Negative pressure wound therapy dressing

Information

  • Patent Grant
  • 9302034
  • Patent Number
    9,302,034
  • Date Filed
    Wednesday, March 28, 2012
    13 years ago
  • Date Issued
    Tuesday, April 5, 2016
    9 years ago
Abstract
A wound dressing suitable for use in negative pressure wound therapy system includes a cover layer adapted to establish a reservoir over a wound in which a negative pressure may be maintained. The cover layer includes an opening therein through which atmospheric gasses and wound exudates may pass through the cover layer. A vacuum port is affixed to the cover layer, and establishes a substantially fluid tight seal about the opening in the cover layer. The vacuum port includes a hollow interior in fluid communication with the opening in the cover layer and a connector to facilitate connection to a vacuum source. A packing member is affixed to the cover layer, to provide a wound dressing that may be applied in a single step process. The packing member is adapted to fill the wound and support the cover layer when a negative pressure is applied to the reservoir.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a U.S. National Phase of the PCT International Application No. PCT/US2012/030829, filed on Mar. 28, 2012, and which claims priority to application U.S. application Ser. No. 13/079,298, filed on Apr. 4, 2011.


BACKGROUND

1. Technical Field


The present disclosure relates generally to wound dressings for use in a negative pressure wound therapy (NPWT) system. In particular, the disclosure relates to a composite wound dressing that includes a wound filler or packing member affixed to a cover layer to facilitate wound healing and ease the application of the dressing to a wound.


2. Background of Related Art


The body's natural wound healing process is a complex series of events beginning at the moment of injury. Initially the body reacts by delivering proteins and other factors to the wound through the blood stream to minimize the damage. Blood clots to prevent blood loss while cells engulf bacteria and debris to carry it away from the wound bite. Next, the body begins to repair itself in a stage of healing often referred to as the proliferate phase. This phase is characterized by the deposition of granulation tissue in the wound bed. Granulation tissue provides a base structure over which cells may migrate inwardly from the periphery to close the wound. Finally the process ends as collagen gives strength to new tissue over time often forming a scar.


One technique for promoting the natural healing process, particularly, but not exclusively during the proliferate phase, is known as negative pressure wound therapy (NPWT). Application of a reduced pressure, e.g. sub-atmospheric, to a localized reservoir over a wound has been found to assist in closing the wound. The reduced pressure may be effective to promote blood flow to the area, to stimulate the formation of granulation tissue and the migration of healthy tissue over the wound by the natural process. Also a reduced pressure may inhibit bacterial growth by assisting in removing fluids exuding from the wound. This technique has proven effective for chronic or non-healing wounds, but has also been used for other purposes such as post-operative wound care.


The general NPWT protocol provides for the introduction of a filler or packing member into the wound, and subsequently applying a cover layer over wound and packing member. The packing member serves to support the cover layer and also to absorb and/or promote fluid transport away from the wound bed. The wound filler may comprise such materials as non-reticulated foams, non-woven fabrics, continuous fibers or gauze. The cover layer may comprise a thin polymeric film that includes an adhesive periphery for forming a substantially fluid tight seal with the healthy skin surrounding the wound. The cover layer thus defines a vacuum reservoir over the wound where a reduced pressure may be maintained over time by the application of individual or cyclic evacuation procedures.


In some instances, applying a packing member and a cover layer individually to a wound may be a time consuming, and labor intensive process. A composite wound dressing that includes a packing member affixed to a cover layer may facilitate the application of the wound dressing to a wound for use in a (NPWT) system.


SUMMARY

The present disclosure describes a wound dressing suitable for use in negative pressure wound therapy system. The dressing includes a cover layer adapted to establish a reservoir over a wound in which a negative pressure may be maintained. The cover layer includes an opening therein through which atmospheric gasses and wound exudates may pass through the cover layer. A vacuum port is affixed to the cover layer, and establishes a substantially fluid tight seal about the opening in the cover layer. The vacuum port includes a hollow interior in fluid communication with the opening, and a connector to facilitate connection to a vacuum source. A packing member is affixed to the cover layer. The packing member is adapted to fill the wound and to support the cover layer when a negative pressure is applied to the reservoir.


The packing member may include an open-celled foam arranged to exhibit a generally planar cross-section, and may radially surround the vacuum port. The packing member may be spirally arranged and include a spirally-shaped major seam separating individual windings of spiral. The packing member may also include a plurality of minor seams extending laterally across the individual windings of the spiral to define discrete and separable components of the packing member.


The packing member may alternatively include a plurality of discrete elongated fingers extending distally from a distal side of the cover layer. The elongated fingers may be constructed of a tow of continuous filaments, or the elongated fingers may be constructed of strips of a foam material. The packing member may also include a supporting media affixed to the cover layer that defines a plurality of apertures therein through which a proximal end of the elongated fingers are interlaced. The supporting media may be constructed as a generally planar polymeric mesh. The supporting media may also define a flange of the vacuum port, or the supporting media may include a relatively pliable portion of a flange of the vacuum port.


The packing member may include a cellulose solution that is adapted to maintain the packing member in a relatively rigid condition prior to installation of the wound dressing, and a relatively pliable condition when the packing member is in contact with a wound. The cellulose solution may be arranged on an outer surface of the elongated fingers to substantially encapsulate the elongated fingers, allowing the clinician to strategically place the wound filler material in the wound bed without interfering with the application of the adhesive layer. The cellulose solution may be infused with vitamins and minerals that promote healthy wound healing, such as vitamin E.


According to another aspect of the disclosure, a wound dressing includes a cover layer adapted to establish a reservoir over a wound in which a negative pressure may be maintained. The cover layer includes an opening therein through which atmospheric gasses and wound exudates may pass through the cover layer. A vacuum port is affixed to the cover layer, and establishes a substantially fluid tight seal about the opening in the cover layer. The vacuum port includes a hollow interior in fluid communication with the opening, and a connector to facilitate connection to a vacuum source. A packing member is permanently affixed to a distal side of the cover layer, and includes a plurality of discrete elongated fingers extending distally from the distal side of the cover layer.


The cover layer may include an adhesive coating on the distal side thereof, and an adhesive bond may be established between the cover layer and the packing member by the adhesive coating. A release sheet or liner may be affixed to the cover layer by the adhesive coating on the distal side of the cover layer such that the packing member is interposed between the release sheet and the cover layer. The packing member may include a polymeric foam material cut such that each of the elongated fingers extends from continuous portion of the foam material. In some embodiments, the elongated fingers of the packing member may extend through an opening in the release liner.


According to another aspect of the present disclosure, a system for negative or subatmospheric pressure therapy in connection with healing a wound includes a cover layer dimensioned for positioning relative to a wound bed of a subject to establish a reservoir over the wound bed in which a negative pressure may be maintained. A packing member is permanently affixed to a distal side of the cover layer, and includes a polymeric foam material. The system also includes a vacuum source in fluid communication with the wound bed.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure and, together with the detailed description of the embodiments given below, serve to explain the principles of the disclosure.



FIG. 1 is a cross-sectional view of a negative pressure wound therapy apparatus with a wound dressing installed over a wound in accordance with the present disclosure;



FIG. 2 is a cross-sectional view of the wound dressing of FIG. 1 as packaged prior to application over the wound;



FIG. 3 is a distal or wound-facing side view of the wound dressing of FIG. 1 depicting a spiral die-cut packing member affixed to a cover layer;



FIG. 4 is a cross-sectional view of an alternate embodiment of a wound dressing depicting a packing member cut to form elongated fingers;



FIG. 5 is a cross-sectional view of an another alternate embodiment of a wound dressing the wound dressing including elongated fingers encapsulated in a thin shell;



FIG. 6 is an exploded, perspective view of an alternate embodiment of a wound dressing including a packing member woven into a supporting media; and



FIG. 7 is a partial, perspective view of an alternate embodiment of a wound dressing including a port member including a flange serving as a supporting media for a packing member.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The attached figures illustrate exemplary embodiments of the present disclosure and are referenced to describe the embodiments depicted therein. Hereinafter, the disclosure will be described in detail by explaining the figures wherein like reference numerals represent like parts throughout the several views.


Referring initially to FIG. 1, an apparatus 10 for negative pressure wound therapy (NPWT) is depicted for use on a wound “w” surrounded by healthy skin “s” in accordance with the present disclosure. Apparatus 10 may be used to subject the wound “w” to a negative pressure continuously, or in varying intervals depending on the nature and severity of the wound “w.” The use of a wound dressing in this manner has been found to promote healing by reducing the probability of infection, stimulating the deposition of granulation tissue and other beneficial processes. To facilitate the application of a negative pressure, the apparatus 10 includes a wound dressing 12 positioned relative to the wound “w” to define a reservoir 14 in which a negative pressure appropriate to stimulate healing may be maintained.


Wound dressing 12 includes an optional contact layer 18 positioned in direct contact with the bed of wound “w.” Contact layer 18 may comprise a porous film including apertures therein permitting the negative pressure applied to the reservoir 14 to penetrate into the wound “w,” and also permitting exudates to be drawn from the wound “w.” Three-dimensional formed and apertured films such as those provided by Tredegar Film Products of Richmond, Va., may be suitable for constructing contact layer 18.


Packing member 20 is positioned in the wound “w” over the contact layer 18 and is intended to allow wound dressing 12 to absorb and capture wound exudates, or to transport wound exudates away from the wound “w” and out of the dressing 12. Packing member 20 is shaped to be conformable to the shape of wound “w,” and to slightly overfill the wound “w.” Alternatively, the packing member 20 may be sized and shaped to fill the wound “w” up to the level of healthy skin “s.”


The packing member 20 may be constructed of an absorbent material such as gauze, reticulated foam, continuous fibers or alginate fibers to receive or transport any exudate that migrates through the contact layer 18. One particular antimicrobial dressing, commercially available under the trademark Covidien™ AMD offered by Tyco Healthcare Group LP (d/b/a Covidien), may be suitable for use as packing member 20. The Covidien™ AMD Foam dressing is polyurethane-based foam including the antiseptic agent polyhexamethylene biguanide (PHMB). A microstructured open-celled surface on the foam pad promotes absorption of exudates, and the added PHMB attacks bacteria on and within the dressing 12. The Covidien™ AMD Foam dressing is described in greater detailed below with reference to FIG. 2.


To discourage adhesion to the wound “w,” the packing member 20 may also comprise a material configured such that any stray fibers do not tend to protrude through apertures formed in contact layer 18 where they may become engulfed by newly forming granulation tissue. One particular type of material exhibiting this characteristic is formed of a tow of continuous filaments comprising either natural or man-made fibers. Continuous filaments include those relatively long strands of a synthetic material such as nylon, rayon, etc., which may offer a smooth continuous outer surface substantially free of the protruding fibrils commonly associated with natural materials such as cotton. The use of continuous filaments of a hydrophobic material such as polyolefin may permit a complete removal of packing member 20 when the dressing 12 is changed without re-injuring the wound “w.”


Wound dressing 12 also includes a cover layer 24. Cover layer 24 is positioned over the wound “w” such that an adhesive 26 on an underside of the cover layer 24 forms a substantially fluid-tight seal with the surrounding skin “s.” Thus, cover layer 24 may act as both a microbial barrier to prevent contaminants from entering the wound “w,” and also a fluid barrier to maintain the integrity of vacuum reservoir 14. The adhesive 26 on the underside of the cover layer 24 also affixes the packing member 20 to the cover layer 24. Thus, the cover layer 24 and the packing member 20 may be installed on over the wound “w” together as a single component.


Cover layer 24 is preferably formed from a moisture vapor permeable membrane to promote the exchange of oxygen and moisture between the wound “w” and the atmosphere, and is preferably transparent permit a visual assessment of wound conditions without requiring removal of the cover layer 24. A transparent polyurethane membrane providing a sufficient moisture vapor transmission rate (MVTR) for use as cover layer 24 is sold under the trade name POLYSKIN®II by Tyco Healthcare Group LP (d/b/a Covidien). Alternatively, cover layer 24 may comprise an impermeable membrane or a substantially rigid member.


An optional vacuum port 30 having a flange 34 may also be included in wound dressing 12 to facilitate connection of the wound dressing 12 to a fluid conduit 36. An upper surface of the flange 34 is adhered to the cover layer 24 by the adhesive 26 on the underside of the cover layer 24. Thus, the vacuum port 30 is affixed to the cover layer 24, and may be installed over the wound “w” together with the cover layer 24 and the packing member 20 as a single component. Alternatively, an adhesive (not shown) on the underside the flange 34 may be provided such that the vacuum port 30 may be installed over the cover layer 24. Vacuum port 30 may be provided as a pre-affixed component of dressing 12, as a component of fluid conduit 36 or entirely independently. Alternatively, vacuum port 30 may be eliminated from dressing 12 if other provisions are made for providing fluid communication with the fluid conduit 36.


The vacuum port 30 may be constructed of a polypropylene material and may be configured as a rigid or flexible, low-profile component. The vacuum port 30 may be adapted to receive fluid conduit 36 in a releasable and fluid-tight manner. An outer surface of the fluid conduit 36 may frictionally engage an inner surface of the vacuum port 30. Alternatively, a barbed connector (see FIG. 5), quick disconnect, bayonet coupling or permanent coupling methods may be employed to couple the fluid conduit to the vacuum port 30. A hollow interior of the vacuum port 30 provides fluid communication between the fluid conduit 36 and the reservoir 14.


Fluid conduit 36 extends from the vacuum port 30 to provide fluid communication between the reservoir 14 and a fluid collection canister 40. Any suitable conduit may be used for fluid conduit 36 including those fabricated from flexible elastomeric or polymeric materials. Fluid conduit 36 may connect to the canister 40 in a fluid-tight manner by any appropriate mechanism including any of the mechanisms described above for connecting the fluid conduit to the vacuum port 30.


Collection canister 40 may comprise any container suitable for containing wound fluids. For example, a rigid bottle may be used as shown or alternatively a flexible polymeric pouch may be appropriate. Collection canister 40 may contain an absorbent material to consolidate or contain the wound drainage or debris. For example, super absorbent polymers (SAP), silica gel, sodium polyacrylate, potassium polyacrylamide or related compounds may be provided within canister 40. At least a portion of canister 40 may be transparent to assist in evaluating the color, quality or quantity of wound exudates. A transparent canister may thus assist in determining the remaining capacity of the canister or when the canister should be replaced.


Leading from collection canister 40 is another section of fluid conduit 36 providing fluid communication with vacuum source 50. Vacuum source 50 generates or otherwise provides a negative pressure to the NWPT apparatus 10. Vacuum source 50 may comprise a peristaltic pump, a diaphragmatic pump or other mechanism that is biocompatible and draws fluids, e.g. atmospheric gasses and wound exudates, from the reservoir 14 appropriate to stimulate healing of the wound “w.” Preferably, the vacuum source 50 is adapted to produce a sub-atmospheric pressure in the reservoir 14 ranging between about 20 mmHg and about 500 mmHg, more preferably, about 75 mmHg to about 125 mmHg, or more preferably, about 40 mmHg to about 80 mmHg.


Referring now to FIG. 2, a wound dressing 12 is depicted in an initial configuration prior to application over the wound “w” (FIG. 1). The packing member 20, cover layer 24 and the vacuum port 30 are all coupled to one another by the adhesive 26 on the underside of the cover layer 24. The vacuum port 30 extends through a central opening 24a in the cover layer 24 and is adhered to a radially central region “c” of the cover layer 24 by the flange 34. The flange 34 establishes a substantially fluid tight seal with the cover layer 24. The packing member 20 radially surrounds the vacuum port 30 and is adhered to a radially intermediate region “i” of the cover layer 24. A release liner 54 is adhered to the adhesive 26 at a peripheral region “p” of the cover layer 24 and serves to protect the adhesive 26 and the packing member 20 prior to use of the dressing 12. The release liner 54 may be constructed of a silicone coated paper or similar material that will readily detach from the cover layer 26 without inhibiting ability of the adhesive 26 in the peripheral region “p” to form a fluid-tight seal with the skin “s” (FIG. 1).


The packing member 20 depicted in FIG. 2 is constructed as a die-cut pad or disc of the Covidien™ AMD foam, and is adhered to the cover layer 24 by the adhesive 26 radially surrounding the vacuum port 30. The packing member 20 assumes a generally planar cross-section and occupies a relatively small volume prior to exposure to a moist wound environment. The planar configuration of the packing member 20 is suitable for use in wounds such as shallow ulcers that generally do not require a large amount of material to fill the wound. The tendency of the Covidien™ AMD foam to swell in the presence of moisture helps fill the void of the wound “w” (FIG. 1), and thus, provides support to the cover layer 24 as the wound “w” is subjected to negative pressure. The tendency to swell in the presence of moisture also helps to maintain intimate contact between the packing member 20 and the wound bed “w” (FIG. 1). The continuous nature of a die-cut foam pad alleviates a risk of portions of the packing member being inadvertently left in the wound “w” when the wound dressing 12 is removed. The microstructured open celled surface on the foam pad discourages ingrowth of tissue from a wound site into the matrix of the packing member 20, and thus alleviates the risk of reinjuring a wound when the wound dressing 12 is removed or changed. In other embodiments (not shown) a gauze pad or non-woven wound dressing sponge may be affixed to the distal side of the foam packing member 20.


Referring now to FIG. 3, the packing member 20 is die-cut to assume a spiral configuration. A spirally shaped major seam 56 is cut between successive windings or layers of the spiral, and a plurality of minor seams 60 is cut laterally into the windings of the spiral to define a plurality of discrete components 62. The seams 56, 60 may extend entirely through the packing member 20 to define the discrete separable components 62 of the spiral. Alternately, the seams 56, 60 may extend partially through the packing member 20 or may be defined by a series of perforations to permit each of the discrete components 62 to be readily separable from the spiral. Thus, a clinician may unwind the spiral and tear or cut any number of discrete components 62 from the spiral as necessary to conform the packing member 20 to the size of the wound “w.”


Referring now to FIG. 4, an alternate embodiment of a wound dressing 68 includes a cover layer 24 and a vacuum port 30 affixed thereto in a manner substantially similar to the wound dressing 12 described above with reference to FIG. 2. The wound dressing 68 also includes a packing member 70 affixed to the distal side of the cover layer 24. The packing member 70 includes a plurality of elongated fingers 72 that may be cut to an appropriate size or length at the time the wound dressing 68 is installed to accommodate a particular wound configuration. The packing member 70 may be constructed of any of the materials discussed above for construction of the packing member 20 (FIG. 2) including a tow of continuous filaments, and a die-cut open celled foam having fingers 72 cut therein.


Each of the elongated fingers includes a proximal end 72a affixed to the cover layer 24, and a free end 72b extending therefrom in a distal direction. Where the packing member 70 is constructed of a foam material, the elongated fingers 72 may have a length “l” in the range of about 1 inch to about 4 inches, and a thickness “t” in the range of about 0.125 inches to about 0.5 inches. In other embodiments, where the packing member 70 is constructed of a tow of continuous filaments, the elongated fingers 72 may be substantially longer and narrower. The fingers 72 are supported by the adhesive 26 on the distal side of the cover layer, and may hang down from the cover layer 24 into the wound “w” when as the dressing 12 is installed.


Referring now to FIG. 5, an alternate embodiment of a wound dressing 76 includes a cover layer 24 and a vacuum port 78 affixed thereto. The vacuum port 78 includes a barbed connector 80 for engaging an interior surface of a tubing section 36 in a fluid-tight manner. In other embodiments (not shown) the tubing section 36 and vacuum port 78 may the provided or fitted with a universal connector. A universal connector is a connector of a type used to interchangeably connect a variety of different components to one another, as opposed to a propriety connector used to connect only a specific component to another specific component. A universal connector may, for example, employ an industry standard connector type, such that the dressing 76 may be used in conjunction with a wide variety of standard medical equipment.


The wound dressing 76 includes a packing member 82 affixed to the distal side of the cover layer 24, and the packing member 82 includes a plurality of elongated fingers 84 extending in a distal direction from the cover layer 24 in a manner substantially similar to the elongated fingers 72 described above with reference to FIG. 4. The elongated fingers 84 could also be constructed of a continuous tow treated with PHMB for microbial efficacy. The wound dressing 76 includes a release sheet or liner 86 adhered to the adhesive 26 of the cover layer 24, and the release liner 86 includes an opening 86a therein through which the packing member 82 and the elongated fingers 84 extend. The opening 86a in the release liner 86 permits a substantially flat release liner 86 to protect the adhesive 26 prior to use of the dressing 76, and may facilitate application of the release liner 86 to the cover layer 24 during manufacturing of the dressing 76.


The elongated fingers 84 are each encapsulated in a thin shell 88 disposed on an exterior surface of the respective finger 84. The shell 88 is constructed of a cellulose solution that may contain proteins and vitamins that could aid in the wound healing process. The cellulose serves as a stiffening agent that provides some rigidity to the fingers 84 to facilitate handling and placement of the wound dressing 76. Once the fingers are wetted by the moist wound environment, the fingers 84 will transition to a soft and pliable configuration that promotes patient comfort. In other configurations, the shell 88 could be constructed of a polymeric material having a glass transition temperature above room temperature (i.e., above about 25° C.), but below body temperature (i.e., below about 37° C.). At room temperature, the coating stiffens the fingers 84 for ease in handling and manipulation, and upon placement in a wound “w,” the shell 88 will soften as the temperature rises above the glass transition temperature of the polymeric material, thereby rendering the fingers pliable so that they conform to the contours of the wound “w.” In still other configurations, the fingers 84 may be soaked in the cellulose solution or polymeric material such that the stiffening agent is absorbed into the matrix of the fingers 84 rather than being disposed on an exterior surface as shell or coating.


Referring now to FIG. 6, an alternate embodiment of a wound dressing 90 includes a cover layer 24 and a vacuum port 30 substantially similar to the cover layer 24 and vacuum port 30 of wound dressing 12 described above with reference to FIG. 2. The wound dressing 90 also includes a packing member 92 that may be affixed to the distal side of cover layer 24 such that the entire wound dressing 90 may be applied over the wound “w” (FIG. 1) as a single component. The packing member 92 is constructed of a continuous tow 94 woven into a supporting media 96. The supporting media 96 is constructed as a generally planar, polypropylene screen or mesh including apertures 96a therein that are sized and shaped to accommodate the tow 94 interlaced therethrough. A central opening 96b is defined through the supporting media 96 that is sized to accommodate the vacuum port 30. The packing member 92 may thus be affixed to the cover layer 24 to radially surround the vacuum port 30. The tow 94 may be woven closely to the supporting media 96 such that the packing member 92 defines a substantially flat pad, or alternatively, the tow 94 may be arranged to protrude or hang in a distal direction from the supporting media 96 such that the tow 94 defines elongated fingers 98 as depicted in phantom. In other embodiments (not shown) the supporting media 96 may be configured to receive thin strips of a foam material, woven medical fabrics, or non-woven material woven therethrough.


Referring now to FIG. 7, an alternate embodiment of a wound dressing 100 includes a cover layer 24 and a vacuum port 102 affixed thereto. The vacuum port 102 includes a flange 104 that serves to affix the vacuum port 102 to the cover layer 24 in a substantially fluid-tight manner, and also serves to provide a supporting media for thin strips of a foam material 106. The strips 106 include a proximal end 106a interlaced through apertures 104a defined in the flange 104, and a pair of free ends 106b extending from the flange 104 in a distal direction. The free ends 106b may be cut to an appropriate length at the time of application to a wound “w” (FIG. 1).


In some embodiments, a central portion 104b of the flange 104 may be constructed to exhibit a relative rigidity with respect to a radial extension 104c of the flange 104, which is constructed to exhibit a relatively pliability. The relatively pliable extension 104c may flex and bend with the cover layer 24 during evacuation cycles and promote patient comfort. The extension 104c may be constructed of a more pliable material than the central portion 104b, or alternatively, the extension 104c may be constructed with a tapering or reduced thickness with respect to the central portion 104b.


Although the foregoing disclosure has been described in some detail by way of illustration and example, for purposes of clarity or understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

Claims
  • 1. A wound treatment apparatus, comprising: a cover layer adapted to establish a reservoir over a wound in which a negative pressure may be maintained, the cover layer including an opening therein through which atmospheric gasses and wound exudates may pass through the cover layer;a vacuum port affixed to the cover layer to establish a substantially fluid tight seal about the opening in the cover layer, the vacuum port including a hollow interior in fluid communication with the opening in the cover layer, and a connector to facilitate connection to a vacuum source; anda packing member adapted to fill the wound and to support the cover layer when a negative pressure is applied to the reservoir, the packing member comprising a plurality of rows of parallel discrete elongated fingers, the discrete elongated fingers extending distally from a distal side of the cover layer, wherein each elongated finger comprises a continuous strip of open-celled foam with no inner conduit, and wherein the plurality of discrete elongated fingers are separated from one another by a plurality of gaps.
  • 2. The wound treatment apparatus according to claim 1, further comprising a vacuum source.
  • 3. The wound treatment apparatus according to claim 1, wherein the discrete elongated fingers are encapsulated by shells.
  • 4. The wound treatment apparatus according to claim 1, wherein the packing member includes a supporting media affixed to the cover layer, the supporting media defining a plurality of apertures therein through which a proximal end of the elongated fingers are interlaced.
  • 5. The wound treatment apparatus according to claim 4, wherein the supporting media is constructed as a generally planar polymeric mesh.
  • 6. The wound treatment apparatus according to claim 4, wherein the supporting media defines a flange of the vacuum port.
  • 7. A wound treatment apparatus, comprising: a cover layer adapted to establish a reservoir over a wound in which a negative pressure may be maintained, the cover layer including an opening therein through which atmospheric gasses and wound exudates may pass through the cover layer;a vacuum port affixed to the cover layer to establish a substantially fluid tight seal about the opening in the cover layer, the vacuum port including a hollow interior in fluid communication with the opening in the cover layer and a connector to facilitate connection to a vacuum source; anda packing member, the packing member including a plurality of rows of parallel discrete elongated fingers comprising an open-celled foam, the discrete elongated fingers configured to extend distally from the distal side of the cover layer and a plurality of rows of parallel discrete shells comprising a polymeric material, wherein the plurality of discrete elongated fingers are configured to be inserted within the plurality of discrete shells, and wherein the plurality of discrete shells are more rigid than the plurality of discrete elongated fingers.
  • 8. The wound treatment apparatus according to claim 7, further comprising a vacuum source.
  • 9. The wound treatment apparatus according to claim 7, wherein the cover layer includes an adhesive coating on the distal side thereof, and wherein an adhesive bond is established between the cover layer and the packing member by the adhesive coating.
  • 10. The wound treatment apparatus according to claim 7, further comprising a release sheet affixed to the cover layer by the adhesive coating on the distal side of the cover layer such that the packing member is interposed between the release sheet and the cover layer.
  • 11. The wound treatment apparatus according to claim 7, wherein the packing member comprises a polymeric foam material cut such that each of the elongated fingers extends from a continuous portion of the foam material.
  • 12. The wound treatment apparatus according to claim 7, wherein the elongated fingers are constructed of a tow of continuous filaments.
  • 13. The wound treatment apparatus according to claim 7, wherein the elongated fingers are constructed of strips of at least one of the group consisting of gauze, woven fabrics and non-woven absorbent materials.
  • 14. The wound treatment apparatus according to claim 7, wherein the packing member includes a cellulose solution adapted to maintain the packing member in a relatively rigid condition prior to installation of the wound dressing, and a relatively pliable condition when the packing member is in contact with a wound.
  • 15. The wound treatment apparatus according to claim 14, wherein the cellulose solution is arranged on an outer surface of the elongated fingers to substantially encapsulate the elongated fingers.
  • 16. The wound treatment apparatus of claim 1, wherein the packing member comprises a foam continuous portion, the plurality of rows of parallel discrete elongated fingers extending distally from the continuous portion.
  • 17. A wound treatment apparatus, comprising: a cover layer adapted to establish a reservoir over a wound in which a negative pressure may be maintained, the cover layer including an opening therein through which atmospheric gasses and wound exudates may pass through the cover layer;an apertured member comprising apertures that extend from a top to a bottom of the apertured member;a packing member adapted to fill the wound and to support the cover layer, the packing member comprising a plurality of parallel discrete elongated fingers, the discrete elongated fingers extending distally toward the wound, wherein the elongated fingers comprise an open-celled foam, and wherein the plurality of discrete elongated fingers are separated from one another by a plurality of gaps; andwherein the discrete elongated fingers extend into the apertures.
  • 18. The wound treatment apparatus of claim 17, further comprising a foam member connecting elongated fingers, the foam member resting atop the apertured member.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2012/030829 3/28/2012 WO 00 12/18/2013
Publishing Document Publishing Date Country Kind
WO2012/138514 10/11/2012 WO A
US Referenced Citations (273)
Number Name Date Kind
3026874 Stevens Mar 1962 A
3367332 Groves Feb 1968 A
3486504 Austin, Jr. Dec 1969 A
3572340 Lloyd et al. Mar 1971 A
3712298 Snowdon et al. Jan 1973 A
3809086 Schachet et al. May 1974 A
3874387 Barbieri Apr 1975 A
3980166 DeFeudis Sep 1976 A
4063556 Thomas et al. Dec 1977 A
4080970 Miller Mar 1978 A
4112947 Nehring Sep 1978 A
4112949 Rosenthal et al. Sep 1978 A
4136696 Nehring Jan 1979 A
4202331 Yale May 1980 A
4224945 Cohen Sep 1980 A
4228798 Deaton Oct 1980 A
4266545 Moss May 1981 A
4280680 Payne Jul 1981 A
4382441 Svedman May 1983 A
4422293 Ewald Dec 1983 A
4510802 Peters Apr 1985 A
4524064 Nambu Jun 1985 A
4538645 Perach Sep 1985 A
4655754 Richmond et al. Apr 1987 A
4665909 Trainor May 1987 A
4700479 Saito et al. Oct 1987 A
4710165 McNeil et al. Dec 1987 A
4738257 Meyer et al. Apr 1988 A
4743232 Kruger May 1988 A
4870975 Cronk et al. Oct 1989 A
4874363 Abell Oct 1989 A
4969880 Zamierowski Nov 1990 A
4990137 Graham Feb 1991 A
4997438 Nipper Mar 1991 A
5071409 Rosenberg Dec 1991 A
5100395 Rosenberg Mar 1992 A
5100396 Zamierowski Mar 1992 A
5106629 Cartmell et al. Apr 1992 A
5135485 Cohen et al. Aug 1992 A
5141503 Sewell, Jr. Aug 1992 A
5149331 Ferdman et al. Sep 1992 A
5152757 Eriksson Oct 1992 A
5160322 Scheremet et al. Nov 1992 A
5176663 Svedman et al. Jan 1993 A
5178157 Fanlo Jan 1993 A
5180375 Feibus Jan 1993 A
5195977 Pollitt Mar 1993 A
5261893 Zamierowski Nov 1993 A
5263922 Sova et al. Nov 1993 A
5399418 Hartmanns et al. Mar 1995 A
D364679 Heaton et al. Nov 1995 S
5484427 Gibbons Jan 1996 A
5527293 Zamierowski Jun 1996 A
5536233 Khouri Jul 1996 A
5549584 Gross Aug 1996 A
5588958 Cunningham et al. Dec 1996 A
5624374 Von Iderstein Apr 1997 A
5636643 Argenta et al. Jun 1997 A
5645081 Argenta et al. Jul 1997 A
5678564 Lawrence et al. Oct 1997 A
5701917 Khouri Dec 1997 A
5733305 Fleischmann Mar 1998 A
5779657 Daneshvar Jul 1998 A
5840049 Tumey et al. Nov 1998 A
5899871 Cartmell et al. May 1999 A
5911222 Lawrence et al. Jun 1999 A
5928174 Gibbins Jul 1999 A
5944703 Dixon et al. Aug 1999 A
5960837 Cude Oct 1999 A
6010524 Fleischmann Jan 2000 A
6071267 Zamierowski Jun 2000 A
6117111 Fleischmann Sep 2000 A
6135116 Vogel et al. Oct 2000 A
D434150 Turney et al. Nov 2000 S
6142982 Hunt et al. Nov 2000 A
6174306 Fleischmann Jan 2001 B1
6203563 Fernandez Mar 2001 B1
6261276 Reitsma Jul 2001 B1
6325788 McKay Dec 2001 B1
6345623 Heaton et al. Feb 2002 B1
6348423 Griffiths et al. Feb 2002 B1
6395955 Roe et al. May 2002 B1
6398767 Fleischmann Jun 2002 B1
6406447 Thrash et al. Jun 2002 B1
6420622 Johnston et al. Jul 2002 B1
6458109 Henley et al. Oct 2002 B1
6488643 Tumey et al. Dec 2002 B1
6500112 Khouri Dec 2002 B1
D469175 Hall et al. Jan 2003 S
D469176 Hall et al. Jan 2003 S
6520982 Boynton et al. Feb 2003 B1
6547255 Donaway et al. Apr 2003 B1
6553998 Heaton et al. Apr 2003 B2
D475134 Randolph May 2003 S
6557704 Randolph May 2003 B1
D478659 Hall et al. Aug 2003 S
6607495 Skalak et al. Aug 2003 B1
6626891 Ohmstede Sep 2003 B2
6648862 Watson Nov 2003 B2
6685681 Lockwood et al. Feb 2004 B2
6695823 Lina et al. Feb 2004 B1
6695824 Howard et al. Feb 2004 B2
D488558 Hall Apr 2004 S
6752794 Lockwood et al. Jun 2004 B2
6755807 Risk, Jr. et al. Jun 2004 B2
6764462 Risk, Jr. et al. Jul 2004 B2
6767334 Randolph Jul 2004 B1
6800074 Henley et al. Oct 2004 B2
6814079 Heaton et al. Nov 2004 B2
6824533 Risk, Jr. et al. Nov 2004 B2
6855135 Lockwood et al. Feb 2005 B2
6855860 Ruszczak et al. Feb 2005 B2
6856821 Johnson Feb 2005 B2
6887228 McKay May 2005 B2
6887263 Bleam et al. May 2005 B2
6936037 Bubb et al. Aug 2005 B2
6942633 Odland Sep 2005 B2
6942634 Odland Sep 2005 B2
6951553 Bubb et al. Oct 2005 B2
6960181 Stevens Nov 2005 B2
6979324 Bybordi et al. Dec 2005 B2
6994702 Johnson Feb 2006 B1
7022113 Lockwood et al. Apr 2006 B2
7037254 O'Connor et al. May 2006 B2
7052167 Vanderschuit May 2006 B2
7070584 Johnson et al. Jul 2006 B2
7077832 Fleischmann Jul 2006 B2
7108683 Zamierowski Sep 2006 B2
7117869 Heaton et al. Oct 2006 B2
7128719 Rosenberg Oct 2006 B2
7128735 Weston Oct 2006 B2
7144390 Hannigan et al. Dec 2006 B1
7169151 Lytinas Jan 2007 B1
7182758 McCraw Feb 2007 B2
7195624 Lockwood et al. Mar 2007 B2
7198046 Argenta et al. Apr 2007 B1
7214202 Vogel et al. May 2007 B1
7216651 Argenta et al. May 2007 B2
D544092 Lewis Jun 2007 S
7273054 Heaton et al. Sep 2007 B2
7276051 Henley et al. Oct 2007 B1
7279612 Heaton et al. Oct 2007 B1
7316672 Hunt et al. Jan 2008 B1
D565177 Locke et al. Mar 2008 S
7338482 Lockwood et al. Mar 2008 B2
7351250 Zamierowski Apr 2008 B2
7361184 Joshi Apr 2008 B2
7381211 Zamierowski Jun 2008 B2
7381859 Hunt et al. Jun 2008 B2
7396345 Knighton et al. Jul 2008 B2
7410495 Zamierowski Aug 2008 B2
7413570 Zamierowski Aug 2008 B2
7413571 Zamierowski Aug 2008 B2
7422576 Boynton et al. Sep 2008 B2
7524315 Blott et al. Apr 2009 B2
7569742 Haggstrom et al. Aug 2009 B2
7699823 Haggstrom et al. Apr 2010 B2
7708724 Weston May 2010 B2
7838717 Haggstrom et al. Nov 2010 B2
7846141 Weston Dec 2010 B2
7964766 Blott et al. Jun 2011 B2
8062272 Weston Nov 2011 B2
8207392 Haggstrom et al. Jun 2012 B2
8257327 Blott et al. Sep 2012 B2
8409157 Haggstrom et al. Apr 2013 B2
8444612 Patel et al. May 2013 B2
8777911 Heagle et al. Jul 2014 B2
20010020145 Satterfield et al. Sep 2001 A1
20010029956 Argenta et al. Oct 2001 A1
20010031943 Urie Oct 2001 A1
20010043943 Coffey Nov 2001 A1
20020016577 Ohmstede Feb 2002 A1
20020108614 Schultz Aug 2002 A1
20020143286 Tumey Oct 2002 A1
20020151836 Burden Oct 2002 A1
20020161346 Lockwood et al. Oct 2002 A1
20020198503 Risk et al. Dec 2002 A1
20020198504 Risk et al. Dec 2002 A1
20030078532 Ruszczak et al. Apr 2003 A1
20030093041 Risk, Jr. et al. May 2003 A1
20030181850 Diamond et al. Sep 2003 A1
20030208149 Coffey Nov 2003 A1
20030212357 Pace Nov 2003 A1
20030212359 Butler Nov 2003 A1
20030219469 Johnson et al. Nov 2003 A1
20040006319 Lina et al. Jan 2004 A1
20040030304 Hunt et al. Feb 2004 A1
20040039415 Zamierowski Feb 2004 A1
20040064111 Lockwood et al. Apr 2004 A1
20040064132 Boehringer et al. Apr 2004 A1
20040093026 Weidenhagen et al. May 2004 A1
20040113309 Thompson, Jr. et al. Jun 2004 A1
20040122434 Argenta et al. Jun 2004 A1
20040167482 Watson Aug 2004 A1
20040193218 Butler Sep 2004 A1
20040241213 Bray Dec 2004 A1
20040243073 Lockwood et al. Dec 2004 A1
20040249353 Risk, Jr. et al. Dec 2004 A1
20040260230 Randolph Dec 2004 A1
20050004534 Lockwood et al. Jan 2005 A1
20050010153 Lockwood et al. Jan 2005 A1
20050020955 Sanders et al. Jan 2005 A1
20050070835 Joshi Mar 2005 A1
20050070858 Lockwood et al. Mar 2005 A1
20050085795 Lockwood et al. Apr 2005 A1
20050090787 Risk, Jr. et al. Apr 2005 A1
20050101940 Radl et al. May 2005 A1
20050107756 McCraw May 2005 A1
20050131327 Lockwood et al. Jun 2005 A1
20050137539 Biggie et al. Jun 2005 A1
20050147562 Hunter et al. Jul 2005 A1
20050177190 Zamierowski Aug 2005 A1
20050182445 Zamierowski Aug 2005 A1
20050222527 Miller et al. Oct 2005 A1
20050222544 Weston Oct 2005 A1
20050261642 Weston Nov 2005 A1
20050261643 Bybordi et al. Nov 2005 A1
20060015087 Risk, Jr. et al. Jan 2006 A1
20060025727 Boehringer et al. Feb 2006 A1
20060029650 Coffey Feb 2006 A1
20060039742 Cable et al. Feb 2006 A1
20060041247 Petrosenko et al. Feb 2006 A1
20060079852 Bubb et al. Apr 2006 A1
20060100586 Karpowicz et al. May 2006 A1
20060100594 Adams et al. May 2006 A1
20060116620 Oyaski Jun 2006 A1
20060149170 Boynton et al. Jul 2006 A1
20070005028 Risk, Jr. et al. Jan 2007 A1
20070014837 Johnson et al. Jan 2007 A1
20070016152 Karpowicz et al. Jan 2007 A1
20070021697 Ginther et al. Jan 2007 A1
20070027414 Hoffman et al. Feb 2007 A1
20070032754 Walsh Feb 2007 A1
20070032755 Walsh Feb 2007 A1
20070032778 Heaton et al. Feb 2007 A1
20070055209 Patel et al. Mar 2007 A1
20070078432 Halseth et al. Apr 2007 A1
20070129707 Blott et al. Jun 2007 A1
20070161938 Aali Jul 2007 A1
20070167927 Hunt et al. Jul 2007 A1
20070179460 Adahan Aug 2007 A1
20070185426 Ambrosio et al. Aug 2007 A1
20070219513 Lina et al. Sep 2007 A1
20070225663 Watt et al. Sep 2007 A1
20070233022 Henley et al. Oct 2007 A1
20080009812 Riesinger Jan 2008 A1
20080011667 Ruschke Jan 2008 A1
20080071235 Locke et al. Mar 2008 A1
20080082059 Fink et al. Apr 2008 A1
20080103462 Wenzel et al. May 2008 A1
20080132819 Radl et al. Jun 2008 A1
20080134796 Clerc et al. Jun 2008 A1
20080167593 Fleischmann Jul 2008 A1
20080183233 Koch et al. Jul 2008 A1
20080200857 Lawhorn Aug 2008 A1
20080200906 Sanders et al. Aug 2008 A1
20080208147 Argenta et al. Aug 2008 A1
20080234641 Locke et al. Sep 2008 A1
20090012483 Blott et al. Jan 2009 A1
20090054855 Blott et al. Feb 2009 A1
20090306580 Blott et al. Dec 2009 A1
20100036334 Heagle et al. Feb 2010 A1
20100256545 Aali et al. Oct 2010 A1
20100286635 Watson, Jr. Nov 2010 A1
20110028918 Hartwell Feb 2011 A1
20110054421 Hartwell Mar 2011 A1
20110172615 Greener Jul 2011 A2
20110213287 Lattimore et al. Sep 2011 A1
20120253302 Corley Oct 2012 A1
20130138060 Haggstrom et al. May 2013 A1
20130144230 Wu et al. Jun 2013 A1
20130204213 Heagle et al. Aug 2013 A1
20140094761 Corley Apr 2014 A1
Foreign Referenced Citations (47)
Number Date Country
41 11 122 Apr 1993 DE
43 06 478 Sep 1994 DE
295 04 378 Oct 1995 DE
358 302 Mar 1990 EP
1 088 569 Apr 2001 EP
1 219 311 Jul 2002 EP
0 853 950 Oct 2002 EP
2 119 460 Nov 2009 EP
2848268 Mar 2015 EP
488 232 Jul 1938 GB
1 415 096 Nov 1975 GB
1 549 756 Mar 1977 GB
2 195 255 Apr 1988 GB
2 235 877 Mar 1991 GB
2 307 180 May 1997 GB
2 329 127 Mar 1999 GB
2 336 546 Oct 1999 GB
2 344 531 Jun 2000 GB
2 415 908 Jan 2006 GB
1762940 Jan 1989 SU
WO 8001139 Jun 1980 WO
WO 8002182 Oct 1980 WO
WO 8401904 May 1984 WO
WO 8905133 Jun 1989 WO
WO 9011795 Oct 1991 WO
WO 9219313 Nov 1992 WO
WO 9309727 May 1993 WO
WO 9420041 Sep 1994 WO
WO 9605873 Feb 1996 WO
WO 0021586 Apr 2000 WO
WO 03005943 Jan 2003 WO
WO 03018098 Mar 2003 WO
WO 03030966 Apr 2003 WO
WO 03045492 Jun 2003 WO
WO 03057070 Jul 2003 WO
WO 03057071 Jul 2003 WO
WO 03057307 Jul 2003 WO
WO 03086232 Oct 2003 WO
WO 03092620 Nov 2003 WO
WO 03101508 Dec 2003 WO
WO 2004018020 Apr 2004 WO
WO 2005009488 Feb 2005 WO
WO 2006015599 Feb 2006 WO
WO 2006105892 Oct 2006 WO
WO 2008020862 Feb 2008 WO
WO 2008048481 Apr 2008 WO
WO 2008141228 Nov 2008 WO
Non-Patent Literature Citations (31)
Entry
US 6,216,701, 04/2001, Heaton et al. (withdrawn)
US 7,186,244, 03/2007, Hunt et al. (withdrawn)
U.S. Appl. No. 13/775,964, filed Feb. 25, 2013, Haggstrom et al.
U.S. Appl. No. 13/866,346, filed Apr. 19, 2013, Patel et al.
Bagautdinov (Kazan), “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” UDC 616-002.36 (94-96).
Bjorn, et al., “Irrigation Treatment in Split-thickness Skin Grafting of Intractable Leg Ulcers,” Scand J Plast Reconstr Surg 19: 211-213,1985.
Chardack, et al., “Experimental studies on Synthetic Substitutes for Skin and Their Use in the Treatment of Burns,” vol. 155, No. 1 (128-136), 1961.
Chariker, M. E. et al. (eds), “Effective Management of Incisional and Cutaneous Fistulae with Closed Suction Wound Drainage,” Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63.
Fleischmann, “Vacuum Sealing for Treatment of Problematical Wounds”, University Surgical Clinic and Polyclinic- Accident Surgery Department, WundForum Spezial-IHW 94.
Fleischmann, et al., Vacuum Sealing: Indication, Technique and Results, Emr J Orthop Surg Tramatol (1995) 5:37-40.
Göran Sandén, MD., et al., “Staphylococcal Wound Infection in the Pig: Part II. Innoculation, Quantification of Bacteria, and Reproducibility,” Annals of Plastic Surgery, vol. 23, No. 3, Sep. 1989, (219-223).
Gorica Zivadinovic, et al., “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Conference Papers of the 5th Timok Medical Days, Majdanpek, 1986 (161-164).
International Search Report for PCT/US09/047137, dated Aug. 7, 2009.
International Search Report for PCT/US09/036342, dated Aug. 3, 2010.
International Search Report and Written Opinion for PCT/US2012/030829, mailed Jul. 26, 2012.
Jeter, Katherine F., et al., “Managing Draining Wounds and Fistulae: New and Established Methods”, Chronic Wound Care, 1990, pp. 240-246.
Kostiuchenok, et al., “The Vacuum Effect in the Surgical Treatment of Purulent Wounds,” Russian Journal: Vestnik Khirurgii, Sep. 1986, (18-21).
Meyer, MD., et al., “In Surgery, Medicine and the Specialties a Manual of its Practical Application”, Bier's Hyperemic Treatment, Second Revised Edition, W.B. Saunders Company, 1909.
Mulder, GD, et al., “Clinicians' Pocket Guide to Chronic Wound Repair,” Wound Healing Publications Second Edition, 1991.
Ryosuke Fujimoro, MD., et al., “Sponge Fixation Method for Treatment of Early Scars,” From the Department of Dermatology in the Faculty Medicine, Kyoto University, vol. 42, No. 4, Oct. 1968 (323-326).
Stoll, “Energetic Remedies—Cupping: Healing Within a Vacuum,” https:l/www.suite101.com/article.cfm/ energetic)remedies/74531, Apr. 13, 2005.
Svedman, “A Dressing Allowing Continuous Treatment of a Biosurface,” IRCS Medical Science: Biomedical Technology; Clinical Medicine; Surgery and Transplantation, 7, 221 (1979).
Svedman, “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent Irrigation,” Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986 (125-133).
Svedman, “Irrigation Treatment of Leg Ulcers,” The Lancet, Sep. 3, 1983 (532-534).
Svedman, et al., “Staphylococcal Wound Infection in the Pig: Part I. Course,” Annals of Plastic Surgery, vol. 23, No. 3, Sep. 1989 (212-218).
Teder, et al., “Continuous Wound Irrigation in the Pig,” Journal of Investigative Surgery, vol. 3 (399-407).
Usupov, et al., “Active Wound Drainage,” Russian Journal: Vestnik Khirugii, Apr. 1987, (42-45).
Yu A. Davydov, et al., “Bacteriological and Cy1ological Assessment of Vacuum Therapy of Purulent Wounds”, Vestnik Khirurgii, Oct. 1988, (48-52).
Yu A. Davydov, et al., “Concepts for Clinical Biological Management of the Wound Process in the Treatment of Purulent Wounds Using Vacuum Therapy,” Vestnik Khirugii, Feb. 1991, 132-135).
Yu A. Davydov, et al., “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis,” Russian Journal: Vesnik Khirurgii, Sep. 1986, (66-70).
Yu A. Davydov, et al., “Vacuum Therapy in treatment of Acute Purulent Diseases of Soft Tissues and Purulent Wounds,” Vestnik Khirurgii, (Surgeon's Herald), Medicine Publishers, 1986.
Related Publications (1)
Number Date Country
20140094761 A1 Apr 2014 US
Continuation in Parts (1)
Number Date Country
Parent 13079298 Apr 2011 US
Child 14110120 US