532-34. |
Svedman, P., A Dressing Allowing Continuous Treatment of a Biosurface, IRCS Med. Science: Biomed. Tech.; Clinic. Med.; Surg. and Transplantation, 1979, 7, p. 221. |
Svedman, P., et al., “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent irrigation,” Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
Swift, et al, “Quorum Sensing in Aeromonas hydrophila and Aeromonas salmoncida: Identification of LuxRI Homologs AhyRI and AsaRI and Their Cognate N-Acylhomoserine Lactone Signal Molecules,” J. Bacteriol., 179(17):5271-5281 (1997). |
Teder and Svedman et al., “Continuous Wound Irrigation in the Pig,” Journal of Investigative Surgery, 1990, vol. 3, pp. 399-407. |
Tribble, David E. M.D., An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery New York, pp. 511-513, 1972 vol. 105. |
Usupov, Y. N., et al., “Active Wound Drainage”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik Khirurgii, BlueSky Publishing, La Costa, California (2004), 8-10. |
Venturi, Mark L., “Mechanisms and Clinical Applciations of the Vacuum-Assisted Closure (VAC) Device”, Am J Clin Dermatol (2005) 693, 185-194; Review Article (2005), 185-194. |
Vijanto, J. and J. Raekallio, Local Hyperalimentation of Open Wounds, Br. J. surg., 1976, 63, 427-430. |
Wackenfors, A., et al., Effects of Vacuum-Assisted Closure Therapy on Inguinal Wound Edge Microvascular Blood Flow, Wound Rep. Reg, 2004, 12, 600-606. |
Webb, New Techniques in Wound Management: Vacuum-Assisted Wound Closure, Journal of the American Academy of Orthopadic Surgeons, v. 10, No. 5, pp. 303-311, Sep. 2002. |
Webster's Revised Unabridged Dictionary, published 1913 by C. & G. Merriam Co., definition of Flapper Valve, downloaded from Free Online Dictionary. |
Westaby, S., et al., “A Wound Irrigation Device”, The Lancet, Sep. 2, 1978, pp. 503-504. |
Wooding-Scott, Margaret, et al., “No Wound is Too Big for Resourceful Nurses,” RN Dec. 1988, pp. 22-25 USA. |
Wound Suction, Nursing, Oct. 1975, USA pp. 52-53. |
Wu, W.S., et al. Vacuum therapy as an intermediate phase in wound closure: a clinical experience, Eur J Past Surg (2000) 23: 174-177. |
Kendall Ultec Hydrocolloid Dressing (4″×4″), product ordering page, web page downloaded Jul. 13, 2014. |
Protz, Kerstin: “Modern Wundauflagen unterstutzen Heilungsprozess”, Wundversorgung: Indikation and Anwendung, Geriatrie Journal, Apr. 2005, pp. 3333-3339, with translation. |
Valenta, A.L., Using the Vacuum Dressing Alternative for Difficult Wounds, AIN, Apr. 1994, 44-45. |
Number | Date | Country | |
---|---|---|---|
20140163494 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
61212947 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12762149 | Apr 2010 | US |
Child | 14179893 | US |